
Computer Vision Toolbox™
Reference

R2022a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Computer Vision Toolbox™ Reference
© COPYRIGHT 2011–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
April 2011 Online only Revised for Version 4.0 (Release 2011a)
September 2011 Online only Revised for Version 4.1 (Release 2011b)
March 2012 Online only Revised for Version 5.0 (Release 2012a)
September 2012 Online only Revised for Version 5.1 (Release R2012b)
March 2013 Online only Revised for Version 5.2 (Release R2013a)
September 2013 Online only Revised for Version 5.3 (Release R2013b)
March 2014 Online only Revised for Version 6.0 (Release R2014a)
October 2014 Online only Revised for Version 6.1 (Release R2014b)
March 2015 Online only Revised for Version 6.2 (Release R2015a)
September 2015 Online only Revised for Version 7.0 (Release R2015b)
March 2016 Online only Revised for Version 7.1 (Release R2016a)
September 2016 Online only Revised for Version 7.2 (Release R2016b)
March 2017 Online only Revised for Version 7.3 (Release R2017a)
September 2017 Online only Revised for Version 8.0 (Release R2017b)
March 2018 Online only Revised for Version 8.1 (Release R2018a)
September 2018 Online only Revised for Version 8.2 (Release R2018b)
March 2019 Online only Revised for Version 9.0 (Release R2019a)
September 2019 Online only Revised for Version 9.1 (Release R2019b)
March 2020 Online only Revised for Version 9.2 (Release R2020a)
September 2020 Online only Revised for Version 9.3 (Release R2020b)
March 2021 Online only Revised for Version 10.0 (Release R2021a)
September 2021 Online only Revised for Version 10.1 (Release R2021b)
March 2022 Online only Revised for Version 10.2 (Release R2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Blocks
1

Objects
2

Functions
3

iii

Contents





Blocks

1



2-D Autocorrelation
2-D autocorrelation of input matrix
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Autocorrelation block computes the 2-D autocorrelation of the input vector or matrix.

Ports
Input

Port_1 — Input array
vector | matrix

Input array, specified as a vector or matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Output

Port_1 — Autocorrelation of input
vector | matrix

Autocorrelation of the input array, returned as a vector or matrix. The data type of the output is the
same as that of the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Parameters
For details on fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Prevent fixed-
point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Block Characteristics
Data Types double | fixed point | integer | single

1 Blocks

1-2



Multidimensional
Signals

no

Variable-Size Signals yes

Algorithms
If the input Ais a vector with dimension M-by-1 then the equation for 1-D discrete autocorrelation is:

where 0 ≤ n ≤ 2M − 1 .

The output is an autocorrelation vector of size (2M − 1, 1).

If the input A is a matrix with dimension M-by-N then the equation for the 2-D discrete
autocorrelation is:

where 0 ≤ i < 2M − 1 and 0 ≤ j < 2N − 1.

The dimension of the output autocorrelation matrix is (2M − 1, 2N − 1).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
2-D Correlation | 2-D Histogram | 2-D Mean | 2-D Median | 2-D Standard Deviation | 2-D Variance | 2-
D Maximum | 2-D Minimum

Introduced before R2006a

 2-D Autocorrelation

1-3



2-D Convolution
Compute 2-D discrete convolution of two input matrices
Library: Computer Vision Toolbox / Filtering

Description
The 2-D Convolution block computes the two-dimensional convolution of two input matrices. Assume
that matrix A has dimensions (Ma, Na) and matrix B has dimensions (Mb, Nb). When the block
calculates the full output size, the equation for the 2-D discrete convolution is:

C(i, j) = ∑
m = 0

(Ma− 1)
∑

n = 0

(Na− 1)
A(m, n) * B(i−m, j− n)

where 0 ≤ i < Ma + Mb− 1 and 0 ≤ j < Na + Nb− 1.

Ports
Input

I1 — Input matrix
matrix

Input matrix, specified as either a matrix of intensity values or a matrix that represents one plane of
an RGB video stream.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I2 — Input matrix
matrix

Input matrix, specified as either a matrix of intensity values or a matrix that represents one plane of
an RGB video stream.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Output — Convolution
matrix

Convolution of the input matrices, returned as a matrix.

1 Blocks

1-4



Dependencies

• The dimensions of the output are dictated by the Output size parameter.
• If the data type of the input is floating point, the output of the block is also floating point.
• If all(size(I1)<size(I2)), the block returns an error.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main Tab

Output size — Output size
matrix

Dimensions of the output.

The table describes the block output, given the following input dimensions:

• I1 — (Ma, Na)
• I2 — (Mb, Nb)

Output size Output Output Dimension
Full Full two-dimensional

convolution
(Ma+Mb-1, Na+Nb-1).

Same as input port I1 Central part of the convolution
with the same dimensions as the
input at port I1

 

Valid Only the parts of the
convolution that are computed
without the zero-padded edges
of any input.

(Ma-Mb+1, Na-Nb+1)

Normalized output — Normalized output
matrix

Normalize output by dividing the output by sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))),
where I1p is the portion of the I1 matrix that aligns with the I2 matrix.

Note When you select the Normalized output check box, the block input cannot be fixed point.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks” .

Block Characteristics
Data Types double | fixed point | integer | single

 2-D Convolution

1-5



Multidimensional
Signals

no

Variable-Size Signals yes

Algorithms
2-D Convolution

In convolution, the value of an output element is computed as a weighted sum of neighboring
elements.

For example, suppose the first input matrix represents an image and is defined as:

I1 = [17  24   1   8  15
     23   5   7  14  16
      4   6  13  20  22
     10  12  19  21   3
     11  18  25   2   9]

The second input matrix also represents an image and is defined as:

I2 = [8   1   6
     3   5   7
     4   9   2]

The following figure shows how to compute the (1,1) output element by using these steps:

1 Rotate the second input matrix, I2, 180 degrees around its center element.
2 Slide the center element of I2 so that it lies on top of the (0,0) element of I1.
3 Multiply each element of the rotated I2 matrix by the element of I1 underneath.
4 Sum the individual products from step 3.

The (1,1) output element is 0 ⋅ 2 + 0 ⋅ 9 + 0 ⋅ 4 + 0 ⋅ 7 + 17 ⋅ 5 + 24 ⋅ 3 + 0 ⋅ 6 + 23 ⋅ 1 + 5 ⋅ 8 = 220.

1 Blocks

1-6



Computing the (1,1) Output of Convolution

The normalized convolution of the (1,1) output element is 220/
sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))) = 0.3459, where I1p = [0 0 0; 0 17 24; 0
23 5].

Output Sizes

The equations below describe how the block computes the convolution depending on how you set the
Output size parameter. For the cases below, the inputs are set as:

• I1 — dimensions (4,3)
• I2 — dimensions (2,2)
• When Output size is set to Full, the block uses the following equations:

 2-D Convolution

1-7



The resulting matrix is:

• When Output size is set to Same as input port I1, the output is the central part of Cfull
with the same dimensions as the input at port I1, (4,3). However, since a 4-by-3 matrix cannot be
extracted from the exact center of Cfull, the block leaves more rows and columns on the top and
left side of the Cfull matrix and outputs:

• When the Output size is set to Valid, the block uses the following equations to determine the
number of rows and columns of the output matrix:

In this case, it is always possible to extract the exact center of Cfull. Therefore, the block outputs:

1 Blocks

1-8



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

When you select the Normalized output check box, the block input cannot be fixed point.

See Also
2-D FIR Filter

Introduced before R2006a

 2-D Convolution

1-9



2-D Correlation
Compute 2-D correlation of two input matrices
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Correlation block computes the two-dimensional cross-correlation between two input
matrices.

Ports
Input

I1 — First input matrix
M-by-N matrix

First input matrix, specified as a M-by-N matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point
Complex Number Support: Yes

I2 — Second input matrix
P-by-Q matrix

Second input matrix, specified as a P-by-Q matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point
Complex Number Support: Yes

Output

Port_1 — Calculated cross-correlation
scalar | vector | matrix

Calculated cross-correlation, returned as a scalar, vector, or matrix. The size of the cross-correlation
output depends on the Output size parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point
Complex Number Support: Yes

Parameters
Main Tab

1 Blocks

1-10



Output size — Size of cross-correlation output
Full (default) | Same as input port I1 | Valid

Size of the cross-correlation output.

• If you choose Full, the output has the dimensions (M+P-1)-by-(N+Q-1).
• If you choose Same as input port I1, the output has the same dimensions as the input at port

I1. The block returns the central part of cross-correlation matrix, which is the same size as the
input at port I1.

• If you choose Valid, the output has the dimensions (M-P+1)-by-(N-Q+1). The block returns only
parts of the cross-correlation matrix that are computed without zero-padded edges.

Normalized output — Normalize cross-correlation output
off (default) | on

Select this parameter, if the data types of the inputs are floating-point. The values of the cross-
correlation output are normalized to [0, 1].

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Prevent fixed-
point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Algorithms
Given two input matrices, I1 and I2, that are size M-by-N and P-by-Q, the 2-D cross-correlation value
at the point (k,l) is given by

C k, l = ∑
m = 0

M − 1
∑

n = 0

N − 1
I1 m, n I2 m + k, n + l .

The normalized cross-correlation value at the point (k,l) is calculated as

 2-D Correlation

1-11



CN k, l =
∑

m = 0

M − 1
∑

n = 0

N − 1
I1 m, n I2 m + k, n + l

∑
m = 0

M − 1
∑

n = 0

N − 1
I1 m, n 2 ∑

m = 0

M − 1
∑

n = 0

N − 1
I2 m + k, n + l 2

,

where,
0 ≤ k < M + P − 1
0 ≤ l < N + Q− 1

Suppose I1 and I2 are matrices with dimensions (4,3) and (2,2). The following figure shows how the
block computes cross-correlation value for the point I1(1,3), which refers to the second column and
fourth row in zero-based indexing.

The cross-correlation value for the point I1(1,3) is computed using these steps:

1 Slide the center element of I2 so that it lies on top of the (0,2) element of I1.
2 Multiply each weight in I2 by the element of I1 underneath.
3 Sum the individual products from step 2.

The cross-correlation value for the point I1(1,3) is
1 ⋅ 8 + 8 ⋅ 1 + 15 ⋅ 6 + 7 ⋅ 3 + 14 ⋅ 5 + 16 ⋅ 7 + 13 ⋅ 4 + 20 ⋅ 9 + 22 ⋅ 2 = 585.

The normalized cross-correlation value for the point I1(1,3) is

585
∑ I1p

2 ∑ I22 = 0.8070.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
2-D Autocorrelation | 2-D Mean | 2-D Histogram | 2-D Median | 2-D Standard Deviation | 2-D Variance
| 2-D Maximum | 2-D Minimum

Introduced before R2006a

1 Blocks

1-12



2-D DCT
Compute 2-D discrete cosine transform (DCT)
Library: Computer Vision Toolbox / Transforms

Description
The 2-D DCT block calculates the two-dimensional discrete cosine transform of an image. Suppose
f(x,y) is the input image of dimension M-by-N, the equation for the 2-D DCT is

F(m, n) = 2
MNC(m)C(n) ∑

x = 0

M − 1
∑

y = 0

N − 1
f (x, y)cos(2x + 1)mπ

2M cos(2y + 1)nπ
2N

where C(m) = C(n) = 1/ 2 for m, n = 0 and C(m), C(n) = 1 otherwise.

The number of rows and columns of the input image must be power of 2. You can also use this block
to compute 1-D DCT of a vector.

Ports
Input

Port_1 — Input data
matrix | vector

Input data, specified as a numeric matrix or a vector. The size of the input data must be power of 2.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output data
matrix | vector

Output data containing the DCT coefficients, returned as a matrix or vector. The size and the datatype
of the output is same as that of the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main Tab

 2-D DCT

1-13



Sine and cosine computation — Specify how the block computes the sine and cosine
terms
Table lookup (default) | Trigonometric fcn

Use this parameter to specify how the block computes the sine and cosine terms in the DCT
algorithm.

• If you select Trigonometric fcn, the block computes the sine and cosine values during the
simulation.

• If you select Table lookup, the block computes and stores the trigonometric values before the
simulation starts. In this case, the block requires extra memory. Table lookup is the default.

Data Types Tab

Fixed-point operational parameters

Rounding mode — Rounding mode for fixed-point representation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Use this parameter to specify the rounding mode for the block to use when the specified data type
and scaling cannot exactly represent the result of a fixed-point calculation. See Rounding Modes for
more information on the available values.

Note The sine table values do not obey this parameter; they always round to Nearest.

Saturate on integer overflow — Specify overflow mode
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation.

For details on saturate and wrap, see “Overflow Handling” for fixed-point operations.

Note The sine table values do not obey this parameter; instead, they are always saturated.

Fixed-point data types

Sine Table — Data type of sine table
Inherit: Same word length as input (default) | fixdt(1,16) | <data type expression>

Use this parameter to specify the word length of the values of the sine table. The fraction length of
the sine table values always equals the word length minus one.

The sine table values do not obey the Rounding mode and Saturate on integer overflow
parameters; instead, they are always saturated and rounded to Nearest.

Product output — Data type of product output
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0) | <data type expression>

1 Blocks

1-14



Use this parameter to specify the product output data type. See “Fixed-Point Data Types” on page 1-
15 and “Multiplication Data Types” for illustrations depicting the use of the product output data
type in this block.

Accumulator — Data type of accumulator
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt(1,16,0) | <data type expression>

Use this parameter to specify the accumulator data type. See “Fixed-Point Data Types” on page 1-15
for illustrations depicting the use of the accumulator data type in this block.

Output — Data type of output
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0) | <data type expression>

Use this parameter to specify the output data type. See “Fixed-Point Data Types” on page 1-15 for
illustrations depicting the use of the output data type in this block. When you set this parameter to

• Inherit: Inherit via internal rule, the block calculates the output word length and
fraction length automatically. The internal rule first calculates an ideal output word length and
fraction length using the following equations:

WLidealoutput = WLinput + f loor(log2(DCTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are
appropriate for your hardware. For more information, see “Inherit via Internal Rule”.

Lock data type settings against change by the fixed-point tools — Data type
override
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool.

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Fixed-Point Data Types

The following diagram shows the data types used in the 2-D DCT block for fixed-point signals. Inputs
are first cast to the output data type and stored in the output buffer. Each butterfly stage processes
signals in the accumulator data type, with the final output of the butterfly being cast back into the
output data type.

 2-D DCT

1-15



The output of the multiplier is in the product output data type when at least one of the inputs to the
multiplier is real. When both inputs to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication performed, refer to
“Multiplication Data Types”. You can set the sine table, product output, accumulator, and output data
types in the block mask as discussed in the next section.

References
[1] Chen, W.H, C.H. Smith, and S.C. Fralick, “A fast computational algorithm for the discrete cosine

transform,” IEEE Trans. Communications, 25 (1977): 1004-1009.

[2] Wang, Z. “Fast algorithms for the discrete W transform and for the discrete Fourier transform,”
IEEE Trans. Acoust., Speech, Signal Processing, 32 (August 1984): 803-816.

1 Blocks

1-16



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
2-D IDCT | 2-D FFT | 2-D IFFT

Functions
dct2 | idct2

Introduced before R2006a

 2-D DCT

1-17



2-D FFT
Compute two-dimensional fast Fourier transform of input

Library
Transforms

visiontransforms

Description
The 2-D FFT block computes the fast Fourier transform (FFT). The block does the computation of a
two-dimensional M-by-N input matrix in two steps. First it computes the one-dimensional FFT along
one dimension (row or column). Then it computes the FFT of the output of the first step along the
other dimension (column or row).

The output of the 2-D FFT block is equivalent to the MATLAB® fft2 function:

y = fft2(A)    % Equivalent MATLAB code

Computing the FFT of each dimension of the input matrix is equivalent to calculating the two-
dimensional discrete Fourier transform (DFT), which is defined by the following equation:

F(m, n) = ∑
x = 0

M − 1
∑

y = 0

N − 1
f (x, y)e− j2πmx

M e− j2πny
N

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1.

The output of this block has the same dimensions as the input. If the input signal has a floating-point
data type, the data type of the output signal uses the same floating-point data type. Otherwise, the
output can be any fixed-point data type. The block computes scaled and unscaled versions of the FFT.

The input to this block can be floating-point or fixed-point, real or complex, and conjugate symmetric.
The block uses one of two possible FFT implementations. You can select an implementation based on
the FFTW library [1], [2], or an implementation based on a collection of Radix-2 algorithms. You can
select Auto to allow the block to choose the implementation.

1 Blocks

1-18



Port Description

Port Description Supported Data Types Complex Values
Supported

Input Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes

Output 2-D FFT of the input Same as Input port Yes

FFTW Implementation

The FFTW implementation provides an optimized FFT calculation including support for power-of-two
and non-power-of-two transform lengths in both simulation and code generation. Generated code
using the FFTW implementation will be restricted to those computers which are capable of running
MATLAB. The input data type must be floating-point.

Radix-2 Implementation

The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data, and allows
the block to provide portable C-code generation using the “Simulink Coder”. The dimensions of the
input matrix, M and N, must be powers of two. To work with other input sizes, use the Image Pad
block to pad or truncate these dimensions to powers of two, or if possible choose the FFTW
implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

• Butterfly operation
• Double-signal algorithm
• Half-length algorithm
• Radix-2 decimation-in-time (DIT) algorithm
• Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity Floating-Point Signals

Other Parameter Settings Algorithms Used for IFFT Computation
Butterfly operation and radix-2 DIT

Radix-2 DIF

Butterfly operation and radix-2 DIT in conjunction with the half-
length and double-signal algorithms

Radix-2 DIF in conjunction with the half-length and double-signal
algorithms

 2-D FFT

1-19



Radix-2 Algorithms for Real or Complex Input Complexity Fixed-Point Signals

Other Parameter Settings Algorithms Used for IFFT Computation
Butterfly operation and radix-2 DIT

Radix-2 DIF

Note The Input is conjugate symmetric parameter cannot be used for fixed-point signals.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block’s Radix–2 algorithm computes all the possible trigonometric values of
the twiddle factor

e j2πk
K

where K is the greater value of either M or N and k = 0,⋯, K − 1. The block stores these values in a
table and retrieves them during simulation. The number of table entries for fixed-point and floating-
point is summarized in the following table:

Number of Table Entries for N-Point FFT
floating-point 3 N/4
fixed-point N

Fixed-Point Data Types

The following diagrams show the data types used in the FFT block for fixed-point signals. You can set
the sine table, accumulator, product output, and output data types displayed in the diagrams in the
FFT dialog box as discussed in “Parameters” on page 1-21.

Inputs to the FFT block are first cast to the output data type and stored in the output buffer. Each
butterfly stage then processes signals in the accumulator data type, with the final output of the
butterfly being cast back into the output data type. The block multiplies in a twiddle factor before
each butterfly stage in a decimation-in-time FFT and after each butterfly stage in a decimation-in-
frequency FFT.

1 Blocks

1-20



The multiplier output appears in the accumulator data type because both of the inputs to the
multiplier are complex. For details on the complex multiplication performed, refer to “Multiplication
Data Types”.

Parameters
FFT implementation

Set this parameter to FFTW [1], [2] to support an arbitrary length input signal. The block restricts
generated code with FFTW implementation to host computers capable of running MATLAB.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point data, or for
portable C-code generation using the “Simulink Coder”. The dimensions of the input matrix, M
and N, must be powers of two. To work with other input sizes, use the Image Pad block to pad or
truncate these dimensions to powers of two, or if possible choose the FFTW implementation. See
“Radix-2 Implementation” on page 1-19.

Set this parameter to Auto to let the block choose the FFT implementation. For non-power-of-two
transform lengths, the block restricts generated code to MATLAB host computers.

 2-D FFT

1-21



Output in bit-reversed order
Designate the order of the output channel elements relative to the ordering of the input elements.
When you select this check box, the output channel elements appear in bit-reversed order relative
to the input ordering. If you clear this check box, the output channel elements appear in linear
order relative to the input ordering.

Linearly ordering the output requires extra data sorting manipulation. For more information, see
“Bit-Reversed Order” on page 1-23.

Scale result by FFT length
When you select this parameter, the block divides the output of the FFT by the FFT length. This
option is useful when you want the output of the FFT to stay in the same amplitude range as its
input. This is particularly useful when working with fixed-point data types.

Rounding mode
Select the “Rounding Modes” for fixed-point operations. The sine table values do not obey this
parameter; instead, they always round to Nearest.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”. The sine table
values do not obey this parameter; instead, they are always saturated.

Sine table data type
Choose how you specify the word length of the values of the sine table. The fraction length of the
sine table values always equals the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer overflow
parameters; instead, they are always saturated and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-20 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-20 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

1 Blocks

1-22



Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-20 for illustrations
depicting the use of the output data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output
word length and fraction length automatically. The internal rule first calculates an ideal output
word length and fraction length using the following equations:

• When you select the Divide butterfly outputs by two check box, the ideal output word
and fraction lengths are the same as the input word and fraction lengths.

• When you clear the Divide butterfly outputs by two check box, the block computes the
ideal output word and fraction lengths according to the following equations:

WLidealoutput = WLinput + f loor(log2(FFTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction lengths that
are appropriate for your hardware. For more information, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink® documentation.

Example
Bit-Reversed Order

Two numbers are bit-reversed values of each other when the binary representation of one is the
mirror image of the binary representation of the other. For example, in a three-bit system, one and
four are bit-reversed values of each other because the three-bit binary representation of one, 001, is
the mirror image of the three-bit binary representation of four, 100. The following diagram shows the
row indices in linear order. To put them in bit-reversed order

1 Translate the indices into their binary representation with the minimum number of bits. In this
example, the minimum number of bits is three because the binary representation of 7 is 111.

2 Find the mirror image of each binary entry, and write it beside the original binary representation.

 2-D FFT

1-23



3 Translate the indices back to their decimal representation.

The row indices now appear in bit-reversed order.

If, on the 2-D FFT block parameters dialog box, you select the Output in bit-reversed order check
box, the block bit-reverses the order of both the columns and the rows. The next diagram illustrates
the linear and bit-reversed outputs of the 2-D FFT block. The output values are the same, but they
appear in different order.

References

[1] FFTW (https://www.fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,”Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp.
1381-1384.

See Also
2-D DCT Computer Vision Toolbox software
2-D IDCT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software
bitrevorder Signal Processing Toolbox software
fft MATLAB

1 Blocks

1-24

https://www.fftw.org


ifft MATLAB
“Simulink Coder” Simulink Coder™

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• When the following conditions apply, the executable generated from this block relies on prebuilt
dynamic library files (.dll files) included with MATLAB:

• FFT implementation is set to FFTW.
• Inherit FFT length from input dimensions is cleared, and FFT length is set to a value that

is not a power of two.

Use the packNGo function to package the code generated from this block and all the relevant files
in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in
another development environment where MATLAB is not installed. For more details, see .

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
block.

Introduced before R2006a

 2-D FFT

1-25



2-D FIR Filter
Perform 2-D FIR filtering on input matrix

Library
Filtering

visionfilter

Description
The 2-D Finite Impulse Response (FIR) filter block filters the input matrix I using the coefficient
matrix H or the coefficient vectors HH and HV.

Port Input/Output Supported Data Types Complex Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes

H Matrix of filter coefficients Same as I port. Yes
HH Vector of filter coefficients Same as I port. The input to ports HH and

HV must be the same data type.
Yes

HV Vector of filter coefficients Same as I port. The input to ports HH and
HV must be the same data type.

Yes

PVal Scalar value that represents the
constant pad value

Input must have the same data type as the
input to I port.

Yes

Output Scalar, vector, or matrix of
filtered values

Same as I port. Yes

If the input has a floating-point data type, then the output uses the same data type. Otherwise, the
output can be any fixed-point data type.

Select the Separable filter coefficients check box if your filter coefficients are separable. Using
separable filter coefficients reduces the amount of calculations the block must perform to compute
the output. For example, suppose your input image is M-by-N and your filter coefficient matrix is x-by-
y. For a nonseparable filter with the Output size parameter set to Same as input port I, it
would take

1 Blocks

1-26



x ⋅ y ⋅M ⋅ N

multiply-accumulate (MAC) operations for the block to calculate the output. For a separable filter, it
would only take

(x + y) ⋅M ⋅ N

MAC operations. If you do not know whether or not your filter coefficients are separable, use the
isfilterseparable function.

Here is an example of the function syntax, [S, HCOL, HROW] = isfilterseparable(H). The
isfilterseparable function takes the filter kernel, H, and returns S, HCOL and HROW. Here, S is a
Boolean variable that is 1 if the filter is separable and 0 if it is not. HCOL is a vector of vertical filter
coefficients, and HROW is a vector of horizontal filter coefficients.

Use the Coefficient source parameter to specify how to define your filter coefficients. If you select
the Separable filter coefficients check box and then select a Coefficient source of Specify via
dialog, the Vertical coefficients (across height) and Horizontal coefficients (across width)
parameters appear in the dialog box. You can use these parameters to enter vectors of vertical and
horizontal filter coefficients, respectively.

You can also use the variables HCOL and HROW, the output of the isfilterseparable function, for
these parameters. If you select the Separable filter coefficients check box and then select a
Coefficient source of Input port, ports HV and HH appear on the block. Use these ports to
specify vectors of vertical and horizontal filter coefficients.

If you clear the Separable filter coefficients check box and select a Coefficient source of
Specify via dialog, the Coefficients parameter appears in the dialog box. Use this parameter to
enter your matrix of filter coefficients.

If you clear the Separable filter coefficients check box and select a Coefficient source of Input
port, port H appears on the block. Use this port to specify your filter coefficient matrix.

The block outputs the result of the filtering operation at the Output port. The Output size parameter
and the sizes of the inputs at ports I and H dictate the dimensions of the output. For example, assume
that the input at port I has dimensions (Mi, Ni) and the input at port H has dimensions (Mh, Nh). If
you select an Output size of Full, the output has dimensions (Mi+Mh-1, Ni+Nh-1). If you select an
Output size of Same as input port I, the output has the same dimensions as the input at port I.
If you select an Output size of Valid, the block filters the input image only where the coefficient
matrix fits entirely within it, so no padding is required. The output has dimensions (Mi-Mh+1, Ni-Nh
+1). However, if all(size(I)<size(H)), the block errors out.

Use the Padding options parameter to specify how to pad the boundary of your input matrix. To pad
your matrix with a constant value, select Constant. To pad your input matrix by repeating its border
values, select Replicate. To pad your input matrix with its mirror image, select Symmetric. To pad
your input matrix using a circular repetition of its elements, select Circular. For more information
on padding, see the Image Pad block reference page.

If, for the Padding options parameter, you select Constant, the Pad value source parameter
appears in the dialog box. If you select Specify via dialog, the Pad value parameter appears in
the dialog box. Use this parameter to enter the constant value with which to pad your matrix. If you
select Pad value source ofInput port, the PVal port appears on the block. Use this port to specify
the constant value with which to pad your matrix. The pad value must be real if the input image is
real. You will get an error message if the pad value is complex when the input image is real.

 2-D FIR Filter

1-27



Use the Filtering based on parameter to specify the algorithm by which the block filters the input
matrix. If you select Convolution and set the Output size parameter to Full, the block filters your
input using the following algorithm

C(i, j) = ∑
m = 0

(Ma− 1)
∑

n = 0

(Na− 1)
A(m, n) * H(i−m, j− n)

where 0 ≤ i < Ma + Mh− 1 and 0 ≤ j < Na + Nh− 1. If you select Correlation and set the
Output size parameter to Full, the block filters your input using the following algorithm

C(i, j) = ∑
m = 0

(Ma− 1)
∑

n = 0

(Na− 1)
A(m, n) ⋅ con j(H(m + i, n + j))

where 0 ≤ i < Ma + Mh− 1 and 0 ≤ j < Na + Nh− 1.

The imfilter function from the Image Processing Toolbox™ product similarly performs N-D filtering
of multidimensional images.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D FIR Filter block for fixed-point signals.

You can set the coefficient, product output, accumulator, and output data types in the block mask as
discussed in “Parameters” on page 1-28.

The output of the multiplier is in the product output data type if at least one of the inputs to the
multiplier is real. If both of the inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication performed, refer to
“Multiplication Data Types”.

Parameters
Separable filter coefficients

Select this check box if your filter coefficients are separable. Using separable filter coefficients
reduces the amount of calculations the block must perform to compute the output.

Coefficient source
Specify how to define your filter coefficients. Select Specify via dialog to enter your
coefficients in the block parameters dialog box. Select Input port to specify your filter
coefficient matrix using port H or ports HH and HV.

1 Blocks

1-28



Coefficients
Enter your real or complex-valued filter coefficient matrix. This parameter appears if you clear
the Separable filter coefficients check box and then select a Coefficient source of Specify
via dialog. Tunable.

Vertical coefficients (across height)
Enter the vector of vertical filter coefficients for your separable filter. This parameter appears if
you select the Separable filter coefficients check box and then select a Coefficient source of
Specify via dialog.

Horizontal coefficients (across width)
Enter the vector of horizontal filter coefficients for your separable filter. This parameter appears
if you select the Separable filter coefficients check box and then select a Coefficient source
of Specify via dialog.

Output size
This parameter controls the size of the filtered output. If you choose Full, the output has
dimensions (Ma+Mh-1, Na+Nh-1). If you choose Same as input port I, the output has the
same dimensions as the input at port I If you choose Valid, output has dimensions (Ma-Mh+1,
Na-Nh+1).

Padding options
Specify how to pad the boundary of your input matrix. Select Constant to pad your matrix with a
constant value. Select Replicate to pad your input matrix by repeating its border values. Select
Symmetricto pad your input matrix with its mirror image. Select Circular to pad your input
matrix using a circular repetition of its elements. This parameter appears if you select an Output
size of Full or Same as input port I.

Pad value source
Use this parameter to specify how to define your constant boundary value. Select Specify via
dialog to enter your value in the block parameters dialog box. Select Input port to specify
your constant value using the PVal port. This parameter appears if you select a Padding options
of Constant.

Pad value
Enter the constant value with which to pad your matrix. This parameter is visible if, for the Pad
value source parameter, you select Specify via dialog. Tunable. The pad value must be real
if the input image is real. You will get an error message if the pad value is complex when the
input image is real.

Filtering based on
Specify the algorithm by which the block filters the input matrix. You can select Convolution or
Correlation.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

Coefficients
Choose how to specify the word length and the fraction length of the filter coefficients.

• When you select Inherit: Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the block automatically sets the

 2-D FIR Filter

1-29



fraction length of the coefficients to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the coefficients.

• When you select fixdt(1,16), you can enter the word length of the coefficients, in bits. In
this mode, the block automatically sets the fraction length of the coefficients to the binary-
point only scaling that provides you with the best precision possible given the value and word
length of the coefficients.

• When you select fixdt(1,16,0), you can enter the word length and the fraction length of
the coefficients, in bits.

• When you select <data type expression>, you can enter the data type expression.

The filter coefficients do not obey the Rounding mode and the Saturate on integer overflow
parameters; instead, they are always saturated and rounded to Nearest.

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Product output

Use this parameter to specify how to designate the product output word and fraction lengths.
Refer to “Fixed-Point Data Types” on page 1-28 and “Multiplication Data Types” for illustrations
depicting the use of the product output data type in this block:

• When you select Inherit: Same as input, these characteristics match those of the input
to the block.

• When you select fixdt([],16,0), you can enter the word length and the fraction length of
the product output, in bits.

• When you select <data type expression>, you can enter the data type expression.

If you set the Coefficient source (on the Main tab) to Input port the Product Output will
inherit its sign according to the inputs. If either or both input I1 and I2 are signed, the Product
Output will be signed. Otherwise, the Product Output is unsigned. The following table shows all
cases.

Sign of Input I1 Sign of Input I2 Sign of Product Output
unsigned unsigned unsigned
unsigned signed signed
signed unsigned signed
signed signed signed

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator

Use this parameter to specify how to designate the accumulator word and fraction lengths. Refer
to “Fixed-Point Data Types” on page 1-28 and “Multiplication Data Types” for illustrations

1 Blocks

1-30



depicting the use of the accumulator data type in this block. The accumulator data type is only
used when both inputs to the multiplier are complex:

• When you select Inherit: Same as input, these characteristics match those of the input
to the block.

• When you select Inherit: Same as product output, these characteristics match those
of the product output.

• When you select fixdt([],16,0), you can enter the word length and the fraction length of
the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the accumulator. All signals in the Computer Vision Toolbox software have a bias of 0.

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output

Choose how to specify the word length and fraction length of the output of the block:

• When you select Inherit: Same as input, these characteristics match those of the input
to the block.

• When you select fixdt([],16,0), you can enter the word length and the fraction length of
the output, in bits.

You can choose to set signedness of the output to Auto, Signed or Unsigned.
• When you select <data type expression>, you can enter the a data type expression.

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

See Also
imfilter Image Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 2-D FIR Filter

1-31



See Also
Topics
“Periodic Noise Reduction”
“Video Stabilization”

Introduced before R2006a

1 Blocks

1-32



2-D Histogram
Generate histogram from input
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Histogram block computes the frequencies of the elements in the input image. The block
calculates the histogram values for either the entire input or for each column of the input image. It
sorts all the of input values into bins according to their pixel values. The histogram value for a given
bin represents the frequency of the input values bracketed by that bin. The block is also capable of
computing a running histogram across a sequence of inputs. The block is also capable of computing a
running histogram across a sequence of inputs.

Ports
Input

Port_1 — Input image
vector | matrix | 3-D array

Input image, specified as a vector, matrix, or 3-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Rst — Reset value
scalar

Reset value for an input sequence, specified as a scalar. This value dictates the event that causes the
block to reset the running histogram. The sample time of the Rst input must be a positive integer and
a multiple of the input sample time.
Dependencies

To enable this port, select the Running histogram parameter and set the Trigger type parameter
to Rising edge, Falling edge, Either edge, or Non-zero sample.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Output

Port_1 — Histogram output
vector | matrix | 3-D array

Histogram output, returned as a vector, matrix, or 3-D array.

If the Find the histogram over parameter is set to Entire input, then the output is always a
vector. If the Find the histogram over parameter is set to Each column, then the output has the
same number of dimension as the input.

 2-D Histogram

1-33



Data Types: single | double | uint32

Parameters
Main

Lower limit of histogram — Lower limit of lowest-valued bin
0 (default) | real-valued scalar

Specify a real-valued scalar for the lower boundary, Bm, of the lowest-valued bin. NaN and inf are not
valid values for Bm.

Tunable: Yes

Upper limit of histogram — Upper limit of highest-valued bin
1 (default) | real-valued scalar

Specify a real-valued scalar for the upper boundary, Bm, of the highest-valued bin. NaN and inf are
not valid values for BM.

Tunable: Yes

Number of bins — Number of bins in histogram
256 (default) | real-valued scalar

Specify the number of bins in the histogram.

Find the histogram over — Dimension along which to compute histogram
Entire input (default) | Each column

Specify the dimension of the input image along which the block computes the histogram values. For
any given value, n, of the Number of bins parameter, this parameter affects the output of the block
as follows.

• Entire input — The block computes the histogram over the entire input. It outputs an n-
element column vector.

• Each column — The block computes the histogram over each column of the input.

• If the input is an M-by-N matrix, the block outputs an n-by-N matrix. The jth column of the
output matrix contains the histogram for the data in the jth column of the M-by-N input matrix.

• If the input is an M-by-N-by-P array, the block outputs an n-by-N-by-P array. If the input is a
three-channel color image, the value of P is 3, and the block computes the histogram for each
color channel separately.

Normalized — Normalize histogram output
off (default) | on

Select the Normalized parameter to normalize the output histogram value within a range of [0, 1].

Note Use of this parameter is not supported for fixed-point signals.

Running histogram — Frequency distribution for successive inputs
off (default) | on

1 Blocks

1-34



Select the Running histogram parameter to compute the frequency distribution of both the past
and present data for successive inputs. The block resets the histogram (by emptying all of the bins)
when it detects a reset event at the optional Rst port. There's an additional dimension to the output
size which is equal to ((Tsim/Ts)+1) where Tsim is the simulation time and Ts is the sample time for
block execution. The output depends on the value of the Find the histogram over parameter.

• Entire input — The block computes a running histogram for the data in the first dimension of
the input. The block outputs an n-by-1-by-((Tsim/Ts)+1), where n is the value of Number of bins
parameter.

• Each column — The block computes a running histogram for each column of the M-by-N matrix.
The block outputs an n-by-N-by-((Tsim/Ts)+1) array, where n is the value of the Number of bins
parameter.

Note When the block is used in running mode and the input data type is non-floating point, the
output of the histogram is stored as a uint32 data type. The largest number that can be represented
by this data type is 232–1. If the range of the uint32 data type is exceeded, the output data wraps
back to 0.

Trigger type — Reset condition of running histogram
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

Specify the event that, when detected at the optional Rst port, resets the running histogram. The
reset signal and the input data signal must have the same rate.

Specify the reset event as:

• None — Disables the Rst port
• Rising edge — Triggers a reset event when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero

• Falling edge — Triggers a reset event when the Rst input does one of the following:

• Falls from a positive value to either a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero

 2-D Histogram

1-35



• Either edge — Triggers a reset event when the Rst input is a rising edge or falling edge
• Non-zero sample — Triggers a reset event at each sample time that the Rst input is not zero

Dependencies

To enable this parameter, select the Running histogram parameter.

Data Types

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Prevent fixed-
point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
The histogram bins have equal width of:

Δ =
BM − Bm

n ,

where

• BM — Represents the upper boundary of the highest-valued bin.
• Bm — Represents the lower boundary of the lowest-valued bin.
• n — Represents the number of bins.

The centers are located at:

1 Blocks

1-36



Bm + k + 1
2 Δ k = 0, 1, 2, ..., n− 1 .

For input values that fall between two bins, the block places them in the lower-valued bin. For input
values greater than the upper limit of the histogram or less than the lower limit of the histogram, the
block places them in the highest-valued or lowest-valued bin, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Functions
histogram

Introduced before R2006a

 2-D Histogram

1-37



2-D IDCT
Compute 2-D inverse discrete cosine transform (IDCT)
Library: Computer Vision Toolbox / Transforms

Description
The 2-D IDCT block calculates the two-dimensional inverse discrete cosine transform of the input
signal. The equation for the two-dimensional IDCT of an input signal is:

f (x, y) = 2
MN ∑

m = 0

M − 1
∑

n = 0

N − 1
C(m)C(n)F(m, n)cos(2x + 1)mπ

2M cos(2y + 1)nπ
2N ,

where F(m,n) is the discrete cosine transform (DCT) of the signal f(x,y). If m = n = 0, then
C(m) = C(n) = 1/ 2. Otherwise C(m) = C(n) = 1.

Ports
Input

Port_1 — Input data
matrix | vector

Specify input data as a vector or matrix of intensity values. The number of elements in the input data
must be a power of two.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Output

Port_1 — Output data
matrix | vector

Output data containing the 2-D IDCT of the input, returned as a matrix or vector. The size and data
type of the output are the same as those of the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Parameters
Main

Sine and cosine computation — How the block computes sine and cosine terms
Table lookup (default) | Trigonometric fcn

Specify how the block computes the sine and cosine terms to find the 2-D IDCT.

• Table lookup — The block computes and stores the trigonometric values before the simulation
starts. This option requires more memory than the Trigonometric fcn option.

1 Blocks

1-38



• Trigonometric fcn — The block computes the sine and cosine values during the simulation.

Data Types

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Data type
override
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Fixed-Point Data Types

The following diagram shows the data types used in the 2-D IDCT block for fixed-point signals. Inputs
are first cast to the output data type and stored in the output buffer. Each butterfly stage processes
signals in the accumulator data type, with the final output of the butterfly being cast back into the
output data type.

 2-D IDCT

1-39



When at least one of the inputs to the multiplier is real, the output of the multiplier is in the product
output data type. When both of the inputs to the multiplier are complex, the multiplication result is in
the accumulator data type. For more information on the multiplication of real and complex numbers,
see “Multiplication Data Types”.

References
[1] Wen-Hsiung Chen, C. Smith, and S. Fralick. “A Fast Computational Algorithm for the Discrete

Cosine Transform.” IEEE Transactions on Communications 25, no. 9 (September 1977): 1004–
9. https://doi.org/10.1109/TCOM.1977.1093941.

[2] Zhongde Wang. “Fast Algorithms for the Discrete W Transform and for the Discrete Fourier
Transform.” IEEE Transactions on Acoustics, Speech, and Signal Processing 32, no. 4 (August
1984): 803–16. https://doi.org/10.1109/TASSP.1984.1164399.

1 Blocks

1-40



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
2-D DCT | 2-D FFT | 2-D IFFT

Functions
dct2 | idct2

Introduced before R2006a

 2-D IDCT

1-41



2-D IFFT
2-D Inverse fast Fourier transform of input

Library
Transforms

visiontransforms

Description
The 2-D IFFT block computes the inverse fast Fourier transform (IFFT) of an M-by-N input matrix in
two steps. First, it computes the one-dimensional IFFT along one dimension (row or column). Next, it
computes the IFFT of the output of the first step along the other dimension (column or row).

The output of the IFFT block is equivalent to the MATLAB ifft2 function:

y = ifft2(A)                    % Equivalent MATLAB code

Computing the IFFT of each dimension of the input matrix is equivalent to calculating the two-
dimensional inverse discrete Fourier transform (IDFT), which is defined by the following equation:

f (x, y) = 1
MN ∑

m = 0

M − 1
∑

n = 0

N − 1
F(m, n)e j2πmx

M e j2πny
N

where 0 ≤ x ≤ M − 1 and 0 ≤ y ≤ N − 1.

The output of this block has the same dimensions as the input. If the input signal has a floating-point
data type, the data type of the output signal uses the same floating-point data type. Otherwise, the
output can be any fixed-point data type. The block computes scaled and unscaled versions of the IFFT.

The input to this block can be floating-point or fixed-point, real or complex, and conjugate symmetric.
The block uses one of two possible FFT implementations. You can select an implementation based on
the FFTW library [1], [2], or an implementation based on a collection of Radix-2 algorithms. You can
select Auto to allow the block to choose the implementation.

1 Blocks

1-42



Port Description

Port Description Supported Data Types Complex Values
Supported

Input Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes

Output 2-D IFFT of the input Same as Input port Yes

FFTW Implementation

The FFTW implementation provides an optimized FFT calculation including support for power-of-two
and non-power-of-two transform lengths in both simulation and code generation. Generated code
using the FFTW implementation will be restricted to MATLAB host computers. The data type must be
floating-point. Refer to “Simulink Coder” for more details on generating code.

Radix-2 Implementation

The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data, and allows
the block to provide portable C-code generation using the “Simulink Coder”. The dimensions of the
input matrix, M and N, must be powers of two. To work with other input sizes, use the Image Pad
block to pad or truncate these dimensions to powers of two, or if possible choose the FFTW
implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

• Butterfly operation
• Double-signal algorithm
• Half-length algorithm
• Radix-2 decimation-in-time (DIT) algorithm
• Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity Floating-Point Signals

Parameter Settings Algorithms Used for IFFT Computation
Butterfly operation and radix-2 DIT

Radix-2 DIF

Butterfly operation and radix-2 DIT in conjunction with the half-
length and double-signal algorithms

Radix-2 DIF in conjunction with the half-length and double-signal
algorithms

 2-D IFFT

1-43



Radix-2 Algorithms for Real or Complex Input Complexity Fixed-Point Signals

Other Parameter Settings Algorithms Used for IFFT Computation
Butterfly operation and radix-2 DIT

Radix-2 DIF

Note The Input is conjugate symmetric parameter cannot be used for fixed-point signals.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block’s Radix–2 algorithm computes all the possible trigonometric values of
the twiddle factor

e j2πk
K

where K is the greater value of either M or N and k = 0,⋯, K − 1. The block stores these values in a
table and retrieves them during simulation. The number of table entries for fixed-point and floating-
point is summarized in the following table:

Number of Table Entries for N-Point FFT
floating-point 3 N/4
fixed-point N

Fixed-Point Data Types

The following diagrams show the data types used in the IFFT block for fixed-point signals. You can set
the sine table, accumulator, product output, and output data types displayed in the diagrams in the
IFFT dialog box as discussed in “Parameters” on page 1-45.

Inputs to the IFFT block are first cast to the output data type and stored in the output buffer. Each
butterfly stage then processes signals in the accumulator data type, with the final output of the
butterfly being cast back into the output data type. The block multiplies in a twiddle factor before
each butterfly stage in a decimation-in-time IFFT and after each butterfly stage in a decimation-in-
frequency IFFT.

1 Blocks

1-44



The multiplier output appears in the accumulator data type because both of the inputs to the
multiplier are complex. For details on the complex multiplication performed, refer to “Multiplication
Data Types”.

Parameters
FFT implementation

Set this parameter to FFTW [1], [2] to support an arbitrary length input signal. The block restricts
generated code with FFTW implementation to MATLAB host computers.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point data, or for
portable C-code generation using the “Simulink Coder”. The dimensions of the input matrix, M
and N, must be powers of two. To work with other input sizes, use the Image Pad block to pad or
truncate these dimensions to powers of two, or if possible choose the FFTW implementation. See
“Radix-2 Implementation” on page 1-43.

Set this parameter to Auto to let the block choose the FFT implementation. For non-power-of-two
transform lengths, the block restricts generated code to MATLAB host computers.

 2-D IFFT

1-45



Input is in bit-reversed order
Select or clear this check box to designate the order of the input channel elements. Select this
check box when the input should appear in reversed order, and clear it when the input should
appear in linear order. The block yields invalid outputs when you do not set this parameter
correctly. This check box only appears when you set the FFT implementation parameter to
Radix-2 or Auto.

For more information ordering of the output, see “Bit-Reversed Order” on page 1-23. The 2-D FFT
block bit-reverses the order of both the columns and the rows.

Input is conjugate symmetric
Select this option when the block inputs both floating point and conjugate symmetric, and you
want real-valued outputs. This parameter cannot be used for fixed-point signals. Selecting this
check box optimizes the block's computation method.

The FFT block yields conjugate symmetric output when you input real-valued data. Taking the
IFFT of a conjugate symmetric input matrix produces real-valued output. Therefore, if the input
to the block is both floating point and conjugate symmetric, and you select this check box, the
block produces real-valued outputs.

If the IFFT block inputs conjugate symmetric data and you do not select this check box, the IFFT
block outputs a complex-valued signal with small imaginary parts. The block outputs invalid data
if you select this option with non conjugate symmetric input data.

Divide output by product of FFT length in each input dimension
Select this check box to compute the scaled IFFT. The block computes scaled and unscaled
versions of the IFFT. If you select this option, the block computes the scaled version of the IFFT.
The unscaled IFFT is defined by the following equation:

f (x, y) = ∑
m = 0

M − 1
∑

n = 0

N − 1
F(m, n)e j2πmx

M e j2πny
N

where 0 ≤ x ≤ M − 1 and 0 ≤ y ≤ N − 1.

The scaled version of the IFFT multiplies the above unscaled version by 1
MN .

Rounding mode
Select the “Rounding Modes” for fixed-point operations. The sine table values do not obey this
parameter; instead, they always round to Nearest.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”. The sine table
values do not obey this parameter; instead, they are always saturated.

Sine table data type
Choose how you specify the word length of the values of the sine table. The fraction length of the
sine table values always equals the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer overflow
parameters; instead, they are always saturated and rounded to Nearest.

1 Blocks

1-46



Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-44 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See“Fixed-Point Data Types” on page 1-44 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-44 for illustrations
depicting the use of the output data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output
word length and fraction length automatically. The internal rule first calculates an ideal output
word length and fraction length using the following equations:

• When you select the Divide butterfly outputs by two check box, the ideal output word
and fraction lengths are the same as the input word and fraction lengths.

• When you clear the Divide butterfly outputs by two check box, the block computes the
ideal output word and fraction lengths according to the following equations:

WLidealoutput = WLinput + f loor(log2(FFTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction lengths that
are appropriate for your hardware. For more information, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button  to display the Data Type Assistant, which
helps you set the Output data type parameter.

 2-D IFFT

1-47



See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

References

[1] FFTW (https://www.fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,”Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp.
1381-1384.

See Also
2-D DCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IDCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
bitrevorder Signal Processing Toolbox software
fft MATLAB
ifft MATLAB
“Simulink Coder” Simulink

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• When the following conditions apply, the executable generated from this block relies on prebuilt
dynamic library files (.dll files) included with MATLAB:

• FFT implementation is set to FFTW.
• Inherit FFT length from input dimensions is cleared, and FFT length is set to a value that

is not a power of two.

Use the packNGo function to package the code generated from this block and all the relevant files
in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in
another development environment where MATLAB is not installed. For more details, see .

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
block.

Introduced before R2006a

1 Blocks

1-48

https://www.fftw.org


2-D Mean
Find 2-D mean of input array
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Mean block computes the mean value of an input. It can compute the mean either along a
specified dimension of the input or across the entire input. The block can also compute the running
mean values in a sequence of inputs over a period of time.

Ports
Input

I — Input array
vector | matrix | N-D array

Input array, specified as a vector, matrix, or N-D array. This port is unnamed unless you select the
Enable ROI processing parameter or select the Running mean parameter and set the Reset port
parameter to a value other than None.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Rst — Reset running mean
scalar

Reset the running mean, specified as a scalar. This port specifies the event that causes the block to
reset the running mean. The sample time of the Rst input must be a positive integer and a multiple of
the block sample time.

Dependencies

To enable this port, select the Running mean parameter and set the Reset port parameter to one of
these options:

• Rising edge
• Falling edge
• Either edge
• Non-zero sample

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

ROI — Region of interest
vector | matrix

 2-D Mean

1-49



Region of interest (ROI), specified as a four-element vector, m-by-4 matrix, or M-by-N matrix. This
port accepts different input values depending on the setting of the ROI type parameter.

Note The block supports the ROI port for 2-D input images only.

Dependencies

To enable this port, select Enable ROI processing parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Label — Label matrix
matrix

Label matrix, specified as a matrix of nonnegative integers. The label matrix represents the objects in
a 2-D image on a per pixel basis. The pixels labeled 0 represent the background, pixels labeled 1
make up the first object, the pixels labeled 2 make up the second object, and so on. The size of the
label matrix must be the same as the size of the 2-D input image.

Dependencies

To enable this port, select Enable ROI processing parameter and set the ROI type parameter to
Label matrix.
Data Types: uint8 | uint16 | uint32

Label Numbers — Label values of ROIs
vector

Label values of ROIs, specified as an M-element vector. Use this vector to specify which objects the
block calculates statistics for. Each element of the vector must correspond to a labeled object in the
label matrix. M must be less than or equal to the number of objects in the label matrix.

Dependencies

To enable this port, select Enable ROI processing parameter and set the ROI type parameter to
Label matrix.
Data Types: uint8 | uint16 | uint32

Output

Out — Mean value of input
scalar | vector | matrix | N-D array

Mean value of the input, returned as a scalar, vector, matrix, or N-D array. The size of this output
depends on the size of the input and the parameter settings of the block. This port is unnamed unless
you select the Output flag indicating if ROI is within image bounds or Output flag indicating
if input label numbers are valid parameter

Compute Mean Value of Input Array

The block computes the mean value along the specified dimension of the input or across the entire
input. The block returns output as:

1 Blocks

1-50



• Scalar — The input is of any size, and the Find the mean value over parameter is set to Entire
input.

• Vector — The input is a matrix, and the Find the mean value over parameter is set to Each row,
Each column, or Specified dimension. If Specified dimension is selected, the value of
the Dimension parameter must be either 1 or 2.

• (N–1)-D array — The input is an N-D array, the Find the mean value over parameter is set to
Specified dimension, and the value of the Dimension parameter is N.

• N-D array with one singleton dimension — The input is an N-D array, and the Find the mean
value over parameter is set to Each row, Each column, or Specified dimension. If
Specified dimension is selected, the value of the Dimension parameter must be an integer
less than N.

Example: For a 3-D input array of size M-by-N-by-P, the dimension of the returned output is:

• An 1-by-N-by-P array if you set the Find the mean value over parameter to Entire row.
• An M-by-1-by-P array if you set the Find the mean value over parameter to Entire column.
• An M-by-N matrix if you set the Find the mean value over parameter to Specified

dimension and the Dimension parameter to 3.

Compute Mean Value of Sequence of Inputs

Select the Running mean parameter. The block finds the mean value of each element of the input
across the entire sequence and compiles them into a single array. The output is of the same size as
the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Flag — Validation of ROI
scalar | vector

Validation of ROI, returned as a scalar or vector of logical values. If the ROI type parameter is set to
Rectangles or Lines, the output signifies whether or not the specified ROIs lie within the input
image, either completely or partially. If the ROI type parameter is set to Label matrix, the output
signifies whether or not the label numbers specified in the Label Numbers input are present in the
input label matrix. The size of this output depends on whether the Output parameter is set to
Individual statistics for each ROI or Single statistic for all ROIs.

ROI type Individual statistics
for each ROI

Single statistic for all
ROIs

Rectangles or Lines The port returns an M-element
vector of logical values, where
M is the number of regions
specified at the ROI port. When
an ROI is either completely or
partially inside the input image,
the corresponding element of
the vector is 1. When the ROI is
completely outside the input
image, the corresponding
element of the vector is 0.

The port returns a logical scalar.
The scalar is 0 when all the
ROIs are completely outside the
input image. Otherwise, the
scalar is 1.

 2-D Mean

1-51



Label matrix The port returns an M-element
vector of logical values, where
M is the number of elements in
the input specified at the Label
Numbers port. When a
specified label number is
present or absent in the label
matrix, the corresponding
element of the vector is 1 or 0
respectively.

The port returns a logical scalar.
The scalar is 0 when all
elements of the vector specified
at the Label Numbers port are
absent from the label matrix.
Otherwise. the scalar is 1.

Note If an ROI is partially outside the image, the block computes the mean values for only the
portion of the ROI that lies within the image bounds.

Dependencies

To enable this port, set the ROI type parameter to Rectangles, Lines, or Label matrix. For
either Rectangles or Lines, select the Output flag indicating if ROI is within image bounds
parameter. For Label matrix, select the Output flag indicating if input label numbers are valid
parameter.
Data Types: Boolean

Parameters
Main

Running mean — Running mean values
off (default) | on

Select this parameter to compute running mean values across a sequence of inputs over a period of
time.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

Specifies what the block detects as a reset event. The block resets the running mean when a reset
event occurs at the Rst port. The reset sample time must be a positive integer and a multiple of the
input sample time.

Specify the reset event as one of these options.

• None — Disable the Rst port.
• Rising edge — Trigger a reset event when the Rst input does one of the following.

• Rises from a negative value to either a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero

1 Blocks

1-52



• Falling edge — Trigger a reset event when the Rst input does one of the following.

• Falls from a positive value to either a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero

• Either edge — Trigger a reset event when the Rst input is either a rising edge or a falling edge.
• Non-zero sample — Trigger a reset event at each sample time that corresponds to a non-zero

Rst input.

Note When running simulations in Simulink multitasking mode, reset signals have a one-sample
latency. In this case, when the block detects a reset event, there is a one-sample delay at the Rst
port before the block applies the reset.

Dependencies

To enable this parameter, select the Running mean parameter.

Find the mean value over — Dimension along which mean is computed
Entire input (default) | Each row | Each column | Specified dimension

Specify the dimension of the input along which the block computes the mean.

• Entire input — Computes mean over the entire input.
• Each row — Computes mean over each row.
• Each column — Computes mean over each column.
• Specified dimension— Computes mean over the dimension specified in the Dimension

parameter.

 2-D Mean

1-53



• If the Dimension parameter is set to 1, the output is the same as when Each column is
selected.

• If the Dimension parameter is set to 2, the output is the same as when Each row is selected.

Dependencies

To enable this parameter, clear the Running mean parameter.

Dimension — Custom dimension
1 (default) | positive scalar

Specify the dimension (one-based value) of the input array over which the block computes the mean.
The value of this parameter must not exceed the number of dimensions in the input array.

Dependencies

To enable this parameter, set the Find the mean value over parameter to Specified dimension.

Enable ROI processing — Compute mean value within ROI
off (default) | on

Select to compute the mean within the specified ROIs in the image.

Dependencies

To enable this parameter, set the Find the mean value over parameter to Entire input.

ROI type — Type of ROI
Rectangles (default) | Lines | Label matrix | Binary mask

Specify the ROI format that represents the regions in the image over which to compute the mean.
The type of ROIs can be a rectangles, lines, a label matrix, or a binary mask.

ROI type Inputs to the ROI Port Description
Rectangles • Four-element row vector

[x y width height]
• M-by-4 matrix:

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

,

where M is the number of rectangular
ROIs. Each row of the matrix
corresponds to a different rectangle.

• x and y are the one-based
coordinates of the upper left
corner of the rectangle.

• width and height are the width
and height, in pixels, of the
rectangle. The values of width
and height must be greater
than zero.

1 Blocks

1-54



Lines • Four-element row vector
[x1 y1 x2 y2]

• M-by-4 matrix:

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 yM2

where M is the number of linear ROIs.
Each row of the matrix corresponds to
a different line.

• x1 and y1 are the coordinates
of the beginning of the line.

• x2 and y2 are the coordinates
of the end of the line.

Label matrix M-by-N matrix Matrix of the same size as the
input image. The matrix contains
label values that represent
different objects in an image. The
pixels labeled 0 represent the
background. The pixels labeled 1
make up one object, the pixels
labeled 2 make up a second
object, and so on.

Binary mask M-by-N matrix Matrix of the same size as the
input image. The binary mask
classifies image pixels as
belonging to either the region of
interest or the background.
Binary mask values of 1 indicate
that the corresponding image
pixel belongs to the ROI. Binary
mask values of 0 indicate that the
corresponding image pixel is part
of the background.

Dependencies

To enable this parameter, select the Enable ROI processing parameter.

ROI portion to process — Portion of ROI for which to compute mean
Entire ROI (default) | ROI perimeter

Specify the portion of the ROI for which the block computes the 2-D mean.

• Entire ROI — The block computes the mean value over the entire region of the rectangular ROI.
• ROI perimeter — The block computes the mean value along the perimeter of the rectangular

ROI.

Dependencies

To enable this parameter, set the ROI type parameter to Rectangles.

Output — Compute individual or universal mean for ROIs
Individual statistics for each ROI (default) | Single statistic for all ROIs

 2-D Mean

1-55



Specify whether to calculate the 2-D mean individually for each ROI or across all ROIs.

• To compute separate mean values for each ROI, set this parameter to Individual statistics
for each ROI. The block outputs a vector of mean values corresponding to different ROIs. The
length of the output vector is equal to the number of ROIs.

• To compute the universal mean value across all specified ROIs, set this parameter to Single
statistic for all ROIs. The block outputs a scalar representing the mean value across all
specified ROIs.

Dependencies

To enable this parameter, set the ROI type parameter to Rectangles, Lines, or Label matrix.

Output flag indicating if ROI is within image bounds — Enable flag output port
off (default) | on

Select to enable the Flag output port.

Dependencies

To enable this parameter, set the ROI type parameter to Rectangles or Lines.

Output flag indicating if input label numbers are valid — Enable flag output port
off (default) | on

Select to enable the Flag output port.

Dependencies

To enable this parameter, set the ROI type parameter to Label matrix.

Data Types

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Prevent fixed-
point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

1 Blocks

1-56



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
2-D Minimum | 2-D Maximum | 2-D Median

Functions
mean

Introduced before R2006a

 2-D Mean

1-57



2-D Median
2-D Median values of input array
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Median block computes the median value of an input array. The median value of an array is
calculated by using these steps.

1 The values in the matrix are sorted in numeric order.
2 To find the median, of an array, A, with a total number of elements, p, where p is:

• Odd — Median = A(ceil(p / 2))
• Even — Median = (A (p / 2) + A (( p / 2) + 1)) / 2

Ports
Input

Port_1 — Input array
scalar | vector | matrix | N-D array

Specify the Input array as a vector, matrix, or N-D array.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Output

Port_1 — Output median values
scalar | vector | matrix | N-D array

The median values are returned as scalar, vector, matrix, orN array. The size of the output and how
median is calculated depends on the setting of the Find the median value over parameter.

• For M-by-N,the input array, the value of the Find the median value over parameter determines
the output form in this manner.

• Entire input —The output is the median value of all the elements of theM-by-N input array
as a scalar

• Each row — The output is a M-by-1 column vector, where each element in the vector is the
median value of the corresponding row in the input array.

• Each column — The output is a 1-by-N row vector, where each element in the vector is the
median value of the corresponding column in the input array.

• Specified dimension — If the Dimension parameter is set to 1, the output is the same
when you select Each column. If the Dimension parameter is set to 2, the output is the same

1 Blocks

1-58



as when you select Each row. If the Dimension parameter is set to 3, the output at each
sample time is an M-by-N matrix containing the median value of each vector over the third
dimension of the input

• For an N-D array, the value of the Find the median value over parameter determines the output
form in this manner.

• Entire input — The output is the median value of all elements of the M-by-N-by-P input
array as scalar.

• Each row — The output is a M-by-1-by-P array, where each element contains the median value
of each row vector in each plane.

• Each column — The output dimension is a 1-by-N-by-P array, where each element contains
the median value of each column vector for each plane.

• Specified dimension — The output depends on Dimension. If Dimension is set to 1, the
output is the same as when you select Each column. If Dimension is set to 2, the output is
the same as when you select Each row. If Dimension is set to 3, the output dimension is a M-
by-N matrix containing the median value of each vector over the third dimension of the input

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Parameters
Main

Sort algorithm — Algorithm to sort input array
Quick sort (default) | Insertion sort

Specify the algorithm by which to sort the input array.

• Quick sort — This sorting algorithm uses a recursive sort method and is faster at sorting more
than 32 elements.

• Insertion sort — This sorting algorithm uses a non-recursive method and is faster at sorting
fewer than 32 elements.

When you generate code, to avoid recursive function calls, use the Insertion sort algorithm.

Find the median value over — Dimension in which to compute median
Entire input (default) | Each row | Each column | Specified dimension

Specify the dimension of the input in which the block computes the median.

• Entire input — Computes the median over the entire input. The output value is scalar
• Each row — Computes the median over each row of the input. The output is column vector
• Each column — Computes the median over each column of the input. The output is row vector
• Specified dimension — Computes the median over the dimension of the input specified in the

Dimension parameter.

• If Dimension is 1, the output is the same as when you select Each column
• If Dimension is 2, the output is the same as when you select Each row

Dimension — Custom dimension
1 (default) | positive scalar

 2-D Median

1-59



Specify the dimension (one-based value) of the input array, over which the block computes the
median. The value of this parameter must not exceed the number of dimensions in the input array.

Dependencies

To enable this parameter, set the Find the median value over parameter to Specified
dimension.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Option to
prevent fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Blocks
2-D Variance | 2-D Minimum | 2-D Maximum | 2-D Mean | 2-D Standard Deviation

Functions
median

Introduced before R2006a

1 Blocks

1-60



2-D Maximum
Compute maximum value of input or sequence of inputs
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Maximum block identifies the index of the largest element in an input array. The input can be
a 1-D vector, 2-D matrix, or an N-D-array. The block can compute the maximum value along a
specified dimension of the input or the entire input. The 2-D Maximum block can also track the
maximum values in a sequence of inputs over a period of time.

Ports
Input

In — Input array
vector | matrix | N-D- array

Input array, specified as a vector, matrix, or N-D- array. This port is unnamed until you select the
Enable ROI processing parameter or set the Mode parameter to Running.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point
Complex Number Support: Yes

Rst — Reset port
scalar

Reset port, specified as a scalar. This port specifies the event that causes the block to reset the
running maximum. The sample time of the Rst input must be a positive integer and a multiple of the
input sample time.

Dependencies

To enable this port, set the Mode parameter to Running and set the Reset port parameter to
Rising edge, Falling edge, Either edge, or Non-zero sample.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

ROI — Region of interest
four-element vector | m-by-4 matrix | M-by-N matrix

Region of interest (ROI), specified as a four-element vector, m-by-4 matrix, or M-by-N matrix. The
input value to this port depends on the ROI type parameter.

Note You can use the ROI port only if the input is a matrix.

 2-D Maximum

1-61



Dependencies

To enable this port, set the Find the maximum value over parameter to Entire input and select
the Enable ROI processing parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Label — Label matrix
matrix of nonnegative integers

Label matrix, specified as a matrix of nonnegative integers. The label matrix represents the objects in
an image. The pixels labeled 0 are the background. The pixels labeled 1 make up one object; the
pixels labeled 2 make up a second object; and so on. The size of the label matrix must be the same
size as the 2-D input.

Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to
Label matrix.
Data Types: uint8 | uint16 | uint32

Label Numbers — Label values of ROIs
M-element vector

Label values of ROIs, specified as a M-element vector. The value of M can be less than or equal to the
number of objects that are labeled in the label matrix.

Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to
Label matrix.
Data Types: uint8 | uint16 | uint32

Output

Val — Output maximum value
scalar | vector | matrix | N-D-array

Output maximum value, returned as a scalar, vector, matrix, or N-D-array. The size of the returned
maximum value depends on the size of the input, and the settings for the Find the maximum value
over parameter.

This port is unnamed if Mode is set to Running.

Compute Maximum Value of Input Array

The Mode parameter is set to Value and Index or Value. In this case, you can compute the
maximum value along any specified dimension of the input or the entire input. The output maximum
value is a:

• Scalar if the input is of any size and Find the maximum value over parameter is set to Entire
input.

• Vector if the input is a matrix and the Find the maximum value over parameter is set to any one
of Each row, Each column, and Specified dimension. In this case, the Dimension value for
Specified dimension can be either 1 or 2.

1 Blocks

1-62



• (N-1)-D array if the input is an N-D array and the Find the maximum value over parameter is
set to Specified dimension and the Dimension value is N.

• N-D array with one singleton dimension if the input is an N-D array and the Find the maximum
value over parameter is set to either of Each row, Each column, and Specified dimension.

Example: For a 3-D input array of size M-by-N-by-P, the dimension of the returned output is:

• 1-by-N-by-P if you set the Find the maximum value over parameter to Entire row.
• M-by-1-by-P if you set the Find the maximum value over parameter to Entire column.
• M-by-N if you set the Find the maximum value over parameter to Specified dimension

and the Dimension value to 3.

Compute Maximum Value of Sequence of Inputs

When you set the Mode parameter to Running, the block computes the maximum value relative to
each sample in the input sequence. The output is of the same size as the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Idx — Indices of maximum values in the input array
scalar | vector | matrix | N-D-array

Indices of maximum values in the input array, returned as a scalar, vector, matrix, or N-D-array. The
size of the returned indices depends on the size of the input, and the settings for the Find the
maximum value over parameter.

To enable this port set the Mode parameter to Value and Index or Index. The indices returned at
the output is a:

• Scalar if the input is a N- element vector and Find the maximum value over parameter is set to
Entire input.

• Vector if the input is a matrix and the Find the maximum value over parameter is set to any one
of Entire input, Each row, Each column, and Specified dimension. In this case, the
Dimension value for Specified dimension can be either 1 or 2.

• (N-1)-D array if the input is a N-D array and the Find the maximum value over parameter is set
to Specified dimension and the Dimension value is N.

• N-D array with one singleton dimension if the input is an N-D array. In this case the Find the
maximum value over parameter is set to Each row, Each column, or Specified dimension.
In this case, the Dimension value for Specified dimension is an integer less than N.

Example: For a 3-D input array of size M-by-N-by-P, the dimension of the returned output is:

• 1-by-N-by-P if you set the Find the maximum value over parameter to Entire row.
• M-by-1-by-P if you set the Find the maximum value over parameter to Entire column.
• M-by-N if you set the Find the maximum value over parameter to Specified dimension

and the Dimension value to 3.

Note When a maximum value occurs more than once, the computed index corresponds to the first
occurrence. For example, in the input vector [3 2 1 2 3], the maximum value is 3 and the one-
based index of the maximum value is 1.

 2-D Maximum

1-63



Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Flag — Validation for ROI
0 | 1

Validation for ROI, returned as 0 or 1. The output value signifies if all of the ROIs specified at the
input lie within the image bounds. The output value depends on the values of the Output and ROI
Type parameters.

ROI Type Output Output from
Flag port

Description

• Rectangles
• Lines

Individual
statistics for
each ROI

0 ROI is completely outside the
input image.

1 ROI is either completely or
partially inside the input
image.

Single statistic
for all ROIs

0 ROI is completely outside the
input image.

1 ROI is either completely or
partially inside the input
image.

Label matrix Individual
statistics for
each ROI

0 Label number is not in the
label matrix.

1 Label number is in the label
matrix.

Single statistic
for all ROIs

0 None of the label numbers are
in the label matrix.

1 At least one of the label
numbers is in the label matrix.

Note If the ROI is partially outside the image, the block computes the variance values only for the
portion of the ROI that lies within the image bounds.

Dependencies

To enable this port, select the Output flag indicating if ROI is within image bounds parameter
and set the value of ROI type parameter to Rectangle, Lines, or Label Matrix.

Parameters
Main Tab

Mode — Output mode
Value and Index (default) | Value | Index | Running

Specify the type of output to be returned by the block. Select the output mode as:

1 Blocks

1-64



• Value and Index to return the maximum values and the corresponding indices in the given
input.

• Value to return only the computed maximum values.
• Index to return only the indices of the maximum values in the given input.
• Running to return the maximum values in a sequence of inputs.

Index Base — Index origin
One (default) | Zero

Specify the index for the first element in the input array. Select the index origin as:

• One for one-based numbering. The range of the index values for the elements in an N-D input
array is set to (1, N). For example, the index value for the first element in the matrix is set to (1,1).

• Zero for zero-based numbering. The range of the index value for the elements in an N-D input
array is set to (0, N-1). For example, the index value for the first element in the matrix is set to
(0,0).

Find the maximum value over — Dimension along which maximum is computed
Entire input (default) | Each row | Each column | Specified dimension

Specify the dimension of the input along which the block computes the maximum.

• Entire input — Computes maximum over the entire input.
• Each row — Computes maximum over each row.
• Each column — Computes maximum over each column.
• Specified dimension— Computes maximum over the dimension specified in the Dimension

parameter.

• If Dimension is 1, the output is the same as when you select Each column.
• If Dimension is 2, the output is the same as when you select Each row.

Dependencies

To enable this parameter, set the Mode parameter to Value and Index, Value, or Index.

Dimension — Custom dimension
1 (default) | scalar

Specify the dimension of the input array over which the maximum is computed as a one-based value.
The value of this parameter must be greater than 0 and less than or equal to the number of
dimensions in the input array.

Dependencies

To enable this parameter, set the Find the maximum value over parameter to Specified
dimension.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

Specify when the block detects a reset event. The block resets the running mode when a reset event
is detected at the optional Rst port. The reset sample time must be a positive integer and a multiple
of the input sample time.

 2-D Maximum

1-65



Specify the reset event as:

• None to disable the Rst port.
• Rising edge to trigger a reset event when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero

• Falling edge to trigger a reset event when the Rst input does one of the following:

• Falls from a positive value to either a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero

• Either edge to trigger a reset event when the Rst input is a Rising edge or Falling edge.
• Non-zero sample to trigger a reset event at each sample time, when the Rst input is not zero.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-
sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the
reset port rate before the block applies the reset.

Dependencies

To enable this parameter, set the Mode parameter to Running.

ROI Processing

1 Blocks

1-66



Enable ROI processing — Compute maximum value within a particular region
off (default) | on

Select to calculate maximum within a particular ROI in the image.

Note Full ROI processing is available only if you have a Computer Vision Toolbox license. If you do
not have a Computer Vision Toolbox license, you can still use ROI processing, but the ROI type is
limited to Rectangles.

Dependencies

To enable this parameter, set the Find the maximum value over parameter to Entire input.

ROI type — Type of ROI
Rectangles (default) | Lines | Label matrix | Binary mask

Specify the type of ROI that represents the regions in the image over which the block computes the
variance. The type of ROI can be a rectangle, line, label matrix, or a binary mask.

Parameters Description
ROI type Inputs to the ROI port
Rectangles • Four-element row vector

[x y width height]
• m-by-4 matrix

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

,

where m is the number of
rectangles. Each row of the
matrix corresponds to a
different rectangle.

• x and y are the one-based
coordinates of the upper left
corner of the rectangle.

• width and height are the
width and height, in pixels,
of the rectangle. The values
of width and height must
be greater than 0.

 2-D Maximum

1-67



Lines • Four-element row vector
[x1 y1 x2 y2]

• m-by-4 matrix

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 yM2

,

where m is the number of
lines. Each row of the matrix
corresponds to a different
line.

• x1 and y1 are the coordinates
of the beginning of the line.

• x2 and y2 are the coordinates
of the end of the line.

Label matrix M-by-N matrix Matrix of the same size as the
input image. The matrix
contains label values that
represent different objects in an
image. The pixels labeled 0 are
the background. The pixels
labeled 1 make up one object;
the pixels labeled 2 make up a
second object; and so on.

Binary mask M-by-N matrix Matrix of the same size as the
input image. The binary mask
classifies image pixels as
belonging to either the region of
interest or the background. The
mask pixel values of 1 indicate
that the image pixel belongs to
the ROI. The mask pixel values
of 0 indicate that the image
pixel is part of the background.

Dependencies

To enable this parameter, set the Find the maximum value over parameter to Entire input and
select the Enable ROI processing parameter.

ROI portion to process — Portion of ROI in which to calculate maximum
Entire ROI (default) | ROI perimeter

Specify the portion of the ROI from which the block has to calculate 2-D maximum. The ROI portion is
either the entire ROI or the ROI perimeter.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles.

1 Blocks

1-68



Output — Calculate maximum for individual or entire ROI
Individual statistics for each ROI (default) | Single statistic for all ROIs

Specify whether to calculate 2-D maximum individually for each ROI or for the entire ROI.

• If you select Individual statistics for each ROI, the block outputs a vector of maximum
values. The size of the output vector is equal to the number of ROIs.

• If you select Single statistic for all ROIs, the block outputs a scalar value. The scalar
value represents the statistical value for all the specified ROIs.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles, Lines, or Label matrix.

Output flag indicating if ROI is within image bounds — Enable Flag port
Off (default) | On

Select to expose the Flag port. For a description of the Flag port output, see “Flag” on page 1-0 .

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles, Lines, or Label matrix.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Prevent fixed-
point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Maximum value of complex inputs

For complex inputs, the block computes the squared magnitude value for the elements in the input
array. The squared magnitude value for a complex number u = a + bi is computed as a2 + b2. The
array element with maximum squared magnitude is the maximum value of the input array.

 2-D Maximum

1-69



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
2-D Mean | 2-D Minimum | 2-D Variance

Introduced in R2011a

1 Blocks

1-70



2-D Minimum
Find minimum values in input or sequence of inputs
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Minimum block identifies the value, and optionally the position, of the smallest element in
the input. The input can be a vector, a matrix, or an N-D array. The block identifies the minimum
value either along a specified dimension of the input or across the entire input. It also tracks the
minimum values in a sequence of inputs over a period of time when the Mode parameter is set to
Running.

Ports
Input

In — Input array
scalar | vector | matrix | N-D array

Input array, specified as a vector, matrix, or N-D array.

Dependencies

The port is named only when you either select Enable ROI processing parameter or set the Mode
parameter to Running.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Rst — Reset running minimum
scalar

Reset the running minimum, specified as a scalar. This port specifies the event that causes the block
to reset the running minimum. The sample time of the Rst input must be a positive integer and a
multiple of the block input sample time.

Dependencies

To enable this port, set the Mode parameter to Running and set the Reset port parameter to
Rising edge, Falling edge, Either edge, or Non-zero sample.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

ROI — Region of interest
four-element vector | m-by-4 matrix | M-by-N matrix

Region of interest (ROI), specified as a four-element vector, m-by-4 matrix, or M-by-N matrix. This
port accepts different input values depending on the setting of the ROI type parameter.

 2-D Minimum

1-71



Note

• You can use the ROI port only if the input to the In port is a 2-D image.
• You cannot use the ROI port if the Mode parameter is set to Running.

Dependencies

To enable this port, set the Find the minimum value over parameter to Entire input and select
the Enable ROI processing parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Label — Label matrix
matrix of nonnegative integers

Label matrix, specified as a matrix of nonnegative integers. The label matrix represents the objects in
a 2-D image. The pixels labeled 0 are the background. The pixels labeled 1 make up the first object,
the pixels labeled 2 make up the second object, and so on. The size of the label matrix must be same
as the size of the 2-D input image.

Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to
Label matrix.

Note You cannot enable the Label port if the Mode parameter is set to Running.

Data Types: uint8 | uint16 | uint32

Label Numbers — Label values of ROIs
M-element vector

Label values of ROI, specified as an M-element vector. This represents the object names for the
corresponding numbers in the label matrix. M must be less than or equal to the number of objects in
the label matrix.

Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to
Label matrix.

Note You cannot enable the Label Numbers port if the Mode parameter is set to Running.

Data Types: uint8 | uint16 | uint32

Output

Val — Minimum values of input
scalar | vector | matrix | N-D array

1 Blocks

1-72



Minimum values of the input, returned as a scalar, vector, matrix, or N-D array. The size of this output
depends on the size of the input, and the settings of the Mode and Find the minimum value over
parameters.

Note This port is unnamed if the Mode parameter is set to Running. It doesn't appear if the Mode
parameter is set to Index.

Compute Minimum Value of Input Array

Set the Mode parameter to Value and Index or Value. The block computes the minimum value
along the specified dimension of the input or across the entire input. The size of the output minimum
value depends on the size of the input and the setting of the Find the Minimum value over
parameter.

• Scalar — The input is of any size, and the Find the minimum value over parameter is set to
Entire input.

• Vector — The input is a matrix, and the Find the minimum value over parameter is set to Each
row, Each column, or Specified dimension. If Specified dimension is selected, the value
of the Dimension parameter must be either 1 or 2.

• (N–1)-D array — The input is an N-D array, the Find the minimum value over parameter is set
to Specified dimension, and the value of the Dimension parameter is N.

• N-D array with one singleton dimension — The input is an N-D array, and the Find the minimum
value over parameter is set to Each row, Each column, or Specified dimension. If
Specified dimension is selected, the value of the Dimension parameter must be an integer
less than N.

Example: For a 3-D input array of size M-by-N-by-P, the dimension of the returned output is:

• 1-by-N-by-P if you set the Find the minimum value over parameter to Entire row.
• M-by-1-by-P if you set the Find the minimum value over parameter to Entire column.
• M-by-N if you set the Find the minimum value over parameter to Specified dimension

and the Dimension parameter to 3.

Compute Minimum Value of Sequence of Inputs

Set the Mode parameter to Running. The block finds the minimum value of all the inputs in the
given sequence and compiles them into a single array. The output is of the same size as the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Idx — Indices of minimum values in the input
scalar | vector | matrix | N-D array

Indices of the minimum values in the input array, returned as a scalar, vector, matrix, or N-D array.

To enable this port, set the Mode parameter to Value and Index or Index.The size of the output
depends on the size of the input and the setting of the Find the minimum value over parameter.

• Scalar — The input is an N-element vector, and the Find the minimum value over parameter is
set to Entire input.

 2-D Minimum

1-73



• Vector — The input is a matrix, and the Find the minimum value over parameter is set to
Entire input, Each row, Each column, or Specified dimension. If Specified
dimension is selected, the value of the Dimension parameter must be either 1 or 2.

• (N–1)-D array — The input is an N-D array, the Find the minimum value over parameter is set
to Specified dimension, and the value of the Dimension parameter is N.

• N-D array with one singleton dimension — The input is an N-D array, and the Find the minimum
value over parameter is set to Each row, Each column, or Specified dimension.If
Specified dimension is selected, the value of the Dimension parameter must be an integer
less than N.

Example: For a 3-D input array of size M-by-N-by-P, the dimension of the returned output is:

• 1-by-N-by-P if you set the Find the minimum value over parameter to Entire row.
• M-by-1-by-P if you set the Find the minimum value over parameter to Entire column.
• M-by-N if you set the Find the minimum value over parameter to Specified dimension

and the Dimension parameter to 3.

Note When a minimum value occurs more than once, the computed index corresponds to the first
occurrence. For example, if the input vector is [3 2 1 2 1], then the minimum value is 1 and the
one-based index of the minimum value is 3.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Flag — ROI Validation
scalar | vector

ROI Validation, returned as a scalar or vector of logical 1s (true) or 0s (false). If the ROI type
parameter is set to Rectangles or Lines, the output signifies whether or not the specified ROIs lie
completely or partially within the input image. If the ROI type parameter is set to Label matrix,
the output signifies whether or not the label numbers specified in the Label Numbers input are
present in the input label matrix.

ROI type Individual statistics for each
ROI

Single statistics for all
ROIs

Rectangles The port returns an m element
vector, wherem is the number of
rows in the m-4 matrix in the input
to the ROI port. Each element of
this vector is a 1 or 0, indicating
that the rectangular ROI is either
completely or partially inside the
input image (1) or completely
outside the input image (0).

The port returns a scalar.
The scalar is a 1 or 0,
indicating that any of the
rectangles in the ROI
input is present
completely or partially
inside (1) or completely
outside (0) the input
image.

1 Blocks

1-74



Lines The port returns a scalar. The
scalar is a 1 or 0, indicating that
the input given to the ROI port is
either completely or partially inside
(1) the input image or completely
outside (0) the input image.

The port returns a scalar.
The scalar is a 1 or 0,
indicating that the input
given to the ROI port is
either completely or
partially inside (1) the
input image or completely
outside (0) the input
image.

Label matrix The port returns an M-element
vector, where M is the number of
elements in the input to the Label
Numbers port. Each element of
the vector is a 1 or 0, indicating
that the associated label from the
Label Numbers input is present in
(1) or absent from (0) the Label
Matrix input.

The port returns a scalar.
The scalar is a 1 or 0,
indicating that any of the
labels in the Label
Numbers input are
present in (1) or all are
absent from (0) the Label
Matrix input.

Note If the ROI is partially outside the image, the block computes the statistical values for only the
portion of the ROI that lies within the image bounds.

Dependencies

To enable this port, select the Output flag indicating if ROI is within image bounds parameter
and set the value of the ROI type parameter to Rectangle, or Lines, or select the Output flag
indicating if input label numbers are valid parameter and set the value of ROI type parameter
toLabel matrix.

Parameters
Main

Mode — Output mode
Value and Index (default) | Value | Index | Running

Specify the output mode of the block as one of these options.

• Value and Index — Return both the minimum values and their corresponding indices in the
given input.

• Value — Return only the minimum values.
• Index — Return only the indices of the minimum values in the given input.
• Running — Tracks the minimum values in a sequence of inputs.

Index Base — Index for first element
One (default) | Zero

Specify the index for the first element in the input array.

• One for one-based numbering. The range of index values for each dimension is 1 to m, where m is
the length of that dimension. For example, the index of the first element in a matrix is (1,1).

 2-D Minimum

1-75



• Zero for zero-based numbering. The range of index values for each dimension is 0 to m–1, where
m is the length of that dimension. For example, the index of the first element in a matrix is (0,0).

Find the minimum value over — Dimension along which minimum is computed
Entire input (default) | Each row | Each column | Specified dimension

Specify the dimension of the input along which the block computes the minimum.

• Entire input — Computes minimum over the entire input.
• Each row — Computes minimum over each row.
• Each column — Computes minimum over each column.
• Specified dimension— Computes minimum over the dimension specified in the Dimension

parameter.

• If the Dimension parameter is set to 1, the output is the same as when Each column is
selected.

• If the Dimension parameter is set to 2, the output is the same as when Each row is selected.

Dependencies

To enable this parameter, set the Mode parameter to Value and Index, Value, or Index.

Dimension — Custom dimension
1 (default) | positive scalar

Specify the dimension of the input array over which the block computes the minimum as a one-based
value. The value of this parameter must be greater than zero and less than or equal to the number of
dimensions in the input array.

Dependencies

To enable this parameter, set the Find the minimum value over parameter to Specified
dimension.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

Specifies what the block detects as a reset event. The block resets the running minimum when a reset
event is detected at the Rst port. The reset sample time must be a positive integer and a multiple of
the input sample time.

Specify the reset event as one of these options.

• None — Disable the Rst port.
• Rising edge — Trigger a reset event when the Rst input does one of the following.

• Rises from a negative value to either a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero

1 Blocks

1-76



• Falling edge — Trigger a reset event when the Rst input does one of the following.

• Falls from a positive value to either a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero

• Either edge — Trigger a reset event when the Rst input is either a Rising edge or a Falling
edge.

• Non-zero sample — Trigger a reset event at each sample time, where the Rst input is not zero.

Note When running simulations in Simulink multitasking mode, reset signals have a one-sample
latency. In this case, when the block detects a reset event, there is a one-sample delay at the Rst
port rate before the block applies the reset.

Dependencies

To enable this parameter, set the Mode parameter to Running.

Enable ROI processing — Compute minimum value within ROI
off (default) | on

Select to calculate the minimum within an ROI in the image.

Note Full ROI processing is available only if you have a Computer Vision Toolbox license. If you do
not have a Computer Vision Toolbox license, you can still use ROI processing, but the ROI type
parameter is limited to Rectangles.

 2-D Minimum

1-77



Dependencies

To enable this parameter, set the Find the minimum value over parameter to Entire input.

ROI type — Format of ROI
Rectangles (default) | Lines | Label matrix | Binary mask

Specify the ROI format that represents the regions in the image over which to compute the minimum.
The type of ROI can be a rectangle, line, label matrix, or a binary mask.

ROI type Inputs to the ROI port Description
Rectangles • Four-element row vector

[x y width height]
• m-by-4 matrix :

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

,

where m is the number of rectangle
ROIs. Each row of the matrix
corresponds to a different rectangle.

• x and y are the one-based
coordinates of the upper left
corner of the rectangle.

• width and height are the width
and height, in pixels, of the
rectangle. The values of width
and height must be greater
than zero.

Lines • Four-element row vector
[x1 y1 x2 y2]

• m-by-4 matrix

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 yM2

,

where m is the number of lines. Each
row of the matrix corresponds to a
different line.

• x1 and y1 are the coordinates
of the beginning of the line.

• x2 and y2 are the coordinates
of the end of the line.

Label matrix M-by-N matrix Matrix of the same size as the
input image. The matrix contains
label values that represent
different objects in an image. The
pixels labeled 0 are the
background. The pixels labeled 1
make up one object, the pixels
labeled 2 make up a second
object, and so on.

1 Blocks

1-78



Binary mask M-by-N matrix Matrix of the same size as the
input image. The binary mask
classifies image pixels as
belonging to either the region of
interest or the background.
Binary mask values of 1 indicate
that the corresponding image
pixel belongs to the ROI. Binary
mask values of 0 indicate that the
corresponding image pixel is part
of the background.

Dependencies

To enable this parameter, set the Find the minimum value over parameter to Entire input and
select the Enable ROI processing parameter.

ROI portion to process — Portion of ROI in which to calculate minimum
Entire ROI (default) | ROI perimeter

Specify the portion of the ROI for which the block calculates the 2-D minimum.

• Entire ROI — The block computes the minimum value over the entire region of the rectangular
ROI.

• ROI perimeter — The block computes the minimum value along the perimeter of the
rectangular ROI.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles.

Output — Calculate individual or universal minimum for ROIs
Individual statistics for each ROI (default) | Single statistic for all ROIs

Specify whether to calculate the 2-D minimum individually for each ROI or across all ROIs.

• If you select Individual statistics for each ROI, the block outputs a vector of minimum
values, each element representing an ROI. The size of the output vector is equal to the number of
ROIs.

• If you select Single statistic for all ROIs, the block outputs a scalar value. The scalar
value is the minimum value across all specified ROIs.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles, Lines, or Label matrix.

Output flag indicating if ROI is within image bounds — Enable Flag port
off (default) | on

Select to enable the Flag output port.

 2-D Minimum

1-79



Note The name of this parameter changes to Output flag indicating if input label numbers are
valid when the ROI type parameter is set to Label matrix.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles, or Lines.

Data Types

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Prevent fixed-
point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
2-D Mean | 2-D Variance | 2-D Maximum

Introduced before R2006a

1 Blocks

1-80



2-D Standard Deviation
Compute standard deviation of input or sequence of inputs
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Standard Deviation block computes the standard deviation of an input array. The input can
be a 1-D vector, 2-D matrix, or an N-D-array. The block can compute standard deviation along a
specified dimension of the input or the entire input. If you select the Running standard deviation
parameter, the block can also track the standard deviation in a sequence of inputs over a time period.

Ports
Input

In — Input array
vector | matrix | N-D- array

Input array, specified as a vector, matrix, or N-D- array. This port is unnamed until you select the
Enable ROI processing parameter.
Data Types: single | double

Rst — Reset port
scalar

Reset port, specified as a scalar. This port specifies the event that causes the block to reset the
running standard deviation. The sample time of the Rst input must be a positive integer and a
multiple of the input sample time.

Dependencies

To enable this port, select the Running standard deviation parameter and set the Reset port
parameter to Rising edge, Falling edge, Either edge, or Non-zero sample.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

ROI — Region of interest
four-element vector | m-by-4 matrix | M-by-N matrix

Region of interest (ROI), specified as a four-element vector, m-by-4 matrix, or M-by-N matrix. The
input value to this port depends on the ROI type parameter.

Note You can use the ROI port only if the input is a 2-D image.

 2-D Standard Deviation

1-81



Dependencies

To enable this port, set the Find the standard deviation value over parameter to Entire input
and select the Enable ROI processing parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Label — Label matrix
matrix of nonnegative integers

Label matrix, specified as a matrix of nonnegative integers. The label matrix represents the objects in
an image. The pixels labeled 0 are the background. The pixels labeled 1 make up one object; the
pixels labeled 2 make up a second object; and so on. The size of the label matrix must be the same
size as the 2-D input.
Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to
Label matrix.
Data Types: uint8 | uint16 | uint32

Label Numbers — Label values of ROIs
M-element vector

Label values of ROIs, specified as a M-element vector. The value of M can be less than or equal to the
number of objects that are labeled in the label matrix.
Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to
Label matrix.
Data Types: uint8 | uint16 | uint32

Output

Out — Computed output standard deviation
scalar | vector | matrix | N-D-array

Computed output standard deviation, returned as a scalar, vector, matrix, or N-D-array. The size of
the returned output standard deviation depends on the size of the input, and the settings for the
Running standard deviation and Find the standard deviation value over parameters.

This port is unnamed until you select the Output flag indicating if ROI is within image bounds
and the ROI type parameter is set to Rectangles, Lines, or Label matrix.
If Running standard deviation Is Cleared

You can compute standard deviation along any specified dimension of the input or the entire input.
The output is a:

• Scalar if the input is of any size and the Find the standard deviation value over parameter is
set to Entire input.

• Vector if the input is a matrix and the Find the standard deviation value over parameter is set
to any one of Each row, Each column, and Specified dimension. In this case, the
Dimension value for Specified dimension can be either 1 or 2.

1 Blocks

1-82



• Matrix if the input is a 3-D array and the Find the standard deviation value over parameter is
set to Specified dimension and the Dimension value is 3.

• N-D array if the input is an N-D array and the Find the standard deviation value over
parameter is set to an option other than Entire input.

If you compute standard deviation along the Nth dimension of the input, then the returned output
is an (N-1)-D array. In this case, the Dimension value for Specified dimension is set to N.

Example: For a 3-D input array of size M-by-N-by-P, the dimension of the returned output is:

• 1-by-N-by-P if you set the Find the standard deviation value over parameter to Entire
row.

• M-by-1-by-P if you set the Find the standard deviation value over parameter to Entire
column.

• M-by-N if you set the Find the standard deviation value over parameter to Specified
dimension and the Dimension value to 3.

If Running standard deviation Is Selected

When you select the Running standard deviation parameter, the block computes the standard
deviation of each sample in the input with respect to all previous samples. The output is of the same
size as the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Flag — Validation for ROI
0 | 1

Validation for ROI, returned as 0 or 1. The output value signifies if all of the ROIs specified at the
input lie within the image bounds. The output value depends on the values of the Output and ROI
Type parameters.

ROI Type Output Output from
Flag port

Description

• Rectangles
• Lines

Individual
statistics for
each ROI

0 ROI is completely outside the
input image.

1 ROI is either completely or
partially inside the input
image.

Single statistic
for all ROIs

0 ROI is completely outside the
input image.

1 ROI is either completely or
partially inside the input
image.

Label matrix Individual
statistics for
each ROI

0 Label number is not in the
label matrix.

1 Label number is in the label
matrix.

Single statistic
for all ROIs

0 None of the label numbers are
in the label matrix.

 2-D Standard Deviation

1-83



1 At least one of the label
numbers is in the label matrix.

Note If the ROI is partially outside the image, the block computes the standard deviation values only
for the portion of the ROI that lies within the image bounds.

Dependencies

To enable this port, select the Output flag indicating if ROI is within image bounds parameter
and set the value of ROI type parameter to Rectangle, Lines, or Label Matrix.

Parameters
Main Tab

Running standard deviation — Track running standard deviation
off (default) | on

Select to track the standard deviation of successive inputs to the block. In this mode, the block treats
each element as a channel.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

Specify when the block detects a reset event. The block resets the running standard deviation when a
reset event is detected at the optional Rst port. The reset sample time must be a positive integer and
a multiple of the input sample time.

Specify the reset event as:

• None to disable the Rst port.
• Rising edge to trigger a reset event when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero

• Falling edge to trigger a reset event when the Rst input does one of the following:

1 Blocks

1-84



• Falls from a positive value to either a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero

• Either edge to trigger a reset event when the Rst input is a Rising edge or Falling edge.
• Non-zero sample to trigger a reset event at each sample time, when the Rst input is not zero.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-
sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the
reset port rate before the block applies the reset.

Dependencies

To enable this parameter, select the Running standard deviation parameter.

Find the standard deviation value over — Dimension along which standard deviation
is computed
Entire input (default) | Each row | Each column | Specified dimension

Specify the dimension of the input along which the block computes the standard deviation.

• Entire input — Computes standard deviation over the entire input.
• Each row — Computes standard deviation over each row.
• Each column — Computes standard deviation over each column.
• Specified dimension— Computes standard deviation over the dimension specified in the

Dimension parameter. By default, the Dimension parameter is set to 1 and the output is the
same as when you select Each column.

Dependencies

To enable this parameter, clear the Running standard deviation parameter.

Dimension — Custom dimension
1 (default)

Specify the dimension of the input array over which the standard deviation is computed as a one-
based value. The value of this parameter is set to 1..

 2-D Standard Deviation

1-85



Dependencies

To enable this parameter, set the Find the standard deviation value over parameter to Specified
dimension.

ROI Processing

Enable ROI processing — Compute standard deviation within a particular region
off (default) | on

Select to calculate standard deviation within a particular ROI in the image.

Note Full ROI processing is available only if you have a Computer Vision Toolbox license. If you do
not have a Computer Vision Toolbox license, you can still use ROI processing, but the ROI type is
limited to Rectangles.

Dependencies

To enable this parameter, set the Find the standard deviation value over parameter to Entire
input.

ROI type — Type of ROI
Rectangles (default) | Lines | Label matrix | Binary mask

Specify the type of ROI that represents the regions in the image over which the block computes the
standard deviation. The type of ROI can be a rectangle, line, label matrix, or a binary mask.

Parameters Description
ROI type Inputs to the ROI port
Rectangles • Four-element row vector

[x y width height]
• m-by-4 matrix

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

,

where m is the number of
rectangles. Each row of the
matrix corresponds to a
different rectangle.

• x and y are the one-based
coordinates of the upper left
corner of the rectangle.

• width and height are the
width and height, in pixels,
of the rectangle. The values
of width and height must
be greater than 0.

1 Blocks

1-86



Lines • Four-element row vector
[x1 y1 x2 y2]

• m-by-4 matrix

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 yM2

,

where m is the number of
lines. Each row of the matrix
corresponds to a different
line.

• x1 and y1 are the coordinates
of the beginning of the line.

• x2 and y2 are the coordinates
of the end of the line.

Label matrix M-by-N matrix Matrix of the same size as the
input image. The matrix
contains label values that
represent different objects in an
image. The pixels labeled 0 are
the background. The pixels
labeled 1 make up one object;
the pixels labeled 2 make up a
second object; and so on.

Binary mask M-by-N matrix Matrix of the same size as the
input image. The binary mask
classifies image pixels as
belonging to either the region of
interest or the background. The
mask pixel values of 1 indicate
that the image pixel belongs to
the ROI. The mask pixel values
of 0 indicate that the image
pixel is part of the background.

Dependencies

To enable this parameter, select the Enable ROI processing parameter.

ROI portion to process — Portion of ROI in which to calculate standard deviation
Entire ROI (default) | ROI perimeter

Specify the portion of the ROI from which the block has to calculate 2-D standard deviation. The ROI
portion is either the entire ROI or the ROI perimeter.
Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles.

Output — Calculate standard deviation for individual or entire ROI
Individual statistics for each ROI (default) | Single statistic for all ROIs

 2-D Standard Deviation

1-87



Specify whether to calculate 2-D standard deviation individually for each ROI or for the entire ROI.

• If you select Individual statistics for each ROI, the block outputs a vector of standard
deviation values. The size of the output vector is equal to the number of ROIs.

• If you select Single statistic for all ROIs, the block outputs a scalar value. The scalar
value represents the statistical value for all the specified ROIs.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles, Lines, or Label matrix.

Output flag indicating if ROI is within image bounds — Enable Flag port
Off (default) | On

Select to expose the Flag port. For a description of the Flag port output, see “Flag” on page 1-0 .

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles, Lines, or Label matrix.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Prevent fixed-
point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
2-D Mean | var | 2-D Variance

Introduced in R2011b

1 Blocks

1-88



2-D Variance
Compute variance of input or sequence of inputs
Library: Computer Vision Toolbox / Statistics

Description
The 2-D Variance block computes the unbiased variance of an input array. The input can be a 1-D
vector, 2-D matrix, or an N-D-array. The block can compute variance along a specified dimension of
the input or the entire input. If you select the Running variance parameter, the block can also track
the variance in a sequence of inputs over a time period.

Ports
Input

In — Input array
vector | matrix | N-D- array

Input array, specified as a vector, matrix, or N-D- array. This port is unnamed until you select the
Enable ROI processing parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Rst — Reset port
scalar

Reset port, specified as a scalar. This port specifies the event that causes the block to reset the
running variance. The sample time of the Rst input must be a positive integer and a multiple of the
input sample time.

Dependencies

To enable this port, select the Running variance parameter and set the Reset port parameter to
Rising edge, Falling edge, Either edge, or Non-zero sample.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

ROI — Region of interest
four-element vector | m-by-4 matrix | M-by-N matrix

Region of interest (ROI), specified as a four-element vector, m-by-4 matrix, or M-by-N matrix. The
input value to this port depends on the ROI type parameter.

Note You can use the ROI port only if the input is a 2-D image.

 2-D Variance

1-89



Dependencies

To enable this port, set the Find the variance value over parameter to Entire input and select
the Enable ROI processing parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Label — Label matrix
matrix of nonnegative integers

Label matrix, specified as a matrix of nonnegative integers. The label matrix represents the objects in
an image. The pixels labeled 0 are the background. The pixels labeled 1 make up one object; the
pixels labeled 2 make up a second object; and so on. The size of the label matrix must be the same
size as the 2-D input.
Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to
Label matrix.
Data Types: uint8 | uint16 | uint32

Label Numbers — Label values of ROIs
M-element vector

Label values of ROIs, specified as a M-element vector. The value of M can be less than or equal to the
number of objects that are labeled in the label matrix.
Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to
Label matrix.
Data Types: uint8 | uint16 | uint32

Output

Out — Computed output variance
scalar | vector | matrix | N-D-array

Computed output variance, returned as a scalar, vector, matrix, or N-D-array. The size of the returned
output variance depends on the size of the input, and the settings for the Running variance and
Find the variance value over parameters.

This port is unnamed until you select the Output flag indicating if ROI is within image bounds
and the ROI type parameter is set to Rectangles, Lines, or Label matrix.
If Running variance Is Cleared

You can compute variance along any specified dimension of the input or the entire input. The output
is a:

• Scalar if the input is of any size and the Find the variance value over parameter is set to
Entire input.

• Vector if the input is a matrix and the Find the variance value over parameter is set to any one
of Each row, Each column, and Specified dimension. In this case, the Dimension value for
Specified dimension can be either 1 or 2.

1 Blocks

1-90



• Matrix if the input is a 3-D array and the Find the variance value over parameter is set to
Specified dimension and the Dimension value is 3.

• N-D array if the input is an N-D array and the Find the variance value over parameter is set to
an option other than Entire input.

If you compute variance along the Nth dimension of the input, then the returned output is an
(N-1)-D array. In this case, the Dimension value for Specified dimension is set to N.

Example: For a 3-D input array of size M-by-N-by-P, the dimension of the returned output is:

• 1-by-N-by-P if you set the Find the variance value over parameter to Entire row.
• M-by-1-by-P if you set the Find the variance value over parameter to Entire column.
• M-by-N if you set the Find the variance value over parameter to Specified dimension

and the Dimension value to 3.

If Running variance Is Selected

When you select the Running variance parameter, the block computes the variance of each sample
in the input with respect to all previous samples. The output is of the same size as the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Flag — Validation for ROI
0 | 1

Validation for ROI, returned as 0 or 1. The output value signifies if all of the ROIs specified at the
input lie within the image bounds. The output value depends on the values of the Output and ROI
Type parameters.

ROI Type Output Output from
Flag port

Description

• Rectangles
• Lines

Individual
statistics for
each ROI

0 ROI is completely outside the
input image.

1 ROI is either completely or
partially inside the input
image.

Single statistic
for all ROIs

0 ROI is completely outside the
input image.

1 ROI is either completely or
partially inside the input
image.

Label matrix Individual
statistics for
each ROI

0 Label number is not in the
label matrix.

1 Label number is in the label
matrix.

Single statistic
for all ROIs

0 None of the label numbers are
in the label matrix.

1 At least one of the label
numbers is in the label matrix.

 2-D Variance

1-91



Note If the ROI is partially outside the image, the block computes the variance values only for the
portion of the ROI that lies within the image bounds.

Dependencies

To enable this port, select the Output flag indicating if ROI is within image bounds parameter
and set the value of ROI type parameter to Rectangle, Lines, or Label Matrix.

Parameters
Main Tab

Running variance — Track running variance
off (default) | on

Select to track the variance of successive inputs to the block. In this mode, the block treats each
element as a channel.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

Specify when the block detects a reset event. The block resets the running variance when a reset
event is detected at the optional Rst port. The reset sample time must be a positive integer and a
multiple of the input sample time.

Specify the reset event as:

• None to disable the Rst port.
• Rising edge to trigger a reset event when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero

• Falling edge to trigger a reset event when the Rst input does one of the following:

• Falls from a positive value to either a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero

1 Blocks

1-92



• Either edge to trigger a reset event when the Rst input is a Rising edge or Falling edge.
• Non-zero sample to trigger a reset event at each sample time, when the Rst input is not zero.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-
sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the
reset port rate before the block applies the reset.

Dependencies

To enable this parameter, select the Running variance parameter.

Find the variance value over — Dimension along which variance is computed
Entire input (default) | Each row | Each column | Specified dimension

Specify the dimension of the input along which the block computes the variance.

• Entire input — Computes variance over the entire input.
• Each row — Computes variance over each row.
• Each column — Computes variance over each column.
• Specified dimension— Computes variance over the dimension specified in the Dimension

parameter.

• If Dimension is 1, the output is the same as when you select Each column.
• If Dimension is 2, the output is the same as when you select Each row.

Dependencies

To enable this parameter, clear the Running variance parameter.

Dimension — Custom dimension
1 (default) | scalar

Specify the dimension of the input array over which the variance is computed as a one-based value.
The value of this parameter must be greater than 0 and less than or equal to the number of
dimensions in the input array.

Dependencies

To enable this parameter, set the Find the variance value over parameter to Specified
dimension.

 2-D Variance

1-93



ROI Processing

Enable ROI processing — Compute variance within a particular region
off (default) | on

Select to calculate variance within a particular ROI in the image.

Note Full ROI processing is available only if you have a Computer Vision Toolbox license. If you do
not have a Computer Vision Toolbox license, you can still use ROI processing, but the ROI type is
limited to Rectangles.

Dependencies

To enable this parameter, set the Find the variance value over parameter to Entire input.

ROI type — Type of ROI
Rectangles (default) | Lines | Label matrix | Binary mask

Specify the type of ROI that represents the regions in the image over which the block computes the
variance. The type of ROI can be a rectangle, line, label matrix, or a binary mask.

Parameters Description
ROI type Inputs to the ROI port
Rectangles • Four-element row vector

[x y width height]
• m-by-4 matrix

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

,

where m is the number of
rectangles. Each row of the
matrix corresponds to a
different rectangle.

• x and y are the one-based
coordinates of the upper left
corner of the rectangle.

• width and height are the
width and height, in pixels,
of the rectangle. The values
of width and height must
be greater than 0.

1 Blocks

1-94



Lines • Four-element row vector
[x1 y1 x2 y2]

• m-by-4 matrix

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 yM2

,

where m is the number of
lines. Each row of the matrix
corresponds to a different
line.

• x1 and y1 are the coordinates
of the beginning of the line.

• x2 and y2 are the coordinates
of the end of the line.

Label matrix M-by-N matrix Matrix of the same size as the
input image. The matrix
contains label values that
represent different objects in an
image. The pixels labeled 0 are
the background. The pixels
labeled 1 make up one object;
the pixels labeled 2 make up a
second object; and so on.

Binary mask M-by-N matrix Matrix of the same size as the
input image. The binary mask
classifies image pixels as
belonging to either the region of
interest or the background. The
mask pixel values of 1 indicate
that the image pixel belongs to
the ROI. The mask pixel values
of 0 indicate that the image
pixel is part of the background.

Dependencies

To enable this parameter, select the Enable ROI processing parameter.

ROI portion to process — Portion of ROI in which to calculate variance
Entire ROI (default) | ROI perimeter

Specify the portion of the ROI from which the block has to calculate 2-D variance. The ROI portion is
either the entire ROI or the ROI perimeter.
Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles.

Output — Calculate variance for individual or entire ROI
Individual statistics for each ROI (default) | Single statistic for all ROIs

 2-D Variance

1-95



Specify whether to calculate 2-D variance individually for each ROI or for the entire ROI.

• If you select Individual statistics for each ROI, the block outputs a vector of variance
values. The size of the output vector is equal to the number of ROIs.

• If you select Single statistic for all ROIs, the block outputs a scalar value. The scalar
value represents the statistical value for all the specified ROIs.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles, Lines, or Label matrix.

Output flag indicating if ROI is within image bounds — Enable Flag port
Off (default) | On

Select to expose the Flag port. For a description of the Flag port output, see “Flag” on page 1-0 .
Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type
parameter to Rectangles, Lines, or Label matrix.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Lock data type settings against change by the fixed-point tools — Prevent fixed-
point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes

More About
Variance

The variance of an input is the square of the standard deviation of the input. Variance gives a
measure of deviation of the input values from its mean value.

For a purely real or imaginary input, u, of size M-by-N, the variance is:

y = σ2 =
∑

i = 1

M
∑

j = 1

N
ui j

2−
∑

i = 1

M
∑

j = 1

N
ui j

2

M * N
M * N − 1 ,

1 Blocks

1-96



where:

• uij is the input data element at (i, j).
• M is the length of the jth column.
• N is the number of columns.

For complex inputs, the variance is:

σ2 = σRe2 + σIm2,

where:

• σRe
2 is the variance of the real part of the complex input.

• σIm
2 is the variance of the imaginary part of the complex input.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
2-D Mean | 2-D Standard Deviation | var

Introduced before R2006a

 2-D Variance

1-97



Autothreshold
Convert intensity image to binary image

Library
Conversions

visionconversions

Description
The Autothreshold block converts an intensity image to a binary image using a threshold value
computed using Otsu's method.

This block computes this threshold value by splitting the histogram of the input image such that the
variance of each pixel group is minimized.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

BW Scalar, vector, or matrix that represents
a binary image

Boolean No

Th Threshold value Same as I port No
EMetric Effectiveness metric Same as I port No

Use the Thresholding operator parameter to specify the condition the block places on the input
values. If you select > and the input value is greater than the threshold value, the block outputs 1 at
the BW port; otherwise, it outputs 0. If you select <= and the input value is less than or equal to the
threshold value, the block outputs 1; otherwise, it outputs 0.

Select the Output threshold check box to output the calculated threshold values at the Th port.

Select the Output effectiveness metric check box to output values that represent the effectiveness
of the thresholding at the EMetric port. This metric ranges from 0 to 1. If every pixel has the same
value, the effectiveness metric is 0. If the image has two pixel values or the histogram of the image
pixels is symmetric, the effectiveness metric is 1.

1 Blocks

1-98



If you clear the Specify data range check box, the block assumes that floating-point input values
range from 0 to 1. To specify a different data range, select this check box. The Minimum value of
input and Maximum value of input parameters appear in the dialog box. Use these parameters to
enter the minimum and maximum values of your input signal.

Use the When data range is exceeded parameter to specify the block's behavior when the input
values are outside the expected range. The following options are available:

• Ignore — Proceed with the computation and do not issue a warning message. If you choose this
option, the block performs the most efficient computation. However, if the input values exceed the
expected range, the block produces incorrect results.

• Saturate — Change any input values outside the range to the minimum or maximum value of the
range and proceed with the computation.

• Warn and saturate — Display a warning message in the MATLAB Command Window, saturate
values, and proceed with the computation.

• Error — Display an error dialog box and terminate the simulation.

If you clear the Scale threshold check box, the block uses the threshold value computed by Otsu's
method to convert intensity images into binary images. If you select the Scale threshold check box,
the Threshold scaling factor appears in the dialog box. Enter a scalar value. The block multiplies
this scalar value with the threshold value computed by Otsu's method and uses the result as the new
threshold value.

Fixed-Point Data Types

The following diagram shows the data types used in the Autothreshold block for fixed-point signals.
You can use the default fixed-point parameters if your input has a word length less than or equal to
16.
In this diagram, DT means data type. You can set the product, accumulator, quotient, and
effectiveness metric data types in the block mask.

Parameters
Thresholding operator

Specify the condition the block places on the input matrix values. If you select > or <=, the block
outputs 0 or 1 depending on whether the input matrix values are above, below, or equal to the
threshold value.

Output threshold
Select this check box to output the calculated threshold values at the Th port.

 Autothreshold

1-99



Output effectiveness metric
Select this check box to output values that represent the effectiveness of the thresholding at the
EMetric port.

Specify data range
If you clear this check box, the block assumes that floating-point input values range from 0 to 1.
To specify a different data range, select this check box.

Minimum value of input
Enter the minimum value of your input data. This parameter is visible if you select the Specify
data range check box.

Maximum value of input
Enter the maximum value of your input data. This parameter is visible if you select the Specify
data range check box.

When data range is exceeded
Specify the block's behavior when the input values are outside the expected range. Your options
are Ignore, Saturate, Warn and saturate, or Error. This parameter is visible if you select
the Specify data range check box.

Scale threshold
Select this check box to scale the threshold value computed by Otsu's method.

Threshold scaling factor
Enter a scalar value. The block multiplies this scalar value with the threshold value computed by
Otsu's method and uses the result as the new threshold value. This parameter is visible if you
select the Scale threshold check box.

Rounding mode

Select the rounding mode for fixed-point operations. This parameter does not apply to the Cast to
input DT step shown in “Fixed-Point Data Types” on page 1-99. For this step, Rounding mode is
always set to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations.

Product 1, 2, 3, 4

As shown previously, the output of the multiplier is placed into the product output data type and
scaling. Use this parameter to specify how to designate the product output word and fraction
lengths.

• When you select Specify word length, you can enter the word length of the product
values in bits. The block sets the fraction length to give you the best precision.

• When you select Same as input, the characteristics match those of the input to the block.
This choice is only available for the Product 4 parameter.

1 Blocks

1-100



• When you select Binary point scaling, you can enter the word length and the fraction
length of the product output in bits.

• When you select Slope and bias scaling, you can enter the word length in bits and the
slope of the product output. The bias of all signals in the Computer Vision Toolbox software is
0.

Accumulator 1, 2, 3, 4

As shown previously, inputs to the accumulator are cast to the accumulator data type. The output
of the adder remains in the accumulator data type as each element of the input is added to it. Use
this parameter to specify how to designate the accumulator word and fraction lengths.

• When you select Same as Product, these characteristics match those of the product output.
• When you select Specify word length, you can enter the word length of the accumulator

values in bits. The block sets the fraction length to give you the best precision. This choice is
not available for the Accumulator 4 parameter because it is dependent on the input data
type.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the accumulator in bits.

• When you select Slope and bias scaling, you can enter the word length in bits and the
slope of the accumulator. The bias of all signals in the Computer Vision Toolbox software is 0.

The Accumulator 3 parameter is only visible if, on the Main pane, you select the Output
effectiveness metric check box.

Quotient
Choose how to specify the word length and fraction length of the quotient data type:

• When you select Specify word length, you can enter the word length of the quotient
values in bits. The block sets the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the quotient, in bits.

• When you select Slope and bias scaling, you can enter the word length in bits and the
slope of the quotient. The bias of all signals in the Computer Vision Toolbox software is 0.

Eff Metric
Choose how to specify the word length and fraction length of the effectiveness metric data type.
This parameter is only visible if, on the Main tab, you select the Output effectiveness metric
check box.

 Autothreshold

1-101



• When you select Specify word length, you can enter the word length of the effectiveness
metric values, in bits. The block sets the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the effectiveness metric in bits.

• When you select Slope and bias scaling, you can enter the word length in bits and the
slope of the effectiveness metric. The bias of all signals in the Computer Vision Toolbox
software is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

Example
Example 1.1. Thresholding Intensity Images Using the Autothreshold Block

Convert an intensity image into a binary image. Use the Autothreshold block when lighting conditions
vary and the threshold needs to change for each video frame.

You can open the example model by typing

ex_vision_autothreshold

on the MATLAB command line.

See Also
Compare To Constant Simulink
Relational Operator Simulink
graythresh Image Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Detect and Track Face”

Introduced before R2006a

1 Blocks

1-102

matlab:ex_vision_autothreshold


Blob Analysis
Statistics for labeled regions
Library: Computer Vision Toolbox / Statistics

Description
The Blob Analysis block calculates statistics for labeled regions in a binary image. The block returns
quantities such as the centroid, bounding box, label matrix, and blob count. The Blob Analysis block
supports input and output variable-size signals. You can also use the Selector block from Simulink, to
select certain blobs based on their statistics.

For information on pixel and spatial coordinate system definitions, see “Image Coordinate Systems”
and “Coordinate Systems”.

Ports
Input

BW — Binary image
vector | matrix

Binary image, specified as a vector or matrix
Data Types: Boolean

Output

Area — Number of pixels in labeled regions
vector

Number of pixels in labeled regions, returned as a vector.
Dependencies

To enable this port, select the Area parameter.
Data Types: int32

Centroid — Centroid coordinates
M-by-2 matrix

M-by-2 matrix of M number of blobs.

The rows represent the coordinates of the centroid of each region, and M represents the number of
blobs.

For example, there are two blobs where the row and column coordinates of their centroids are x1, y1
and x2, y2. The block outputs:

 Blob Analysis

1-103



x1 y1
x2 y2

at the Centroid port.

Dependencies

To enable this port, select the Centroid parameter.
Data Types: double | single | fixed point

BBox — Bounding box coordinates
M-by-4 matrix

Bounding box coordinates, returned as an M-by-4 matrix of M bounding boxes for blobs. Each row of
the matrix defines a bounding box as a four-element vector [x,y,width,height] in pixel coordinates.
The rows represent the coordinates of each bounding box, where M represents the number of blobs.

For example, there are two blobs, where x and y define the location of the upper-left corner of the
bounding box, and w and h define the width and height of the bounding box. The block outputs

x1 y1 w1 h1

x2 y2 w2 h2

at the BBox port.

Dependencies

To enable this port, select the Bounding Box parameter.

Parameters
Main Tab

Area — Number of pixels in labeled regions
vector

Number of pixels in labeled regions, returned as a vector.

Dependencies

To enable this port, select the Area parameter.
Data Types: int32

Centroid — Centroid coordinates
M-by-2 matrix

M-by-2 matrix of M number of blobs.

The rows represent the coordinates of the centroid of each region, and M represents the number of
blobs.

For example, there are two blobs where the row and column coordinates of their centroids are x1, y1
and x2, y2. The block outputs:

1 Blocks

1-104



x1 y1
x2 y2

at the Centroid port.

Dependencies

To enable this port, select the Centroid parameter.
Data Types: double | single | fixed point

BBox — Bounding box coordinates
M-by-4 matrix

Bounding box coordinates, returned as an M-by-4 matrix of M bounding boxes for blobs. Each row of
the matrix defines a bounding box as a four-element vector [x,y,width,height] in pixel coordinates.
The rows represent the coordinates of each bounding box, where M represents the number of blobs.

For example, there are two blobs, where x and y define the location of the upper-left corner of the
bounding box, and w and h define the width and height of the bounding box. The block outputs

x1 y1 w1 h1

x2 y2 w2 h2

at the BBox port.

Dependencies

To enable this port, select the Bounding Box parameter.

Major axis length — Length of major axis of ellipses
off (default) | on

Enables the Major axis length port. Select this check box to output a vector that

• Represents the lengths of the major axes of ellipses
• Has the same normalized second central moments as the labeled regions

Data Types: double | single

Minor axis length — Length of minor axis of ellipses
off (default) | on

Enables the Minor axis length port. Select this check box to output a vector that

• Represents the lengths of the minor axes of ellipses
• Has the same normalized second central moments as the labeled regions

Data Types: double | single

Orientation — Orientation
off (default) | on

Enables the Orientation port.

 Blob Analysis

1-105



Select this check box to output a vector that represents the angles between the major axes of the
ellipses and the x-axis. The angle values are in radians and range between: −π

2  and π2  inclusive.

Data Types: double | single

Eccentricity — Eccentricity
off (default) | on

Enables the Eccentricity port. Select this check box to output a vector that represents the
eccentricities of ellipses that have the same second moments as the region.
Data Types: double | single

Equivalent diameter squared — Equivalent diameter squared
off (default) | on

Enables the Equivalent diameter squared port. Select this check box to output a vector that
represents the equivalent diameters squared.
Data Types: double | single | fixed point

Extent — Extent
off (default) | on

Enables the Extent port. Select this check box to output a vector that represents the results of
dividing the areas of the blobs by the area of their bounding boxes.
Data Types: double | single | fixed point

Perimeter — Perimeter length
off (default) | on

Enables the Perimeter port. Select this check box to output an N-by-1 vector of the perimeter
lengths, in pixels, of each blob, where N is the number of blobs.
Data Types: double | single | fixed point

Statistics output data type — Output data type
double (default) | single | Specify via Data Types tabl

Specify the data type of the outputs as double, single, or Specify via Data Types tab.
Data Types: double | single

Connectivity — Number of labeled regions
8 (default) | 4

Specify the number of labeled regions in each image.

Define which pixels connect to each other. If you want to connect pixels located on the top, bottom,
left, and right, select 4. If you want to connect pixels to other pixels on the top, bottom, left, right,
and diagonally, select 8. For more information about this parameter, see the Label block.

The Connectivity parameter also affects how the block calculates the perimeter of a blob. For
example, this figure illustrates how the block calculates the perimeter when you set the Connectivity
parameter to 4.

1 Blocks

1-106



The block calculates the distance between the center of each pixel (marked by the black dots) and
estimates the perimeter to be 22.

The next figure illustrates how the block calculates the perimeter of a blob when you set the
Connectivity parameter to 8.

The block takes a different path around the blob and estimates the perimeter to be 18 + 2 2.
Data Types: double | single

Output label matrix — Output label matrix
off (default) | on

Enable the Label port. Select this check box to output the label matrix. The pixels equal to 0
represent the background. The pixels equal to 1 represent the first object. The pixels equal to 2
represent the second object, and so on.

Blob Properties Tab

Maximum number of blobs — Maximum number of blobs
scalar

Specify the maximum number of labeled regions in each input image. The block uses this value to
preallocate vectors and matrices to ensure that they are long enough to hold the statistical values.

 Blob Analysis

1-107



The maximum number of blobs the block outputs depends on both the value of this parameter and the
size of the input image. The number of blobs the block outputs may be limited by the input image
size.

Warn if maximum number of blobs is exceeded — Warn if maximum number of blobs is
exceeded
on (default) | off

Select this parameter to warn if maximum number of blobs is exceeded.

Output actual number of blobs — Number of blobs
off (default) | on

Enable the Count port. Select this parameter to output a scalar value that represents the actual
number of connected regions in each image.

Specify minimum blob area in pixels — Minimum blob area in pixels
0 (default) | scalar

Select this parameter to specify the minimum blob area in pixels. The blob is labeled if the number of
pixels meets the minimum size specified.

Tunable: Yes

Specify maximum blob area in pixels — Maximum blob area in pixels
intmax('uint32') (default) | scalar

Select this parameter to specify the maximum blob area in pixels. The blob is labeled if the number of
pixels meets the maximum size specified. The maximum allowable value is the maximum of the
uint32 data type.

Tunable: Yes

Exclude blobs touching image border — Exclude blobs touching image border
off (default) | on

Specify this parameter to exclude a labeled blob that contains at least one border pixel.

Output blob statistics as a variable size signal — Output blob statistics as a
variable size signal
off (default) | on

Specify this parameter to output blob statistics as a variable-size signal.

Fill empty spaces in output — Fill empty spaces in output
off (default) | on

Specify this parameter to fill empty spaces in the statistical vectors with the values you specify in the
Fill values parameter.
Dependencies

To enable this parameter, clear the Output blob statistics as a variable size signal parameter.

Fill values — Scalar used to fill empty spaces in output
-1 (default) | scalar | vector

1 Blocks

1-108



Specify a scalar value to fill all the empty spaces in the statistical vectors. If you enter a vector, it
must have the same length as the number of selected statistics. The block uses each vector element
to fill a different statistics vector. If the empty spaces do not affect your computation, you can clear
the Fill empty spaces in outputs parameter.

Dependencies

To enable this parameter, clear the Output blob statistics as a variable size signal parameter.

Data Types Tab

To enable option on the Data Types tab, in the Main tab, set the Statistics output data type
parameter to Specify via Data Types tab. For details on the fixed-point block parameters, see
“Specify Fixed-Point Attributes for Blocks”.

Block Characteristics
Data Types Booleana | doubleb | fixed pointb, c | integerb | singleb

Multidimensional
Signals

no

Variable-Size Signals yes
a Generated code will be restricted to MATLAB host computers when you set the FFT implementation parameter to FFTW,

or when the transform length is not a power of two.
b This data type is supported at the output port(s).
c Fixed-point data types are not supported at the Major Axis, Minor Axis, Orientation, and Eccentricity output ports.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Label | regionprops

Topics
“Cell Counting”

Introduced before R2006a

 Blob Analysis

1-109



Block Matching
Estimate motion between images or video frames
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Block Matching block estimates motion between two images or two video frames by comparing
blocks of pixels. The block matches the block of pixels between frames by moving the block of pixels
over a search region.

Ports
Input

I/I1 — Image or video frame
scalar | vector | matrix

Image or video frame, specified as a scalar, vector, or matrix. If the Estimate motion between
parameter is set to Two images, the name of this port changes to I1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I2 — Image or video frame
scalar | vector | matrix

Image or video frame, specified as a scalar, vector, or matrix.

Dependencies

To enable this port, set the Estimate motion between parameter to Two images.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

|V|^2 — Velocity magnitudes
scalar | vector | matrix

Velocity magnitudes, returned as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

V — Velocity components in complex form
scalar | vector | matrix

1 Blocks

1-110



Velocity components in complex form, returned as a scalar, vector, or matrix.

Dependencies

To expose this port, set the Velocity output parameter to Horizontal and vertical
components in complex form.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main Tab

Estimate motion between — Estimate motion between images or frames
Current frame and N-th frame back (default) | Two images

Specify whether to estimate the motion between two images or two video frames. Select Two images
to estimate the motion between two images. Select Current frame and N-th frame back to
estimate the motion between two video frames that are N frames apart.

Dependencies

Set this parameter to Current frame and N-th frame back to expose the N parameter.

N — Number of frames
1 (default) | scalar

Specify a scalar value that represents the number of frames between the reference frame and the
current frame.

Dependencies

To enable this parameter, set the Estimate motion between parameter to Current frame and N-
th frame back.

Search method — Block match search method
Exhaustive (default) | Three-step

Specify how the block locates the block of pixels in the current frame and the next frame that best
matches the block of pixels.

• Exhaustive — The block selects the location of the block of pixels in the next frame by moving
the block over the search region one pixel at a time. This process is computationally expensive.

• Three-step — The block searches for the block of pixels in the next frame that best matches the
block of pixels in the current frame by using a steadily decreasing step size. The block begins with
a step size approximately equal to half the maximum search range. In each step, the block
compares the central point of the search region to eight search points located on the boundaries
of the region and moves the central point to the search point whose values is the closest to that of
the central point. The block then reduces the step size by half, and begins the process again. This
option is less computationally expensive, though it might not find the optimal solution.

Block matching criteria — Block matching criteria
Mean square error (MSE) (default) | Mean absolute difference (MAD)

 Block Matching

1-111



Specify how the block measures the similarity of the block of pixels in the current frame to the block
of pixels in the next frame.

If you select Mean square error (MSE), the block estimates the displacement of the center pixel
of the block as the (d1, d2) values that minimize this MSE equation:

MSE(d1, d2) = 1
N1 × N2

∑
(n1, n2),

∑
∈ B

[s(n1, n2, k)− s(n1 + d1, n2 + d2, k + 1)]2

In the previous equation, B is an N1 × N2 block of pixels, and s(x,y,k) denotes a pixel location at (x,y)
in frame k.

If you select Mean absolute difference (MAD), the Block Matching block estimates the
displacement of the center pixel of the block as the (d1, d2) values that minimize this MAD equation:

MAD(d1, d2) = 1
N1 × N2

∑
(n1, n2),

∑
∈ B

s(n1, n2, k)− s(n1 + d1, n2 + d2, k + 1)

Block size [height width] — Block size
[17 17] (default) | two-element vector

Specify the size of the block of pixels.

Overlap size [r c] — Block overlap
[0 0] (default) | two-element vector

Specify the overlap (in pixels) of two subdivisions of the input image.

1 Blocks

1-112



Maximum displacement [r c] — Maximum displacement
[7 7] (default) | two-element vector

Specify the maximum number of pixels any center pixel in a block of pixels might move from image to
image or frame to frame. The block uses this value to determine the size of the search region.

Velocity output — Velocity output
Magnitude-squared (default) | Horizontal and vertical components in complex form

Specify the output. If you select Magnitude-squared, the block outputs an optical flow matrix
where each element is in the form u2+v2. If you select Horizontal and vertical components
in complex form, the block outputs an optical flow matrix where each element is in the form
u + jv. The real part of each value is the horizontal velocity component and the imaginary part of
each value is the vertical velocity component.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

 Block Matching

1-113



Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
Block Matching Search

Suppose the input to the block is frame k. The block performs the following steps:

1 Subdivide the frame using the values for the Block size [height width] and Overlap size [r c]
parameters. For this example, Overlap size [r c] equals [0 0].

2 For each subdivision or block in frame k+1, a search region is established based on the value of
the Maximum displacement [r c] parameter.

3 Search for the new block location using either the Exhaustive or Three-step search method.

1 Blocks

1-114



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Optical Flow | opticalFlow | opticalFlowHS | opticalFlowLK | opticalFlowLKDoG

Introduced before R2006a

 Block Matching

1-115



Block Processing
Repeat user-specified operation on submatrices of input matrix

Library
Utilities

visionutilities

Description
The Block Processing block extracts submatrices of a user-specified size from each input matrix. It
sends each submatrix to a subsystem for processing, and then reassembles each subsystem output
into the output matrix.

Note Because you modify the Block Processing block's subsystem, the link between this block and
the block library is broken when you click-and-drag a Block Processing block into your model. As a
result, this block will not be automatically updated if you upgrade to a newer version of the Computer
Vision Toolbox software. If you right-click on the block and select Mask>Look Under Mask, you can
delete blocks from this subsystem without triggering a warning. Lastly, if you search for library
blocks in a model, this block will not be part of the results.

The blocks inside the subsystem dictate the frame status of the input and output signals, whether
single channel or multichannel signals are supported, and which data types are supported by this
block.

Use the Number of inputs and Number of outputs parameters to specify the number of input and
output ports on the Block Processing block.

Use the Block size parameter to specify the size of each submatrix in cell array format. Each vector
in the cell array corresponds to one input; the block uses the vectors in the order you enter them. If
you have one input port, enter one vector. If you have more than one input port, you can enter one

1 Blocks

1-116



vector that is used for all inputs or you can specify a different vector for each input. For example, if
you want each submatrix to be 2-by-3, enter {[2 3]}.

Use the Overlap parameter to specify the overlap of each submatrix in cell array format. Each vector
in the cell array corresponds to the overlap of one input; the block uses the vectors in the order they
are specified. If you enter one vector, each overlap is the same size. For example, if you want each 3-
by-3 submatrix to overlap by 1 row and 2 columns, enter {[1 2]}.

The Traverse order parameter determines how the block extracts submatrices from the input
matrix. If you select Row-wise, the block extracts submatrices by moving across the rows. If you
select Column-wise, the block extracts submatrices by moving down the columns.

Click the Open Subsystem button to open the block's subsystem. Click-and-drag blocks into this
subsystem to define the processing operation(s) the block performs on the submatrices. The input to
this subsystem are the submatrices whose size is determined by the Block size parameter.

Note When you place an Assignment block inside a Block Processing block's subsystem, the
Assignment block behaves as though it is inside a For Iterator block. For a description of this
behavior, see the “Iterated Assignment” section of the Assignment block reference page.

Parameters
Number of inputs

Enter the number of input ports on the Block Processing block.
Add port to supply subsystem parameters

Add an input port to the block to supply subsystem parameters. When you check this option, a
port (P) is added to the block.

Number of outputs
Enter the number of output ports on the Block Processing block.

Block size
Specify the size of each submatrix in cell array format. Each vector in the cell array corresponds
to one input.

Overlap
Specify the overlap of each submatrix in cell array format. Each vector in the cell array
corresponds to the overlap of one input.

Traverse order
Determines how the block extracts submatrices from the input matrix. If you select Row-wise,
the block extracts submatrices by moving across the rows. If you select Column-wise, the block
extracts submatrices by moving down the columns.

Open Subsystem
Click this button to open the block's subsystem. Click-and-drag blocks into this subsystem to
define the processing operation(s) the block performs on the submatrices.

See Also
For Iterator Simulink

 Block Processing

1-117



blockproc Image Processing Toolbox

See Also
Topics
“Video Compression”

Introduced before R2006a

1 Blocks

1-118



Bottom-hat
Perform morphological bottom-hat filtering on intensity or binary images
Library: Computer Vision Toolbox / Morphological Operations

Description
The Bottom-hat block performs bottom-hat filtering on an intensity or binary image using a
predefined neighborhood or structuring element. Bottom-hat filtering is the equivalent of subtracting
the input image from the result of performing a morphological closing operation on the input image.

To define the structuring element that the block applies to the image, use the Neighborhood or
structuring element parameter. Specify this element by entering a vector or matrix of 1s and 0s or
by using the strel function.

This block uses two-dimensional flat structuring elements only.

Ports
Input

I — Input image
matrix

Specify an input image as a matrix of intensity values. This port is unnamed unless you set the
Neighborhood or structuring element source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Nhood — Neighborhood values
vector | matrix

Specify neighborhood values representing a structuring element as a vector or matrix of 1s and 0s or
by using the strel function.

Dependencies

To enable this port, set the Neighborhood or structuring element source parameter to Input
port.
Data Types: Boolean

Output

Port_1 — Filtered image
matrix

 Bottom-hat

1-119



The bottom-hat filtered image is returned as a matrix of intensity values. The size and data type of the
filtered image are the same as those of the input image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Input image type — Type of input image
Intensity (default) | Binary

Specify the type of image as one of these options:

• Intensity — If the input image is an intensity image, select this option.
• Binary — If the input image is a binary image, select this option.

Neighborhood or structuring element source — Source of neighborhood or structuring
element
Specify via dialog (default) | Input port

Specify the source of neighborhood or structuring element as one of these options:

• Specify via dialog — Use the Neighborhood or structuring element parameter to specify
a neighborhood or structuring element.

• Input port — Use the Nhood input port to specify neighborhood values representing a
structuring element.

Neighborhood or structuring element — Neighborhood or structuring element
strel('octagon',15) (default) | vector | matrix

Specify neighborhood or structuring element as a vector or matrix of 1s and 0s, a strel object or an
array of strel objects. When you specify this value as an array of strel objects, the block applies
each object to the entire image in turn.

If the structuring element is decomposable into smaller elements, the block executes at higher speed
due to the use of a more efficient algorithm.

Dependencies

To enable this parameter, set the Neighborhood or structuring element source parameter, to
Specify via dialog.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

1 Blocks

1-120



More About
Bottom-hat Transform

Image processing tasks like background equalization, feature extraction, and image enhancement can
be achieved using the bottom-hat transform. This process returns an image which contains objects
that are:

• Smaller in dimension than the structuring element chosen and
• Darker than the surroundings

References
[1] Soille, Pierre. Morphological Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg,

2004. https://doi.org/10.1007/978-3-662-05088-0.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Erosion | Dilation | Opening | Closing | Label | Top-hat

Functions
imerode | imdilate | imopen | imclose | imbothat | imtophat

Objects
strel

Introduced before R2006a

 Bottom-hat

1-121



Chroma Resampling
Downsample or upsample chrominance components of images

Library
Conversions

visionconversions

Description
The Chroma Resampling block downsamples or upsamples chrominance components of pixels to
reduce the bandwidth required for transmission or storage of a signal.

Port Input/Output Supported Data Types Complex Values
Supported

Cb Matrix that represents one
chrominance component of
an image

• Double-precision floating point
• Single-precision floating point
• 8-bit unsigned integer

No

Cr Matrix that represents one
chrominance component of
an image

Same as Cb port No

The data type of the output signals is the same as the data type of the input signals.

Chroma Resampling Formats

The Chroma Resampling block supports the formats shown in the following diagram.

1 Blocks

1-122



Downsampling

If, for the Resampling parameter, you select 4:4:4 to 4:2:2, 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), 4:4:4 to 4:1:1, 4:2:2 to 4:2:0 (MPEG1), or
4:2:2 to 4:2:0 (MPEG2), the block performs a downsampling operation. When the block
downsamples from one format to another, it can bandlimit the input signal by applying a lowpass
filter to prevent aliasing.

If, for the Antialiasing filter parameter, you select Default, the block uses a built-in lowpass filter
to prevent aliasing.

If, for the Resampling parameter, you select 4:4:4 to 4:2:2, 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), or 4:4:4 to 4:1:1 and, for the Antialiasing filter parameter, you
select User-defined, the Horizontal filter coefficients parameter appears on the dialog box.
Enter the filter coefficients to apply to your input.

If, for the Resampling parameter, you select 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), 4:2:2 to 4:2:0 (MPEG1), or 4:2:2 to 4:2:0 (MPEG2) and, for
the Antialiasing filter parameter, you select User-defined. Vertical filter coefficients
parameters appear on the dialog box. Enter an even number of filter coefficients to apply to your
input signal.

If, for the Antialiasing filter parameter, you select None, the block does not filter the input signal.

Upsampling

If, for the Resampling parameter, you select 4:2:2 to 4:4:4, 4:2:0 (MPEG1) to 4:2:2,
4:2:0 (MPEG1) to 4:4:4, 4:2:0 (MPEG2) to 4:2:2, 4:2:0 (MPEG2) to 4:4:4, or
4:1:1 to 4:4:4, the block performs an upsampling operation.

When the block upsamples from one format to another, it uses interpolation to approximate the
missing chrominance values. If, for the Interpolation parameter, you select Linear, the block uses

 Chroma Resampling

1-123



linear interpolation to calculate the missing values. If, for the Interpolation parameter, you select
Pixel replication, the block replicates the chrominance values of the neighboring pixels to
create the upsampled image.

Row-Major Data Format

The MATLAB environment and the Computer Vision Toolbox software use column-major data
organization. However, the Chroma Resampling block gives you the option to process data that is
stored in row-major format. When you select the Input image is transposed (data order is row
major) check box, the block assumes that the input buffer contains contiguous data elements from
the first row first, then data elements from the second row second, and so on through the last row.
Use this functionality only when you meet all the following criteria:

• You are developing algorithms to run on an embedded target that uses the row-major format.
• You want to limit the additional processing required to take the transpose of signals at the

interfaces of the row-major and column-major systems.

When you use the row-major functionality, you must consider the following issues:

• When you select this check box, the signal dimensions of the Chroma Resampling block's input are
swapped.

• All the Computer Vision Toolbox blocks can be used to process data that is in the row-major
format, but you need to know the image dimensions when you develop your algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter coefficients are
transposed. If you are using the Rotate block, you need to use negative rotation angles, etc.

• Only three blocks have the Input image is transposed (data order is row major) check box.
They are the Chroma Resampling, Deinterlacing, and Insert Text blocks. You need to select this
check box to enable row-major functionality in these blocks. All other blocks must be properly
configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on an
embedded target.

1 Blocks

1-124



Parameters
Resampling

Specify the resampling format.
Antialiasing filter

Specify the lowpass filter that the block uses to prevent aliasing. If you select Default, the block
uses a built-in lowpass filter. If you select User-defined, the Horizontal filter coefficients
and/or Vertical filter coefficients parameters appear on the dialog box. If you select None, the
block does not filter the input signal. This parameter is visible when you are downsampling the
chrominance values.

Horizontal filter coefficients
Enter the filter coefficients to apply to your input signal. This parameter is visible if, for the
Resampling parameter, you select 4:4:4 to 4:2:2, 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), or 4:4:4 to 4:1:1 and, for the Antialiasing filter parameter,
you select User-defined.

Vertical filter coefficients
Enter the filter coefficients to apply to your input signal. This parameter is visible if, for the
Resampling parameter, you select 4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2),
4:2:2 to 4:2:0 (MPEG1), or 4:2:2 to 4:2:0 (MPEG2) and, for the Antialiasing filter
parameter, you select User-defined.

Interpolation
Specify the interpolation method that the block uses to approximate the missing chrominance
values. If you select Linear, the block uses linear interpolation to calculate the missing values. If
you select Pixel replication, the block replicates the chrominance values of the neighboring
pixels to create the upsampled image. This parameter is visible when you are upsampling the
chrominance values. This parameter is visible if the Resampling parameter is set to
4:2:2 to 4:4:4 , 4:2:0  (MPEG1) to 4:4:4 , 4:2:0  (MPEG2) to 4:4:4 , 4:1:1 
to 4:4:4 , 4:2:0  (MPEG1) to 4:2:2 , or 4:2:0  (MPEG2) to 4:2:2 .

Input image is transposed (data order is row major)
When you select this check box, the block assumes that the input buffer contains data elements
from the first row first, then data elements from the second row second, and so on through the
last row.

References

[1] Haskell, Barry G., Atul Puri, and Arun N. Netravali. Digital Video: An Introduction to MPEG-2.
New York: Chapman & Hall, 1996.

[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for Standard
4:3 and Wide Screen 16:9 Aspect Ratios.

[3] Wang, Yao, Jorn Ostermann, Ya-Qin Zhang. Video Processing and Communications. Upper Saddle
River, NJ: Prentice Hall, 2002.

See Also
Autothreshold Computer Vision Toolbox software

 Chroma Resampling

1-125



Color Space Conversion Computer Vision Toolbox software
Image Complement Computer Vision Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks

1-126



Closing
Perform morphological closing on binary or intensity images
Library: Computer Vision Toolbox / Morphological Operations

Description
The Closing block performs a dilation operation followed by an erosion operation on an intensity or
binary image using a predefined neighborhood or structuring element.

To define the structuring element that the block applies to the image, use the Neighborhood or
structuring element parameter. Specify this element by entering a vector or matrix of 1s and 0s or
by using the strel function.

Below are an input image and the output image after the closing operation, respectively.

 Closing

1-127



This block uses two-dimensional flat structuring elements only.

Ports
Input

I — Input image
matrix

Specify an input image as a matrix of intensity values. This port is unnamed unless you set the
Neighborhood or structuring element source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Nhood — Neighborhood values
vector | matrix

Specify neighborhood values representing a structuring element as a vector or matrix of 1s and 0s or
by using the strel function.
Dependencies

To enable this port, set the Neighborhood or structuring element source parameter to Input
port.
Data Types: Boolean

Output

Port_1 — Closed image
matrix

The closed image is returned as a matrix of intensity values. The size and data type of the closed
image are the same as those of the input image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

1 Blocks

1-128



Parameters
Neighborhood or structuring element source — Source of neighborhood or structuring
element
Specify via dialog (default) | Input port

Specify the source of neighborhood or structuring element as one of these options:

• Specify via dialog — Use the Neighborhood or structuring element parameter to specify
a neighborhood or structuring element.

• Input port — Use the Nhood input port to specify neighborhood values representing a
structuring element.

Neighborhood or structuring element — Neighborhood or structuring element
strel('line',5,45) (default) | vector | matrix

Specify neighborhood or structuring element as a vector or matrix of 1s and 0s, a strel object or an
array of strel objects. When you specify this value as an array of strel objects, the block applies
each object to the entire image in turn.

If the structuring element is decomposable into smaller elements, the block executes at higher speed
due to the use of a more efficient algorithm.

Dependencies

To enable this parameter, set the Neighborhood or structuring element source parameter, to
Specify via dialog.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Closing Operation

Closing smoothes the contour of an object in an image by

• Fusing narrow breaks and long thin gulfs
• Eliminating small holes and
• Filling gaps in the contour

References
[1] Soille, Pierre. Morphological Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg,

2004. https://doi.org/10.1007/978-3-662-05088-0.

 Closing

1-129



[2] Gonzalez, Rafael C., Richard E. Woods, and Steven L. Eddins. Digital Image Processing Using
MATLAB. Third edition. Knoxville: Gatesmark Publishing, 2020.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Erosion | Dilation | Opening | Label | Bottom-hat | Top-hat

Functions
imerode | imdilate | imopen | imclose

Objects
strel

Introduced before R2006a

1 Blocks

1-130



Color Space Conversion
Convert color space of image
Library: Computer Vision Toolbox / Conversions

Description
The Color Space Conversion block converts color information between color spaces. Use the
Conversion parameter to specify the color spaces you are converting between.

Ports
Input

Port_1 — Input image
array

Input image, specified as an M-by-N-by-C array, where C is the number of color channels in the input
image.
Data Types: single | double | uint8

R' — Red color component of image
matrix

Red color component of image, specified as an M-by-N matrix.

Note Inputs to the R', G', and B' ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to one of these options:

• R'G'B' to Y'CbCr
• R'G'B' to intensity
• R'G'B' to HSV
• sR'G'B' to XYZ
• sR'G'B' to L*a*b*

Data Types: single | double | uint8

G' — Green color component of image
matrix

Green color component of image, specified as an M-by-N matrix.

 Color Space Conversion

1-131



Note Inputs to the R', G', and B' ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to one of these options:

• R'G'B' to Y'CbCr
• R'G'B' to intensity
• R'G'B' to HSV
• sR'G'B' to XYZ
• sR'G'B' to L*a*b*

Data Types: single | double | uint8

B' — Blue color component of image
matrix

Blue color component of image, specified as an M-by-N matrix.

Note Inputs to the R', G', and B' ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to one of these options:

• R'G'B' to Y'CbCr
• R'G'B' to intensity
• R'G'B' to HSV
• sR'G'B' to XYZ
• sR'G'B' to L*a*b*

Data Types: single | double | uint8

Y' — Luma component of image
matrix

Luma component of image, specified as an M-by-N matrix.
Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to Y'CbCr to R'G'B'.
Data Types: single | double | uint8

Cb — Blue-difference chroma component of image
matrix

Blue-difference chroma component of image, specified as an M-by-D matrix, where D is half the width
of the image.

1 Blocks

1-132



Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to Y'CbCr to R'G'B'.
Data Types: single | double | uint8

Cr — Red-difference chroma component of image
matrix

Red-difference chroma component of image, specified as an M-by-D matrix, where D is half the width
of the image.
Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to Y'CbCr to R'G'B'.
Data Types: single | double | uint8

H — Hue component of image
matrix

Hue component of image, specified as an M-by-N matrix.

Note Inputs to the H, S, and V ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to HSV to R'G'B'.
Data Types: single | double

S — Saturation component of image
matrix

Saturation component of image, specified as an M-by-N matrix.

Note Inputs to the H, S, and V ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to HSV to R'G'B'.
Data Types: single | double

V — Brightness component of image
matrix

Brightness component of image, specified as an M-by-N matrix.

Note Inputs to the H, S, and V ports must have the same dimensions and data type as one another.

 Color Space Conversion

1-133



Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to HSV to R'G'B'.
Data Types: single | double

X — X component of image
matrix

X component of image, specified as an M-by-N matrix.

Note Inputs to the X, Y, and Z ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to XYZ to sR'G'B'.
Data Types: single | double

Y — Y component of image
matrix

Y component of image, specified as an M-by-N matrix.

Note Inputs to the X, Y, and Z ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to XYZ to sR'G'B'.
Data Types: single | double

Z — Z component of image
matrix

Z component of image, specified as an M-by-N matrix.

Note Inputs to the X, Y, and Z ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to XYZ to sR'G'B'.
Data Types: single | double

L* — Lightness component of image
matrix

Lightness component of image, specified as an M-by-N matrix.

1 Blocks

1-134



Note Inputs to the L*, a*, and b* ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to L*a*b* to sR'G'B'.
Data Types: single | double

a* — Red-green component of image
M-by-N matrix

Red-green component of image, specified as an M-by-N matrix.

Note Inputs to the L*, a*, and b* ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to L*a*b* to sR'G'B'.
Data Types: single | double

b* — Yellow-blue component of image
M-by-N matrix

Yellow-blue component of image, specified as an M-by-N matrix.

Note Inputs to the L*, a*, and b* ports must have the same dimensions and data type as one another.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to L*a*b* to sR'G'B'.
Data Types: single | double

Output

Port_1 — Output image
array

Output image, returned as an M-by-N-by-P array, where P is the number of color channels in the
output image. For Y'CbCr output, the value range for the Y component differs from those of the Cb
and Cr components.

• If the input is uint8, then Y'CbCr is uint8. Y' is in the range [16, 235], and Cb and Cr are in
the range [16, 240].

• If the input is double, then Y'CbCr is double. Y' is in the range [16/255, 235/255], and Cb
and Cr are in the range [16/255, 240/255].

Data Types: single | double | int8 | uint8

 Color Space Conversion

1-135



R' — Red color component of image
matrix

Red color component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to one of these options:

• Y'CbCr to R'G'B'
• HSV to R'G'B'
• XYZ to sR'G'B'
• L*a*b* to sR'G'B'

.
Data Types: single | double | int8 | uint8

G' — Green color component of image
matrix

Green color component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to one of these options:

• Y'CbCr to R'G'B'
• HSV to R'G'B'
• XYZ to sR'G'B'
• L*a*b* to sR'G'B'

Data Types: single | double | int8 | uint8

B' — Blue color component of image
matrix

Blue color component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to one of these options:

• Y'CbCr to R'G'B'
• HSV to R'G'B'
• XYZ to sR'G'B'
• L*a*b* to sR'G'B'

.
Data Types: single | double | int8 | uint8

1 Blocks

1-136



Y' — Luma component of image
matrix

Luma component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to R'G'B' to Y'CbCr.
Data Types: single | double | int8 | uint8

Cb — Blue-difference chroma component of image
matrix

Blue-difference chroma component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to R'G'B' to Y'CbCr.
Data Types: single | double | int8 | uint8

Cr — Red-difference chroma component of image
matrix

Red-difference chroma component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to R'G'B' to Y'CbCr.
Data Types: single | double | int8 | uint8

I' — Intensity image
matrix

Intensity image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to R'G'B' to intensity.
Data Types: single | double | int8 | uint8

H — Hue component of image
matrix

Hue component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to R'G'B' to HSV.
Data Types: single | double

 Color Space Conversion

1-137



S — Saturation component of image
matrix

Saturation component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to R'G'B' to HSV.
Data Types: single | double

V — Brightness component of image
matrix

Brightness component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to R'G'B' to HSV.
Data Types: single | double

X — X component of image
matrix

X component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to sR'G'B' to XYZ.
Data Types: single | double

Y — Y component of image
matrix

Y component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to sR'G'B' to XYZ.
Data Types: single | double

Z — Z component of image
matrix

Z component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to sR'G'B' to XYZ.
Data Types: single | double

1 Blocks

1-138



L* — Lightness component of image
matrix

Lightness component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to sR'G'B' to L*a*b*.
Data Types: single | double

a* — Red-green component of image
matrix

Red-green component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to sR'G'B' to L*a*b*.
Data Types: single | double

b* — Yellow-blue component of image
matrix

Yellow-blue component of image, returned as an M-by-N matrix.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals and set the
Conversion parameter to sR'G'B' to L*a*b*.
Data Types: single | double

Parameters
Conversion — Color space conversion
R'G'B' to Y'CbCr (default) | Y'CbCr to R'G'B' | R'G'B' to intensity | ...

Specify which color space to convert the image from and to using these options:

• R'G'B' to Y'CbCr
• Y'CbCr to R'G'B'
• R'G'B' to intensity
• B'G'R' to intensity
• B'G'R' to R'G'B'
• R'G'B' to B'G'R'
• R'G'B' to HSV
• HSV to R'G'B'
• sR'G'B' to XYZ
• XYZ to sR'G'B'

 Color Space Conversion

1-139



• sR'G'B' to L*a*b*
• L*a*b* to sR'G'B'

Note The prime notation indicates that the signal is gamma corrected.

Use conversion specified by — Color conversion standard
Rec. 601 (SDTV) (default) | Rec. 709 (HDTV)

Specify the color conversion standard for converting the image between the R'G'B' and Y'CbCr color
spaces as either Rec. 601 (SDTV) or Rec. 709 (HDTV).

Dependencies

To enable this parameter, set the Conversion parameter to R'G'B' to Y'CbCr or Y'CbCr to
R'G'B'.

Scanning standard — Scanning standard
1125/60/2:1 (default) | 1250/50/2:1

Specify the scanning standard for converting the image between the R'G'B' and Y'CbCr color spaces
as either 1125/60/2:1 or 1250/50/2:1.

Dependencies

To enable this parameter, set the Conversion parameter to R'G'B' to Y'CbCr or Y'CbCr to
R'G'B' and set the Use conversion specified by parameter to Rec. 709 (HDTV).

White point — White point
D50 (default) | D55 | D65

Specify the reference white point for converting the image between the sR'G'B' and L*a*b* color
spaces as D50, D55, or D65.

Dependencies

To enable this parameter, set the Conversion parameter to sR'G'B' to L*a*b* or L*a*b* to
sR'G'B'.

Image signal — Image signal input
One multidimensional signal (default) | Separate color signals

Specify whether to combine the color channels of the image into one signal or input and output them
individually.

• One multidimensional signal — The block accepts all color channels of the input image as a
multidimensional array to a single input port, and outputs the converted image as a single matrix
or array from a single output port.

• Separate color signals — The block accepts each color channel of the input image to a
separate input port, and outputs each color channel of the converted image from a separate
output port.

1 Blocks

1-140



Block Characteristics
Data Types Boolean | double | integer | single | image
Multidimensional
Signals

yes

Variable-Size Signals yes

Algorithms
Conversion Between R'G'B' and Y'CbCr Color Spaces

These equations define R'G'B' to Y'CbCr conversion and Y'CbCr to R'G'B' conversion, respectively:

Y ′
Cb
Cr

=
16
128
128

+ Α ×
R′
G′
B′

R′
G′
B′

= Β ×
Y ′
Cb
Cr

−
16

128
128

The values in matrices A and B are based on your choices for the Use conversion specified by and
Scanning standard parameters.

Matrix Use conversion specified by
= Rec. 601 (SDTV)

Use conversion specified by = Rec. 709 (HDTV)
Scanning standard =
1125/60/2:1

Scanning standard =
1250/50/2:1

A 0.25678824 0.50412941 0.09790588
−0.1482229 −0.29099279 0.43921569
0.43921569 −0.36778831 −0.07142737

 0.18258588   0.61423059   0.06200706
  ‐0.10064373  ‐0.33857195   0.43921569
   0.43921569  ‐0.39894216  ‐0.04027352

0.25678824 0.50412941 0.09790588
−0.1482229 −0.29099279 0.43921569
0.43921569 −0.36778831 −0.07142737

B 1.1643836 0 1.5960268
1.1643836 −0.39176229 −0.81296765
1.1643836 2.0172321 0

1.16438356 0 1.79274107
1.16438356 ‐0.21324861 ‐0.53290933
1.16438356 2.11240179 0

1.1643836 0 1.5960268
1.1643836 −0.39176229 −0.81296765
1.1643836 2.0172321 0

Conversion from R'G'B' to Intensity

This equation defines conversion from the R'G'B' color space to an intensity image:

intensity = 0.299 0.587 0.114
R′
G′
B′

Conversion from B'G'R' to Intensity

This equation defines conversion from the B'G'R' color space to an intensity image:

intensity = 0.114 0.587 0.2999
B′
G′
R′

 Color Space Conversion

1-141



Conversion Between R'G'B' and HSV Color Spaces

In the equations defining the R'G'B' to HSV conversion, MAX and MIN are the highest and lowest
component values, respectively, of a given R'G'B' triplet. H, S, and V vary from 0 to 1.

H =

G′− B′
MAX −MIN /6, if R′ = MAX

2 + B′− R′
MAX −MIN /6, if G′ = MAX

4 + R′− G′
MAX −MIN /6, if B′ = MAX

S = MAX −MIN
MAX

V = MAX

This equation defines the HSV to R'G'B' conversion, where M is the highest value among Rtmp, Gtmp
and Btmp:

Hi = 6H
f = 6H − Hi
p = 1− S
q = 1− (f * S)
t = 1− S(1− f )
if Hi = 0, Rtmp = 1, Gtmp = t, Btmp = p

if Hi = 1, Rtmp = q, Gtmp = 1, Btmp = p

if Hi = 2, Rtmp = p, Gtmp = 1, Btmp = t

if Hi = 3, Rtmp = p, Gtmp = q, Btmp = 1

if Hi = 4, Rtmp = t, Gtmp = p, Btmp = 1

if Hi = 5, Rtmp = 1, Gtmp = p, Btmp = q
u = V /M
R′ = u * Rtmp
G′ = u * Gtmp
B′ = u * Btmp

Conversion Between sR'G'B' and XYZ Color Spaces

The sR'G'B' to XYZ conversion is a two-step process. First, the block converts the gamma-corrected
sR'G'B' values to linear sRGB values using these equations:

If RsRGB′ , GsRGB′ , and BsRGB′  are each less than or equal to 0.03928, then:

RsRGB = R′sRGB/12.92
GsRGB = G′sRGB/12.92
BsRGB = B′sRGB/12.92

Otherwise:

1 Blocks

1-142



RsRGB = (R′sRGB + 0.055)
1.055

2.4

GsRGB = (G′sRGB + 0.055)
1.055

2.4

BsRGB = (B′sRGB + 0.055)
1.055

2.4

Then, the block converts the sRGB values to XYZ values using this equation:

X
Y
Z

=
0.41239079926596 0.35758433938388 0.18048078840183
0.21263900587151 0.71516867876776 0.07219231536073
0.01933081871559 0.11919477979463 0.95053215224966

×
RsRGB
GsRGB
BsRGB

The XYZ to sR'G'B' conversion is also a two-step process. First, the block converts the XYZ values to
linear sRGB values using this equation:

RsRGB
GsRGB
BsRGB

=
0.41239079926596 0.35758433938388 0.18048078840183
0.21263900587151 0.71516867876776 0.07219231536073
0.01933081871559 0.11919477979463 0.95053215224966

−1

×
X
Y
Z

Then the block applies gamma correction, using these equations, to obtain the sR'G'B' values:

If RsRGB, GsRGB and BsRGB are each less than or equal to 0.00304, then:

R′sRGB = 12.92RsRGB
G′sRGB = 12.92GsRGB
B′sRGB = 12.92BsRGB

Otherwise:

R′sRGB = 1.055RsRGB(1.0/2.4)− 0.055
G′sRGB = 1.055GsRGB(1.0/2.4)− 0.055
B′sRGB = 1.055BsRGB(1.0/2.4)− 0.055

Note Computer Vision Toolbox uses a D65 white point, which is specified in Recommendation ITU-R
BT.709, for this conversion. In contrast, the Image Processing Toolbox conversion is based on ICC
profiles, and it uses a D65 to D50 Bradford adaptation transformation to the D50 white point. If you
are using these two products and comparing results, you must account for this difference.

Conversion Between sR'G'B' and L*a*b* Color Spaces

The Color Space Conversion block converts sR'G'B' values to L*a*b* values in two steps. First, it
converts sR'G'B' to XYZ values using the equations described in “Conversion Between sR'G'B' and
XYZ Color Spaces” on page 1-142. Then, it uses these equations to transform the XYZ values to
L*a*b* values. Here, Xn, Yn, and Zn are the tristimulus values of the reference white point you specify
using the White point parameter:

If Y /Yn is greater than 0.008856, then:

 Color Space Conversion

1-143



L* = 116(Y /Yn)1/3− 16

Otherwise:

L* = 903.3Y /Yn

a* = 500(f (X/Xn)− f (Y /Yn))
b* = 200(f (Y /Yn)− f (Z/Zn)),

If t is greater than 0.008856, then:

f (t) = t1/3

Otherwise:

f (t) = 7.787t + 16/166

The block converts L*a*b* values to sR'G'B' values in two steps, as well. First, the block transforms
the L*a*b* values to XYZ values using these equations:

If Y /Yn is greater than 0.008856, then:

X = Xn(P + a*/500)3

Y = YnP3

Z = Zn(P − b*/200)3,

where:

P = (L* + 16)/116

Otherwise:

X = Xn P + a 500 − 0.138
7.787

Y = Yn P − 0.138
7.787

Z = Zn P − b 200 − 0.138 7.787

Then it converts XYZ to sR'G'B' values using the equations described in “Conversion Between sR'G'B'
and XYZ Color Spaces” on page 1-142.

References
[1] Poynton, Charles A. A Technical Introduction to Digital Video. New York: John Wiley & Sons, 1996.

[2] International Telecommunication Union (ITU). Studio Encoding Parameters of Digital Television
for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios. Recommendation ITU-R BT.601-5.
Geneva, Switzerland: ITU, recommended October 1995; superseded January 2007.

[3] International Telecommunication Union (ITU). Parameter Values for the HDTV Standards for
Production and International Programme Exchange. Recommendation ITU-R BT.709-5.
Geneva, Switzerland: ITU, recommended April 2002; superseded June 2015.

1 Blocks

1-144



[4] Stokes, Michael, Matthew Anderson, Srinivasan Chandrasekar, and Ricardo Motta. “A Standard
Default Color Space for the Internet - sRGB. World Wide Web Consortium (W3C).” November
5, 1996. https://www.w3.org/Graphics/Color/sRGB.html.

[5] Berns, Roy S., Fred W. Billmeyer, Max Saltzman, and Fred W. Billmeyer. Billmeyer and Saltzman’s
Principles of Color Technology. 3rd ed. New York: Wiley, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Chroma Resampling

Functions
applycform | makecform | rgb2gray | ycbcr2rgb | rgb2ycbcr | hsv2rgb | rgb2hsv

Introduced before R2006a

 Color Space Conversion

1-145

https://www.w3.org/Graphics/Color/sRGB.html.


Compositing
Combine two images or apply mask to image
Library: Computer Vision Toolbox / Text & Graphics

Description
The Compositing block combines two images, overlays one image over another, or highlights selected
pixels in an image. When combining two images, the block uses this equation, in which the output
image O is a linear combination of the two images I1 and I2:

O(i, j) = (1− X) ∗ I1(i, j) + X ∗ I2(i, j) .

The opacity factor X scales each pixel before combining the images, where 0 ≤ X ≤ 1.

When overlaying one image over another image, or highlighting selected pixels in an input image, the
block uses a binary mask to specify which pixels to overwrite or highlight.

Note This block supports binary, intensity, and color images.

Ports
Input

Image1 — Input image one
matrix | array

Input image one, specified as an M-by-N matrix or M-by-N-by-P array. If the input is a M-by-N-by-P
array, P is the number of color channels in the image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Image2 — Input image two
matrix | array

Input image two, specified as an M-by-N matrix or M-by-N-by-P array. If the input is a M-by-N-by-P
array, P is the number of color channels in the image.

Dependencies

To enable this port, set the Operation parameter to Blend or Binary mask.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

1 Blocks

1-146



Mask — Binary mask
scalar | matrix

Binary mask, specified as a scalar or matrix. This mask determines which pixels of Image1 the block
overwrites with the pixel values of Image2 or highlights, depending on the value of the Operation
parameter.

• Binary mask — The block overwrites the pixel values of Image1, indicated by the mask, with the
corresponding pixel values of Image2. You can specify Mask as a scalar 0 or 1, which the block
uses for all pixels of Image2, or as binary matrix of same size as Image2.

• Highlight selected pixels — The block highlights the pixels of Image1 indicated by the
mask.

Dependencies

To enable this port:

• If overwriting pixel values in one image with pixel values in another image, set the Operation
parameter to Binary mask and the Mask source parameter to Input port.

• If highlighting selected pixels in an image, set the Operation parameter to Highlight
selected pixels.

Data Types: single | double | Boolean

Factor — Opacity factor
scalar | matrix

Opacity factor, specified as a scalar or matrix. If specified as a scalar, the value is the scale of
combination for each pixel of Image2 with each corresponding pixel of Image1. If specified as a
matrix, its dimensions must match the dimensions of Image2. Each opacity factor must be in the
range [0, 1].
Dependencies

To enable this port, set the Operation parameter to Blend and the Opacity factor(s) source
parameter to Input port.
Data Types: single | double

Location — Location index
vector

Location index, specified as a two-element vector. The first element represents the row and the
second represents the column position of the upper-left corner of Image2, relative to the upper-left
corner of Image1. If the location of the upper-left corner of Image2 is such that any of its pixels
would render outside the bounds of Image1, the block clips Image2 at the final row or column or
Image1, instead.

Note When the Image1 input has a fixed-point or boolean data type, the Location input must have a
built-in integer data type.

Dependencies

To enable this port, set the Location source parameter to Input port.

 Compositing

1-147



Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Port_1 — Output image
matrix

Output image, returned as an M-by-N matrix or M-by-N-by-P array. If the output is an M-by-N-by-P
array, P is the number of color channels in the image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Main

Operation — Specify operation
Blend (default) | Binary mask | Highlight selected pixels

Select the image operation for the block to perform.

• Blend — Linearly combines the pixel values of Image1 with the pixel values of Image2, with the
specified opacity factor.

• Binary mask — Overwrites the pixel values of Image1 with the values of Image2 specified by
the binary mask.

• Highlight selected pixels — Highlights the pixels of Image1 indicated by the binary mask.
The highlight operation assign the highest intensity or color values to the pixels of Image1
corresponding to the pixels with logic 1 of the binary mask.

Opacity factor(s) source — Source of opacity factor
Specify via dialog (default) | Input port

Specify the source of the opacity factor. If you set this parameter to Input port, it enables the
Factor input port.

Dependencies

To enable this parameter, set the Operation parameter to Blend.

Opacity factor(s) — Opacity factor
0.75 (default) | scalar | matrix

Defines the scale of combination for each pixel of Image2 with each corresponding pixel of Image1.
When you specify the opacity factor as matrix, its dimensions must match the dimensions of Image2.
If you specify it as a scalar, the block uses that value as the opacity factor for all pixels of Image2.
The opacity factor must be in the range [0, 1].

Dependencies

To enable this parameter, set the Operation parameter to Blend and the Opacity factor(s) source
parameter to Specify via dialog.

Location source — Source of overlay location
Specify via dialog (default) | Input port

1 Blocks

1-148



Select the source of the overlay location. If you set this parameter to Input port, it enables the
Location input port.

Location [x y] — Overlay location index
[1 1] (default) | two-element vector

Specify the row and column position of the upper-left corner of Image2, relative to the upper-left
corner of Image1, as a two-element vector. If the location of the upper-left corner of Image2 is such
that any of its pixels would render outside the bounds of Image1, the block clips Image2 at the final
row or column or Image1, instead.

Dependencies

To enable this parameter, set the Location source parameter to Specify via dialog.

Mask source — Source of mask
Specify via dialog (default) | Input port

Select the source of the binary mask. If you set this parameter to Input port, it enables the Mask
input port.

Dependencies

To enable this parameter, set the Operation parameter to Binary mask.

Mask — Binary mask
0 (default) | 1 | matrix

Binary mask, specified as a scalar or matrix, defines which pixels of Image1 the block overwrites
with the corresponding pixel values of Image2 or highlights. You specify 0 or 1, which the block uses
for all pixels in Image2, or a binary matrix of the same size of as Image2.

Dependencies

To enable this parameter, set the Operation parameter to Binary mask and the Mask source
parameter to Specify via dialog.

Data Types

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Compositing

1-149



See Also
Insert Text | Draw Markers | Draw Shapes

Introduced before R2006a

1 Blocks

1-150



Contrast Adjustment
Adjust image contrast using linear scaling
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Contrast Adjustment block adjusts the contrast of an image by linearly scaling the pixel values
between specified upper and lower limits. Pixel values that are above or below the specified range
are saturated to the upper or lower limit value, respectively. For more information, see “Adjust
Contrast of Image” on page 1-153.

Ports
Input

I — Input image
matrix | array

Input image, specified as an M-by-N matrix or an M-by-N-by-C array, where C is the number of color
channels in the input image.
Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

Output

Port_1 — Output image
matrix | array

Output image, returned as an M-by-N matrix or an M-by-N-by-C array, where C is the number of color
channels.
Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

Parameters
Adjust pixel values from — Input pixel value range definition
Full input data range [min max] (default) | User-defined range | Range determined
by saturating outlier pixels

Specify how the block determines the pixel value range of the input image as one of these options:

• Full input data range [min max] — Range set to the minimum and maximum pixel values
in the input image.

• User-defined range — Select this value to enable a Range [low high] parameter. Specify the
Range [low high] parameter as a two-element vector of nonnegative values, in which the first

 Contrast Adjustment

1-151



element is the lower limit of the input pixel value range and the second element is the upper limit
of the input pixel value range.

• Range determined by saturating outlier pixels — Range specified by saturating the
outlier pixels. The block determines the range based on the Percentage of pixels to saturate
[low high], Specify number of histogram bins (used to calculate the range when outliers
are eliminated), and Number of histogram bins parameters. For more information, see
“Determine Contrast Adjustment Range by Saturating Outlier Pixels” on page 1-154.

Range [low high] — Input pixel value range
[0 255] (default) | two-element vector of nonnegative numbers

Specify the input pixel value range as a two-element vector of nonnegative numbers. The first and
second elements of the vector specify the lower and upper limit of the input pixel value range,
respectively.

Dependencies

To enable this parameter, set the Adjust pixel values from parameter to User-defined.

Percentage of pixels to saturate [low high] — Maximum percentages of pixels to
saturate
[1 1] (default) | two-element vector of nonnegative numbers

Specify the maximum percentages of pixels to saturate as a two-element vector of nonnegative
numbers. Each element must be in the range 0 to 100. The block calculates the lower limit of the
input pixel value range such that the percentage of pixels in the input image with values less than the
lower limit is at most the value of the first element. Similarly, the block calculates the upper limit of
the input pixel value range such that the percentage of pixels in the input image with values greater
than the upper limit is at most the value of the second element.

Dependencies

To enable this parameter, set the Adjust pixel values from parameter to Range determined by
saturating outlier pixels.

Specify number of histogram bins (used to calculate the range when outliers
are eliminated) — Custom number of histogram bins
on (default) | off

Select this parameter to enable the Number of histogram bins parameter, which enables you to
specify a custom number of histogram bins for the block to use to calculate the input pixel value
range after outliers are eliminated.

Dependencies

To enable this parameter, set the Adjust pixel values from parameter to Range determined by
saturating outlier pixels.

Number of histogram bins — Number of histogram bins
256 (default) | positive integer

Specify the number of histogram bins to use to calculate the range for scaling the input pixel values.

1 Blocks

1-152



Dependencies

To enable this parameter, set the Adjust pixel values from parameter to Range determined by
saturating outlier pixels, and select the Specify number of histogram bins (used to
calculate the range when outliers are eliminated) parameter.

Adjust pixel values to — Output pixel value range definition
Full data type range (default) | User-defined range

Specify how the block determines the pixel value range of the output image as one of these options:

• Full data type range — Specifies the output range of pixel values as from the minimum to
the maximum value of the input data type.

• User-defined range — Select this value to enable a Range [low high] parameter. Specify the
Range [low high] parameter as a two-element vector of nonnegative values, in which the first
element is the lower limit of the output pixel value range and the second element is the upper
limit of the output pixel value range.

Range [low high] — Output pixel value range
[0 255] (default) | two-element vector of nonnegative numbers

Specify the output pixel value range as a two-element vector of nonnegative numbers. The first and
second elements of the vector specify the lower and upper limit of the output pixel value range,
respectively.

Dependencies

To enable this parameter, set the Adjust pixel values to parameter to User-defined range.

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Algorithms
Adjust Contrast of Image

The contrast adjustment operation is defined by this equation.

Oi =

lout, Ii ≤ lin

lout + (Ii− lin)
hout− lout
hin− lin

, lin < Ii < hin

hout, Ii ≥ hin

,

 Contrast Adjustment

1-153



where Ii and Oi are the input and output image pixels, the input pixel value range is [lin hin] and the
output pixel value range is [lout hout].

Determine Contrast Adjustment Range by Saturating Outlier Pixels

When you set the Adjust pixel values from parameter to Range determined by saturating
outlier pixels, the block determines the input pixel value range using these steps.

1 Finds the minimum input pixel value min_in and maximum input pixel value max_in.
2 Scales the pixel values in the range [min_in, max_in] to [0, num_bins–1], where num_bins is the

number of histogram bins specified by the Number of histogram bins parameter. Then, the
block calculates the histogram of the scaled input. For more information on image histograms,
see the 2-D Histogram block.

3 Determines the lower input pixel value limit such that the percentage of pixels in the input image
with values less than the lower limit is at most the value of the first element of the Percentage
of pixels to saturate [low high] parameter. Similarly, find the upper input pixel value limit such
that the percentage of pixels in the input image with values greater than the upper limit is at
most the value of the second element of the parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-154



See Also
Blocks
2D-Histogram | Histogram Equalization

Introduced in R2006b

 Contrast Adjustment

1-155



Corner Detection
Calculate corner metric matrix and find corners in images
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Corner Detection block finds corners in an image by using the Harris corner detection (by Harris
and Stephens), minimum eigenvalue (by Shi and Tomasi), or local intensity comparison (based on the
Accelerated Segment Test, (FAST) method by Rosten and Drummond) method. The block finds the
corners in the image based on the pixels that have the largest corner metric values.

Ports
Input

I — Input image
matrix of intensity values

Input image, specified as a matrix of intensity values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Loc — Corner locations
M-by-2 matrix

Corner locations, returned as an M-by-2 matrix of [x y] coordinates. M represents the number of
corners and is less than or equal to the Maximum number of corners parameter.
Dependencies

To enable this port, set the Output parameter to one of these:

• Corner location
• Corner location and metric matrix

Data Types: uint32

Count — Number of detected corners
scalar

Number of detected corners, returned as a scalar.
Dependencies

To enable this port, set these block parameters:

1 Blocks

1-156



• Output: Corner location | Corner location and metric matrix
• Output variable size signal: off

Data Types: uint32

Metric — Corner metric values
matrix

Corner metric values, returned as a matrix of intensity values. The returned matrix is the same size
as the input image.

Dependencies

To enable this port, set the Output parameter to one of these:

• Corner location and metric matrix
• Metric matrix

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main Tab

Method — Corner detection method
Harris corner detection (Harris & Stephens) (default) | Minimum eigenvalue (Shi &
Tomasi) | Local intensity comparison (Rosten & Drummond)

Specify the corner detection method as Harris corner detection (Harris & Stephens),
Minimum eigenvalue (Shi & Tomasi), or Local intensity comparison (Rosten &
Drummond).

To get the most accurate results, use Minimum eigenvalue (Shi & Tomasi). For the fastest
computation, use Local intensity comparison (Rosten & Drummond). For a balance between
accuracy and computation speed, use Harris corner detection (Harris & Stephens). For
more information on each method, see the “Algorithms” on page 1-159 section.

Sensitivity factor (0<k<0.25) — Sensitivity factor
0.04 (default) | scalar

Specify the sensitivity factor, k. As k decreases, the likelihood that the algorithm can detect sharp
corners increases.

Tunable: Yes

Dependencies

To enable this parameter, set the Method parameter to Harris corner detection (Harris &
Stephens).

Coefficients for separable smoothing filter — Filter coefficients
fspecial('gaussian', [1 5], 1.5) (default) | vector

Specify a vector of filter coefficients for the smoothing filter.

 Corner Detection

1-157



Dependencies

To enable this parameter, set the Method parameter to one of these:

• Harris corner detection (Harris & Stephens)
• Minimum eigenvalue (Shi & Tomasi)

Intensity comparison threshold — Intensity threshold
0.1 (default) | scalar

Specify the intensity threshold value used to find valid surrounding pixels.

Tunable: Yes

Dependencies

To enable this parameter, set the Method parameter to Local intensity comparison (Rosten
& Drummond).

Maximum angle to be considered a corner (in degrees) — Maximum corner angle
157.5 (default) | scalar

Specify the maximum corner angle.

Tunable: Yes

Dependencies

• To enable this parameter, set the Method parameter to Local intensity comparison
(Rosten & Drummond).

• This parameter is tunable for simulation only.

Output — Block output
Corner location (default) | Corner location and metric matrix | Metric matrix

Specify the block output as Corner location, Corner location and metric matrix, and
Metric matrix.

Set this parameter to Corner location or Corner location and metric matrix to expose
the Maximum number of corners, Minimum metric value that indicates a corner, and
Neighborhood size (suppress region around detected corners) parameters.

Maximum number of corners — Maximum number of corners
200 (default) | integer

Specify the maximum number of corners you want the block to find.

Dependencies

To enable this parameter, set the Output parameter to one of these:

• Corner location
• Corner location and metric matrix

Minimum metric value that indicates a corner — Minimum corner metric
0.0005 (default) | scalar

1 Blocks

1-158



Specify the minimum corner metric value.

Tunable: Yes
Dependencies

To enable this parameter, set the Output parameter to one of these:

• Corner location
• Corner location and metric matrix

Neighborhood size — Neighborhood size
[11 11] (default) | 2-element vector

Specify the neighborhood size as a two-element vector of positive odd integers, [row, column]. The
block uses this parameter to suppress the region around a valid corner point with the largest corner
metric value.
Dependencies

To enable this parameter, set the Output parameter to one of these:

• Corner location
• Corner location and metric matrix

Output variable size signal — Variable size signal
on (default) | off

Select this parameter to output a variable size signal.
Dependencies

To enable this parameter, set the Output parameter to one of these:

• Corner location
• Corner location and metric matrix

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Block Characteristics
Data Types Booleana | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes
a This data type is not supported for the Local Intensity Comparison method.

Algorithms
Determine final corner values

To determine the final corner values, the block follows this process:

 Corner Detection

1-159



1 Find the pixel with the largest corner metric value.
2 Verify that the metric value is greater than or equal to the value you specified for the Minimum

metric value that indicates a corner parameter.
3 Suppress the region around the corner value by the size defined in the Neighborhood size

(suppress region around detected corners) parameter.

The block repeats this process until it finds all the corners in the image or it finds the number of
corners you specified in the Maximum number of corners parameter.

The corner metric values computed by the Minimum eigenvalue and Local intensity
comparison methods are always nonnegative. The corner metric values computed by the Harris
corner detection method can be negative.

Minimum Eigenvalue Method

The method is more computationally expensive than the Harris corner detection algorithm because it
directly calculates the eigenvalues of the sum of the squared difference matrix, M.

The sum of the squared difference matrix, M, is defined as follows:

M =
A C
C B

The previous equation is based on the following values:

A = (Ix)2⊗w

B = (Iy)2⊗w

C = (IxIy)2⊗w

where Ix and Iy are the gradients of the input image, I, in the x and y direction. The ⊗ symbol denotes
a convolution operation.

Use the Coefficients for separable smoothing filter parameter to define a vector of filter
coefficients. The block multiplies this vector of coefficients by its transpose to create a matrix of filter
coefficients, w.

The block calculates the smaller eigenvalue of the sum of the squared difference matrix. This
minimum eigenvalue corresponds to the corner metric matrix.

Harris Corner Method

The Harris corner detection method avoids the explicit computation of the eigenvalues of the sum of
squared differences matrix by solving for the corner metric matrix, R:

R = AB− C2− k(A + B)2

See the Minimum Eigenvalue Method section for the definitions of A, B, and C.

The variable k corresponds to the sensitivity factor. You can specify its value using the Sensitivity
factor (0<k<0.25) parameter. As k decreases, the likelihood that the algorithm can detect sharp
corners increases.

1 Blocks

1-160



Use the Coefficients for separable smoothing filter parameter to define a vector of filter
coefficients. The block multiplies this vector of coefficients by its transpose to create a matrix of filter
coefficients, w.

Local Intensity Method

The method determines that a pixel is a possible corner if it has either, N contiguous valid bright
surrounding pixels, or N contiguous dark surrounding pixels.

Suppose that p is the pixel under consideration and j is one of the pixels surrounding p. The locations
of the other surrounding pixels are denoted by the shaded areas in the following figure. The shaded
areas in this figure denote the locations of other surrounding pixels.

Ip and I j are the intensities of pixels p and j, respectively. Pixel j is a valid bright surrounding pixel if
I j− Ip ≥ T. Similarly, pixel j is a valid dark surrounding pixel if Ip− I j ≥ T. In these equations, T is the
value you specified for the Intensity comparison threshold parameter.

The block repeats this process to determine whether the block has N contiguous valid surrounding
pixels. The value of N is related to the value you specify for the Maximum angle to be considered
a corner (in degrees) parameter, as shown in this table.

 Corner Detection

1-161



Number of Valid Surrounding Pixels and Angle

Number of Valid Surrounding Pixels Angle (degrees)
15 22.5
14 45
13 67.5
12 90
11 112.5
10 135
9 157.5

After the block determines that a pixel is a possible corner, it computes its corner metric using the
following equation:

R = max ∑
j: I j ≥ Ip + T

Ip− I j − T, ∑
j: I j ≤ Ip− T

Ip− I j − T

References
[1] Harris, C. and M Stephens. “A Combined Corner and Edge Detector.” Proceedings of the 4th Alvey

Vision Conference, 147-151. August 1988.

[2] Shi, J. and C. Tomasi. “Good Features to Track.” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 593-600. June 1994.

[3] Rosten, E. and T. Drummond. “Fusing Points and Lines for High Performance Tracking.”
Proceedings of the IEEE International Conference on Computer Vision Vol. 2, 1508-1511.
October 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

These diagrams show the data types used in the Corner Detection block for fixed-point signals. These
diagrams apply to the Harris corner detection and minimum eigenvalue methods only.

1 Blocks

1-162



The following table summarizes the variables used in the previous diagrams.

 Corner Detection

1-163



Variable Name Definition
IN_DT Input data type
MEM_DT Memory data type
OUT_DT Metric output data type
COEF_DT Coefficients data type

See Also
Blocks
Find Local Maxima | Estimate Geometric Transformation | Warp

Functions
matchFeatures | extractFeatures | detectSURFFeatures | detectHarrisFeatures |
detectFASTFeatures | detectORBFeatures | estimateGeometricTransform2D

Introduced in R2007b

1 Blocks

1-164



Deinterlacing
Remove interlacing effect
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Deinterlacing block removes the motion artifact known as the interlacing effect from an
interlaced image or a video. An interlaced image or video frame comprises of top field and bottom
field that has slightly different capture times. The odd numbered lines in an interlaced image
constitute the top field and the even numbered lines constitute the bottom field.

When you display an interlaced image, the temporal difference between the top and bottom fields
causes a visible artifact where the alternate lines in the interlaced image appear displaced.

This artifact is known as the interlacing effect and can be corrected through deinterlacing
techniques. You can use the Deinterlacing block to convert an interlaced video into a deinterlaced
video by using one of these methods:

• Line repetition
• Linear interpolation
• Vertical temporal median filtering

You can use this block to deinterlace both intensity and color images.

Ports
Input

Port_1 — Interlaced input
numeric matrix | 3-D numeric array | image | video

Interlaced input, specified as a numeric matrix, 3-D numeric array, image, or video.

To input an interlaced image, read the image file by using the Image From File or Image From
Workspace block. The image can also be a video frame. To input an interlaced video, read the video
file by using the From Multimedia File or Video From Workspace block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Deinterlaced output
numeric matrix | 3-D numeric array | image | video

 Deinterlacing

1-165



Deinterlaced output, returned as a numeric matrix, 3-D numeric array, image, or video. The output is
of same size and datatype as that of the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main Tab

Method — Deinterlacing method
Line repetition (default) | Linear interpolation | Vertical temporal median
filtering

Use this parameter to specify the method for deinterlacing the input data.

• If you set the Method parameter value to Line repetition, the values in the bottom field of
the interlaced image or video frame are replaced with the values in the preceding top field.

1 Blocks

1-166



• If you set the Method parameter value to Line interpolation, the values in a bottom field are
computed as the average of the values in the two neighboring top fields.

• If you set the Method parameter value to Vertical temporal median filtering, the values
in a bottom field are computed as the median of the values in the bottom field and its two
neighboring top fields.

 Deinterlacing

1-167



Input image is transposed (data order is row major) — Specify data order
off (default) | on

You can use this parameter to specify if the interlaced input is stored in row major order. When you
select this parameter, the block assumes that the input buffer contains contiguous data elements of
an array that are arranged sequentially row by row. Otherwise, the blocks assumes that the buffer
stores data in the column major order such that the elements are arranged sequentially column by
column.

1 Blocks

1-168



Use this parameter only when

• You are developing algorithms to run on an embedded target that uses the row-major format.
• You want to limit the additional processing required to take the transpose of signals at the

interfaces of the row-major and column-major systems.

When you select this check box, the first two dimensions of the Deinterlacing block's input are
swapped.

Data Types Tab

To enable options on the Data Types tab, set the Method parameter in the Main tab to Linear
interpolation.

Fixed-point operational parameters

Rounding mode — Rounding mode for calculating fixed-point value
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specifies the rounding mode for the block to use when the specified data type and scaling cannot
exactly represent the result of a fixed-point calculation.

See “Rounding Modes” for more information on the available options.

Saturate on integer overflow — Specify overflow mode
on (default) | off

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation.

For details on saturate and wrap, see “Overflow Handling” for fixed-point operations.

Fixed-point data types

Accumulator — Accumulator data type
Binary point scaling (default) | Same as input

Use this parameter to specify the data type and scaling of the accumulator (sum).

• When you select Binary point scaling, you can enter the word length and the fraction length
of the accumulator, in bits. The default value for word length is set to 12 and fraction length is set
to 3. The data type format is same as that of the input data format, signed or unsigned.

• When you select Same as input, the word length and the fractional length of the accumulator
match those of the input.

Output — Data type for output
Same as input (default) | Binary point scaling

 Deinterlacing

1-169



Use this parameter to specify the data type and scaling of the output data.

• When you select Same as input, the word length and the fractional length of the accumulator
match those of the input.

• When you select Binary point scaling, you can enter the word length and the fraction length
of the output, in bits. The default value for word length is set to 8 and fraction length is set to 0.
The data type format is same as that of the input data type format, signed or unsigned.

Lock data type settings against change by the fixed-point tools — Data type
override
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool.

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
vision.Deinterlacer

Introduced before R2006a

1 Blocks

1-170



Demosaic
Demosaic Bayer's format images

Library
Conversions

visionconversions

Description
The following figure illustrates a 4-by-4 image in Bayer's format with each pixel labeled R, G, or B.

The Demosaic block takes in images in Bayer's format and outputs RGB images. The block performs
this operation using a gradient-corrected linear interpolation algorithm or a bilinear interpolation
algorithm.

 

 Demosaic

1-171



Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity values

• If, for the Interpolation
algorithm parameter, you
select Bilinear, the number
of rows and columns must be
greater than or equal to 3.

• If, for the Interpolation
algorithm parameter, you
select Gradient-corrected
linear, the number of rows
and columns must be greater
than or equal to 5.

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

R, G, B Matrix that represents one plane
of the input RGB video stream.
Outputs from the R, G, or B ports
have the same data type.

Same as I port No

Image M-by-N matrix of intensity values
or an M-by-N-by-P color video
signal where P is the number of
color planes.

Same as I port No

Use the Interpolation algorithm parameter to specify the algorithm the block uses to calculate the
missing color information. If you select Bilinear, the block spatially averages neighboring pixels to
calculate the color information. If you select Gradient-corrected linear, the block uses a
Weiner approach to minimize the mean-squared error in the interpolation. This method performs well
on the edges of objects in the image. For more information, see [1].

Use the Sensor alignment parameter to specify the alignment of the input image. Select the
sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels in the top-left corner of the
image. You specify the sequence in left-to-right, top-to-bottom order. For example, for the image at
the beginning of this reference page, you would select BGGR.

Both methods use symmetric padding at the image boundaries. For more information, see the Image
Pad block reference page.

Use the Output image signal parameter to specify how to output a color video signal. If you select
One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where P is
the number of color planes, at one port. If you select Separate color signals, additional ports
appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

Fixed-Point Data Types

The following diagram shows the data types used in the Demosaic block for fixed-point signals.

1 Blocks

1-172



You can set the product output and accumulator data types in the block mask as discussed in the next
section.

Parameters
Interpolation algorithm

Specify the algorithm the block uses to calculate the missing color information. Your choices are
Bilinear or Gradient-corrected linear.

Sensor alignment
Select the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels in the top
left corner of the image. You specify the sequence in left-to-right, top-to-bottom order.

Output image signal
Specify how to output a color video signal. If you select One multidimensional signal, the
block outputs an M-by-N-by-P color video signal, where P is the number of color planes, at one
port. If you select Separate color signals, additional ports appear on the block. Each port
outputs one M-by-N plane of an RGB video stream.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output

As depicted in the previous figure, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate this product output word
and fraction lengths:

When you select Same as input, these characteristics match those of the input to the block.

When you select Binary point scaling, you can enter the word length and the fraction
length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

 Demosaic

1-173



Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data
type. The output of the adder remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this accumulator word and fraction
lengths:

• When you select Same as product output, these characteristics match those of the
product output.

• When you select Same as input, these characteristics match those of the input.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the accumulator, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

References

[1] Malvar, Henrique S., Li-wei He, and Ross Cutler. “High-Quality Linear Interpolation for
Demosaicing of Bayer-Patterned Color Images.” Microsoft Research, May 2004. http://
research.microsoft.com/pubs/102068/Demosaicing_ICASSP04.pdf.

[2] Gunturk, Bahadir K., John Glotzbach, Yucel Altunbasak, Ronald W. Schafer, and Russel M.
Mersereau, “Demosaicking: Color Filter Array Interpolation,” IEEE Signal Processing
Magazine, Vol. 22, Number 1, January 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2006b

1 Blocks

1-174



Dilation
Dilate binary or intensity image by finding local maxima
Library: Computer Vision Toolbox / Morphological Operations

Description
The Dilation block performs morphological dilation on an intensity or binary image and outputs the
dilated image.

To define the structuring element that the block applies to the image, use the Neighborhood or
structuring element parameter.

 Dilation

1-175



This block uses two-dimensional flat structuring elements only.

Ports
Input

I — Input image
matrix

Specify an input image as a matrix of intensity values. This port is unnamed unless you set the
Neighborhood or structuring element source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Nhood — Neighborhood values
vector | matrix

Specify neighborhood values representing a structuring element as a vector or matrix of 1s and 0s or
by using the strel function.

Dependencies

To enable this port, set the Neighborhood or structuring element source parameter to Input
port.
Data Types: Boolean

Output

Port_1 — Dilated image
matrix

The block returns the dilated image as a matrix of intensity values. The size and data type of the
output image are the same as those of the input image.

1 Blocks

1-176



Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Neighborhood or structuring element source — Source of neighborhood or structuring
element
Specify via dialog (default) | Input port

Specify the source of the neighborhood or structuring element as one of these options:

• Specify via dialog — Use the Neighborhood or structuring element parameter to specify
a neighborhood or structuring element.

• Input port — Use the Nhood input port to specify neighborhood values representing a
structuring element.

Neighborhood or structuring element — Neighborhood or structuring element
[1 1; 1 1] (default) | vector | matrix

Specify a neighborhood or structuring element as a vector or matrix of 1s and 0s, a strel object, or
an array of strel objects. When you specify an array of strel objects, the block applies each object
to the entire image sequentially.

If the structuring element is decomposable into smaller elements, the block uses a more efficient
algorithm that can execute more quickly.

Dependencies

To enable this parameter, set the Neighborhood or structuring element source parameter, to
Specify via dialog.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Dilation and Structuring Element

Performing dilation on an image includes:

• Increasing the size of the object by expanding the image pixels and adding pixels to the boundary
of the object.

• Filling small holes and broken areas
• Connecting areas separated by a space smaller than the structuring element

The direction and extent of the growth of an object in an image depends on the shape of the
structuring element. Each structuring element has an origin.

 Dilation

1-177



• If the structuring element is symmetrical, the origin coincides with its centroid.
• If the structuring element is asymmetrical, the pixel in the structuring element that is close to its

centroid and is in the top-left direction is considered as the origin.

The Dilation block rotates the structuring element about this origin and places the origin over each
pixel of the image object. The block creates the dilated image from the local maxima values at each
pixel.

Binary Dilation

The binary dilation of A by B, denoted as A ⨁ B, is defined as the set operation:

A⊕ B = z B z∩ A ≠ ∅ ,

where B  is the reflection of the structuring element B. Note that some applications use a definition of
dilation in which the structuring element is not reflected.

Grayscale Dilation

In the general form of grayscale dilation, the structuring element has a specified height. The
grayscale dilation of A(x, y) by B(x, y) is defined as:

A⊕ B x, y = max A(x− x′, y − y′) + B(x′, y′) x′, y′ ∈ DB ,

where DB is the domain of the structuring element B and A(x, y) is assumed to be –∞ outside the
domain of the image. To create a structuring element with nonzero height values, use the syntax
strel(nhood,height), where height specifies the height values and nhood corresponds to the
structuring element domain DB.

Grayscale dilation is often performed with a flat structuring element (B(x,y) = 0). Grayscale dilation
using such a structuring element is equivalent to a local-maximum operator:

A⊕ B x, y = max A(x− x′, y − y′) (x′, y′) ∈ DB .

All of the strel syntaxes except for strel(nhood,height),
strel("arbitrary",nhood,height), and strel("ball",...) produce flat structuring
elements.

References
[1] Soille, Pierre. Morphological Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg,

2004. https://doi.org/10.1007/978-3-662-05088-0.

[2] Gonzalez, Rafael C., Richard E. Woods, and Steven L. Eddins. Digital Image Processing Using
MATLAB. Third edition. Knoxville: Gatesmark Publishing, 2020.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-178



See Also
Blocks
Erosion | Opening | Closing | Label | Bottom-hat | Top-hat

Functions
imerode | imdilate | imopen | imclose

Objects
strel

Introduced before R2006a

 Dilation

1-179



Draw Markers
Draw markers on image
Library: Computer Vision Toolbox / Text & Graphics

Description
The Draw Markers block draws markers on an image or video frame by overwriting pixel values in
the input image. This embeds the markers in the output image. The block supports five types of
markers: Circle, X-mark, Plus, Star, and Square.

The block uses Bresenham's circle drawing algorithm to draw circles and Bresenham's line drawing
algorithm to draw all other markers.

Ports
Input

Image — Input Image
matrix | array

Specify the input image as either an M-by-N matrix of intensity values or an M-by-N-by-P array of
color values with P color planes.
Dependencies

To enable this port, set the Image signal parameter to One multidimensional signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

R — Red color component of image
matrix

Specify the red color component of the input RGB image as an M-by-N matrix. The R, G, and B ports
must have the same dimensions and data type.
Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

G — Green color component of image
matrix

Specify the green color component of the input RGB image as an M-by-N matrix. The R, G, and B
ports must have the same dimensions and data type.

1 Blocks

1-180



Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

B — Blue color component of image
matrix

Specify the blue color component of the input RGB image as an M-by-N matrix. The R, G, and B ports
must have the same dimensions and data type.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Pts — Marker coordinates
vector | matrix

Specify the coordinates of markers as one of these options:

• Single marker — Two-element vector that specifies the x- and y- coordinates for the center of the
marker.

• Multiple markers — K-by-2 matrix. K is the number of markers. Each row of the matrix specifies
the x- and y- coordinates for the center of a marker.

Note The block does not support single-precision or double-precision floating-point data types for
this parameter unless the input image is also floating point.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Clr — Marker color
scalar | vector | matrix

Specify the color values for the markers. Use this table to determine the type of value to input at this
port.

Type of Input Image Same Color for All Markers Different Color for Each
Marker

Intensity image scalar value K-element vector. K is the
number of markers.

Color image P-element vector. P is the
number of color planes.

K-by-P matrix. P is the number
of color planes and K is the
number of markers.

Dependencies

To enable this port, use one of these options:

 Draw Markers

1-181



• The Marker shape parameter is set to X-mark, Plus, or Star, or the Filled parameter is cleared
— Set the Border color source parameter to Input port.

• The Marker shape parameter is set to Circle or Square and the Filled parameter is selected —
Set the Fill color source parameter to Input port.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

ROI — Region of interest
vector

Specify a rectangular region of interest (ROI) as a four-element vector of form [x y width height]. The
x and y elements are the coordinates of the top-left corner of the ROI.

Dependencies

To enable this port, set the Draw markers in parameter to Specify region of interest via
port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Port_1 — Output image
matrix | array

Output image, returned as an M-by-N matrix of intensity values or an M-by-N-by-P array of color
values. P is the number of color planes in the output image. The output image has the same size and
data type as the input image.

Dependencies

To enable this port, set the Image signal parameter to One multidimensional signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

R — Red color component of output image
matrix

Red color component of the output RGB image, returned as an M-by-N matrix. The red color
component of the output image has the same dimensions and data type as the red color component of
the input image.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

G — Green color component of output image
matrix

Green color component of the output RGB image, returned as an M-by-N matrix. The green color
component of the output image has the same dimensions and data type as the green color component
of the input image.

1 Blocks

1-182



Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

B — Blue color component of output image
matrix

Blue color component of the output RGB image, returned as an M-by-N matrix. The blue color
component of the output image has the same dimensions and data type as the blue color component
of the input image.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Main

Marker shape — Shape of marker
Circle (default) | X-mark | Plus | Star | Square

Specify the shape of the marker to draw. You can render the Circle and Square markers as
outlines or as filled shapes.

Marker size — Size of marker
3 (default) | positive integer

Specify the size of the marker as a positive integer, M, that defines a square area, with sides of length
2M+1, into which the marker fits.

Filled — Filled marker
off (default) | on

Select this parameter to fill the marker with the specified intensity value or color.

Dependencies

To enable this parameter, set the Marker shape parameter to Circle or Square.

Border color source — Color source of marker border
Specify via dialog (default) | Input port

Specify the source of the color for the border of the marker as one these options:

• Specify via dialog — Use the Border color parameter to specify a color for the border of the
marker.

• Input port — Use the Clr input port to specify a color for the border of the marker.

 Draw Markers

1-183



Dependencies

To enable this parameter, clear the Filled parameter or set the Marker shape parameter to X-mark,
Plus, or Star.

Border color — Color value of marker
Black (default) | White | User-specified value

Specify the color value for the border of the marker as Black, White, or User-specified value.

Dependencies

To enable this parameter, clear the Filled parameter and set the Border color source parameter to
Specify via dialog.

Fill color source — Color source of filled marker
Specify via dialog (default) | Input port

Specify the source of the color with which to fill the marker as one these options:

• Specify via dialog — Use the Fill color parameter to specify a color with which to fill the
marker.

• Input port — Use the Clr input port to specify a color with which to fill the marker.

Dependencies

To enable this parameter, set the Marker shape parameter to Circle or Square and select the
Filled parameter.

Fill color — Color value of filled marker
Black (default) | White | User-specified value

Specify the color value with which to fill the marker as Black, White, or User-specified value.

Dependencies

To enable this parameter, set the Marker shape parameter to Circle or Square, select the Filled
parameter, and set the Fill color source parameter to Specify via dialog.

Opacity factor (between 0 and 1) — Opacity factor
0.6 (default) | scalar in range [0, 1] | K-element vector

Specify the opacity factor for the marker in the range [0, 1], where 0 is completely transparent and 1
is completely opaque. Specify this parameter as one of these options:

• Scalar — Apply the specified opacity factor to all markers.
• K-element Vector — Apply a different opacity factor to each marker. K is the number of markers.

Dependencies

To enable this parameter, set the Marker shape parameter to Circle or Square and select the
Filled parameter.

Color value(s) — User-specified color values
[200 255 100] (default) | scalar | P-element vector | K-by-P matrix

1 Blocks

1-184



Specify the color values for the markers. Use this table to determine the type of value to enter for this
parameter.

Type of Input Image Same Color for All Markers Different Color for Each
Marker

Intensity image scalar value K-element vector. K is the
number of markers.

Color image P-element vector. P is the
number of color planes.

K-by-P matrix. P is the number
of color planes and K is the
number of markers.

Dependencies

To enable this parameter, use one of these options:

• The Marker shape parameter is set to X-mark, Plus, or Star, or the Filled parameter is cleared
— Set the Border color source parameter to Specify via dialog and the Border color
parameter to User-specified value.

• The Marker shape parameter is set to Circle or Square and the Filled parameter is selected —
Set the Fill color source parameter to Specify via dialog and the Fill color parameter to
User-specified value.

Draw Markers in — Area for markers
Entire image (default) | Specify region of interest via port

Specify where to draw the markers. By default, you can draw markers in the entire image. To specify
markers within a rectangular ROI, set this parameter to Specify region of interest via
port, and specify a four-element vector of the form [x y width height] to the ROI input port.

Use antialiasing — Smoothing algorithm
off (default) | on

Select this parameter to perform a smoothing algorithm on the Circle, X-mark, or Star marker
shapes.

Dependencies

To enable this parameter, set the Marker shape parameter to Circle, X-mark, or Star.

Image signal — Port configuration for RGB image
One multidimensional signal (default) | Separate color signals

Specify how to input and output an RGB color image.

• One multidimensional signal — The block accepts input using only the Image port and
returns the output using only the Port_1 port.

• Separate color signals — The block accepts and returns the color image using three
separate color channels, divided across the R, G, and B input and output ports.

Data Types

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

 Draw Markers

1-185



Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Draw Shapes

Functions
insertMarker | insertShape

Introduced before R2006a

1 Blocks

1-186



Draw Shapes
Draw rectangles, lines, polygons, or circles on images
Library: Computer Vision Toolbox / Text & Graphics

Description
The Draw Shapes block draws rectangles, lines, polygons, or circles on images by overwriting pixel
values. As a result, the shapes are embedded in the output image. The block uses Bresenham's line
drawing algorithm to draw lines, polygons, and rectangles and Bresenham's circle drawing algorithm
to draw circles. The output signal is the same size and data type as the inputs to the Image, R, G,
and B ports.

You can set the shape fill or border color via the input port or by manually entering the values in the
Block Parameters window. Use the color parameters to determine the appearance of the rectangles,
lines, polygons, or circles.

Ports
Input

Image — Input image
M-by-N matrix of intensity values | M-by-N-by-P color values

Input image, specified as either an M-by-N matrix of intensity values or an M-by-N-by-P matrix of
color values with P color planes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

R — Red video stream
scalar | vector | matrix

Red video stream, specified as a scalar, vector, or a matrix. The input represents one plane of the RGB
video stream. The R, G, and B ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

G — Green video stream
scalar | vector | matrix

Green video stream, specified as a scalar, vector, or a matrix. The input represents one plane of the
RGB video stream. The R, G, and B ports must have the same dimensions and data type.

 Draw Shapes

1-187



Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

B — Blue video stream
scalar | vector | matrix

Blue video stream, specified as a scalar, vector, or a matrix. The input represents one plane of the
RGB video stream. The R, G, and B ports must have the same dimensions and data type.
Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Pts — Shape coordinates
M-by-3 matrix | M-by-4 matrix | M-by-2L

Shape coordinates. The format of the points depends on the type of shape you specify with the Shape
parameter.

• Rectangles — M-by-4 matrix of M rectangles. The format for each rectangle must be, [x y width
height].

Shape Input to the Pts Port Drawn Shape
Single Rectangle Four-element row vector in the format

[x y width height], where:

• x and y are the one-based coordinates of the
upper-left corner of the rectangle.

• width and height are the width and height
in pixels, of the rectangle. The values of
width and height must be greater than 0.

M Rectangles M-by-4 matrix in the format

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

,where each row of the matrix corresponds to a
different rectangle and is of the same form as
the vector for a single rectangle.

• Lines — M-by-2L matrix of M polylines. The format for each polyline must be of the form
[x1,y1,x2,y2,…,xL,yL].

1 Blocks

1-188



Shape Input to the Pts Port Drawn Shape
Single Line Four-element row vector in the format [x1 y1

x2 y2], where:

• x1 and y1 are the coordinates of the
beginning of the line.

• x2 and y2 are the coordinates of the end of
the line.

M Lines M-by-4 matrix in the format

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 yM2

,where each row of the matrix corresponds to a
different line and is of the same form as the
vector for a single line.

Single Polyline with
(L-1) Segments

Vector of size 2L, where L is the number of
vertices, in the format, [x1, y1, x2,
y2, ..., xL, yL, where

• x1 and y1 are the coordinates of the
beginning of the first line segment.

• x2 and y2 are the coordinates of the end of
the first line segment and the beginning of
the second line segment.

• xL and yL are the coordinates of the end of
the (L-1)th line segment.

The polyline always contains (L-1) number of
segments because the first and last vertex
points do not connect. The block produces an
error message when the number of rows is less
than two or not a multiple of two.

 Draw Shapes

1-189



Shape Input to the Pts Port Drawn Shape
M Polylines with (L-1)
Segments

M-by-2L matrix in the format

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

, where each row of the matrix corresponds to a
different polyline and is of the same form as the
vector for a single polyline. When you require
one polyline to contain less than (L–1) number
of segments, fill the matrix by repeating the
coordinates of the last vertex.

The block produces an error message if the
number of rows is less than two or not a
multiple of two.

• Polygons — M-by-2L matrix of M polygons. The format for each polygon must be of the form
[x1,y1,x2,y2,…,xL,yL]. The points are specified in consecutive order to form a polygon.

Shape Input to the Pts Port Drawn Shape
Single Polygon with L
line segments

Row vector of size 2L, where L is the number of
vertices, in the format [x1 y1 x2 y2 ... xL
yL], where:

• x1 and y1 are the coordinates of the
beginning of the first line segment.

• x2 and y2 are the coordinates of the end of
the first line segment and the beginning of
the second line segment.

• xL and yL are the coordinates of the end of
the (L-1)th line segment and the beginning of
the Lth line segment.

The block connects [x1 y1] to [xL yL] to
complete the polygon. The block produces an
error if the number of rows is negative or not a
multiple of two.

1 Blocks

1-190



Shape Input to the Pts Port Drawn Shape
M Polygons with the
largest number of line
segments in any line
being L

M-by-2L matrix in the format

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

, where each row of the matrix corresponds to a
different polygon and is of the same form as the
vector for a single polygon. If some polygons
are shorter than others, repeat the ending
coordinates to fill the polygon matrix.

The block produces an error message if the
number of rows is less than two or is not a
multiple of two.

• Circles — M-by-3 matrix of M circles. The format for each circle must be, [x y radius].

Shape Input to the Pts Port Drawn Shape
Single Circle Three-element row vector in the format

[x y radius], where:

• x and y are coordinates for the center of the
circle.

• radius is the radius of the circle, which
must be greater than 0.

M Circles M-by-3 matrix in the format

x1 y1 radius1

x2 y2 radius2

⋮ ⋮ ⋮
xM yM radiusM

, where each row of the matrix corresponds to a
different circle and is of the same form as the
vector for a single circle.

 Draw Shapes

1-191



Dependencies

• Double-precision floating point is only supported if the input to the Image or R, G, and B ports is
floating point.

• Single-precision floating point (only supported if the input to the Image or R, G, and B ports is
floating point).

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector [x y width height]. The region defines a
rectangular area to draw shapes. The first two elements represent the one-based coordinates of the
upper-left corner of the area. The second two elements represent the width and height of the area.

Dependencies

To enable this port, set the ROI port appears when you set the Draw shapes in parameter to
Specify region of interest via port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Clr — Color of shape
P-element vector | M-by-P matrix

Color of shape, specified as either a P-element vector or an M-by-P matrix of M number of shapes and
P number of color planes. You can specify a color (RGB) for each shape, or specify one color for all
shapes.

Dependencies

To enable this port, set the Border color source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output image
scalar | vector | matrix

Output image, returned as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Main Tab

Fill Shapes — Fill color
off (default) | on

Select Fill Shapes to specify an intensity value or a color.

1 Blocks

1-192



Note If you are generating code and you select the Fill shapes check box, the word length of the
block input(s) cannot exceed 16 bits.

Fill color source — Source for fill color
Specify via dialog (default) | Input port

Specify the source for the fill color value to either Specify via dialog or Input port.

Dependencies

To enable this parameter, select Fill shapes.

Fill color — Shape fill color
Black (default) | White | User-specified value

Specify the shape fill color.

Dependencies

To enable this parameter, select the Fill shapes parameter.

Border color source — Border color source
(default) |

Specify the source for the border color value to either Specify via dialog or Input port.

Dependencies

To enable this parameter, select the Fill shapes parameter.

Border color — Border color
Black (default) | White | User-specified value

Specify the appearance of the shape's border. You can specify Black, White, or User-specified
value. This table describes what to enter for the color value based on the block input and the
number of shapes you are drawing.

Block Input Color Value(s) for Drawing
One Shape or Multiple
Shapes with the Same Color

Color Value(s) for Drawing
Multiple Shapes with Unique
Colors

Intensity image Scalar intensity value R-element vector where R is the
number of shapes

Color image P-element vector where P is the
number of color planes

R-by-P matrix where P is the
number of color planes and R is
the number of shapes

For each value in the Color Value(s) parameter, enter a number between the minimum and
maximum values that can be represented by the data type of the input image. If you enter a value
outside this range, the block produces an error message.

Dependencies

To enable this parameter, clear the Fill shapes parameter.

 Draw Shapes

1-193



Color value(s) — Color value
color value | intensity value

Specify an intensity or color value for the shape's border or fill.

Tunable: Yes

Dependencies

To enable this parameter set the Border color or Fill color parameter to User-specified value.

Opacity factor (between 0 and 1) — Opacity factor
value in the range [0,1] | R-element vector

Specify the opacity of the shading inside the shape, where 0 is transparent and 1 is opaque.

Opacity Factor value for Drawing One Shape
or Multiple Shapes with the Same Color

Opacity Factor value for Drawing Multiple
Shapes with Unique Colors

Scalar intensity value R-element vector where R is the number of
shapes

Dependencies

To enable this parameter, clear the Fill shapes parameter.

Use antialiasing — Smoothing algorithm
off | on

Perform a smoothing algorithm on the line, polygon, or circle.

Dependencies

• To enable this parameter, set the Shape parameter to either Lines, Polygons, or Circles.

Image Signal — Image signal

Specify how to input and output a color video signal. Select the color video signal as one of the
following:

• One multidimensional signal — The block accepts an M-by-N-by-P color video signal, where
P is the number of color planes, at one port.

• Separate color signals — Enables the R,G, and B input ports. Each port accepts one M-by-N
plane of an RGB video stream.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

yes

1 Blocks

1-194



Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Draw Markers | Insert Text

Introduced before R2006a

 Draw Shapes

1-195



Edge Detection
Find edges of objects in images using Sobel, Prewitt, Roberts, or Canny method
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Edge Detection block finds edges of objects in an input image. The block supports four methods:
Sobel, Prewitt, Roberts, and Canny. The first three methods find the edges by approximating the
gradient magnitude of the image. The block convolves the input matrix with the Sobel, Prewitt, or
Roberts kernel respectively, and outputs the resulting gradient components of the image. Additionally,
the block outputs a binary image of the edge detections by thresholding the gradient magnitude.

The Canny method computes the gradient of input image using the derivative of the Gaussian filter. It
then finds edges by looking for the local maxima of the gradient. This method uses two thresholds to
detect the strong and weak edges. The weak edges are part of the output only if they are connected
to strong edges. The block outputs a binary image of the edge detections for this method.

Ports
Input

I — Input image
matrix

Input image, specified as a matrix of intensity values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Note The Canny method does not support 8-bit, 16-bit, or 32-bit signed fixed-point integers or 8-bit,
16-bit, or 32-bit unsigned integers.

Th — Threshold
scalar | vector

Specify a threshold as a scalar or a two-element vector to detect edges from the gradient. The data
type of this value must match the input image data type. For the Canny edge detection method, the
threshold must be a two-element vector in the range [0 1]. For the other methods, the threshold is a
scalar.

Dependencies

To enable this port:

1 Blocks

1-196



• Set the Method parameter to Canny. Alternatively, set the Method parameter to Sobel,
Prewitt, or Roberts, and also set the Output type parameter to Binary image or Binary
image and gradient components.

• Select the User-defined threshold.
• Set the Threshold source parameter to Input port.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Note The Canny method does not support 8-bit, 16-bit, or 32-bit signed fixed-point integers or 8-bit,
16-bit, or 32-bit unsigned integers.

Output

Edge — Edge detections
matrix

Edge detections, returned as a binary image. The pixels with the value of 1 represent the edge pixels.

Dependencies

This port is always enabled when you set the Method parameter to Canny. To enable this port for the
Sobel, Prewitt, or Roberts methods, set the Output type parameter to Binary image or
Binary image and gradient components.
Data Types: Boolean

Gv — Gradient responses to vertical edges
matrix

Matrix of gradient responses to the vertical edges.

Dependencies

To enable this port, set these parameters:

• Method — Sobel or Prewitt
• Output type — Gradient components or Binary image and gradient components

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Gh — Gradient responses to horizontal edges
matrix

Matrix of gradient responses to the horizontal edges.

Dependencies

To enable this port, set these parameters:

• Method — Sobel or Prewitt
• Output type — Gradient components or Binary image and gradient components

 Edge Detection

1-197



Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

G45 — Gradient responses to edges at 45 degrees
matrix

Matrix of gradient responses to edges at 45 degrees.

Dependencies

To enable this port, set these parameters:

• Method — Roberts
• Output type — Gradient components or Binary image and gradient components

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

G135 — Gradient responses to edges at 135 degrees
matrix

Matrix of gradient responses to edges at 135 degrees.

Dependencies

To enable this port, set these parameters:

• Method — Roberts
• Output type — Gradient components or Binary image and gradient components

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main

Method — Edge detection method
Sobel (default) | Prewitt | Roberts | Canny

Specify a method to detect edges in the input image. You can choose from Sobel, Prewitt, Roberts
or Canny.

Output Type — Output image type
Binary image (default) | Gradient components | Binary image and gradient components

Specify the type of output image from one of these options:

• Binary image — The block outputs a Boolean matrix at the Edge port. The elements of the
matrix labeled 1 represent the edge pixels.

• Gradient components — The block outputs the gradient components. For the Sobel and
Prewitt methods, the gradient components correspond to the horizontal and vertical edge
responses at the Gh and Gv ports respectively. For the Roberts method the gradient components
correspond to 45 degree and 135 degree edge responses at the G45 and G135 ports respectively.

1 Blocks

1-198



• Binary image and gradient components — The block outputs both the binary image and
the gradient components of the image

Dependencies

To enable this parameter, set the Method parameter to Sobel, Prewitt, or Roberts.

User-defined threshold — User-defined threshold
off (default) | on

Specify a desired threshold value via dialog or the Th port.

Dependencies

This parameter is always enabled when you set the Method parameter to Canny. To enable this
parameter for the Sobel, Prewitt, or Roberts methods, set the Output type parameter to Binary
image or Binary image and gradient components.

Threshold source — Threshold source
Input port (default) | Specify via dialog

Select the source to enter the threshold value from one of these options:

• Input port — Specify a threshold value using the Th port. The data type of this value must
match the input image data type.

• Specify via dialog — Enter the desired threshold value in the dialog box.

Dependencies

To enable this parameter:

• Set the Method parameter to Canny. Alternatively set the Method parameter to Sobel,
Prewitt, or Roberts, and also set the Output type parameter to Binary image or Binary
image and gradient components.

• Select the User-defined threshold.

Threshold — Threshold
20 (default) | scalar

Specify the threshold value that is within the range of your input data. This threshold applies to
Sobel, Prewitt, and Roberts edge detection methods.

Dependencies

To enable this parameter, set these block parameters:

• Method — Sobel, Prewitt, or Roberts
• Output type — Binary image or Binary image and gradient components
• User-defined threshold — On.
• Threshold source — Specify via dialog

Threshold, [Low High] — Threshold for Canny edge detection
[0.25 0.60] (default) | vector

 Edge Detection

1-199



Specify the threshold for the Canny edge detection as a two-element vector in the range [0 1]. The
elements of the vector specifies the low and high threshold values for the weak and strong edges
respectively.

Dependencies

To enable this parameter, set these block parameters:

• Method — Canny
• User-defined threshold — On.
• Threshold source — Specify via dialog

Threshold scale factor:(used to automatically calculate threshold value) —
Threshold scale factor
4 (default) | scalar

Specify the threshold scale factor to automatically calculate threshold value. The block computes the
automatic threshold using the mean of the gradient magnitude squared image and multiplies the
value of this parameter with the automatic threshold value to determine a new threshold value.

Dependencies

To enable this parameter, set these block parameters:

• Method — Sobel, Prewitt, or Roberts
• Output type — Binary image or Binary image and gradient components
• User-defined threshold — Off

Edge Thinning — Edge thinning
off (default) | on

Select this parameter to reduce the thickness of the edges in your output images. This option
requires additional processing time and memory resources.

Tip This block is most efficient in terms of memory usage and processing time when you clear the
Edge thinning check box and use the Threshold parameter to specify a threshold value.

Dependencies

To enable this parameter, set these block parameters:

• Method — Sobel, Prewitt, or Roberts
• Output type — Binary image or Binary image and gradient components

Approximate percentage of weak edge and nonedge pixels (used to automatically
calculate threshold values) — Approximate percentage of weak edge and nonedge
pixels
70 (default) | scalar

Specify the approximate percentage of weak edge and nonedge image pixels. The block computes the
automatic threshold values using this value.

1 Blocks

1-200



Dependencies

To enable this parameter, set these block parameters:

• Method — Canny
• User-defined threshold — Off

Standard deviation of Gaussian filter — Standard deviation of Gaussian filter
1 (default) | scalar

Specify the standard deviation of Gaussian filter used for Canny edge detection algorithm.

Dependencies

To enable this parameter, set the Method parameter to Canny.

Data Types

For information about the fixed-point block parameters, see “Specify Fixed-Point Attributes for
Blocks” .

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

References
[1] Gonzales, Rafael C. and Richard E. Woods. Digital Image Processing. 2nd ed. Englewood Cliffs, NJ:

Prentice Hall, 2002.

[2] Pratt, William K. Digital Image Processing, 2nd ed. NY: John Wiley & Sons, 1991.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

When you select the Normalized output check box, the block input cannot be fixed point.

See Also
edge | edge3

Introduced before R2006a

 Edge Detection

1-201



Erosion
Find local minima in binary or intensity image
Library: Computer Vision Toolbox / Morphological Operations

Description
The Erosion block slides a neighborhood or structuring element over an image, finds the local
minima, and creates an output matrix from these minimum values. If the neighborhood or structuring
element has a center element, the block places the minima there, as shown in this figure.

If the neighborhood or structuring element does not have an exact center, the block has a bias toward
the upper-left of the central elements and places the minima there, as shown in this figure.

This block uses flat structuring elements only.

Ports
Input

I — Input image
matrix

Specify an input image as a matrix of binary or intensity values. This port is unnamed until you set
the Neighborhood or structuring element source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Nhood — Neighborhood values
vector | matrix

Specify neighborhood values, representing a structuring element, as a vector or matrix of 1s and 0s.

1 Blocks

1-202



Dependencies

To enable this port, set the Neighborhood or structuring element source parameter to Input
port.
Data Types: Boolean

Output

Port_1 — Eroded image
matrix

Eroded image, returned as a matrix. The size and data type of the output image are the same as those
of the input image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Neighborhood or structuring element source — Source of neighborhood or structuring
element
Specify via dialog (default) | Input port

Specify the source of the neighborhood or structuring element as one of these options:

• Specify via dialog — Use the Neighborhood or structuring element parameter to specify
a neighborhood or structuring element.

• Input port — Use the Nhood input port to specify neighborhood values representing a
structuring element.

Neighborhood or structuring element — Neighborhood or structuring element
strel('square',4) (default)

Specify the neighborhood or structuring element as a vector or matrix of 1s and 0s, a strel object,
or an array of strel objects. When you specify an array of strel objects, the block applies each
object to the entire image in sequence.

If the structuring element is decomposable into smaller elements, the block execution speed improves
due to the more efficient algorithm.

Dependencies

To enable this parameter, set the Neighborhood or structuring element source parameter to
Specify via dialog.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

 Erosion

1-203



References
[1] Soille, Pierre. Morphological Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg,

2004. https://doi.org/10.1007/978-3-662-05088-0.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Dilation | Opening | Closing | Label | Bottom-hat | Top-hat

Functions
imerode | imdilate | imopen | imclose

Objects
strel

Introduced before R2006a

1 Blocks

1-204



Estimate Geometric Transformation
Estimate geometric transformation from matching point pairs
Library: Computer Vision Toolbox / Geometric Transformations

Description
Use the Estimate Geometric Transformation block to find the transformation matrix which maps the
greatest number of point pairs between two images. A point pair refers to a point in the input image
and its related point on the image created using the transformation matrix. You can select to use the
RANdom SAmple Consensus (RANSAC) or the Least Median Squares algorithm to exclude outliers
and to calculate the transformation matrix. You can also use all input points to calculate the
transformation matrix.

Ports
Input

Pts1 — Point coordinates
M-by-2 matrix

Point coordinates, specified as an M-by-2 matrix of one-based [x y] point coordinates, where M
represents the number of points.

The block outputs the same data type for the transformation matrix as the Pts1 and Pts2 image
points.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Pts2 — Point coordinates
M-by-2 matrix

Point coordinates, specified as an M-by-2 matrix of one-based [x y] point coordinates, where M
represents the number of points.

The block outputs the same data type for the transformation matrix as the Pts1 and Pts2 image
points.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Num — Number of valid points
scalar

Number of valid points to find in Pts1 and Pts2, specified as a scalar. This port appears when you
enable the Allow variable-size signal input parameter.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

 Estimate Geometric Transformation

1-205



Output

TForm — Transformation
3-by-2 matrix | 3-by-3 matrix

Transformation, returned as either a 3-by-2 or a 3-by-3 matrix. The block outputs the same data type
for the transformation matrix as the Pts1 and Pts2 image points.

Dependencies

• When Pts1 and Pts2 are single or double, the output transformation matrix will also have single
or double data type.

• When Pts1 and Pts2 images are built-in integers, the option is available to set the transformation
matrix data type to either Single or Double.

Data Types: single | double

Inlier — Points used
M-by-1 vector

Points used to calculate TForm, returned as an M-by-1 vector.

Dependencies

• The Inlier port appears when you enable the Output Boolean signal indicating which point
pairs are inliers parameter.

Data Types: Boolean

Parameters
Transformation type — Transformation type
Affine (default) | Nonreflective similarity | Projective

Specify the transformation type as either Nonreflective similarity, Affine, or Projective.
See “Transformations” on page 1-210 for a more detailed discussion.

Dependencies

You can set additional parameters depending on the transformation type:

• For Projective transformation, you can specify a scalar algebraic distance threshold for
determining inliers.

• For Affine or Nonreflective similarity transformation, you can specify the distance
threshold for determining inliers in pixels.

Find and exclude outliers — Find and exclude outliers
on (default) | off

Enable to find and exclude outliers from the input points and use only the inlier points to calculate
the transformation matrix. When you turn this parameter off, all input points are used to calculate the
transformation matrix.

Method — Method to find outliers
RANdom SAmple Consensus (RANSAC) (default) | Least Median of Squares

1 Blocks

1-206



Select the method to find outliers as either RANdom SAmple Consensus (RANSAC) or Least
Median of Squares See “RANSAC and Least Median Squares Algorithms” on page 1-209 for a
more detailed discussion.
Dependencies

This parameter appears when you enable the Find and exclude outliers check box.

Algebraic distance threshold for determining inliers — Algebraic distance
threshold for determining inliers
1.5 (default) | scalar

Specify a scalar threshold value for determining inliers. The threshold controls the upper limit used
to find the algebraic distance in the RANSAC algorithm.
Dependencies

This parameter appears when you set the Method parameter to Random Sample Consensus
(RANSAC) and the Transformation type parameter to Projective.

Distance threshold for determining inliers (in pixels) — Distance threshold for
determining inliers (in pixels)
1.5 (default) | scalar

Specify the upper limit distance a point can differ from the projection location of its corresponding
point.
Dependencies

This parameter appears when you set the Method parameter to Random Sample Consensus
(RANSAC) and you set the value of the Transformation type parameter to Nonreflective
similarity or Affine.

Determine number of random samplings using — Determine number of random
samplings using
Specified value (default) | Desired confidence

Select Specified value to enter a positive integer value for the number of random samplings.
Select Desired confidence to set the number of random samplings as a percentage and a
maximum number.
Dependencies

This parameter appears when you select the Find and exclude outliers check box, and you set the
value of the Method parameter to Random Sample Consensus (RANSAC).

Number of random samplings — Number of random samplings
500 (default) | scalar

Specify the number of random samplings for the algorithm to perform.
Dependencies

This parameter appears when you set the value of the Determine number of random samplings
using parameter to Specified value.

Desired confidence (in %) — Desired confidence (in %)
99 (default) | scalar

 Estimate Geometric Transformation

1-207



Specify a percent desired confidence by entering a number between 0 and 100. The value represents
the probability of the algorithm to find the largest group of points that can be mapped by a
transformation matrix.

Dependencies

This parameter appears when you set the Determine number of random samplings using
parameter to Desired confidence.

Maximum number of random samplings — Maximum number of random samplings
1000 (default) | integer

Specify an integer number for the maximum number of random samplings.

Dependencies

This parameter appears when you set the Method parameter to Random Sample Consensus
(RANSAC) and you set the value of the Determine number of random samplings using parameter
to Desired confidence.

Stop sampling earlier when a specified percentage of point pairs are
determined to be inlier — Stop sampling
off (default) | on

Enable this parameter to stop random sampling when a percentage of input points have been found
as inliers.

Dependencies

This parameter appears when you set the Method parameter to Random Sample Consensus
(RANSAC).

Perform additional iterative refinement of the transformation matrix — Perform
additional iterative refinement
off (default) | on

Specify whether to perform refinement on the transformation matrix.

Dependencies

This parameter appears when you select Find and exclude outliers check box.

Output Boolean signal indicating which point pairs are inliers — Output
Boolean signal
off (default) | on

Enable this parameter to output the inlier point pairs that were used to calculate the transformation
matrix.

Dependencies

• This parameter appears when you select the Find and exclude outliers check box.
• The block will not use this parameter with signed or double, data type points.

When Pts1 and Pts2 are built-in integers, set transformation matrix date type
to — Set transformation matrix date type
Single (default) | Double

1 Blocks

1-208



Specify transformation matrix data type as Single or Double when the input points are built-in
integers.
Dependencies

The block will not use this parameter with signed or double, data type points.

Allow variable-sized signal input — Allow variable-sized signal input
on (default) | off

Enable this parameter to allow variable-sized signal input.
Dependencies

Block Characteristics
Data Types double | integera | single
Multidimensional
Signals

no

Variable-Size Signals yes
a Generated code will be restricted to MATLAB host computers when you set the FFT implementation parameter to FFTW,

or when the transform length is not a power of two.

Algorithms
RANSAC and Least Median Squares Algorithms

The RANSAC algorithm relies on a distance threshold. A pair of points, pi
a(image a, Pts1) and pi

b

(image b, Pts2) is an inlier only when the distance between pi
b and the projection of pi

abased on the
transformation matrix falls within the specified threshold. The distance metric used in the RANSAC
algorithm is as follows:

d = ∑
i = 1

Num
min(D(pi

b, ψ(pi
a:H)), t)

The Least Median Squares algorithm assumes at least 50% of the point pairs can be mapped by a
transformation matrix. The algorithm does not need to explicitly specify the distance threshold.
Instead, it uses the median distance between all input point pairs. The distance metric used in the
Least Median of Squares algorithm is as follows:

d = median(D(p1
b, ψ(p1

a:H)), D(p2
b, ψ(p2

a:H)), ..., D(pNum
b , ψ(pN

a :H)))

For both equations:

pi
a is a point in image a (Pts1)

pi
b is a point in image b (Pts2)

ψ(pi
a:H) is the projection of a point on image a based on transformation matrix H

D(pi
b, p j

b) is the distance between two point pairs on image b

 Estimate Geometric Transformation

1-209



t is the threshold

Numis the number of points

The smaller the distance metric, the better the transformation matrix and therefore the more
accurate the projection image.

Transformations

The Estimate Geometric Transformation block supports Nonreflective similarity, Affine, and
Projective transformation types, which are described in this section.

Nonreflective similarity transformation supports translation, rotation, and isotropic scaling. It has
four degrees of freedom and requires two pairs of points.

The transformation matrix is: H =
h1 −h2
h2 h1
h3 h4

The projection of a point x y  by His: x y = x y 1 H

affine transformation supports nonisotropic scaling in addition to all transformations that the
nonreflective similarity transformation supports. It has six degrees of freedom that can be determined
from three pairs of noncollinear points.

The transformation matrix is: H =
h1 h4
h2 h5
h3 h6

The projection of a point x y  by His: x y = x y 1 H

Projective transformation supports tilting in addition to all transformations that the affine
transformation supports.

The transformation matrix is : h =
h1 h4 h7
h2 h5 h8
h3 h6 h9

1 Blocks

1-210



The projection of a point x y  by His represented by homogeneous coordinates as:
u v w = x y 1 H

Distance Measurement

For computational simplicity and efficiency, this block uses algebraic distance. The algebraic distance
for a pair of points, xa ya T on image a, and xb yb  on image b , according to transformation H,is
defined as follows;

For projective transformation:

D(pi
b, ψ(pi

a:H)) = ((u a−waxb)
2

+ (v a−wayb)
2
)
1
2 , where u a v a wa = xa ya 1 H

For Nonreflective similarity or affine transformation: D(pi
b, ψ(pi

a:H)) = ((x a− xb)
2

+ (y a− y b)
2
)
1
2 ,

where x a y a = xa ya 1 H

Algorithm

The block performs a comparison and repeats it K number of times between successive
transformation matrices. If you select the Find and exclude outliers option, the RANSAC and Least
Median Squares (LMS) algorithms become available. These algorithms calculate and compare a
distance metric. The transformation matrix that produces the smaller distance metric becomes the
new transformation matrix that the next comparison uses. A final transformation matrix is resolved
when either:

• K number of random samplings is performed
• The RANSAC algorithm, when enough number of inlier point pairs can be mapped, (dynamically

updating K)

The Estimate Geometric Transformation algorithm follows these steps:

1 A transformation matrix H is initialized to zeros
2 Set count = 0 (Randomly sampling).
3 While count < K , where K is total number of random samplings to perform, perform the

following;

a Increment the count; count = count + 1.
b Randomly select pair of points from images a and b, (2 pairs for Nonreflective similarity, 3

pairs for affine, or 4 pairs for projective).
c Calculate a transformation matrix H, from the selected points.
d If Hhas a distance metric less than that of H, then replace H with H.

(Optional for RANSAC algorithm only)

i Update K dynamically.
ii Exit out of sampling loop if enough number of point pairs can be mapped by H.

4 Use all point pairs in images a and b that can be mapped by H to calculate a refined
transformation matrix H

5 Iterative Refinement, (Optional for RANSAC and LMS algorithms)

 Estimate Geometric Transformation

1-211



a Denote all point pairs that can be mapped by H as inliers.
b Use inlier point pairs to calculate a transformation matrix H.
c If Hhas a distance metric less than that of H, then replace H with H, otherwise exit the loop.

Number of Random Samplings

The number of random samplings can be specified by the user for the RANSAC and Least Median
Squares algorithms. You can use an additional option with the RANSAC algorithm, which calculates
this number based on an accuracy requirement. The Desired Confidence level drives the accuracy.

The calculated number of random samplings, K used with the RANSAC algorithm, is as follows:

K = log(1− p)
log(1− qs)

where

• p is the probability of independent point pairs belonging to the largest group that can be mapped
by the same transformation. The probability is dynamically calculated based on the number of
inliers found versus the total number of points. As the probability increases, the number of
samplings, K , decreases.

• q is the probability of finding the largest group that can be mapped by the same transformation.
• s is equal to the value 2, 3, or 4 for Nonreflective similarity, affine, and projective transformation,

respectively.

Iterative Refinement of Transformation Matrix

The transformation matrix calculated from all inliers can be used to calculate a refined
transformation matrix. The refined transformation matrix is then used to find a new set of inliers. This
procedure can be repeated until the transformation matrix cannot be further improved. This iterative
refinement is optional.

References
[1] R. Hartley and A. Ziserman, “Multiple View Geometry in Computer Vision,” Second edition,

Cambridge University Press, 2003

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
cp2tform

Introduced in R2008a

1 Blocks

1-212



Find Local Maxima
Find local maxima in matrices
Library: Computer Vision Toolbox / Statistics

Description
The Find Local Maxima block finds the local maxima in a given input matrix. The block finds the local
maxima of values within a region specified by the neighborhood size. The block compares the values
in the search region to a user-specified threshold and identifies a value that is greater than or equal
to the threshold as the local maximum. After finding the local maximum, the block sets all the matrix
values in the neighborhood, including the maximum value, to zero. This step ensures that subsequent
searches do not include this maximum. The process repeats until the block either finds all valid
maxima or the specified number of local maxima.

The threshold and the neighborhood size must be chosen such that the block detects only the true
local maxima and eliminates false peaks.

The input to this block can also be a Hough matrix generated from the Hough Transform block. The
Find Local Maxima block outputs the one-based [x y] coordinates of the detected local maxima. The
data sent to all input ports must be the same data type.

Ports
Input

I — Input
M-by-N matrix

Input, specified as the M-by-N matrix in which you want to detect the local maxima. If the input is a
Hough matrix output from the Hough Transform block, select the Input is Hough matrix spanning
full theta range parameter that renames this port as Hough.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Th — Threshold for detecting local maxima
scalar

Threshold for the detecting local maxima, specified as a scalar.
Dependencies

To enable this port, set the Source of threshold value parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Output

Idx — Coordinates of local maxima
P-by-2 matrix

 Find Local Maxima

1-213



Coordinates of the local maxima, returned as a P-by-2 matrix of one-based [x y] coordinates. P
represents the number of local maxima.
Data Types: single | double | uint8 | uint16 | uint32

Count — Number of local maxima
scalar

Number of local maxima, returned as a scalar.

Dependencies

To enable this port, clear the check box for the Output variable size signal parameter.
Data Types: single | double | uint8 | uint16 | uint32

Parameters
Maximum number of local maxima — Maximum number of local maxima to detect
2 (default) | positive integer

Specify the maximum number of local maxima to detect in the input matrix. The value must be a
positive integer greater than 0.

Neighborhood size — Size of neighborhood region
[5 7] (default) | two-element vector

Specify the size of the neighborhood region as a two-element vector in the form [r c]. The vector
specifies the window size r×c, within which the block determines the local maxima. The window size
must be greater than or equal to 1×1.

Source of threshold value — Source to enter the threshold value
Specify via dialog (default) | Input port

Specify the source for entering the threshold value. When you select the Input port, the block
enables the Th port. When you select the Specify via dialog, the block enables the Threshold
parameter.

Threshold — Threshold for detecting local maxima
10 (default) | scalar

Specify a scalar value that represents the threshold for detecting the local maxima.

Dependencies

To enable this parameter, set the Source of threshold value parameter to Specify via dialog.

Input is Hough matrix spanning full theta range — Whether input is a Hough matrix
off (default) | on

Select the parameter, if the input to this block is the Hough matrix output from the Hough Transform
block. The Find Local Maxima block assumes that the input is a Hough matrix that is antisymmetric
about the rho axis, with values of theta from -pi/2 to pi/2 radians. As a result, if the local maximum is
near the boundary and its neighborhood region is outside the Hough matrix, the block detects only
one local maximum. The block ignores the corresponding antisymmetric maximum.

1 Blocks

1-214



Index output data type — Data type for coordinates of local maximums
uint32 (default) | double | single | uint8 | uint16

Specify the data type for the coordinates of local maximums returned at the output port Idx.

Output variable size signal — Support input signals of varying length
on (default) | off

Specify if the model supports input signals of varying length.

Count output data type — Data type for number of local maximums
uint32 (default) | double | single | uint8 | uint16

Specify the data type for the number of local maximums returned at the output port Count.
Dependencies

To enable this parameter, clear the Output variable size signal parameter.

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Hough Lines | Corner Detection

Functions
houghpeaks | hough

Introduced before R2006a

 Find Local Maxima

1-215



Frame Rate Display
Calculate and display video frame rate
Library: Computer Vision Toolbox / Sinks

Description
The Frame Rate Display block calculates and displays the average update rate of an input signal. For
an input video signal, this block displays the video frame rate of the simulation. The calculated rate is
in relation to the wall clock time. For example, if the model is updating the input signal 30 times for
every second, this block displays 30 on the block mask.

This block supports images and video frames as input. Inputs can contain intensity or color values.

Ports
Input

Port_1 — Input data
matrix | array

Input data, specified as an M-by-N matrix, M-by-N-by-T array, or M-by-N-by-C-by-T array. T is the
number of frames in a video or image sequence, and C is the number of color channels.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Update rate — Frequency of updates
10 (default) | positive scalar

Specify this parameter to control how often the block updates the display. The block displays the
average update rate across the specified number of video frames. For example, if this parameter is
set to 10, the Frame Rate Display block calculates the elapsed time to pass 10 video frames to the
block, divides the elapsed time by 10, and displays the average video frame rate.

Note If the input port of Frame Rate Display block is not connected to a signal, the block displays
the base (fastest) rate of the Simulink model.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single

1 Blocks

1-216



Multidimensional
Signals

no

Variable-Size Signals yes

See Also
Blocks
To Multimedia File | To Video Display | Video To Workspace | Video Viewer

Introduced before R2006a

 Frame Rate Display

1-217



From Multimedia File
Read video frames and audio samples from multimedia file
Library: Computer Vision Toolbox / Sources

Description
The From Multimedia File block reads video frames, audio samples, or both from a multimedia file.
The block imports data from a file, of a supported file format, into a Simulink model. For more
information about supported file formats, see “Supported Platforms and File Formats” on page 1-224.

This block enables you to read WMA or WMV streams from your system or over a network
connection. Similarly, the To Multimedia File block enables you to write WMA or WMV streams to
your system or over a network connection. If your system does not have the codec necessary to
support a file format, you must re-encode files of that format into a file format supported by the
Computer Vision Toolbox.

If you have a Simulink Coder license, you can generate code from a model containing this block. To
run a generated executable file, you may need to add precompiled shared library files to your system
path. For more information, see “Simulink Shared Library Dependencies” and “Accelerating Simulink
Models”.

Note This block supports code generation for a host computer that has file I/O available. You cannot
use this block with Simulink Desktop Real-Time™ software because that product does not support file
I/O.

Ports
Output

Image — Color image or video frame
array

Color image or video frame, returned as an M-by-N-by-P array. M and N are the number of rows and
columns in each image. P is the number of color channels in each image.

Dependencies

To enable this port:

• Set the File name parameter to the name of a multimedia file that contains video or image data.
If the specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to RGB and Image signal parameter to One
multidimensional signal.

1 Blocks

1-218



Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Simulink.ImageType

I — Grayscale image or video frame
matrix

Grayscale image or video frame, returned as an M-by-N matrix. M and N are the number of rows and
columns in the grayscale image.

Dependencies

To enable this port:

• Set the File name parameter to the name of a multimedia file that contains video or image data.
If the specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to Intensity.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

R — Red color component of image or video frame
matrix

Red color component of the image or video frame, returned as an M-by-N matrix. M and N are the
number of rows and columns in the image.

Dependencies

To enable this port:

• Set the File name parameter to the name of a multimedia file that contains video or image data.
If the specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to RGB and Image signal parameter to Separate
color signals.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

G — Green color component of image or video frame
matrix

Green color component of the image or video frame, returned as an M-by-N matrix. M and N are the
number of rows and columns in the image.

Dependencies

To enable this port:

• Set the File name parameter to the name of a multimedia file that contains video or image data.
If the specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to RGB and Image signal parameter to Separate
color signals.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 From Multimedia File

1-219



B — Blue color component of image or video frame
matrix

Blue color component of the image or video frame, returned as an M-by-N matrix. M and N are the
number of rows and columns in the image.

Dependencies

To enable this port:

• Set the File name parameter to the name of a multimedia file that contains video or image data.
If the specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to RGB and Image signal parameter to Separate
color signals.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Y — Luma component of image or video frame
matrix

Luma component of the image or video frame, returned as an M-by-N matrix. M and N are the
number of rows and columns in the image.

Dependencies

To enable this port:

• Set the File name parameter to the name of a multimedia file that contains video or image data.
If the specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to YCbCr 4:2:2.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Cb — Blue-difference chrominance component of image or video frame
matrix

Blue-difference chrominance component of the image or video frame, returned as an M-by-N/2
matrix. M and N are the number of rows and columns in the input image.

Dependencies

To enable this port:

• Set the File name parameter to the name of a multimedia file that contains video or image data.
If the specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to YCbCr 4:2:2.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Cr — Red-difference chrominance component of image or video frame
matrix

1 Blocks

1-220



Red-difference chrominance component of the image or video frame, returned as an M-by-N/2 matrix.
M and N are the number of rows and columns in each input image.

Dependencies

To enable this port:

• Set the File name parameter to the name of a multimedia file that contains video or image data.
If the specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to YCbCr 4:2:2.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Audio — Audio signal
vector | matrix

Audio signal, returned as an M-element vector or an M-by-N matrix. M is the number of samples in
each channel and N is the number of channels.

Dependencies

To enable this port, set the File name parameter to the name of a multimedia file that contains audio
data. If the specified file contains both audio and video data, set the Multimedia outputs parameter
to Audio only or Video and audio.
Data Types: single | double | int16 | uint8

EOF — End-of-file indicator
scalar

End-of-file indicator, returned as a logical scalar for each video frame or audio sample. The end-of-file
indicator is 1 when the block outputs the final video frame or audio sample from the file, and is 0
otherwise.

Dependencies

To enable this port, select the Output end-of-file indicator parameter.
Data Types: Boolean

Parameters
Main

File name — Name of multimedia file
vipmen.avi (default) | character vector

Specify the name of the multimedia file for the block to read. If the file is not located on your
MATLAB path, select Browse and navigate to the file, or specify the full file path.

On Microsoft® Windows® platforms, this parameter supports URLs that point to Microsoft Media
Server (MMS) streams.

Inherit sample time from file — Inherit sample time from file
on (default) | off

 From Multimedia File

1-221



Specify whether the block inherits the sample time from the multimedia file or uses a specified
sample time. When you select this parameter, the block inherits the sample time from the input
multimedia file.

Tip Select this parameter when you do not know the intended sample rate of the multimedia file.

Desired sample time — Block sample time
1/30 (default) | real positive scalar

Specify a sample time for the block.
Dependencies

To enable this parameter, clear the Inherit sample time from file parameter.

Number of times to play file — Number of times to play multimedia file
inf (default) | real positive integer

Specify the number of times to play the input multimedia file. The default value of inf specifies that
the block repeats playing the multimedia file until the simulation stop time.

Output end-of-file indicator — End-of-file indicator
off (default) | on

Select this parameter to enable the EOF port, which indicates whether the output frame or sample is
the final video frame or audio sample in the multimedia file.

Multimedia outputs — Type of media
Video only (default) | Audio only | Video and audio

Specify the type of media to read from a file containing both video and audio data.
Dependencies

To enable this parameter, set the File name parameter to the name of a multimedia file that contains
both audio and video data.

Output color format — Color format of video
RGB (default) | Intensity | YCbCr 4:2:2

Specify the output color format of the input video data. The block supports the RGB, Intensity, and
YCbCr 4:2:2 color formats.
Dependencies

To enable this parameter, set the File name parameter to the name of a multimedia file that contains
video data. If the specified file contains both audio and video data, set the Multimedia outputs
parameter to Video only or Video and audio.

Image signal — Output port configuration for RGB video
One multidimensional signal (default) | Separate color signals | Simulink image
signal

Specify how the block outputs an RGB color video. If you select One multidimensional signal,
the block outputs the video data using only the Image port. If you select Separate color

1 Blocks

1-222



signals, the block outputs the video data using three separate color channels, divided across the R,
G, and B ports. If you select Simulink image signal, the block outputs a video in
Simulink.ImageType datatype.

Dependencies

To enable this parameter:

• Set the File name parameter to the name of a multimedia file that contains video data. If the
specified file contains both audio and video data, set the Multimedia outputs parameter to
Video only or Video and audio.

• Set the Output color format parameter to RGB.

Read range — Range of audio samples
[1 Inf] (default) | two-element row vector

Specify the range of audio samples to read from the input file as a two-element row vector of the form
[StartSample EndSample]. StartSample is the first sample the block reads from the audio file,
and EndSample is the final sample the block reads from the audio file. StartSample must be
greater than or equal to 1. EndSample must be greater than StartSample.

Dependencies

To enable this parameter, set the File name parameter to the name of a multimedia file that contains
audio data. If the specified file contains both audio and video data, set the Multimedia outputs
parameter to Audio only.

Samples per audio channel — Samples per audio channel
1024 (default) | real positive integer

Specify the number of samples per audio channel.

Dependencies

To enable this parameter, set the File name parameter to the name of a multimedia file that contains
audio data. If the specified file contains both audio and video data, set the Multimedia outputs
parameter to Audio only.

Data Types

Video output data type — Video output data type
single (default) | double | int8 | uint8 | int16 | uint16 | int32 | uint32 | Inherit from
file

Specify the data type for the output video frames.

Dependencies

To enable this parameter, set the File name parameter to the name of a multimedia file that contains
video data. If the specified file contains both audio and video data, set the Multimedia outputs
parameter to Video only or Video and audio.

Audio output data type — Audio output data type
int16 (default) | double | single | uint8

Specify the data type for the output audio samples.

 From Multimedia File

1-223



Dependencies

To enable this parameter, set the File name parameter to the name of a multimedia file that contains
audio data. If the specified file contains both audio and video data, set the Multimedia outputs
parameter to Audio only or Video and audio.

Block Characteristics
Data Types double | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a Supports 16- and 32-bit signed and 8-bit unsigned integers.

More About
Supported Platforms and File Formats

Which supported file formats are available to you depends on the codecs installed on your system.

Platform Supported File Formats
All Platforms AVI (.avi)

Motion JPEG 2000 (.mj2)
Microsoft Windows Image:

JPEG(.jpg)
Bitmap (.bmp)
Video:
MPEG (.mpeg)
MPEG-2 (.mp2)
MPEG-1 (.mpg)
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft DirectShow® 9.0 or higher.
Audio:
WAVE (.wav)
Windows Media Audio File (.wma)
Audio Interchange File Format (.aif, .aiff)
Compressed Audio Interchange File Format (.aifc)
MP3 (.mp3)
Sun Audio (.au)
Apple (.snd)

macOS Video:
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
Any format supported by QuickTime.

1 Blocks

1-224



Platform Supported File Formats
Audio:
Uncompressed AVI (.avi)

Linux® Any format supported by your installed plug-ins for GStreamer 0.1 or higher,
including Ogg Theora (.ogg).

Sample Time Calculations Used for Video and Audio Files

The sample rate that the block uses depends on the audio and video sample rate. While the block
operates at a single rate in Simulink, the underlying audio and video streams can produce different
rates. In some cases, the block makes a small adjustment to the video rate when the block outputs
both audio and video.

Sample time = ceil(AudioSampleRate FPS)
AudioSampleRate . AudioSampleRate is the sample rate for audio data, and FPS

is the video frame rate.
When the audio sample time, AudioSampleRate

FPS , is not an integer,, the equation cannot reduce to
1

FPS .
To prevent synchronization problems, when the audio stream leads the video stream by more than

1
FPS , the block drops the corresponding video frame.
In summary, the block outputs one video frame at each Simulink time step. To calculate the number of
audio samples to output at each time step, the block divides the audio sample rate by the video frame
rate. If the audio sample rate does not divide evenly by the number of video frames per second (FPS),
the block rounds the number of audio samples up to the nearest whole number. If necessary, the block
periodically drops a video frame to maintain synchronization for large files.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Host computer only. Excludes Simulink Desktop Real-Time code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll files)

included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed ZIP file. Using this ZIP file, you can relocate, unpack,
and rebuild your project in another development environment where MATLAB is not installed.

See Also
Blocks
To Multimedia File | Video From Workspace | Video To Workspace | Image From File

Introduced before R2006a

 From Multimedia File

1-225



From Simulink Image
Unpack numeric matrix from Simulink image
Library: Computer Vision Toolbox / Utilities

Description
The From Simulink Image block converts Simulink image data to matrix data.

Ports
Input

Port_1 — Input signal
Simulink.ImageType

Input signal to the From Simulink Image block. The input is a Simulink image data type.
Data Types: Simulink.ImageType

Output

Port_1 — Output signal
matrix

Output signal from the From Simulink Image block. The output is a matrix or an array, depending on
the format of the input.

• M-by-N matrix — The input is a Grayscale image. M and N are the height and width of the
image, in pixels.

• M-by-N-by-C matrix — The input is an RGB or BGR image. M and N are the height and width of the
image, in pixels. C is the number of color channels.

Data Types: integer | single | double | Boolean

Parameters
Output dimensions — Dimensions of block output signal
[480 640 3] (default)

Specify the dimensions of the output image signal. The expression must be a three-element numeric
row vector of form: [Rows Columns Channels].

Programmatic Use
Block Parameter: ImageSize
Type: character vector
Value: character vector
Default: [480 640 3]

1 Blocks

1-226



Block Characteristics
Data Types double | single | integer | Boolean | image
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Supports C++ code generation.

See Also
To Simulink Image

Introduced in R2022a

 From Simulink Image

1-227



Gamma Correction
Apply or remove gamma correction to or from image or video stream
Library: Computer Vision Toolbox / Conversions

Description
The Gamma Correction block applies or removes gamma correction to or from an image or video
stream.

Ports
Input

I — Input image
matrix | array

Input image, specified as an M-by-N matrix or an M-by-N-by-C array, where C is the number of color
channels in the input image.
Dependencies

To enable this port, set the Operation parameter to Gamma.
Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

I' — Gamma-corrected input image
matrix | array

Gamma-corrected input image, specified as an M-by-N matrix or an M-by-N-by-C array, where C is the
number of color channels in the input image.
Dependencies

To enable this port, set the Operation parameter to De-gamma.
Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

Output

I' — Gamma-corrected output image
matrix | array

Gamma-corrected output image, returned as an M-by-N matrix or an M-by-N-by-C array, where C is
the number of color channels.

1 Blocks

1-228



Dependencies

To enable this port, set the Operation parameter to Gamma.
Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

I — Gamma-removed output image
matrix | array

Gamma-removed output image, returned as an M-by-N matrix or an M-by-N-by-C array, where C is
the number of color channels.

Dependencies

To enable this port, set the Operation parameter to De-gamma.
Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

Parameters
Operation — Block operation
Gamma (default) | De-gamma

Specify the gamma operation the block performs.

• Gamma — Apply gamma correction to the input image.
• De-gamma — Remove gamma correction from the input image.

Gamma — Gamma value
2.2 (default) | scalar

Specify the gamma as a value greater than or equal to 1. A value less than 1 encodes luminance
values in image and a value greater than 1 decodes luminance values in image, represented as
gamma compression and gamma expansion respectively.

Linear segment — Linear segment
on (default) | off

Select this parameter to define the gamma curve as a linear segment near the origin. For more
information, see “Gamma Correction Method” on page 1-230.

Break point — Break point value
0.018 (default) | scalar

Specify a scalar break point value, which indicates the I-axis value at the end of the gamma curve
linear segment. For more information, see “Gamma Correction Method” on page 1-230.

Dependencies

To enable this parameter, select the Linear segment parameter.

Block Characteristics
Data Types double | fixed pointa | integera | single

 Gamma Correction

1-229



Multidimensional
Signals

yes

Variable-Size Signals yes
a Supports word lengths less than or equal to 16 bits.

Algorithms
Gamma Correction Method

For input signals normalized between 0 and 1, gamma correction is defined by these equations. For
integers and fixed-point data types, these equations are generalized by applying scaling and offset
values specific to each data type.

SLS is the slope of the straight line segment. BP is the break point of the straight line segment, which
corresponds to the Break point parameter. FS is the slope-matching factor, which matches the slope
of the linear segment to the slope of the power function segment. CO is the segment offset, which
ensures that the linear segment and the power function segments connect. This figure shows the
slope of the straight line segment SLS and break point of the straight line segment BP for gamma and
de-gamma operations.

1 Blocks

1-230



By linearizing the input normalized signal, the block removes gamma correction as defined by this
equation.

Typical gamma values range from 1 to 3. Most LCD monitor gamma values range from 1.8 to 2.2.
Check with the manufacturer of your hardware to obtain its gamma value. This table shows the
gamma function parameters for different standards.

Standard Slope Break Point Gamma
CIE L* 9.033 0.008856 3
Recommendation ITU-R BT.709-3, Parameter Values
for the HDTV Standards for Production and
International Programme Exchange

4.5 0.018 20 9
sRGB 12.92 0.00304 2.4

References

[1] Poynton, Charles A. Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann Series
in Computer Graphics and Geometric Modeling. Amsterdam ; Boston: Morgan Kaufmann
Publishers, 2003.

 Gamma Correction

1-231



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Color Space Conversion

Functions
imadjust

Introduced before R2006a

1 Blocks

1-232



Gaussian Pyramid
Perform Gaussian pyramid decomposition
Library: Computer Vision Toolbox / Transforms

Description
The Gaussian Pyramid block computes Gaussian pyramid reduction or expansion to resize an image.
The image reduction process involves lowpass filtering and then downsampling the image pixels. The
image expansion process involves upsampling and then lowpass filtering the image pixels. You can
also use this block to build a Laplacian pyramid.

Ports
Input

I — Input image
scalar | vector | matrix | array

Input image, specified as a scalar, a vector, an M-by-N matrix, or an M-by-N-by-C array. C is the
number of color channels in the input image. To specify this input as a scalar or vector, you must set
the Operation parameter to Expand.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Output

Port_1 — Output image
scalar | vector | matrix | array

Output image, returned as a scalar, a vector, a matrix, or an array. The dimensions of the output
image are determined by the Operationand Pyramid level parameter values. For this port to return
a scalar or vector, you must set the Operation parameter to Reduce.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Operation — Select operation
Reduce (default) | Expand

Select the Gaussian pyramid operation as one of these methods:

• Reduce — The block applies a lowpass filter and then downsamples the input image.
• Expand — The block upsamples and then applies a lowpass filter to the input image.

 Gaussian Pyramid

1-233



Pyramid level — Image scaling factor
1 (default) | positive integer

Specify the factor of 2 by which to upsample or downsample each dimension of the image.

For an M-by-N input image, if you set the Operation parameter to Reduce and the Pyramid level to
1, the dimensions of the output image are ceil(M/2)-by-ceil(N/2).

For an M-by-N input image, if you set the Operation parameter to Expand, the dimensions of the
output image are [(M-1)2l+1]-by-[(N-1)2l+1], where the Pyramid level parameter l must be a
positive integer.

Coefficient source — Lowpass filter coefficient source
Default separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2] (default) | Specify via
dialog

Specify the lowpass filter coefficient source as Default separable filter [1/4-a/2 1/4 a
1/4 1/4-a/2] or Specify via dialog.

Coefficients for separable filter — Separable filter coefficient
[0.0625 0.25 0.375 0.25 0.0625] (default) | vector

Specify the separable filter coefficients as a vector.

Hidden coefficients — Hidden separable filter coefficients
[1/4-0.375/2 1/4 0.375 1/4 1/4-0.375/2] (default) | vector

Specify the hidden separable filter coefficients as a vector.

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Resize

Introduced before R2006a

1 Blocks

1-234



Histogram Equalization
Enhance contrast of images using histogram equalization
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Histogram Equalization block enhances the contrast of images. The block transforms the
intensity values in an image so that the histogram of the output image approximately matches a
specified histogram. By default, the block transforms the input image so that the histogram of the
output image is nearly flat.

Ports
Input

I — Input image
matrix

Input image, specified as a matrix of intensity values.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Hist — Target histogram
vector of integers

Target histogram for the output image, specified as a vector of integers. Each element of the vector
represents the desired count value for the corresponding bin. You must normalize the input vector
such that the sum of all the bin counts equals the number of pixels in the input image.

When the data type of the input image is single or double, the Hist port input must be the same
data type.

Dependencies

To enable this port, set these block parameters:

• Target histogram: User-defined
• Histogram source: Input port

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Port_1 — Output image
matrix

 Histogram Equalization

1-235



Output image, returned as a matrix of intensity values. The data type of the output image is the same
as the data type of the input image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Parameters
Target histogram — Type of desired histogram
Uniform (default) | User-defined

Specify the desired histogram type.

• Uniform — The block transforms the input image so that the histogram of the output image is
approximately flat.

• User-defined — The block transforms the input image so that the histogram of the output image
approximately matches the specified histogram.

Number of bins — Number of bins of target histogram
64 (default) | integer greater than one

Specify the number of bins for the target histogram. The block spaces the bins equally.

Dependencies

To enable this parameter, set the Target histogram parameter to Uniform.

Histogram source — Source of target histogram
Specify via dialog (default) | Input port

Specify the source of the target histogram as either Specify via dialog or Input port.

• Specify via dialog — Use the Histogram parameter to specify a vector of integer values
representing the desired counts of the equally spaced bins of the target histogram.

• Input port — Use the Hist input port to specify the target histogram.

Dependencies

To enable this parameter, set the Target histogram parameter to User-defined.

Note Normalize the input vector, specified using the selected Histogram source, such that the sum
of all the bin counts equals the number of pixels in the input image. The block does not display an
error if you do not normalize the vector.

Histogram — Bin counts of target histogram
ones(1,64) (default) | vector of integers

Specify the count for each bin of the target histogram. The sum of the bin counts must equal the
number of pixels in the input image.

Dependencies

To enable this parameter, set these block parameters:

1 Blocks

1-236



• Target histogram: User-defined
• Histogram source: Specify via dialog

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

References
[1] Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing: International Edition. 3rd

ed. Upper Saddle River, NJ: Pearson, 2008.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Contrast Adjustment

Functions
histeq | imadjust

Introduced before R2006a

 Histogram Equalization

1-237



Hough Lines
Find Cartesian coordinates of lines described by rho and theta pairs
Library: Computer Vision Toolbox / Transforms

Description
The Hough Lines block finds the points of intersection between the boundary lines of a reference
image and a line specified as a rho-theta pair. The block outputs Cartesian coordinates for the points
of intersection. The boundary lines indicate the left and right vertical boundaries and the top and
bottom horizontal boundaries of the reference image.

If the line specified by a rho-theta pair does not intersect two border lines in the reference image, the
block outputs the values, [0 0 0 0] for that line. This output value enables the next block in your
model to ignore the outputs for that line, as the Hough Lines block generally precedes a block that
draws a point or shape at each output intersection.

Ports
Input

Theta — Theta value
scalar | vector

Theta value, specified as a scalar or M-element vector. M is the number of specified lines. Each
element represents the rotation angle of the corresponding line in radians.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Rho — Rho value
scalar | vector

Rho value, specified as a scalar or M-element vector. M is the number of specified lines. Each element
that represents the distance of the corresponding line from the top-left coordinate origin of the image
at the angle specified by the corresponding element of Theta.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Ref I — Reference image
matrix

Reference image, specified as an M-by-N matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

1 Blocks

1-238



Output

Pts — Intersection points
matrix

Intersection points, returned as an M-by-4 matrix of coordinate values, where M is the number of
input lines.

For example, consider a Hough Lines block with two-element vectors as the theta and rho inputs,
describing two lines.

The block outputs a 2-by-4 matrix, in which each row consists of two xy-pairs of coordinates that
describe the points at which the corresponding line intersects with the boundary lines of the
reference image.

[x11 y11 x12 y12;

x21 y21 x22 y22]

This figure shows the line described by the first rho-theta pair intersecting the boundaries of the
reference image at [x11 y11 x12 y12] and the line described by the second pair intersecting the
boundaries at [x21 y21 x22 y22].

 Hough Lines

1-239



Data Types: int32

Parameters
Sine value computation method — Sine value computation method
Table lookup (default) | Trigonometric function

You can specify one of these options.

• Table lookup — Before the simulation starts, the block computes and stores the trigonometric
values required to calculate the intersections of the lines. In this case, the block requires
additional memory.

• Trigonometric function — The block computes the sine and cosine values required to
calculate the intersections of the lines during the simulation.

Theta resolution (radians) — Theta resolution
pi/180 (default) | positive scalar

Specify the spacing of the theta-axis. Value must be greater than 0 and less than pi/2.

Dependencies

To enable this parameter, set the Sine value computation method parameter to Table lookup.

Block Characteristics
Data Types Booleana | double | fixed pointb, c | integerd | single
Multidimensional
Signals

no

1 Blocks

1-240



Variable-Size Signals yes
a This data type is only supported at the input port Ref1.
b Generated code will be restricted to MATLAB host computers when you set the FFT implementation parameter to FFTW,

or when the transform length is not a power of two.
c Input ports Theta and Rho support signed fixed-point data types with word lengths less than or equal to 32, while Ref1

supports signed and unsigned fixed-point data types.
d The output port supports 32-bit signed integers only. Input ports Theta and Rho support signed integers, while Ref1

supports signed and unsigned integers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Find Local Maxima | Hough Transform

Introduced before R2006a

 Hough Lines

1-241



Hough Transform
Find lines in images

Library
Transforms

visiontransforms

Description
Use the Hough Transform block to find straight lines in an image. The block outputs the Hough space
matrix and, optionally, the rho-axis and theta-axis vectors. Peak values in the matrix represent
potential straight lines in the input image. Generally, the Hough Transform block precedes the Hough
Lines block which uses the output of this block to find straight lines in an image. You can instead use
a custom algorithm to locate peaks in the Hough space matrix in order to identify potential straight
lines.

Port Input/Output Supported Data Types Supported
Complex Values

BW Matrix that represents a binary
image

Boolean No

Hough Parameter space matrix • Double-precision floating point
• Single-precision floating point
• Fixed point (unsigned, fraction length

equal to 0)
• 8-, 16-, 32-bit unsigned integer

No

Theta Vector of theta values • Double-precision floating point
• Single-precision floating point
• Fixed point (signed)
• 8-, 16-, 32-bit signed integer

No

Rho Vector of rho values Same as Theta port No

Parameters
Theta resolution (radians)

Specify the spacing of the Hough transform bins along the theta-axis.

1 Blocks

1-242



Rho resolution (pixels)
Specify the spacing of the Hough transform bins along the rho-axis.

Output theta and rho values
If you select this check box, the Theta and Rho ports appear on the block. The block outputs
theta and rho-axis vector values at these ports.

Output data type
Specify the data type of your output signal.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Sine table
Choose how to specify the word length of the values of the sine table:

• When you select Binary point scaling, you can enter the word length of the sine table
values, in bits.

• When you select Slope and bias scaling, you can enter the word length of the sine table
values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they
always saturate and round to Nearest.

Rho
Choose how to specify the word length and the fraction length of the rho values:

• When you select Binary point scaling, you can enter the word length and the fraction
length of the rho values, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the rho values. All signals in Computer Vision Toolbox blocks have a bias of 0.

Product output
. Use this parameter to specify how to designate the product output word and fraction lengths:

• When you select Binary point scaling, you can enter the word length and the fraction
length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the product output. All signals in Computer Vision Toolbox blocks have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the product output.
Accumulator

Use this parameter to specify how to designate this accumulator word and fraction lengths:

• When you select Same as product output, these characteristics match the characteristics
of the product output.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the accumulator. All signals in Computer Vision Toolbox blocks have a bias of 0.

 Hough Transform

1-243



See “Multiplication Data Types” for illustrations depicting the use of the accumulator data
type in this block.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

Hough output
Choose how to specify the word length and fraction length of the Hough output of the block:

• When you select Binary point scaling, you can enter the word length of the Hough
output, in bits. The fraction length always has a value of 0.

• When you select Slope and bias scaling, you can enter the word length, in bits, of the
Hough output. The slope always has a value of 0. All signals in Computer Vision Toolbox blocks
have a bias of 0.

Theta output
Choose how to specify the word length and fraction length of the theta output of the block:

• When you select Binary point scaling, you can enter the word length and the fraction
length of the theta output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the theta output. All signals in Computer Vision Toolbox blocks have a bias of 0.

Algorithm
The Hough Transform block implements the Standard Hough Transform (SHT). The SHT uses the
parametric representation of a line:

The upper-left corner pixel is assumed to be at x=0,y=0.

The variable rho indicates the perpendicular distance from the origin to the line.

The variable theta indicates the angle of inclination of the normal line from the x-axis. The range of
theta is −π

2 ≤ θ < + π
2  with a step-size determined by the Theta resolution (radians) parameter.

The SHT measures the angle of the line clockwise with respect to the positive x-axis.

1 Blocks

1-244



The Hough Transform block creates an accumulator matrix. The (rho, theta) pair represent the
location of a cell in the accumulator matrix. Every valid (logical true) pixel of the input binary image
represented by (R,C) produces a rho value for all theta values. The block quantizes the rho values to
the nearest number in the rho vector. The rho vector depends on the size of the input image and the
user-specified rho resolution. The block increments a counter (initially set to zero) in those
accumulator array cells represented by (rho, theta) pairs found for each pixel. This process validates
the point (R,C) to be on the line defined by (rho, theta). The block repeats this process for each
logical true pixel in the image. The Hough block outputs the resulting accumulator matrix.

See Also
Find Local Maxima Computer Vision Toolbox
Hough Lines Computer Vision Toolbox
hough Image Processing Toolbox
houghlines Image Processing Toolbox
houghpeaks Image Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Detect and Track Face”
“Rotation Correction”

Introduced before R2006a

 Hough Transform

1-245



Image Complement
Compute the complement of pixel values in binary or intensity images
Library: Computer Vision Toolbox / Conversions

Description
The Image Complement block computes the complement of a binary or intensity image.

For binary images, the block replaces pixel values equal to 0 with 1 and pixel values equal to 1 with
0. In the output image, black and white are reversed. For intensity images, the block subtracts each
pixel value from the maximum value that can be represented by the input data type and outputs the
difference. In the output image, dark areas become lighter and light areas become darker.

For example, suppose the input pixel values are given by x(i) and the output pixel values are given by
y(i). If the data type of the input is boolean, double or single, the block outputs y(i) = 1.0-x(i). If the
input is an 8-bit unsigned integer, the block outputs y(i) = 255-x(i).

Ports
Input

Port_1 — Input image
matrix

Specify an input image as a matrix of intensity values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Output

Port_1 — Output image
matrix

The complement of the binary or intensity input image is returned as a matrix of intensity values. The
size and data type of the output image are the same as those of the input image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

1 Blocks

1-246



Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Autothreshold | Chroma Resampling | Color Space Conversion | Demosaic | Gamma Correction |
Image Data Type Conversion | Image Pad

Introduced before R2006a

 Image Complement

1-247



Image Data Type Conversion
Convert and scale input image to specified output data type
Library: Computer Vision Toolbox / Conversions

Description
The Image Data Type Conversion block converts the data type of the input image to the specified data
type and scales the pixel values to the dynamic range of the output data. To convert between data
types without scaling, use the Data Type Conversion block.

The behavior of the block changes depending on the input and output data types of the image.

• When converting between floating-point data types, the block casts the input values into the
output data type and clips values below or above the range of the output data type to 0 or 1,
respectively.

• When converting to the Boolean data type, the block maps 0 values to 0 (false) and all other
values to 1 (true).

• Between all other data types, the block casts and scales the input data type values into the
dynamic range of the output data type. For double- and single-precision floating-point data types,
the dynamic range is between 0 and 1. For fixed-point data types, the dynamic range is between
the minimum and maximum pixel values of that data type.

Ports
Input

I — Input image
matrix | array

Input image, specified as an M-by-N matrix or an M-by-N-by-C array, where C is the number of color
channels in the input image.
Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

Output

Port_1 — Output image
matrix | array

Output image, returned as an M-by-N matrix or an M-by-N-by-C array, where C is the number of color
channels in the output image.
Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

1 Blocks

1-248



Parameters
Output data type — Output data type
double (default) | single | int8 | uint8 | int16 | uint16 | boolean | Fixed-point | Inherit
via back propagation

Specifies the data type of your output signal.

Signed — Signed output
on (default) | off

Specifies the fixed-point data type of your output signal as signed.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Word length — Word length
16 (default) | scalar

Specifies the word length of your fixed-point output.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Fraction length — Fraction length
0 (default) | scalar

Specifies the fraction length of your fixed-point output.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Block Characteristics
Data Types Boolean | double | fixed pointa | integera | single
Multidimensional
Signals

yes

Variable-Size Signals yes
a Supports word lengths less than or equal to 16 bits.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
autothreshold | Color Space Conversion

 Image Data Type Conversion

1-249



Introduced before R2006a

1 Blocks

1-250



Image To Matrix
Converts Simulink image data to matrix data
Library: Computer Vision Toolbox OpenCV Interface for Simulink

Description
The Image To Matrix block converts Simulink image data to matrix data.

Ports
Input

Port_1 — Input signal
Simulink.ImageType

Input signal to the Image To Matrix block. The input is a Simulink image data type.
Data Types: Simulink.ImageType

Output

Port_1 — Output signal
matrix

Output signal from the Image To Matrix block. The output is a matrix or an array, depending on the
format of the input.

• M-by-N matrix — The input is a Grayscale image. M and N are the height and width of the
image, in pixels.

• M-by-N-by-C matrix — The input is an RGB or BGR image. M and N are the height and width of the
image, in pixels. C is the number of color channels.

Data Types: uint8 | uint16 | int8 | int16 | single | double

Parameters
Rows — Number of rows in image data
'480' (default) | positive integer

Specify the number of rows in the image data as a positive integer.

Programmatic Use
Block Parameter: Rows
Type: double
Value: positive integer
Default: '480'

 Image To Matrix

1-251



Columns — Number of columns in image data
'640' (default) | positive integer

Specify the number of columns in the image data as a positive integer.

Programmatic Use
Block Parameter: Columns
Type: double
Value: positive integer
Default: '640'

Channels — Number of color channels or samples for each pixel
3 (default) | 1

Specify the number of color channels or samples for each pixel in the array as 1 or 3. The number of
channels must correspond to the number of color channels in the color format of the image data.
These are the values of Channels for the supported color formats:

Color Format Channels
Grayscale 1
RGB 3
BGR 3

Programmatic Use
Block Parameter: Channels
Type: double
Value: positive integer
Default: '3'

Block Characteristics
Data Types double | single | uint8 | uint16 | int8 | int16 | int32 | image
Direct Feedthrough Yes
Multidimensional
Signals

Yes

Variable-Size Signals No

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Supports C++ code generation.

See Also
Matrix To Image | From Simulink Image

Topics
“Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink”

1 Blocks

1-252



Introduced in R2021b

 Image To Matrix

1-253



Image From File
Read image from file location
Library: Computer Vision Toolbox / Sources

Description
The Image From File block reads an image from a specified file location and imports it to the
Simulink workspace. The input file can contain a binary image, grayscale image, or color image.

Ports
Output

Image — Output image
matrix | 3-D array

Output image, returned as a matrix or 3-D array. If the image read is a binary or grayscale image, the
output is an M-by-N matrix. If the image read is a color image, the output is an M-by-N-by-3 array.

Dependencies

To enable this port, set the Image signal parameter to One multidimensional signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

R — Red color component of image
matrix

Red color component of the image, returned as an M-by-N matrix. The block returns this output if the
input is a color image. If the Image signal parameter is set to Separate color signals and the input
image is grayscale, the block returns only this port.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

G — Green color component of image
matrix

Green color component of the image, returned as an M-by-N matrix. The block returns this output
only if the input is a color image.

1 Blocks

1-254



Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

B — Blue color component of image
matrix

Blue color component of the image, returned as an M-by-N matrix. The block returns this output only
if the input is a color image.
Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
File Name — Input image
peppers.png (default) | file name

Specify the name of the file that contains the image to read. If the file is not on the MATLAB path,
click Browse and navigate to the file. For the list of supported file formats, see the imread function
reference page in the MATLAB documentation.

Note The File Name parameter supports URL paths.

Sample time — Sample time for block execution
inf (default) | Positive scalar | Vector

Specify the sample time for block execution. Vector length must be 2 which represents [Period,
Offset] values where offset should be less than period and non-negative. Given the default value of inf,
the block outputs a matrix for grayscale and binary. For an input grayscale or color image, the output
is a 3-D or 4-D array, respectively.

The value of the added dimension is equal to floor((Tsim/Ts)+1).

Tsim is the simulation time and Ts is the sample time, for block execution. For example, if the input
image is a 256-by-256 matrix, the simulation time is 10 sec, and the sample time is set to 0.5 sec,
then the output is a 256-by-256-by-21 array.

Image signal — Signal returned by block
One multidimensional signal (default) | Separate color signals

Specify how the block returns the image read from the file.

• One multidimensional signal— The block has one output port, which returns the entire
image.

• Separate color signals — The block has three output ports, one for each color channel,
which returns the individual color channels of the image.

 Image From File

1-255



Output port labels — Output port labels
R|G|B (default) | port names

Specify the labels for the output ports. Each label can be any value. Use vertical bar character, |, as a
delimiter between the names of all the output ports.

Dependencies

To enable this parameter, set the Image signal parameter to Separate color signals.

Data type

Output data type — Data type of output image
Inherit from input image (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
boolean | Fixed-point | User-defined | Inherit via back propagation

Specify the data type of the output image. If the input image data type,differs from the selected value
of the Output data type parameter, the block scales the pixel values, adds an offset to the pixel
values so that they are in the dynamic range of the new data type, or both. Double- and single-
precision floating-point pixel values must be in the range [0 1].

Signed — Signed fixed-point data type
on (default) | off

Select this parameter if the input image data type is signed fixed-point.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Word length — Bits in fixed-point data type
16 (default) | positive scalar

Specify the word length, in bits, of the fixed-point output data type. The value should be less than 32.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Set fraction length in output to — Scaling factor of fixed-point data type
User-defined (default) | Best precision

Specify the scaling factor of the fixed-point output as one of these options.

• Best precision— The output scales automatically such that the output signal has the best
possible precision.

• Choose User-defined— Specify the output scaling in the Fraction length parameter.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Fractional length — Fractional bits
15 (default) | scalar

Specify the number of bits to the right of the decimal point.

1 Blocks

1-256



Dependencies

To enable this port ,set the Output data type parameter to Fixed-point, and set the Set fraction
length in output parameter to User-defined.

User-defined data type — User-defined fixed-point data type
uint(8) (default) | User-defined fixed-point data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the fixdt
function.

Dependencies

To enable this parameter, set the Output data type parameter to User-defined.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
From Multimedia File | Image From Workspace | To Video Display | Video From Workspace | Video
Viewer

Functions
im2double | im2uint8 | imread

Introduced before R2006a

 Image From File

1-257



Image From Workspace
Import image from MATLAB workspace
Library: Computer Vision Toolbox / Sources

Description
The Image From Workspace block imports an image from a matrix, 3-D array, MATLAB function, or
variable stored in theMATLAB workspace, to the Simulink workspace.

Ports
Output

Image — Output image
matrix | 3-D array

Output image, returned as a matrix or 3-D array. If the imported image is binary or grayscale image,
the output is a matrix of size M-by-N. If the imported image is a color image, the output is a 3-D array
of size M-by-N-by-3.

Dependencies

To enable this port ,set the Image signal parameter to One multidimensional signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

R — Red color component of image
matrix

Red color component of the image, returned as an M-by-N matrix. The block returns this output if the
input is a color image. If the Image signal parameter is set to Separate color signals and the
input image is binary or grayscale, the block returns only this port

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

G — Green color component of image
matrix

Green color component of the image, returned as an M-by-N matrix. The block returns this output
only if the input is a color image.

1 Blocks

1-258



Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

B — Blue color component of image
matrix

Blue color component of the image, returned as an M-by-N matrix. The block returns this output only
if the input is a color image.
Dependencies

To enable this port ,set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Main

Value — Image to be imported
checker_board(10) (default) | vector | matrix | 3-D array | MATLAB workspace variable |
MATLAB function

Specify the image as a vector, matrix, 3-D array, function, or MATLAB workspace variable. The value
parameter can be:

• Vector — The value given to the Value parameter can be a row vector or column vector
• 3-D numeric array — The value given to the Value parameter can be 3-D array, which is generated

using MATLAB functions
• MATLAB workspace variable — The value given to the Value parameter can be a variable name,

which is MATLAB workspace variable
• MATLAB function — The value given to the Value parameter can be a MATLAB function with
specified input arguments to generate a numeric array

Sample time — Sample time for block execution
inf (default) | positive scalar | Vector

This parameter specifies the sample time for block execution. Vector length must be 2 which
represents [Period, Offset] values where offset should be less than period and non-negative. Given the
default value of inf, the block outputs a matrix for grayscale and binary. The output is 3-D or 4-D, if
the input image is a gray scale or color image respectively.

The value of the added dimension is equal to floor((Tsim/Ts)+1)

Tsim is the simulation time and Ts is the sample time, for block execution. For example, if the input
image is a 256-by-256 matrix, the simulation time is 10 sec and the sample time is set to 0.5 sec, then
the output is a 256-by-256-by-21 array.

Image signal — Signal returned by block
One multidimensional signal (default) | Separate color signals

 Image From Workspace

1-259



Specify how the block returns the image read from the MATLAB workspace.

• One multidimensional signal— The block has one output port, Image, that returns the
entire image.

• Separate color signals — The block has an output port for each color channel. Each port
returns a single color channel of the image.

Output port labels — Output port labels
R|G|B (default) | port names

Specify labels for the output ports. Each label can be any value. Use the vertical bar character, |, as a
delimiter to name all the output ports.

Dependencies

To enable this parameter, set the Image signal parameter to Separate color signals.

Data type

Output data type — Data type of the output image
Inherit from Value (default) | double | single | int8 | uint8 | int16 | uint16 | int32 |
uint32 | boolean | Fixed-point | User-defined | Inherit via back propagation | ...

Specify the data type of the output image. If the data type of the imported image, specified in the
Value parameter, differs from the value of the Output data type parameter, the block scales the
pixel values, adds an offset to the pixel values so that they are in the dynamic range of the new data
type, or does both. Double- and single-precision floating-point pixel values must be in the range of [0,
1].

Signed — Signed fixed-point data type
on (default) | off

Select this parameter if the input image data type is signed fixed-point.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Word length — Bits in fixed-point data type
16 (default) | positive scalar

Specify the word length, in bits, of the fixed-point output data type. The value should be less than 32.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Set fraction length in output to — Scaling factor of the fixed-point
User-defined (default) | Best precision

Specify the scaling factor of the fixed-point output by either of the following two methods:

• Best precision— The output scaling automatically such that the output signal has the best
possible precision.

• User-defined — The the output scaling in the Fraction length parameter.

1 Blocks

1-260



Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point.

Fractional length — Fractional bits
15 (default) | scalar

Specify the number of bits to the right of the decimal point.

Dependencies

To enable this parameter, set the Output data type parameter to Fixed-point, and set the Set
fraction length in output parameter to User-defined.

User-defined data type — User-defined fixed-point data type
sfix(16) (default) | user-defined fixed-point data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the fixdt
function.

Dependencies

To enable this parameter, set the Output data type parameter to User-defined.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
From Multimedia File | To Video Display | Video From Workspace | Video Viewer

Functions
im2double | im2uint8

Introduced before R2006a

 Image From Workspace

1-261



Image Pad
Pad image by adding rows, columns, or both
Library: Computer Vision Toolbox / Utilities

Description
The Image Pad block expands the dimensions of an image by padding its rows, columns, or both.

Ports
Input

I — Input image
matrix | array

Input image, specified as an M-by-N matrix or an M-by-N-by-P array, where P is the number of color
planes in the input image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

PVal — Pad value
scalar

Pad value, specified as a scalar. The block uses this value for each element of the rows or columns
added to the input image.

Dependencies

To enable this port, set the Method parameter to Constant and the Pad value source parameter to
Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Port_1 — Output image
matrix | array

Output image, returned as a padded matrix or an array. The dimensions of the output image are
specified by the Specify parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

1 Blocks

1-262



Parameters
Method — Padding method
Constant (default) | Replicate | Symmetric | Circular

Pad the image using one of these methods:

• Constant — Pad the image with a constant value. See “Pad with Constant Value” on page 1-266.
• Replicate — Pad the image by repeating the border values of the input image. See “Pad by

Repeating Border Values” on page 1-267.
• Symmetric — Pad the image using a mirror image of the input data. See “Pad with Mirror Image”

on page 1-268.
• Circular — Pad the image using a circular repetition of the elements in the input image. See

“Pad Using Circular Repetition of Elements” on page 1-268.

Pad value source — Source of constant pad value
Specify via dialog (default) | Input port

Specify the padding source as Specify via dialog or Input port.

• Specify via dialog — Specify a pad value using the Pad Value parameter.
• Input port — Specify a pad value using the PVal input port.

Dependencies

To enable this parameter, set the Method parameter to Constant.

Pad value — Pad value
0 (default) | scalar

Specify a scalar value with which to pad the image.

Dependencies

To enable this parameter, set the Method parameter to Constant and the Pad value source
parameter to Specify via dialog.

Specify — Padding size specification format
Pad size (default) | Output size

Select how to specify the size of the image padding from these two options:

• Pad size — Specify the number of columns and rows with which to pad the image, using the
Number of added columns and Number of added rows parameters, respectively.

• Output size — Specify the size of the padded output image using a combination of the Output
row mode, Number of output rows, Output column mode, and Number of output columns
parameters.

Add columns to — Column padding location
Left (default) | Right | Both left and right | No padding

Select which sides of the input image to pad with additional columns:

• Left — Add columns to the left side of the input image.

 Image Pad

1-263



• Right — Add columns to the right side of the input image.
• Both left and right — Add columns to both the left and right sides of the input image.
• No padding — Do not add columns to the input image.

Output column mode — Output column sizing method
User-specified (default) | Next power of two

Specify the number of columns in the output image using one of these options:

• User-specified — Specify the number of columns in the output image using the Number of
output columns parameter.

• Next power of two — Add columns to the input image until the total number of columns is a
power of two.

Dependencies

To enable this parameter, set the Specify parameter to Output size.

Number of output columns — Number of columns in output image
10 (default) | positive integer

Specify the number of columns in the output image as a positive integer M. If the value of this
parameter is less than the number of columns in the input image, then the output image contains only
the last M columns of the input image.
Dependencies

To enable this parameter, set the Specify parameter to Output size and the Output column
mode parameter to User-specified.

Number of added columns — Number of columns added to input image
2 (default) | positive integer | two-element vector of positive integers

Specify how many columns to add to the input signal. The behavior of this parameter changes
depending on whether you are padding only one side or both sides of the image.

Add columns to Number of added columns Description
Left P Add P columns to the left side of

the input image.
Right Q Add Q columns to the right side

of the input image.
Both left and right [P Q] Add P columns to the left side

and Q columns to the right side
of the input image.

Dependencies

To enable this parameter, set the Specify parameter to Pad size and the Add columns to
parameter to Left, Right, or Both left and right.

Add rows to — Row padding location
Top (default) | Bottom | Both top and bottom | No padding

Select which sides of the input image to pad with additional rows:

1 Blocks

1-264



• Top — Add rows to the top of the input image.
• Bottom — Add rows to the bottom of the input image.
• Both top and bottom — Add rows to both the top and bottom of the input image.
• No padding — Do not add rows to the input image.

Output row mode — Output row sizing method
User-specified (default) | Next power of two

Specify the number of rows in the output image using one of these options:

• User-specified — Specify the number of rows in the output image using the Number of
output rows parameter.

• Next power of two — Add rows to the input image until the total number of rows is a power of
two.

Dependencies

To enable this parameter, set the Specify parameter to Output size.

Number of output rows — Number of rows in output image
12 (default) | positive integer

Specify the number of rows in the output image as a positive integer N. If the value of this parameter
is less than the number of rows in the input image, then the output image contains only the last N
rows of the input image.
Dependencies

To enable this parameter, set the Specify parameter to Output size and the Output row mode
parameter to User-specified.

Number of added rows — Number of rows added to input image
[2 3] (default) | positive integer | two-element vector of positive integers

Specify how many rows to add to the input signal. The behavior of this parameter changes depending
on whether you are padding only one side or both sides of the image.

Add rows to Number of added rows Description
Top R Add R rows to the top of the

input image.
Bottom S Add S rows to the bottom of the

input image.
Both top and bottom [R S] Add R rows to the top and S

rows to the bottom of the input
image.

Dependencies

To enable this parameter, set the Specify parameter to Pad size and the Add rows to parameter to
Top, Bottom, or Both top and bottom.

Action when truncation occurs — Action when input signal is truncated
None (default) | Warning | Error

 Image Pad

1-265



You can specify how the block behaves when the input signal is truncated as one of these options:

• None — Does not notify you when the signal is truncated.
• Warning — Displays a warning message in the MATLAB command window when the input signal

is truncated.
• Error — Displays an error dialog box and terminates the simulation when the input signal is

truncated.

Dependencies

To enable this parameter, set the Specify parameter to Output size.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Pad with Constant Value

When padding an image with a constant value, every element of the rows and columns the Image Pad
block adds to the input image is a specified scalar value.

If you want to pad each of your input signal with three initial values equal to 0, and this is how your
input signal is defined:

Specify these parameters for the Image Pad block:

• Method — Constant
• Pad value source — Specify via dialog
• Pad value — 0
• Specify — Output size
• Add columns to — Left
• Output column mode — User-specified
• Number of output columns — 6
• Add rows to — No padding

The Image Pad block outputs this signal:

1 Blocks

1-266



Pad by Repeating Border Values

When padding an image with the Method parameter set to Replicate, the Image Pad block
replicates border values of the input signal across all directions.

If you want to pad your input signal with its border values and this is how your input signal is defined:

Specify these parameters for the Image Pad block:

• Method — Replicate
• Specify — Pad size
• Add columns to — Both left and right
• Number of added columns — 2
• Add rows to — Both top and bottom
• Number of added rows = [1 3]

The Image Pad block outputs this signal:

The border values of the input signal are replicated on the top, bottom, left, and right of the input
signal, so that the output is a 7-by-7 matrix. The values in the corners of this output matrix are
determined by replicating the border values of the matrices on the top, bottom, left, and right sides of
the original input signal.

 Image Pad

1-267



Pad with Mirror Image

When padding an image with the Method parameter set to Symmetric, the Image Pad block flips the
original input matrix and each matrix it creates, to populate across all directions of the input signal.

If you want to pad your input signal using its mirror image and this is how your input signal is
defined:

Specify these parameters for the Image Pad block:

• Method — Symmetric
• Specify — Pad size
• Add columns to — Both left and right
• Number of added columns — [5 6]
• Add rows to — Both top and bottom
• Number of added rows — 2

The Image Pad block outputs this signal:

The block flips the original input matrix and each matrix it creates about their top, bottom, left, and
right sides to populate the 7-by-13 output signal. For example, the block flips the input matrix about
its right side to create the matrix directly to its right, but flips that second matrix about its bottom to
create the matrix below it.

Pad Using Circular Repetition of Elements

When padding an image with the Method parameter set to Circular, the Image Pad block repeats
the values of the input signal in a circular pattern across all directions.

If you want to pad your input signal using a circular repetition of its values and this is how your input
signal is defined:

1 Blocks

1-268



Specify these parameters for the Image Pad block:

• Method — Circular
• Specify — Output size
• Add columns to — Both left and right
• Number of output columns — 9
• Add rows to — Both top and bottom
• Number of output rows — 9

The Image Pad block outputs this signal:

The block repeats the values of the input signal in a circular pattern to populate the 9-by-9 output
matrix.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Selector | Submatrix

Functions
imcrop

Introduced in R2007a

 Image Pad

1-269



Insert Text
Draw text on images or video frames
Library: Computer Vision Toolbox / Text & Graphics

Description
The Insert Text block draws formatted text on an input image or video stream. The block produces
stylized text bitmaps using the open-source font engine Free Type 2.3.5 library. For more information
about the library, see The FreeType Project website.

Note This block supports only ASCII characters.

This block enables you to draw:

• A single instance of text
• Multiple instance of the same text
• Multiple instances of text, with different text at each location

Ports
Input

Image — Input image
matrix | array

Input image or video, specified as an M-by-N matrix, M-by-N-by-T array, M-by-N-by-C array, or M-by-
N-by-C-by-T array. T is the number of frames in a video or image sequence, and C is the number of
color channels.

Dependencies

To enable this port, set the Image signal parameter to One multidimensional signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

R — Red color component of input image
matrix | array

Red color component of the input image or video, specified as an M-by-N matrix or M-by-N-by-T array,
where T is the number of frames in the input video.

Note Inputs to the R, G, and B ports must have the same dimensions and data type.

1 Blocks

1-270

https://freetype.org/


Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

G — Green color component of input image
matrix | array

Green color component of the input image or video, specified as an M-by-N matrix or M-by-N-by-T
array, where T is the number of frames in the input video.

Note Inputs to the R, G, and B ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

B — Blue color component of input image
matrix | array

Blue color component of the input image or video, specified as an M-by-N matrix or M-by-N-by-T
array, where T is the number of frames in the input video.

Note Inputs to the R, G, and B ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Select — Select text string
positive integer

Select text string, specified as a positive integer. When the value of the Text parameter is a cell array
of character vectors, the Insert Text block displays the text string from only the cell indicated by the
input value of the Select port. Input to this port must be in the range from 1 to the number of text
strings in the cell array, where 1 indicates the first character vector.

Dependencies

To enable this port, specify the Text parameter as a cell array of character vectors, such as
{'Text1','Text2'}.
Data Types: single | double

Color — Text color value
scalar | vector | matrix

Text color value, specified as a scalar, vector or matrix. The data type of the input image determines
the range of color values. For example, a color value for a floating-point input image data type must

 Insert Text

1-271



be in the range [0, 1]. For an input image with a uint8 data type, the value must be in the range [0,
255]. The shape of the input to this port depends on whether the input signal is intensity-based or
color.

• Intensity signal — Specify Color as either a scalar intensity value, in which case the block applies
the intensity to all text strings, or as a vector of intensity values of length equal to the number of
text strings specified to the Text parameter.

• Color signal — Specify Color as either a three-element vector that defines the color of all text
strings as an RGB triplet, or an S-by-3 matrix of color values, where S is the number of text strings
specified to the Text parameter.

Note The input to this port must be of the same data type as the input image.

Dependencies

To enable this port, set the Color value source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Location — Location index
vector | matrix

Location index, a two-element vector or an S-by-2 matrix, specifies the coordinates of input image at
which to insert the text. If specified as a two-element vector, the first element represents the row and
the second element represents the column of the image at which to insert the character vector. If
specified as an S-by-2 matrix, each row contains the row and column indices of a location in the
image at which to display the text.
Dependencies

To enable this port, set the Location source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Opacity — Opacity factor
scalar | vector

Opacity factor, specified as a scalar or a vector. If specified as a scalar, the opacity factor applies to all
text strings. If specified as a vector of opacity values, the length of the vector must be equal to the
number of text strings specified in the Text parameter. Each element of the opacity factor can range
from 0 to 1.
Dependencies

To enable this port, set the Opacity source parameter to Input port.
Data Types: single | double

Variables — Text variable values
scalar | vector

Text variable values, specified as scalar or vector. The block replaces the format specifications in the
Text parameter, such as %d, %f, or %s, with the elements of this input. Use the %s option to specify a
set of text strings separated with a value 0 for the block to display simultaneously at different
locations. For example, to insert two strings, use a Constant block, and specify its value to

1 Blocks

1-272



[uint8('Text1') 0 uint8('Text2')] at Variables input port. For more information on format
specifiers see sprintf.
Dependencies

To enable this port, enter ANSI C printf-style format specifications, such as %d, %f, or %s to the
Text parameter.
Data Types: uint8 | double

Output

Port_1 — Output image or video
matrix | array

Output image or video, returned as an M-by-N matrix, M-by-N-by-T array, M-by-N-by-C array, or M-by-
N-by-C-by-T array. T is the number of frames in a video or image sequence, and C is the number of
color channels.
Dependencies

To enable this port, set the Image signal parameter to One multidimensional signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

R — Red color component of output image
matrix | array

Red color component of the output image or video, returned as an M-by-N matrix or M-by-N-by-T
array, where T is the number of frames in the output video.
Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

G — Green color component of output image
matrix | array

Green color component of the output image or video, returned as an M-by-N matrix or M-by-N-by-T
array, where T is the number of frames in the output video.
Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

B — Blue color component of output image
matrix | array

Blue color component of the output image or video, returned as an M-by-N matrix or M-by-N-by-T
array, where T is the number of frames in the output video.
Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

 Insert Text

1-273



Parameters
Main

Text — Text to insert
'Text' (default) | string | scalar | character vector | cell array of character vectors

Specify the text to insert into the input image.

• You can specify this parameter as either a single text string or character vector, such as 'Text1',
or as a cell array of character vectors, such as {'Text1','Text2'}. If you specify a cell array,
then you must also specify which text string to display by using the Select input port.

• You can include ANSI C printf-style format specifications, such as 'Text %d'. You must then
specify their values by using the Variable input port. Supported format specifiers include %d, %i,
%u, %c, %f, %o, %x, %X, %e, %E, %g, and %G. For more information on format specifiers see
sprintf.

Color value source — Source of text color
Specify via dialog (default) | Input port

Select a text color source from these options: Specify via dialog and Input port. If you set
this parameter to Specify via dialog, then you must specify text colors by using the Color value
parameter. If you set this parameter to Input port, then you must specify text colors by using the
Color input port.

Color value — Text color value
[0 0 0] (default) | scalar | vector | matrix

Text color value, specified as a scalar, vector or matrix. The data type of the input image determines
the range of color values. For example, a color value for a floating-point input image data type must
be in the range [0, 1]. For an input image with a uint8 data type, the value must be in the range [0,
255]. The size of the text color value depends on whether the input signal is intensity-based or color.

• Intensity signal — Specify Color as either a scalar intensity value, in which case the block applies
the intensity to all text strings, or as a vector of intensity values of length equal to the number of
text strings specified to the Text parameter.

• Color signal — Specify Color as either a three-element vector that defines the color of all text
strings as an RGB triplet, or an S-by-3 matrix of color values, where S is the number of text strings
specified to the Text parameter.

Dependencies

To enable this parameter, set the Color value source parameter to Specify via dialog.

Location source — Source of text location indices
Specify via dialog (default) | Input port

Select a text location source from these options: Specify via dialog and Input port. If you set
this parameter to Specify via dialog, then you must specify text locations by using the Location
[x y] parameter. If you set this parameter to Input port, then you must specify text locations by
using the Location input port.

Location [x y] — Text location index
[1,1] (default) | vector | matrix

1 Blocks

1-274



Text location index, a two-element vector or an S-by-2 matrix, specifies the coordinates of input image
at which to insert the text. If specified as a two-element vector, the first element represents the row
and the second element represents the column of the image at which to insert the character vector. If
specified as an S-by-2 matrix, each row contains the row and column indices of a location in the
image at which to display the text.

Dependencies

To enable this parameter, set the Location source parameter to Specify via dialog.

Opacity source — Source of opacity factor
Specify via dialog (default) | Input port

Select the opacity factor source from these options: Specify via dialog and Input port. If you
set this parameter to Specify via dialog, then you must specify opacity factor by using the
Opacity parameter. If you set this parameter to Input port then you must specify opacity factor by
using the Opacity input port.

Opacity — Opacity factor
1 (default) | scalar | vector

Opacity factor, specified as a scalar or a vector. If specified as a scalar, the opacity factor applies to all
text strings. If specified as a vector of opacity values, the length of the vector must be equal to the
number of text strings specified in the Text parameter. Each element of the opacity factor can range
from 0 to 1.

Dependencies

To enable this parameter, set the Opacity source parameter to Specify via dialog.

Image signal — Input and output signal format
One multidimensional signal (default) | Separate color signals

Specify the format of the input and output images of the block using these options:

• One multidimensional signal — The block has a single input port and single output port.
• Separate color signals — The block has three input and output signals, one for each color

channel, which accept and return the individual color channels of the image.

Input image is transposed (data order is row major) — mirror text and text location
off (default) | on

Enable this parameter to mirror the text string and reverse its location in the image from [x y] to
[y x].

Font

Font face — Font of text
LucidaSansRegular (default) | Agency FB | Agency FB Bold | Algerian | Ariel | Arial
Black | Arial Bold | Arial Bold Italic | ...

Specify the font of the inserted text. The block populates this list with the fonts installed on your
system. On Windows, the block searches the system registry for font files. On UNIX, the block
searches the font path of the X Server for font files.

 Insert Text

1-275



Font size (points) — Font size
12 (default) | positive scalar

Specify the font size of the inserted text.

Anti-aliased — Smooth text edges
on (default) | off

Enable this parameter to smooth the edges of the inserted text. The smoothing process is
computationally expensive.

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes
a Supports word lengths less than or equal to 32 bits.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Draw Shapes | Draw Markers

Introduced in R2013a

1 Blocks

1-276



Label
Label connected components in binary image
Library: Computer Vision Toolbox / Morphological Operations

Description
The Label block finds and labels the connected components or objects in a 2-D binary image. The
block ignores the background pixels in the input image and searches for connected components
within remaining pixels. The block then labels all the pixels of each connected component with a
unique number and computes the number of labeled objects.

Ports
Input

BW — Input binary image
vector | matrix

The input image must be a vector or matrix of binary values, each element representing a pixel of the
image. The block categorizes pixels with a value of 0 as background pixels, searching for connected
components within pixels with a value of 1.
Data Types: Boolean

Output

Label — Labeled objects
vector | matrix

Labeled objects in the input image, returned as a vector or matrix of nonnegative integers. The
elements of the output vector or matrix labeled 0 represent the background, the elements labeled 1
represent the first object, the elements labeled 2 represent the second object, and so on. The size of
this output matches the size of the BW input.

Dependencies

To enable this port, set the Output parameter to either Label matrix or Label matrix and
number of labels.
Data Types: uint8 | uint16 | uint32

Count — Number of labeled objects
scalar

Number of labeled objects, returned as a scalar.

 Label

1-277



Dependencies

To enable this port, set the Output parameter to either Number of labels or Label matrix and
number of labels.
Data Types: uint8 | uint16 | uint32

Parameters
Connectivity — Type of pixel connectivity
8 (default) | 4

Specify how the block defines which pixels are connected to each other. If you want to connect
adjacent pixels in only the horizontal and vertical directions, select 4. If you want to connect adjacent
pixels in the horizontal, vertical, and diagonal directions, select 8. These figures show how the block
defines a connected component for 4-connected and 8-connected pixels. The block considers the
white pixels marked by black circles to be connected to each other.

Type of Connectivity Connected Pixels
4-connected pixels

8-connected pixels

Output — Block output
Label matrix and number of labels (default) | Label matrix | Number of labels

Specify the block output as one of these options:

• Label matrix — The block outputs the labeled objects at the Label port.
• Number of labels — The block outputs the number of labeled objects at the Count port.
• Label matrix and number of labels — The block outputs both the labeled objects and

number of labeled objects to the Label and Count ports, respectively.

Output data type — Data type of output
Automatic (default) | uint8 | uint16 | uint32

Specify the data type of the outputs at the Label and Count ports. When you specify this parameter
as Automatic, the block calculates the maximum number of objects that can fit inside the image
based on the image size and the specified connectivity. Using this calculation, it chooses the output
data type with the minimum value that guarantees unique region labels.

1 Blocks

1-278



If label exceeds data type size, mark remaining regions using — Overflow mode
of output labels
maximum value of the output data type (default) | zero

Use this parameter to specify the behavior of the block when the block finds more objects than the
maximum possible value the output data type can represent. The block labels the remaining objects
with the value determined by one of these options:

• maximum value of the output data type — The block labels the remaining objects with
the maximum value of the output data type.

• zero — The block labels the remaining objects with 0.

Dependencies

To enable this parameter, set the Output data type parameter to either uint8 or uint16.

Block Characteristics
Data Types Boolean | integer
Multidimensional
Signals

no

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Dilation | Erosion | Opening | Closing | Blob Analysis

Functions
bwconncomp | bwselect | regionprops | bwlabel | bwlabeln

Introduced before R2006a

 Label

1-279



Median Filter
Perform 2-D median filtering
Library: Computer Vision Toolbox / Analysis & Enhancement

Computer Vision Toolbox / Filtering

Description
The Median Filter block applies a median filter to each pixel of an input image. For each M-by-N
neighborhood, the filter replaces the central value with the median value of the neighborhood. If the
neighborhood has a center element, the block replaces the center pixel with the median value, as
shown in this figure.

If the neighborhood does not have an exact center, then the block has a bias toward the upper-left
corner of the neighborhood. In this figure, the median value has been placed in the top-left pixel of
the four pixels that meet at the center of the neighborhood.

The block pads the edges of the input image for filtering. This causes the pixels within M/2 pixels of
the sides and N/2 pixels of the top or bottom of the image to appear distorted.

The median value is less sensitive than the mean to extreme values. Thus, Median Filter is effective
for removing salt-and-pepper noise from an image without significantly reducing the sharpness of the
image.

Ports
Input

I — Input image
matrix

Input image, specified as an M-by-N matrix.

1 Blocks

1-280



Data Types: single | double | int8 | int16 | uint8 | uint16 | Boolean | fixed point

PVal — Pad value
scalar

Pad value, specified as a scalar. The block uses this value for each element of the rows or columns
added to the input image.
Dependencies

To enable this port:

• Set the Output size parameter to Same as input port I.
• Set the Padding options parameter to Constant.
• Set the Pad value source parameter to Input port.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Port_1 — Output image
matrix

Output image, returned as a matrix. The dimensions of the median-filtered output image are specified
by the Output size parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Neighborhood size — Neighborhood window size
[3 3] (default) | positive integer | two-element vector of positive integers

Specify the window size of the neighborhood over which the block computes the median. If specified
as a scalar, this value creates a square neighborhood with the specified number of rows and columns.
If specified as a vector, the first element is the number of rows in the neighborhood, and the second
element is the number of columns in the neighborhood.

Output size — Output sizing method
Same as input port I (default) | Valid

Specify the output sizing method as one of these options.

• Same as input port I — The block computes the neighborhood median for the entire image,
using padding to compute the boundary pixels. The output image has the same dimensions as the
input image. Selecting this option enables the Padding options parameter.

• Valid — The block computes the median where the neighborhood fits within the input image
without padding. For an input image of size M-by-N and neighborhood of size X-by-Y, the output
image has the dimensions (M–X+1)-by-(N–Y+1).

Padding options — Padding method
Symmetric (default) | Constant | Replicate | Circular

Pad the image using one of these methods:

 Median Filter

1-281



• Constant — Pad image with a constant value. Selecting this option enables the Pad value
source parameter. For more information, see “Pad with Constant Value” on page 1-266.

• Replicate — Pad the image by repeating the border values of the input image. For more
information, see “Pad by Repeating Border Values” on page 1-267.

• Symmetric — Pad the image using a mirror image of the input data. For more information, see
“Pad with Mirror Image” on page 1-268

• Circular — Pad the image using a circular repetition of the elements in the input image. For
more information, see “Pad Using Circular Repetition of Elements” on page 1-268.

Dependencies

To enable this parameter, set the Output size parameter to Same as input port I.

Pad value source — Source of constant padding value
Specify via dialog (default) | Input port

Specify the padding source as Specify via dialog or Input port.

• Specify via dialog — Specify a padding value using the Pad value parameter.
• Input port — Specify a padding value using the PVal input port.

Dependencies

To enable this parameter, set the Output size parameter to Same as input port I, and set the
Padding options parameter to Constant.

Pad value — Pad value
0 (default) | scalar

Specify a scalar value with which to pad the image.

Dependencies

To enable this port:

• Set the Output size parameter to Same as input port I.
• Set the Padding options parameter to Constant.
• Set the Pad value source parameter to Specify via dialog.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

References

[1] Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing. 2nd ed. Upper Saddle River,
N.J: Prentice Hall, 2002.

1 Blocks

1-282



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
2-D Convolution | 2-D FIR Filter

Functions
medfilt2

Introduced before R2006a

 Median Filter

1-283



Matrix To Image
Converts matrix data to Simulink image data
Library: Computer Vision Toolbox OpenCV Interface for Simulink

Description
The Matrix To Image block converts matrix data to Simulink image data.

Ports
Input

Port_1 — Input signal
matrix

Input signal to the Matrix To Image block. The input is a numerical matrix.
Data Types: uint8 | uint16 | int8 | int16 | single | double

Output

Port_1 — Output signal
Simulink.ImageType

Output signal from the Matrix To Image block. The output is an image in Simulink.ImageType data
type.
Data Types: Simulink.ImageType

Parameters
Rows — Number of rows in image data
'480' (default) | positive integer

Specify the number of rows in the image data as a positive integer.

Programmatic Use
Block Parameter: Rows
Type: double
Value: positive integer
Default: '480'

Columns — Number of columns in image data
'640' (default) | positive integer

Specify the number of columns in the image data as a positive integer.

1 Blocks

1-284



Programmatic Use
Block Parameter: Columns
Type: double
Value: positive integer
Default: '640'

Channels — Number of color channels or samples for each pixel in the array
3 (default) | 1

Specify the number of color channels or samples for each pixel in the array as 1 or 3. The number of
channels must correspond to the number of color channels in the color format of the image data.
These are the values of Channels for the supported color formats:

Channels Color Format
1 Grayscale
3 RGB
3 BGR

Programmatic Use
Block Parameter: Columns
Type: character vector
Value: positive integer
Default: '3'

Underlying Datatype — Data type of underlying image data
'uint8' (default) | 'int8' | 'uint16' | 'int16' | 'uint32' | 'int32' | 'single' | 'double' |
'logical'

Specify the data type of the underlying image data as one of these options:

• 'uint8'
• 'int8'
• 'uint16'
• 'int16'
• 'uint32'
• 'int32'
• 'single'
• 'double'
• 'logical'

Programmatic Use
Block Parameter: ClassUnderlying
Type: character vector
Value: 'uint8' | 'int8' | 'uint16' | 'int16' | 'uint32' | 'int32' | 'single' | 'double' |
'logical'
Default: 'uint8'

Array Layout — Memory arrangement of matrix data in image
'Column-major' (default) | 'Row-major'

Specify the memory arrangement of the matrix data in the image as Column-major or Row-major.

 Matrix To Image

1-285



Programmatic Use
Block Parameter: Layout
Type: character vector
Value: 'Column-major' | 'Row-major'
Default: 'Column-major'

Color Format — Color format of pixels in underlying image data
'RGB' (default) | 'Grayscale' | 'BGR'

Specify what each color channel of a pixel represents in the underlying image data as Grayscale,
RGB, or BGR.

Programmatic Use
Block Parameter: ColorFormat
Type: character vector
Value: 'Grayscale' | 'RGB' | 'BGR'
Default: 'RGB'

Block Characteristics
Data Types double | single | uint8 | uint16 | int8 | int16 | int32 | image
Direct Feedthrough Yes
Multidimensional
Signals

Yes

Variable-Size Signals No

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Supports C++ code generation.

See Also
Image To Matrix | To Simulink Image

Topics
“Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink”

Introduced in R2021b

1 Blocks

1-286



Deep Learning Object Detector
Detect objects using trained deep learning object detector
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Deep Learning Object Detector block predicts bounding boxes, class labels, and scores for the
input image by using the trained object detector specified through the block parameter. This block
allows loading of a pretrained object detector into the Simulink model from a MAT file or from a
MATLAB function. This block provides a graphical interface for using the detector objects in
Simulink. To enable some parameters of the Deep Learning Object Detector block you must choose an
object detector that supports those parameters. For example, using a yolov2ObjectDetector
object with this block enables you to select parameters similar to the name-value arguments of the
associated detect object function.

Ports
Input

Image — Image data
array

An H-by-W-by-C numeric array, where H, W, and C are the height, width, and number of channels of
the image, respectively. Only one image per time step is allowed as input.

Output

Bboxes — Locations of objects detected
matrix

Locations of the objects detected within the input image, returned as an M-by-4 matrix. M is the
number of bounding boxes detected in the image. You can put an upper bound to the size M by
specifying the Maximum Number of Detections parameter. Each row of Bboxes is of the form [x y
width height], specifying the upper-left corner and size of the corresponding bounding box in pixels.

Labels — Labels for bounding boxes
vector

Labels for the bounding boxes, returned as an M-by-1 enumerated vector. M is the number of
bounding boxes detected in the image.

Scores — Detection scores
vector

Detection confidence scores for each label, returned as an M-by-1 vector. M is the number of
bounding boxes detected in the image. A higher score indicates higher confidence in the detection.

 Deep Learning Object Detector

1-287



Parameters
Detector — Source for trained detector object
Detector from MAT file (default) | Detector from MATLAB function

Select the source for the detector object from these options:

• Detector from MAT file — Import a detector object from a MAT file. For example, select a
MAT file containing an rcnnObjectDetector object.

• Detector from MATLAB function — Import a detector object from a MATLAB function. For
example, specify the function vehicleDetectorYOLOv2, which returns a trained
yolov2ObjectDetector object.

The imported detector must be one of these supported objects:

• rcnnObjectDetector
• fastRCNNObjectDetector
• fasterRCNNObjectDetector
• ssdObjectDetector
• yolov2ObjectDetector

Programmatic Use
Block Parameter: Detector
Type: character vector, string
Values: Detector from MAT file' | 'Detector from MATLAB function'
Default: Detector from MAT file'

File path — MAT file containing detector object
untitled.mat (default) | MAT file name

This parameter specifies the name of the MAT file that contains the detector object to load. If the file
is not on the MATLAB path, use the Browse button to locate the file.

Dependencies

To enable this parameter, set the Detector parameter to Detector from MAT file.

Programmatic Use
Block Parameter: DetectorFilePath
Type: character vector, string
Values: MAT file path or name
Default: 'untitled.mat'

MATLAB function — MATLAB function name
untitled (default) | MATLAB function name

This parameter specifies the name of the MATLAB function that returns a trained object detector. For
example, specify the function vehicleDetectorYOLOv2, which returns a trained
yolov2ObjectDetector object, or specify a custom function.

Dependencies

To enable this parameter, set the Detector parameter to Detector from MATLAB function.

1 Blocks

1-288



Programmatic Use
Block Parameter: DetectorFunction
Type: character vector, string
Values: MATLAB function name
Default: 'untitled'

Region of interest — Search region of interest
vector of the form [x y width height]

Specify the search region of interest as vector of the form [x y width height]. The vector specifies the
upper-left corner and size of a region in pixels.

Dependencies

To enable this parameter, select the Specify region of interest parameter.

Programmatic Use
Block Parameter: ROI
Type: character vector, string
Values: character vector specified as '[x y width height]'
Default: '[1 1 100 100]'

Detection threshold — Detection threshold
scalar in the range [0, 1]

Specify the detection threshold as scalar in the range [0, 1]. Detections that have scores lower than
this threshold value are removed. To reduce false positives, increase this value.

Dependencies

To enable this parameter, you must use a detector that supports the Detection threshold parameter.
For example, use a yolov2ObjectDetector object.

Programmatic Use
Block Parameter: Threshold
Type: character vector, string
Values: scalar
Default: '0.5'

Number of Strongest Regions — Maximum number of strongest region proposals
2000 (default) | positive integer

Specify the maximum number of strongest region proposals as an integer. Reduce this value to speed
up processing at the cost of detection accuracy. To use all region proposals, specify this parameter as
Inf.

Dependencies

To enable this parameter, use a detector that supports the Number of Strongest Regions
parameter. For example, use an rcnnObjectDetector object.

Programmatic Use
Block Parameter: NumStrongestRegions
Type: character vector, string
Values: integer
Default: '2000'

 Deep Learning Object Detector

1-289



Maximum Region Size — Maximum region size
vector of the form [height width]

Specify the maximum region size as a vector of the form [height width]. Units are in pixels. The
maximum region size defines the size of the largest region containing the object. For example, [50
50] sets the size of the largest region containing the object to 50-by-50 pixels. To reduce computation
time, set this value to the known maximum region size for the objects that can be detected in the
input test images.

Dependencies

To enable this parameter

• Select the Specify maximum region size parameter.
• Use a detector that supports the Maximum Region Size parameter. For example, use a

yolov2ObjectDetector object.

Programmatic Use
Block Parameter: MaxSize
Type: character vector, string
Values: character vector specified as '[height width]'
Default: '[50 50]'

Minimum Region Size — Minimum region size
vector of the form [height width]

Specify the minimum region size as a vector of the form [height width]. Units are in pixels. The
minimum region size defines the size of the smallest region containing the object. For example, [1 1]
sets the size of the smallest region containing the object to 1-by-1 pixels.

Dependencies

To enable this parameter

• Select the Specify minimum region size parameter.
• Use a detector that supports the Minimum Region Size parameter. For example, use a

yolov2ObjectDetector object.

Programmatic Use
Block Parameter: MinSize
Type: character vector, string
Values: character vector specified as '[height width]'
Default: '[1 1]'

Maximum Number of Detections — Maximum number of detections
500 (default) | positive integer

Specify the maximum number of detections as a positive integer. This value is the upper bound for the
number of detections.

Programmatic Use
Block Parameter: MaxDetections
Type: character vector, string
Values: integer
Default: '500'

1 Blocks

1-290



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• For a list of networks and layers supported for CUDA® code generation, see “Supported Networks,
Layers, and Classes” (GPU Coder).

See Also
Objects
rcnnObjectDetector | fastRCNNObjectDetector | fasterRCNNObjectDetector |
ssdObjectDetector | yolov2ObjectDetector

Blocks
Image Classifier (Deep Learning Toolbox) | Predict (Deep Learning Toolbox)

Introduced in R2021b

 Deep Learning Object Detector

1-291



Opening
Perform morphological opening on binary or intensity images
Library: Computer Vision Toolbox / Morphological Operations

Description
The Opening block performs an erosion operation followed by a dilation operation on an intensity or
binary image using a predefined neighborhood or structuring element.

To define the structuring element that the block applies to the image, use the Neighborhood or
structuring element parameter. Specify this element by entering a vector or matrix of 1s and 0s or
by using the strel function.

Below are an input image and the output image after the opening operation, respectively.

This block uses two-dimensional flat structuring elements only.

Ports
Input

I — Input image
matrix

Specify an input image as a matrix of intensity values. This port is unnamed unless you set the
Neighborhood or structuring element source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

1 Blocks

1-292



Nhood — Neighborhood values
vector | matrix

Specify neighborhood values representing a structuring element as a vector or matrix of 1s and 0s or
by using the strel function.

Dependencies

To enable this port, set the Neighborhood or structuring element source parameter to Input
port.
Data Types: Boolean

Output

Port_1 — Opened image
matrix

The opened image is returned as a matrix of intensity values. The size and data type of the opened
image are the same as those of the input image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Neighborhood or structuring element source — Source of neighborhood or structuring
element
Specify via dialog (default) | Input port

Specify the source of neighborhood or structuring element as one of these options:

• Specify via dialog — Use the Neighborhood or structuring element parameter to specify
a neighborhood or structuring element.

• Input port — Use the Nhood input port to specify neighborhood values representing a
structuring element.

Neighborhood or structuring element — Neighborhood or structuring element
strel('disk',5) (default) | vector | matrix

Specify neighborhood or structuring element as a vector or matrix of 1s and 0s, a strel object or an
array of strel objects. When you specify this value as an array of strel objects, the block applies
each object to the entire image in turn.

If the structuring element is decomposable into smaller elements, the block executes at higher speed
due to the use of a more efficient algorithm.

Dependencies

To enable this parameter, set the Neighborhood or structuring element source parameter, to
Specify via dialog.

 Opening

1-293



Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Opening Operation

Opening smoothes the contour of an object in an image by

• Breaking narrow isthmuses and
• Eliminating thin protrusions

References
[1] Soille, Pierre. Morphological Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg,

2004. https://doi.org/10.1007/978-3-662-05088-0.

[2] Gonzalez, Rafael C., Richard E. Woods, and Steven L. Eddins. Digital Image Processing Using
MATLAB. Third edition. Knoxville: Gatesmark Publishing, 2020.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Erosion | Dilation | Closing | Label | Bottom-hat | Top-hat

Functions
imerode | imdilate | imopen | imclose

Objects
strel

Introduced before R2006a

1 Blocks

1-294



Optical Flow
Estimate object velocities
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Optical Flow block estimates the direction and speed of object motion between two images or
between one video frame to another frame using either the Horn-Schunck or the Lucas-Kanade
method.

Ports
Input

I/I1 — Image or video frame
scalar | vector | matrix

Image or video frame, specified as a scalar, vector, or matrix. If the Compute optical flow between
parameter is set to Two images, the name of this port changes to I1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I2 — Image
scalar | vector | matrix

Image or video frame, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

|V|^2 — Velocity magnitudes
scalar | vector | matrix

Velocity magnitudes, returned as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

V — Velocity components in complex form
scalar | vector | matrix

Velocity components in complex form, specified as a scalar, vector, or matrix.

 Optical Flow

1-295



Dependencies

To enable this port, set the Velocity output parameter to Horizontal and vertical
components in complex form.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main Tab

Method — Optical flow calculation method
Horn-Schunck (default) | Lucas-Kanade

Select the method to use to calculate the optical flow. Options include Horn-Schunck or Lucas-
Kanade.

Compute optical flow between — Compute optical flow
Current frame and N-th frame back (default) | Two images

Select how to compute the optical flow. Select Two images to compute the optical flow between two
images. Select Current frame and N-th frame back to compute the optical flow between two
video frames that are N frames apart.

Dependencies

To enable this parameter, set the:

• Method parameter to Horn-Schunck
• Method parameter to Lucas-Kanade and the Temporal gradient filter to Difference

filter [-1 1]

N — Number of frames
1 (default) | scalar

Enter a scalar value that represents the number of frames between the reference frame and the
current frame.

Dependencies

To enable this parameter, set the Compute optical flow between parameter to Current frame
and N-th frame back.

Smoothness factor — Smoothness factor
1 (default) | positive scalar

Specify the smoothness factor. Enter a large positive scalar value for high relative motion between
the two images or video frames. Enter a small positive scalar value for low relative motion.

Dependencies

To enable this parameter, set the Method parameter to Horn-Schunck.

1 Blocks

1-296



Stop iterative solution — Stop iterative solution
When maximum number of iterations is reached (default) | When velocity difference
falls below threshold | Whichever comes first

Specify the method to control when the block's iterative solution process stops. If you want the
process to stop when the velocity difference is below a certain threshold value, select When
velocity difference falls below threshold. If you want the process to stop after a certain
number of iterations, choose When maximum number of iterations is reached. You can also
select Whichever comes first.
Dependencies

To enable this parameter, set the Method parameter to Horn-Schunck.

Maximum number of iterations — Maximum number of iterations
10 (default) | scalar

Specify the maximum number of iterations for the block to perform.
Dependencies

To enable this parameter, set the Method parameter to Horn-Schunck and the Stop iterative
solution parameter to When maximum number of iterations is reached or Whichever
comes first.

Velocity output — Optical flow output
Magnitude-squared (default) | Horizontal and vertical components in complex form

Specify how to output an optical flow. If you select Magnitude-squared, the block outputs an
optical flow matrix where each element is in the form u2 + v2. If you select Horizontal and
vertical components in complex form, the block outputs the optical flow matrix where each
element is in the form u + jv.

Temporal gradient filter — Filter used for temporal gradient
Difference filter [-1 1] (default) | Derivative of Gaussian

Specify whether the block solves for u and v using a difference filter or a derivative of a Gaussian
filter.
Dependencies

To enable this parameter, set the Method parameter to Lucas-Kanade.

Number of input frames to buffer — Number of input frames to buffer for smoothing
3 (default) | scalar

Specify the number of input frames to buffer for smoothing. Use this parameter for temporal filter
characteristics such as the standard deviation and number of filter coefficients.
Dependencies

To enable this parameter, set the Temporal gradient filter parameter to Derivative of
Gaussian.

Standard deviation for image smoothing filter — Standard deviation for image
smoothing filter
1.5 (default) | scalar

 Optical Flow

1-297



Specify the standard deviation for the image smoothing filter.

Dependencies

To enable this parameter, set the Temporal gradient filter parameter to Derivative of
Gaussian.

Standard deviation for gradient smoothing filter — Standard deviation for gradient
smoothing filter
1 (default) | scalar

Specify the standard deviation for the gradient smoothing filter.

Dependencies

To enable this parameter, set the Temporal gradient filter parameter to Derivative of
Gaussian.

Discard normal flow estimates when constraint equation is ill-conditioned —
Discard normal flow estimates
off (default) | on

Select this parameter to set the motion vector to zero when the optical flow constraint equation is ill-
conditioned.

Dependencies

To enable this parameter, set the Temporal gradient filter parameter to Derivative of
Gaussian.

Output image corresponding to motion vectors (accounts for block delay) —
Output image corresponding to motion vectors
off (default) | on

Select this parameter to output the image that corresponds to the motion vector outputted by the
block.

Dependencies

To enable this parameter, set the Temporal gradient filter parameter to Derivative of
Gaussian.

Threshold for noise reduction — Threshold for noise reduction
0.0039 (default) | scalar

Specify a scalar value that determines the motion threshold between each image or video frame. The
higher the number, the less small movements impact the optical flow calculation.

Dependencies

To enable this parameter, set the Method parameter to Lucas-Kanade.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks”.

1 Blocks

1-298



Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
Optical Flow Equation

To compute the optical flow between two images, you must solve this optical flow constraint equation:

Ixu + Iyv + It = 0

.

• Ix, Iy, and It are the spatiotemporal image brightness derivatives.
• u is the horizontal optical flow.
• v is the vertical optical flow.

Horn-Schunck Method

By assuming that the optical flow is smooth across the entire image, the Horn-Schunck method
estimates a velocity field, [u v]T, that minimizes this equation:

E =∬(Ixu + Iyv + It)2dxdy + α∬ ∂u
∂x

2
+ ∂u
∂y

2
+ ∂v
∂x

2
+ ∂v
∂y

2
dxdy

.

In this equation, ∂u∂x  and ∂u∂y  are the spatial derivatives of the optical velocity component, u, and α
scales the global smoothness term. The Horn-Schunck method minimizes the previous equation to
obtain the velocity field, [u v], for each pixel in the image. This method is given by the following
equations:

ux, y
k + 1 = ux, y

k −
Ix[Ixuk

x, y + Iyvk
x, y + It]

α2 + Ix2 + Iy
2

vx, y
k + 1 = vx, y

k −
Iy[Ixuk

x, y + Iyvk
x, y + It]

α2 + Ix2 + Iy
2

.

In these equations, ux, y
k vx, y

k  is the velocity estimate for the pixel at (x,y), and ux, y
k vx, y

k  is the
neighborhood average of ux, y

k vx, y
k . For k = 0, the initial velocity is 0.

To solve u and v using the Horn-Schunck method:

 Optical Flow

1-299



1 Compute Ix and Iy by using the Sobel convolution kernel, −1 −2 −1; 0 0 0; 1 2 1 , and its
transposed form for each pixel in the first image.

2 Compute It between images 1 and 2 using the −1 1  kernel.
3 Assume the previous velocity to be 0, and compute the average velocity for each pixel using

0 1 0; 1 0 1; 0 1 0  as a convolution kernel.
4 Iteratively solve for u and v.

Lucas-Kanade Method

To solve the optical flow constraint equation for u and v, the Lucas-Kanade method divides the
original image into smaller sections and assumes a constant velocity in each section. Then it performs
a weighted, least-square fit of the optical flow constraint equation to a constant model for u v T in
each section Ω. The method achieves this fit by minimizing this equation:

∑
x ∈ Ω

W2[Ixu + Iyv + It]2

W is a window function that emphasizes the constraints at the center of each section. The solution to
the minimization problem is

∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

u
v

= −
∑W2IxIt

∑W2IyIt

.

Lucas-Kanade Difference Filter

When you set the Temporal gradient filter to Difference filter [-1 1], u and v are solved as
follows:

1 Compute Ix and Iy using the kernel −1 8 0 −8 1 /12 and its transposed form.

If you are working with fixed-point data types, the kernel values are signed fixed-point values
with a word length equal to 16 and a fraction length equal to 15.

2 Compute It between images 1 and 2 by using the −1 1  kernel.
3 Smooth the gradient components, Ix, Iy, and It, by using a separable and isotropic 5-by-5 element

kernel whose effective 1-D coefficients are 1 4 6 4 1 /16. If you are working with fixed-point
data types, the kernel values are unsigned fixed-point values with a word length equal to 8 and a
fraction length equal to 7.

4 Solve the 2-by-2 linear equations for each pixel using the following method:

•
If A =

a b
b c

=
∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

then the eigenvalues of A are λi = a + c
2 ± 4b2 + (a− c)2

2 ; i = 1, 2

In the fixed-point diagrams, P = a + c
2 , Q = 4b2 + (a− c)2

2

1 Blocks

1-300



• The eigenvalues are compared to the threshold, τ, that corresponds to the value you enter for
the threshold for noise reduction. The results fall into one of the following cases.

Case 1: λ1 ≥ τ and λ2 ≥ τ

A is nonsingular, and the system of equations is solved using Cramer's rule.

Case 2: λ1 ≥ τ and λ2 < τ

A is singular (noninvertible), and the gradient flow is normalized to calculate u and v.

Case 3: λ1 < τ and λ2 < τ

The optical flow, u and v, is 0.

Derivative of Gaussian

If you set the temporal gradient filter to Derivative of Gaussian, u and v are solved using these
steps.

1 Compute Ix and Iy.

a Use a Gaussian filter to perform temporal filtering. Specify the temporal filter
characteristics, such as the standard deviation and number of filter coefficients, by using the
Number of frames to buffer for temporal smoothing parameter.

b Use a Gaussian filter and the derivative of a Gaussian filter to smooth the image by using
spatial filtering. Specify the standard deviation and length of the image smoothing filter by
using the Standard deviation for image smoothing filter parameter.

2 Compute It between images 1 and 2.

a Use the derivative of a Gaussian filter to perform temporal filtering. Specify the temporal
filter characteristics, such as the standard deviation and number of filter coefficients, by
using the Number of frames to buffer for temporal smoothing parameter.

b Use the filter described in step 1b to perform spatial filtering on the output of the temporal
filter.

3 Smooth the gradient components, Ix, Iy, and It, by using a gradient smoothing filter. Use the
Standard deviation for gradient smoothing filter parameter to specify the standard deviation
and the number of filter coefficients for the gradient smoothing filter.

4 Solve the 2-by-2 linear equations for each pixel using this method:

•
If A =

a b
b c

=
∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

then the eigenvalues of A are λi = a + c
2 ± 4b2 + (a− c)2

2 ; i = 1, 2

• When the block finds the eigenvalues, it compares them to the threshold, τ, that corresponds
to the value you enter for the Threshold for noise reduction parameter. The results fall into
one of the following cases.

Case 1: λ1 ≥ τ and λ2 ≥ τ

 Optical Flow

1-301



A is nonsingular, so the block solves the system of equations by using Cramer's rule.

Case 2: λ1 ≥ τ and λ2 < τ

A is singular (noninvertible), so the block normalizes the gradient flow to calculate u and v.

Case 3: λ1 < τ and λ2 < τ

the optical flow, u and v, is 0.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Block Matching | Gaussian Pyramid | opticalFlow | opticalFlowHS | opticalFlowLK |
opticalFlowLKDoG

Introduced before R2006a

1 Blocks

1-302



PSNR
Compute peak signal-to-noise ratio (PSNR) between images
Library: Computer Vision Toolbox / Statistics

Description
The PSNR block computes the peak signal-to-noise ratio, in decibels, between two images. This ratio
is used as a quality measurement between the original and a compressed image. The higher the
PSNR, the better the quality of the compressed, or reconstructed image.

The mean-square error (MSE) and the peak signal-to-noise ratio (PSNR) are used to compare image
compression quality. The MSE represents the cumulative squared error between the compressed and
the original image, whereas PSNR represents a measure of the peak error. The lower the value of
MSE, the lower the error.

To compute the PSNR, the block first calculates the mean-squared error using the following equation:

MSE =
∑

M, N
[I1(m, n)− I2(m, n)]2

M * N

In the previous equation, M and N are the number of rows and columns in the input images. Then the
block computes the PSNR using the following equation:

PSNR = 10log10
R2

MSE

In the previous equation, R is the maximum fluctuation in the input image data type. For example, if
the input image has a double-precision floating-point data type, then R is 1. If it has an 8-bit unsigned
integer data type, R is 255, etc.

Computing PSNR for Color Images

Different approaches exist for computing the PSNR of a color image. Because the human eye is most
sensitive to luma information, you can compute the PSNR for color images by converting the image to
a color space that separates the intensity (luma) channel, such as YCbCr. The Y (luma), in YCbCr
represents a weighted average of R, G, and B. G is given the most weight, again because the human
eye perceives it most easily. Compute the PSNR only on the luma channel.

Ports
Input

I1 — Input image
scalar | vector | matrix

 PSNR

1-303



Input image, specified as scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

I2 — Input image
scalar | vector | matrix

Input image, specified as scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Output — Output
scalar

Peak signal-to-noise ratio between images, returned as a scalar.

Dependencies

If the input is a fixed-point or integer data type, the block output is double-precision floating point.
Otherwise, the block input and output are the same data type.
Data Types: double

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generates code only for double or single data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
psnr

Introduced before R2006a

1 Blocks

1-304



Resize
Enlarge or shrink image sizes

Library
Geometric Transformations

visiongeotforms

Description
The Resize block enlarges or shrinks an image by resizing the image along one dimension (row or
column). Then, it resizes the image along the other dimension (column or row).

This block supports intensity and color images on its ports. When you input a floating point data type
signal, the block outputs the same data type.

Shrinking an image can introduce high frequency components into the image and aliasing might
occur. If you select the Perform antialiasing when resize factor is between 0 and 100 check box,
the block performs low pass filtering on the input image before shrinking it.

Port Description

Port Input/Output Supported Data Types
Complex
Values
Supported

Image /
Input

M-by-N matrix of intensity values or
an M-by-N-by-P color video signal
where P is the number of color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

ROI Four-element vector [x y width
height] that defines the ROI

• Double-precision floating point (only
supported if the input to the Input port
is floating point)

• Single-precision floating point (only
supported if the input to the Input port
is floating point)

• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Output Resized image Same as Input port No

 Resize

1-305



Port Input/Output Supported Data Types
Complex
Values
Supported

Flag Boolean value that indicates whether
the ROI is within the image bounds

Boolean No

ROI Processing

To resize a particular region of each image, select the Enable ROI processing check box. To enable
this option, select the following parameter values.

• Specify = Number of output rows and columns
• Interpolation method = Nearest neighbor, Bilinear, or Bicubic
• Clear the Perform antialiasing when resize factor is between 0 and 100 check box.

If you select the Enable ROI processing check box, the ROI port appears on the block. Use this port
to define a region of interest (ROI) in the input matrix, that you want to resize. The input to this port
must be a four-element vector, [x y width height]. The first two elements define the upper-left corner
of the ROI, and the second two elements define the width and height of the ROI.

If you select the Enable ROI processing check box, the Output flag indicating if any part of ROI
is outside image bounds check box appears in the dialog box. If you select this check box, the Flag
port appears on the block. The following tables describe the Flag port output.

Flag Port Output Description
0 ROI is completely inside the input image.
1 ROI is completely or partially outside the input

image.

Fixed-Point Data Types

The following diagram shows the data types used in the Resize block for fixed-point signals.

You can set the interpolation weights table, product output, accumulator, and output data types in the
block mask.

1 Blocks

1-306



Parameters
Specify

Specify which aspects of the image to resize. Your choices are Output size as a percentage
of input size, Number of output columns and preserve aspect ratio, Number of
output rows and preserve aspect ratio, or Number of output rows and columns.

When you select Output size as a percentage of input size, the Resize factor in
percentage parameter appears in the dialog box. Enter a scalar percentage value that is applied
to both rows and columns.

When you select Number of output columns and preserve aspect ratio, the Number
of output columns parameter appears in the dialog box. Enter a scalar value that represents the
number of columns you want the output image to have. The block calculates the number of output
rows so that the output image has the same aspect ratio as the input image.

When you select Number of output rows and preserve aspect ratio, the Number of
output rows parameter appears in the dialog box. Enter a scalar value that represents the
number of rows you want the output image to have. The block calculates the number of output
columns so that the output image has the same aspect ratio as the input image.

When you select Number of output rows and columns, the Number of output rows and
columns parameter appears in the dialog box. Enter a two-element vector, where the first
element is the number of rows in the output image and the second element is the number of
columns. In this case, the aspect ratio of the image can change.

Resize factor in percentage
Enter a scalar percentage value that is applied to both rows and columns or a two-element vector,
where the first element is the percentage by which to resize the rows and the second element is
the percentage by which to resize the columns. This parameter is visible if, for the Specify
parameter, you select Output size as a percentage of input size.

You must enter a scalar value that is greater than zero. The table below describes the affect of the
resize factor value:

Resize factor in
percentage

Resizing of image

0 < resize factor <
100

The block shrinks the image.

resize factor = 100 Image unchanged.
resize factor > 100 The block enlarges the image.

The dimensions of the output matrix depend on the Resize factor in percentage parameter and
are given by the following equations:

number_output_rows = round(number_input_rows*resize_factor/100); (1-1)

number_output_cols = round(number_input_cols*resize_factor/100); (1-2)

Number of output columns
Enter a scalar value that represents the number of columns you want the output image to have.
This parameter is visible if, for the Specify parameter, you select Number of output columns
and preserve aspect ratio.

 Resize

1-307



Number of output rows
Enter a scalar value that represents the number of rows you want the output image to have. This
parameter is visible if, for the Specify parameter, you select Number of output rows and
preserve aspect ratio.

Number of output rows and columns
Enter a two-element vector, where the first element is the number of rows in the output image
and the second element is the number of columns. This parameter is visible if, for the Specify
parameter, you select Number of output rows and columns.

Interpolation method
Specify which interpolation method to resize the image.

When you select Nearest neighbor, the block uses one nearby pixel to interpolate the pixel
value. This option though the most efficient, is the least accurate. When you select Bilinear, the
block uses four nearby pixels to interpolate the pixel value. When you select Bicubic or
Lanczos2, the block uses 16 nearby pixels to interpolate the pixel value. When you select
Lanczos3, the block uses 36 surrounding pixels to interpolate the pixel value.

The Resize block performs optimally when you set this parameter to Nearest neighbor with
one of the following conditions:

• You set the Resize factor in percentage parameter to a multiple of 100.
• Dividing 100 by the Resize factor in percentage parameter value results in an integer value.

Perform antialiasing when resize factor is between 0 and 100
If you select this check box, the block performs low-pass filtering on the input image before
shrinking it to prevent aliasing.

Enable ROI processing
Select this check box to resize a particular region of each image. This parameter is available
when the Specify parameter is set to Number of output rows and columns, the
Interpolation method parameter is set to Nearest neighbor, Bilinear, or Bicubic, and
the Perform antialiasing when resize factor is between 0 and 100 check box is not selected.

Output flag indicating if any part of ROI is outside image bounds
If you select this check box, the Flag port appears on the block. The block outputs 1 at this port if
the ROI is completely or partially outside the input image. Otherwise, it outputs 0.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Interpolation weights table
Choose how to specify the word length of the values of the interpolation weights table. The
fraction length of the interpolation weights table values is always equal to the word length minus
one:

• When you select Same as input, the word length of the interpolation weights table values
match that of the input to the block.

• When you select Binary point scaling, you can enter the word length of the interpolation
weights table values, in bits.

1 Blocks

1-308



• When you select Slope and bias scaling, you can enter the word length of the
interpolation weights table values, in bits.

Product output

As depicted in the preceding diagram, the output of the multiplier is placed into the product
output data type and scaling. Use this parameter to specify how to designate this product output
word and fraction lengths.

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the product output, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Accumulator

As depicted in the preceding diagram, inputs to the accumulator are cast to the accumulator data
type. The output of the adder remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this accumulator word and fraction
lengths.

• When you select Same as product output, these characteristics match those of the
product output.

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the accumulator, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

 Resize

1-309



• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the output, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

References

[1] Ward, Joseph and David R. Cok. "Resampling Algorithms for Image Resizing and Rotation", Proc.
SPIE Digital Image Processing Applications, vol. 1075, pp. 260-269, 1989.

[2] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press, 1990.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
imresize | Translate | Shear | Rotate

Introduced before R2006a

1 Blocks

1-310



Rotate
Rotate image by specified angle

Library
Geometric Transformations

visiongeotforms

Description
Use the Rotate block to rotate an image by an angle specified in radians.

Note This block supports intensity and color images on its ports.

Port Description
Image M-by-N matrix of intensity values or an M-by-N-by-P color video signal where P is the

number of color planes
Angle Rotation angle
Output Rotated matrix

The Rotate block uses the 3-pass shear rotation algorithm to compute its values, which is different
than the algorithm used by the imrotate function in the Image Processing Toolbox.

Fixed-Point Data Types

The following diagram shows the data types used in the Rotate block for bilinear interpolation of
fixed-point signals.

 Rotate

1-311



You can set the angle values, product output, accumulator, and output data types in the block mask.

The Rotate block requires additional data types. The Sine table value has the same word length as the
angle data type and a fraction length that is equal to its word length minus one. The following
diagram shows how these data types are used inside the block.

1 Blocks

1-312



Note If overflow occurs, the rotated image might appear distorted.

Parameters
Output size

Specify the size of the rotated matrix. If you select Expanded to fit rotated input image,
the block outputs a matrix that contains all the rotated image values. If you select Same as
input image, the block outputs a matrix that contains the middle part of the rotated image. As a
result, the edges of the rotated image might be cropped. Use the Background fill value
parameter to specify the pixel values outside the image.

Rotation angle source
Specify how to enter your rotation angle. If you select Specify via dialog, the Angle
(radians) parameter appears in the dialog box.

If you select Input port, the Angle port appears on the block. The block uses the input to this
port at each time step as your rotation angle. The input to the Angle port must be the same data
type as the input to the I port.

Angle (radians)
Enter a real, scalar value for your rotation angle. This parameter is visible if, for the Rotation
angle source parameter, you select Specify via dialog.

When the rotation angle is a multiple of pi/2, the block uses a more efficient algorithm. If the
angle value you enter for the Angle (radians) parameter is within 0.00001 radians of a multiple
of pi/2, the block rounds the angle value to the multiple of pi/2 before performing the rotation.

Maximum angle (enter pi radians to accommodate all positive and negative angles)
Enter the maximum angle by which to rotate the input image. Enter a scalar value, between 0
and π radians. The block determines which angle, 0 ≤ angle ≤ maxangle, requires the largest
output matrix and sets the dimensions of the output port accordingly.

This parameter is visible if you set the Output size parameter, to Expanded to fit rotated
input image, and the Rotation angle source parameter toInput port.

Display rotated image in
Specify how the image is rotated. If you select Center, the image is rotated about its center
point. If you select Top-left corner, the block rotates the image so that two corners of the
rotated input image are always in contact with the top and left sides of the output image.

This parameter is visible if, for the Output size parameter, you select Expanded to fit
rotated input image, and, for the Rotation angle source parameter, you select Input
port.

Sine value computation method
Specify the value computation method. If you select Trigonometric function, the block
computes sine and cosine values it needs to calculate the rotation of your image during the
simulation. If you select Table lookup, the block computes and stores the trigonometric values
it needs to calculate the rotation of your image before the simulation starts. In this case, the
block requires extra memory.

Background fill value
Specify a value for the pixels that are outside the image.

 Rotate

1-313



Interpolation method
Specify which interpolation method the block uses to translate the image. If you select Nearest
neighbor, the block uses the value of one nearby pixel for the new pixel value. If you select
Bilinear, the new pixel value is the weighted average of the four nearest pixel values. If you
select Bicubic, the new pixel value is the weighted average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the computation. Therefore,
the Nearest-neighbor interpolation is the most computationally efficient. However, because
the accuracy of the method is proportional to the number of pixels considered, the Bicubic
method is the most accurate.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Angle values
Choose how to specify the word length and the fraction length of the angle values.

• When you select Same word length as input, the word length of the angle values match
that of the input to the block. In this mode, the fraction length of the angle values is
automatically set to the binary-point only scaling that provides you with the best precision
possible given the value and word length of the angle values.

• When you select Specify word length, you can enter the word length of the angle values,
in bits. The block automatically sets the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the angle values, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the angle values. The bias of all signals in the Computer Vision Toolbox blocks is 0.

This parameter is only visible if, for the Rotation angle source parameter, you select Specify
via dialog.

Product output

As depicted in the previous figure, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate this product output word
and fraction lengths.

• When you select Same as first input, these characteristics match those of the input to
the block.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the product output, in bits.

1 Blocks

1-314



• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data
type. The output of the adder remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this accumulator word and fraction
lengths.

• When you select Same as product output, these characteristics match those of the
product output.

• When you select Same as first input, these characteristics match those of the first input
to the block.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of the first input
to the block.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

 Rotate

1-315



Supported Data Types
Port Supported Data Types
Image • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Angle Same as Image port
Output Same as Image port

If the data type of the input signal is floating point, the output signal is the same data type as the
input signal.

References

[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press, 1990.

See Also
Resize Computer Vision Toolbox software
Translate Computer Vision Toolbox software
Shear Computer Vision Toolbox software
imrotate Image Processing Toolbox software

More About
Nearest Neighbor Interpolation Method

For nearest neighbor interpolation, the block uses the value of nearby translated pixel values for the
output pixel values.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 1.7 pixels in the positive horizontal
direction using nearest neighbor interpolation. The block's nearest neighbor interpolation algorithm
is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.

1 Blocks

1-316



2 Create the output matrix by replacing each input pixel value with the translated value nearest to
it. The result is the following matrix:

0 0 1 2 3
0 0 4 5 6
0 0 7 8 9

Note You wanted to translate the image by 1.7 pixels, but this method translated the image by 2
pixels. Nearest neighbor interpolation is computationally efficient but not as accurate as bilinear or
bicubic interpolation methods.

Bilinear Interpolation

For bilinear interpolation, the block uses the weighted average of two translated pixel values for each
output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bilinear interpolation. The block's bilinear interpolation algorithm is illustrated by the
following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

 Rotate

1-317



2 Create the output matrix by replacing each input pixel value with the weighted average of the
translated values on either side. The result is the following matrix where the output matrix has
one more column than the input matrix:

0.5 1.5 2.5 1.5
2 4.5 5.5 3

3.5 7.5 8.5 4.5

Bicubic Interpolation

For bicubic interpolation, the block uses the weighted average of four translated pixel values for each
output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bicubic interpolation. The block's bicubic interpolation algorithm is illustrated by the
following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

1 Blocks

1-318



2 Create the output matrix by replacing each input pixel value with the weighted average of the
two translated values on either side. The result is the following matrix where the output matrix
has one more column than the input matrix:

0.375 1.5 3 1.625
1.875 4.875 6.375 3.125
3.375 8.25 9.75 4.625

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Rotate

1-319



Shear
Shift rows or columns of image by linearly varying offset

Library
Geometric Transformations

visiongeotforms

Description
The Shear block shifts the rows or columns of an image by a gradually increasing distance left or
right or up or down.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values or an
M-by-N-by-P color video signal where P
is the number of color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

S Two-element vector that represents the
number of pixels by which you want to
shift your first and last rows or
columns

Same as I port No

Output Shifted image Same as I port No

If the data type of the input to the I port is floating point, the input to the S port of this block must be
the same data type. Also, the block output is the same data type.

Use the Shear direction parameter to specify whether you want to shift the rows or columns. If you
select Horizontal, the first row has an offset equal to the first element of the Row/column shear
values [first last] vector. The following rows have an offset that linearly increases up to the value
you enter for the last element of the Row/column shear values [first last] vector. If you select
Vertical, the first column has an offset equal to the first element of the Row/column shear values
[first last] vector. The following columns have an offset that linearly increases up to the value you
enter for the last element of the Row/column shear values [first last] vector.

1 Blocks

1-320



Use the Output size after shear parameter to specify the size of the sheared image. If you select
Full, the block outputs a matrix that contains the entire sheared image. If you select Same as
input image, the block outputs a matrix that is the same size as the input image and contains the
top-left portion of the sheared image. Use the Background fill value parameter to specify the pixel
values outside the image.

Use the Shear values source parameter to specify how to enter your shear parameters. If you select
Specify via dialog, the Row/column shear values [first last] parameter appears in the dialog
box. Use this parameter to enter a two-element vector that represents the number of pixels by which
you want to shift your first and last rows or columns. For example, if for the Shear direction
parameter you select Horizontal and, for the Row/column shear values [first last] parameter,
you enter [50 150], the block moves the top-left corner 50 pixels to the right and the bottom left
corner of the input image 150 pixels to the right. If you want to move either corner to the left, enter
negative values. If for the Shear direction parameter you select Vertical and, for the Row/
column shear values [first last] parameter, you enter [-10 50], the block moves the top-left
corner 10 pixels up and the top right corner 50 pixels down. If you want to move either corner down,
enter positive values.

Use the Interpolation method parameter to specify which interpolation method the block uses to
shear the image. If you select Nearest neighbor, the block uses the value of the nearest pixel for
the new pixel value. If you select Bilinear, the new pixel value is the weighted average of the two
nearest pixel values. If you select Bicubic, the new pixel value is the weighted average of the four
nearest pixel values.

The number of pixels the block considers affects the complexity of the computation. Therefore, the
nearest-neighbor interpolation is the most computationally efficient. However, because the accuracy
of the method is proportional to the number of pixels considered, the bicubic method is the most
accurate.

If, for the Shear values source parameter, you select Input port, the S port appears on the block.
At each time step, the input to the S port must be a two-element vector that represents the number of
pixels by which to shift your first and last rows or columns.

If, for the Output size after shear parameter, you select Full, and for the Shear values source
parameter, you select Input port, the Maximum shear value parameter appears in the dialog box.
Use this parameter to enter a real, scalar value that represents the maximum number of pixels by
which to shear your image. The block uses this parameter to determine the size of the output matrix.
If any input to the S port is greater than the absolute value of the Maximum shear value parameter,
the block saturates to the maximum value.

Fixed-Point Data Types

The following diagram shows the data types used in the Shear block for bilinear interpolation of fixed-
point signals.

 Shear

1-321



You can set the product output, accumulator, and output data types in the block mask.

Parameters
Shear direction

Specify whether you want to shift the rows or columns of the input image. Select Horizontal to
linearly increase the offset of the rows. Select Vertical to steadily increase the offset of the
columns.

Output size after shear
Specify the size of the sheared image. If you select Full, the block outputs a matrix that contains
the sheared image values. If you select Same as input image, the block outputs a matrix that
is the same size as the input image and contains a portion of the sheared image.

Shear values source
Specify how to enter your shear parameters. If you select Specify via dialog, the Row/
column shear values [first last] parameter appears in the dialog box. If you select Input
port, port S appears on the block. The block uses the input to this port at each time step as your
shear value.

Row/column shear values [first last]
Enter a two-element vector that represents the number of pixels by which to shift your first and
last rows or columns. This parameter is visible if, for the Shear values source parameter, you
select Specify via dialog.

Maximum shear value
Enter a real, scalar value that represents the maximum number of pixels by which to shear your
image. This parameter is visible if, for the Shear values source parameter, you select Input
port.

Background fill value
Specify a value for the pixels that are outside the image. This parameter is tunable.

1 Blocks

1-322



Interpolation method
Specify which interpolation method the block uses to translate the image. If you select Nearest
neighbor, the block uses the value of one nearby pixel for the new pixel value. If you select
Bilinear, the new pixel value is the weighted average of the four nearest pixel values. If you
select Bicubic, the new pixel value is the weighted average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the computation. Therefore,
the Nearest-neighbor interpolation is the most computationally efficient. However, because
the accuracy of the method is proportional to the number of pixels considered, the Bicubic
method is the most accurate.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Shear values
Choose how to specify the word length and the fraction length of the shear values.

• When you select Same word length as input, the word length of the shear values match
that of the input to the block. In this mode, the fraction length of the shear values is
automatically set to the binary-point only scaling that provides you with the best precision
possible given the value and word length of the shear values.

• When you select Specify word length, you can enter the word length of the shear values,
in bits. The block automatically sets the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the shear values, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the shear values. The bias of all signals in the Computer Vision Toolbox blocks is 0.

This parameter is visible if, for the Shear values source parameter, you select Specify via
dialog.

Product output

As depicted in the previous figure, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate this product output word
and fraction lengths.

• When you select Same as first input, these characteristics match those of the first input
to the block at the I port.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the product output, in bits.

 Shear

1-323



• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data
type. The output of the adder remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this accumulator word and fraction
lengths.

• When you select Same as product output, these characteristics match those of the
product output.

• When you select Same as first input, these characteristics match those of the first input
to the block at the I port.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of the first input
to the block at the I port.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

References

[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press, 1990.

1 Blocks

1-324



See Also
Resize Computer Vision Toolbox software
Rotate Computer Vision Toolbox software
Translate Computer Vision Toolbox software

More About
Nearest Neighbor Interpolation Method

For nearest neighbor interpolation, the block uses the value of nearby translated pixel values for the
output pixel values.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 1.7 pixels in the positive horizontal
direction using nearest neighbor interpolation. The block's nearest neighbor interpolation algorithm
is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.

2 Create the output matrix by replacing each input pixel value with the translated value nearest to
it. The result is the following matrix:

0 0 1 2 3
0 0 4 5 6
0 0 7 8 9

Note You wanted to translate the image by 1.7 pixels, but this method translated the image by 2
pixels. Nearest neighbor interpolation is computationally efficient but not as accurate as bilinear or
bicubic interpolation methods.

 Shear

1-325



Bilinear Interpolation

For bilinear interpolation, the block uses the weighted average of two translated pixel values for each
output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bilinear interpolation. The block's bilinear interpolation algorithm is illustrated by the
following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

2 Create the output matrix by replacing each input pixel value with the weighted average of the
translated values on either side. The result is the following matrix where the output matrix has
one more column than the input matrix:

0.5 1.5 2.5 1.5
2 4.5 5.5 3

3.5 7.5 8.5 4.5

Bicubic Interpolation

For bicubic interpolation, the block uses the weighted average of four translated pixel values for each
output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bicubic interpolation. The block's bicubic interpolation algorithm is illustrated by the
following steps:

1 Blocks

1-326



1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

2 Create the output matrix by replacing each input pixel value with the weighted average of the
two translated values on either side. The result is the following matrix where the output matrix
has one more column than the input matrix:

0.375 1.5 3 1.625
1.875 4.875 6.375 3.125
3.375 8.25 9.75 4.625

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Shear

1-327



Read Binary File
Read video data from binary file
Library: Computer Vision Toolbox / Sinks

Description
The Read Binary File block reads the video data from a binary file and imports it into a Simulink
model.

The user-specified block parameters describe the format of the video data. These parameters, along
with the raw binary file, create the video data for the Simulink model.

Note This block supports code generation for only those platforms that have file I/O. The block does
not support code generation using Simulink Desktop Real-Time or Simulink Real-Time™.

Ports
Output

Y' — Luminance component
3-D array

Luminance component of the video read from the binary file, specified as a 3-D array. The label of this
port can be changed using the Component1 parameter when the Video format parameter is set to
Custom.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Cb — Blue difference component
3-D array

Blue difference component of the video read from the binary file, specified as a 3-D array. The label of
this port can be changed using the Component2 parameter when the Video format parameter is set
to Custom.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Cr — Red difference component
3-D array

Red difference component of the video read from the binary file, specified as a 3-D array. The label of
this port can be changed using the Component3 parameter when the Video format parameter is set
to Custom.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

1 Blocks

1-328



A — Alpha component
3-D array

Alpha component of the video read from the binary file, specified as a 3-D array. The label of this port
can be changed using the Component4 parameter when the Video format parameter is set to
Custom.

Dependencies

To enable this port, use one of these options.

• Set the Video format parameter to Four character codes and set the Four character code
parameter to AYUV or IF09.

• Set the Video format parameter to Custom and the Number of output components parameter
to 4.

Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

T — Transparency component
3-D array

Transparency component of the video read from the binary file, specified as a 3-D array.

Dependencies

To enable this port, set the Video format parameter to Four character codes and set the Four
character code parameter to Y41T or Y42T.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

EOF — Last video frame indicator
scalar

The port outputs a 1 when the component ports output the last video frame. For every frame before
that, it outputs a 0.

Dependencies

To enable this port, select the Output end-of-file indicator parameter.
Data Types: Boolean

Parameters
File name — Name of binary file
vipmen.bin (default) | file name

Specify the name of the binary source file to read video data from.

Video format — Format of video data
Four character codes (default) | Custom

Specify the format of the video data as one of these options.

• Four character codes (FOURCC) — For more information about these codes, see https://
www.fourcc.org.

 Read Binary File

1-329

https://www.fourcc.org
https://www.fourcc.org


• Custom — Read the video data from a binary file of a custom format.

Four character code — Format of binary file
I420 (default) | AYUV | CLJR | cyuv | GREY | IF09 | IMC1 | IMC2 | IMC3 | IMC4 | IUYV | IY41 | IYU1 |
IYU2 | IYUV | NV12 | NV21 | UYNV | UYNY | V210 | Y411 | Y41P | Y41T | Y422 | Y42T | Y8 | Y800 |
YUNV | YUY2 | YUYV | YV12 | YV16 | YVU9 | YVYU | ...

Specify the four character code of the binary file codec. The value of this parameter also sets the
number of output ports. For information on which four character codes enable which output ports,
seeOutput Ports for Four Character Codes on page 1-335.

Dependencies

To enable this parameter, set the Video format parameter to Four character codes.

FrameSize Rows — Number of rows in output array
120 (default) | positive integer

Specify the number of rows in the output array as a positive integer. The value of this parameter must
match the dimensions of the data inside the file.

Dependencies

To enable this parameter, set the Video format parameter to Four character codes.

FrameSize Cols — Number of columns in output array
160 (default) | positive integer

Specify the number of columns in the output array as a positive integer. The value of this parameter
must match the dimensions of the data inside the file.

Dependencies

To enable this parameter, set the Video format parameter to Four character codes.

Line ordering — Output array fill direction
Top line first (default) | Bottom line first

If you select Top line first, the block first fills the first row of the output array with the
corresponding contents of the binary file. It then fills the other rows in increasing order. When you
select Bottom line first, the block first fills the last row of the output array with the
corresponding contents of the binary file. It then fills the other rows in decreasing order.

Number of times to play file — Number of times to play the file
1 (default) | positive integer | inf

Specify the number of times to repeat the binary file as a positive integer or inf. For any positive
integer value n of this parameter, the block plays the binary file n times. For a value of inf, the block
plays the file indefinitely until the end of simulation.

Output end-of-file indicator — Indicate when block output reaches last frame
off (default) | on

This parameter indicates when the block output reaches the last video frame in the binary file.
Selecting this parameter enables the EOF port. The output from the EOF port is 1 when the block
output reaches the last video frame. For all other frames, it is 0.

1 Blocks

1-330



Sample time — Sample period of output
1/30 (default) | positive scalar | -1

Specify the sample period of the output. Sample time indicates when, during simulation the block
produces output. The value of this parameter must be a positive scalar less than the simulation time
or -1. It cannot be 0. When set to -1, the block inherits the sample time from the simulink model.

Bit stream format — Specifies if data is planar or packed
Planar (default) | Packed

Specify the data format of the binary file as planar or packed. If the data is packed, use the
FrameSize Rows and FrameSize Cols parameters to define the size of the output array.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

Number of output components — Number of components in binary file
3 (default) | 1 | 2 | 4

Specify the number of output components from the binary file. This parameter sets the number of
output ports.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

Component1 — Name for luminance component
Y' (default) | component name

Specify the name for the luminance component of the output array. The luminance component is the
first component from the input binary file.

Dependencies

To enable this parameter, set the Video format parameter to Custom, set the Number of output
components parameter to 1 or greater .

Component2 — Name for blue difference component
Cb (default) | component name

Specify the name for the blue difference component of the output array. The blue difference
component is the second component from the input binary file.

Dependencies

To enable this parameter, set the Video format parameter to Custom, set the Number of output
components parameter to 2 or greater .

Component3 — Name for red difference component
Cr (default) | component name

Specify the name for the red difference component of the output array using this parameter. The red
difference component is the third component from the input binary file.

 Read Binary File

1-331



Dependencies

To enable this parameter, set the Video format parameter to Custom, set the Number of output
components parameter to 3 or greater .

Component4 — Name for alpha component
Alpha (default) | component name

Specify the name for the alpha component of the output array. The alpha component is the fourth
component from the input binary file.

Dependencies

To enable this parameter, set the Video format parameter to Custom, set the Number of output
components parameter to 4.

Bits1 — Size of luminance component
8 (default) | 16 | 24 | 32

Specify the size of the luminance component in the output array. The value of this parameter
determines the interpretation of the video stream data as 8-bit, 16-bit, 24-bit, or 32-bit.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 1 or greater.

Bits2 — Size of blue difference component
8 (default) | 16 | 24 | 32

Specify the size of the blue difference component in the output array. The value of this parameter
determines the interpretation of the video stream data as 8-bit, 16-bit, 24-bit, or 32-bit.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 2 or greater.

Bits3 — Size of red difference component
8 (default) | 16 | 24 | 32

Specify the size of the red difference component in the output array. The value of this parameter
determines the interpretation of the video stream data as 8-bit, 16-bit, 24-bit, or 32-bit.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 3 or greater.

Bits4 — Size of alpha component
8 (default) | 16 | 24 | 32

Specify the size of the alpha component in the output array. The value of this parameter determines
the interpretation of the video stream data as 8-bit, 16-bit, 24-bit, or 32-bit.

1 Blocks

1-332



Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 4 .

Rows1 — Number of rows for luminance component
120 (default) | positive integer

Specify the number of rows for the luminance component in the output array. The value of this
parameter must be a positive integer.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 1 or greater.

Rows2 — Number of rows for blue difference component
60 (default) | positive integer

Specify the number of rows for the blue difference component in the output array. The value of this
parameter must be a positive integer.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 2 or greater.

Rows3 — Number of rows for red difference component
60 (default) | positive integer

Specify the number of rows for the red difference component in the output array. The value of this
parameter must be a positive integer.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 3 or greater.

Rows4 — Number of rows for alpha component
288 (default) | positive integer

Specify the number of rows for the alpha component in the output array. The value of this parameter
must be a positive integer.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output ports parameter to 4.

Cols1 — Number of columns for luminance component
160 (default) | positive integer

Specify the number of columns for the luminance component in the output array. The value of this
parameter must be a positive integer.

 Read Binary File

1-333



Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 1 or greater.

Cols2 — Number of columns for blue difference component
80 (default) | positive integer

Specify the number of columns for the blue difference component in the output array. The value of
this parameter must be a positive integer.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 2 or greater.

Cols3 — Number of columns for red difference component
80 (default) | positive integer

Specify the number of columns for the luminance component in the output array. The value of this
parameter must be a positive integer.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 3 or greater.

Cols4 — Number of columns for the alpha component
352 (default) | positive integer

Specify the number of columns for the alpha component in the output array. The value of this
parameter must be a positive integer.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
output components parameter to 4.

Component order in binary file — Arrangement of components in binary file
[1 2 3] (default) | vector of valid component identifiers

Specify the arrangement of components in the binary file. Identify the components by the assigned
numerals, from 1 to 4, in desired order. You must include all the enabled components when setting
this parameter.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

Interlaced video — Read video data from file as interlaced
off (default) | on

Select this parameter when the binary file contains interlaced video data.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

1 Blocks

1-334



Input file has signed data — File has signed integers
off (default) | on

Select this parameter when the binary file contains signed integers.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

Byte order in binary file — Byte order of binary file
Little endian (default) | Big endian

Specify the byte order of the binary file as either little endian or big endian.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

Block Characteristics
Data Types integer
Multidimensional
Signals

no

Variable-Size Signals no

Output Ports for Four Character Codes
Four Character Code Output ports
I420 Y'|Cb|Cr
AYUV Y'|Cb|Cr|A
CLJR Y'|Cb|Cr
cyuv Y'|Cb|Cr
GREY Y'
IF09 Y'|Cb|Cr|A
IMC1 Y'|Cb|Cr
IMC2 Y'|Cb|Cr
IMC3 Y'|Cb|Cr
IMC4 Y'|Cb|Cr
IUYV Y'|Cb|Cr
IY41 Y'|Cb|Cr
IYU1 Y'|Cb|Cr
IYU2 Y'|Cb|Cr
IYUV Y'|Cb|Cr
NV12 Y'|Cb|Cr
NV21 Y'|Cb|Cr

 Read Binary File

1-335



Four Character Code Output ports
UYNV Y'|Cb|Cr
UYNY Y'|Cb|Cr
V210 Y'|Cb|Cr
Y411 Y'|Cb|Cr
Y41P Y'|Cb|Cr
Y41T Y'|Cb|Cr|T
Y422 Y'|Cb|Cr
Y42T Y'|Cb|Cr|T
Y8 Y'
Y800 Y'
YUNV Y'|Cb|Cr
YUY2 Y'|Cb|Cr
YUYV Y'|Cb|Cr
YV12 Y'|Cb|Cr
YV16 Y'|Cb|Cr
YVU9 Y'|Cb|Cr
YVYU Y'|Cb|Cr

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
From Multimedia File | Write Binary File

Introduced before R2006a

1 Blocks

1-336



Write Binary File
Write binary video data to file
Library: Computer Vision Toolbox / Sinks

Description
The Write Binary File block takes the video data from a Simulink model and exports it to a binary file.

This block produces a raw binary file with no header information. It has no encoded information
providing the data type, frame rate, or dimensionality. The video data for this block appears in row-
major format.

Note This block supports code generation only for platforms that have file I/O available. The block
does not support code generation using Simulink Desktop Real-Time or Simulink Real-Time.

Ports
Input

Y' — Luminance component of input video stream
scalar | vector | matrix

Luminance component of the input video stream, specified as a scalar, vector, or matrix. The label of
this port can be changed using the Component1 parameter when the Video format parameter is set
to Custom.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Cb — Blue difference component of the input video stream
scalar | vector | matrix

Blue difference component of the input video stream, specified as a scalar, vector, or matrix. The label
of this port can be changed using the Component2 parameter when the Video format parameter is
set to Custom.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Cr — Red difference component of input video stream
scalar | vector | matrix

Red difference component of the input video stream, specified as a scalar, vector, or matrix. The label
of this port can be changed using the Component3 parameter when the Video format parameter is
set to Custom.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

 Write Binary File

1-337



A — Alpha component of input video stream
scalar | vector | matrix

Alpha component of the input video stream, specified as a scalar, vector, or matrix. The label of this
port can be changed using the Component4 parameter when the Video format parameter is set to
Custom.

Dependencies

To enable this port, use one of these options.

• Set the Video format parameter to Four character codes, and set the Four character code
parameter to AYUV or IF09.

• Set the Video format parameter to Custom, and the Number of inputs parameter to 4. In this
case, the name of this port is Alpha.

Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

T — Transparency component of input video stream
scalar | vector | matrix

Transparency component of the input video stream, specified as a scalar, vector, or matrix.

Dependencies

To enable this port, set the Video format parameter to Four character codes, and set the Four
character code parameter to Y41T or Y42T.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
File name — Name of the binary file
output.bin (default) | file name

Specify the name of the output binary file, with a .bin extension, for the video data. Click Save As to
specify the location for the file.

Video format — Format of the video data
Four character codes (default) | Custom

Specify the format of the video data as one of these options.

• Four character codes (FOURCC) — For more information about these codes, see https://
www.fourcc.org.

• Custom — Read the video data from a binary file of a custom format.

Four character code — Format of binary file
I420 (default) | AYUV | CLJR | cyuv | GREY | IF09 | IMC1 | IMC2 | IMC3 | IMC4 | IUYV | IY41 | IYU1 |
IYU2 | IYUV | NV12 | NV21 | UYNV | UYNY | V210 | Y411 | Y41P | Y41T | Y422 | Y42T | Y8 | Y800 |
YUNV | YUY2 | YUYV | YV12 | YV16 | YVU9 | YVYU | ...

Select the four character code of the desired codec for the binary file. The value of this parameter
also determines the number of input ports on the block. For information on which four character
codes enable which input ports, see “Input Ports for Four Character Codes” on page 1-342.

1 Blocks

1-338

https://www.fourcc.org
https://www.fourcc.org


Dependencies

To enable this parameter, set the Video Format parameter to Four character codes.

Line ordering — Binary file fill direction
Top line first (default) | Bottom line first

If you select Top line first, the block begins filling the binary file with the first row of the video
frame. It then fills the file with the other rows in increasing order. If you select Bottom line
first, the block begins filling the binary file with the last row of the video frame. It then fills the file
with the other rows in decreasing order.

Bit stream format — Data format of binary file
Planar (default) | Packed

Specify the data format of the binary file as Planar or Packed.

Dependencies

To enable this parameter, set the Video Format parameter to Custom.

Number of inputs — Number of components in input video stream
3 (default) | 1 | 2 | 4

Specify the number of components in the input video stream. This parameter sets the number of input
ports.

Dependencies

To enable this parameter, set the Video Format parameter to Custom.

Inherit size of components from input data type — All components have same
number of bits
on (default) | off

Select the Inherit size of components from input data type parameter to indicate that all of the
components have the same number of bits as the input data type. If you clear this parameter, you can
specify the number of bits for each enabled component using the associated Bits parameter.

Dependencies

To enable this parameter, set the Video Format parameter to Custom.

Component1 — Name of luminance component input port
Y' (default) | component name

Specify the name of the input port for the luminance component of the input video stream.

Dependencies

To enable this parameter, set the Video format parameter to Custom, set the Number of inputs
parameter to 1 or greater .

Component2 — Name of blue difference component
Cb (default) | component name

Specify the name of the input port for the blue difference component of the input video stream.

 Write Binary File

1-339



Dependencies

To enable this parameter, set the Video format parameter to Custom, set the Number of inputs
parameter to 2 or greater .

Component3 — Name of red difference component
Cr (default) | component name

Specify the name of the input port for the red difference component of the input video stream.

Dependencies

To enable this parameter, set the Video format parameter to Custom, set the Number of inputs
parameter to 3 or greater .

Component4 — Name of alpha component
Alpha (default) | component name

Specify the name of the input port for the alpha component of the input video stream.

Dependencies

To enable this parameter, set the Video format parameter to Custom, set the Number of inputs
parameter to 4.

Bits1 — Size of luminance component
8 (default) | 0 | 16 | 24 | 32

Specify the size of the luminance component in the input video stream. The value of this parameter
determines the interpretation of the video stream data as 8-bit, 16-bit, 24-bit, or 32-bit.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
inputs parameter to 1 or greater, and select the Inherit size of components from input data type
parameter.

Bits2 — Size of blue difference component
8 (default) | 0 | 16 | 24 | 32

Specify the size of the blue difference component in the input video stream. The value of this
parameter determines the interpretation of the video stream data as 8-bit, 16-bit, 24-bit, or 32-bit.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
inputs parameter to 2 or greater, and select the Inherit size of components from input data type
parameter.

Bits3 — Size of red difference component
8 (default) | 0 | 16 | 24 | 32

Specify the size of the red difference component in the input video stream. The value of this
parameter determines the interpretation of the video stream data as 8-bit, 16-bit, 24-bit, or 32-bit.

1 Blocks

1-340



Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
inputs parameter to 3 or greater, and select the Inherit size of components from input data type
parameter.

Bits4 — Size of alpha component
8 (default) | 0 | 16 | 24 | 32

Specify the size of the alpha component in the input video stream. The value of this parameter
determines the interpretation of the video stream data as 8-bit, 16-bit, 24-bit, or 32-bit.

Dependencies

To enable this parameter, set the Video format parameter to Custom, and set the Number of
inputs parameter to 4, and select the Inherit size of components from input data type
parameter.

Component order in binary file — Arrangement of components in binary file
[1 2 3] (default) | vector of valid component identifiers

Specify the arrangement of the components in the binary file. Identify the components by the
assigned numerals, from 1 to 4, in the desired order. You must include all enabled components when
setting this parameter.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

Interlaced video — Read video data as interlaced
off (default) | on

Select this parameter when the video stream contains interlaced video data.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

Write signed data to output file — Write signed data to output binary file
off (default) | on

Select this parameter when the input data is signed.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

Byte order in binary file — Byte order in output binary file
Little endian (default) | Big endian

Specify the byte order in the output binary file as either little endian or big endian.

Dependencies

To enable this parameter, set the Video format parameter to Custom.

 Write Binary File

1-341



Block Characteristics
Data Types integer
Multidimensional
Signals

no

Variable-Size Signals no

Input Ports for Four Character Codes
Four Character Code Input ports
I420 Y'|Cb|Cr
AYUV Y'|Cb|Cr|A
CLJR Y'|Cb|Cr
cyuv Y'|Cb|Cr
GREY Y'
IF09 Y'|Cb|Cr|A
IMC1 Y'|Cb|Cr
IMC2 Y'|Cb|Cr
IMC3 Y'|Cb|Cr
IMC4 Y'|Cb|Cr
IUYV Y'|Cb|Cr
IY41 Y'|Cb|Cr
IYU1 Y'|Cb|Cr
IYU2 Y'|Cb|Cr
IYUV Y'|Cb|Cr
NV12 Y'|Cb|Cr
NV21 Y'|Cb|Cr
UYNV Y'|Cb|Cr
UYNY Y'|Cb|Cr
V210 Y'|Cb|Cr
Y411 Y'|Cb|Cr
Y41P Y'|Cb|Cr
Y41T Y'|Cb|Cr|T
Y422 Y'|Cb|Cr
Y42T Y'|Cb|Cr|T
Y8 Y'
Y800 Y'
YUNV Y'|Cb|Cr
YUY2 Y'|Cb|Cr

1 Blocks

1-342



Four Character Code Input ports
YUYV Y'|Cb|Cr
YV12 Y'|Cb|Cr
YV16 Y'|Cb|Cr
YVU9 Y'|Cb|Cr
YVYU Y'|Cb|Cr

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Read Binary File | To Multimedia File

Introduced before R2006a

 Write Binary File

1-343



Template Matching
Locate a template in an image
Library: Computer Vision Toolbox / Analysis & Enhancement

Description
The Template Matching block finds the best match of a template within an input image. The block
computes match metric values by shifting a template over a region of interest or the entire image,
and then finds the best match location.

The block outputs either the match metric values or the one-based (x,y) coordinates of the best
template match. Optionally the lbock can output an N-by-N matrix of the match metric values
centered around the best match location.

Ports
Input

I — Image
image

Input image to use with the template. The block does not pad the input data. Therefore, it can only
compute values for the match metrics between the input image and the template, where the template
is positioned such that it falls entirely on the input image. A set of all such positions of the template is
termed as the valid region of the input image. The size of the valid region is the difference between
the sizes of the input and template images plus one.

sizevalid=sizeinput – sizetemplate+1 (1-3)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

T — Template
M-by-N matrix

Template, specified as an M-by-N matrix

The Template Matching block does not pad the input data. Therefore, it can only compute values for
the match metrics between the input image and the template, where the template is positioned such
that it falls entirely on the input image. A set of all such positions of the template is termed as the
valid region of the input image. The size of the valid region is the difference between the sizes of the
input and template images plus one.

sizevalid=sizeinput – sizetemplate+1 (1-4)

Data Types: single | double | uint8 | Boolean | fixed point

1 Blocks

1-344



ROI — Region of interest
four-element vector

Region of interest vector in the format (x,y,width,height), where (x,y) are one-based coordinates for
the upper-left corner of the region. The block outputs the best match location index relative to the top
left corner of the input image.
Data Types: single | double | uint8 | Boolean | fixed point

Output

Metric — Match metric values
matrix

Matrix of match metric values. The matrix of the match metrics always implements single-step
exhaustive window iteration. Therefore, the block computes the metric values at every pixel.
Dependencies

When you set the Output parameter to Metric matrix, the block outputs the valid image size.
Data Types: single | double | uint8 | Boolean | fixed point

Loc — Best match locations
two-element vector

Best template match located at the one-based (x,y) coordinates. When in the ROI processing mode,
the block treats the image around the ROI as an extension of the ROI subregion. Therefore, it
computes the best match locations true to the actual boundaries of the ROI. The block outputs the
best match coordinates, relative to the top-left corner of the image. The one-based [x y] coordinates
of the location correspond to the center of the template. The following table shows how the block
outputs the center coordinates for odd and even templates:

Odd number of pixels in template Even number of pixels in template

Data Types: uint32

NMetric — Metric values in neighborhood of best match
N-by-N matrix

 Template Matching

1-345



Metric values in the neighborhood of the best match, returned as an N-by-N matrix. N, specified in
the mask, must be an odd number. When you select Best match location to return the matrix of
metrics in a neighborhood around the best match, an exhaustive loop computes all the metric values
for the N-by-N neighborhood. This output is particularly useful for performing template matching
with subpixel accuracy.
Data Types: single | double | uint8 | Boolean | fixed point

NValid — Valid neighborhood
off | on

Enable to track the valid neighborhood region. The neighborhood matrix of metric values is valid
inside of the ROI. The block sets the NValid output as follows:

• 1 — The neighborhood containing the best match is completely inside the region of interest.
• 0 — The neighborhood containing the best match is completely or partially outside of the region of

interest.

Dependencies

This port appears when you enable the Output NxN matrix of metric values around best match
parameter.
Data Types: Boolean

ROIValid — Valid region of interest
off | on

Enable to track the valid region of interest. If the ROI lies partially outside the valid image, the block
only processes the intersection of the ROI and the valid image. The block sets the ROIValid output as
follows:

• 1 — The ROI lies completely inside the valid part of the input image.
• 0 — The ROI lies completely or partially outside of the valid part of the input image.

Dependencies

This port appears when you enable the Output flag indicating if ROI is valid parameter.
Data Types: Boolean

Parameters
Main Tab

Match metric — Match metric
Sum of absolute differences (default) | Sum of squared differences | Maximum
absolute difference

Select match metric as one of:

• Sum of absolute differences (SAD)
• Sum of squared differences (SSD)
• Maximum absolute difference (MaxAD)

1 Blocks

1-346



The block computes the match metric at each step of the iteration. Choose the match metric that best
suits your application. The block calculates the global optimum for the best metric value. It uses the
valid subregion of the input image intersected by the ROI, if provided.

Output — Match metric
Match metric (default) | Best match location

Select the type of output as one of:

• Match metric — Output the match metric matrix. This option adds the Metric output port to the
block.

• Best match location — Output the [x,y] coordinates for the location of the best match. This
option adds the Loc output port to the block. It also makes the Search method, Output NxN
matrix of metric values around best match, and Enable ROI processing parameters
available.

The Output parameter on the Data Types pane appears when you set the Output parameter on
the Main tab to Metric matrix or if you set it to Best match location and you enable the
Output NxN matrix of metric values around best match parameter.

Search method — Search method
Exhaustive (default) | Three-step

Specify the search method as either Exhaustive or Three-step. The Exhaustive search method
is computationally intensive because it searches at every pixel location of the image. However, this
method provides a more precise result.

The Three-step search method is a fast search that uses a neighborhood approach versus a search
at every pixel. The search starts with a step size equal to or slightly greater than half of the maximum
search range and then employs the following steps:

1 The block compares nine search points in each step. There is a central point and eight search
points located on the search area boundary.

2 The block decrements the step size by one, after each step, ending the search with a step size of
one pixel.

3 At each new step, the block moves the search center to the best matching point resulting from
the previous step. The number one blue circles in the figure below represent a search with a
starting step size of three. The number two green circles represent the next search, with step
size of two, centered around the best match found from the previous search. Finally, the number
three orange circles represent the final search, with step size of one, centered around the
previous best match.

 Template Matching

1-347



Dependencies

This parameter appears when you set the Output parameter to Best match location.

Output NxN matrix of metric values around best match — Output N-by-N matrix
on (default) | off

Enable to add the NMetric and NValid ports.

Dependencies

This parameter appears when you set the Output parameter to Best match location.

N — Size of output matrix
3 (default) | integer

Size of output matrix. This value determines the size of the N-by-N output matrix centered around the
best match location index. N must be an odd number.

Dependencies

This parameter appears when you enable the Output NxN matrix of metric values around best
match parameter.

Enable ROI processing — Enable ROI processing
on (default) | off

Enable ROI processing.

Dependencies

• This parameter appears when you set the Output parameter to Best match location.

1 Blocks

1-348



• When you enable this parameter, the block adds the ROI input port, and the Output flag
indicating if ROI is valid parameter appears.

Output flag indicating if ROI is valid — Valid ROI
off (default) | on

Enable to add the ROIValid port.

Dependencies

This parameter appears when you enable the Enable ROI processing parameter.

Data Types Tab

For details on the fixed-point block parameters, see “Specify Fixed-Point Attributes for Blocks” .

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Algorithms
Match Metrics

The match metrics use a difference equation with general form:

dp(x, y) = ( ∑
i = 1

n
xi− yi

p)1 p

lnp denotes the metric space (Rn, dp) for Rn n > 1.

Sum of Absolute Differences (SAD)

The SAD metric is also known as the Taxicab or Manhattan Distance metric. It sums the absolute
values of the differences between pixels in the original image and the corresponding pixels in the
template image. This metric is the l1 norm of the difference image. The lowest SAD score estimates
the best position of template within the search image. The general SAD distance metric becomes:

d1(I j, T) = ∑
i = 1

n
Ii, j− Ti

Sum of Squared Differences (SSD)

The SSD metric is also known as the Euclidean Distance metric. It sums the square of the absolute
differences between pixels in the original image and the corresponding pixels in the template image.
This metric is the square of the l2 norm of the difference image. The general SSD distance metric
becomes:

 Template Matching

1-349



d2(I j, T) = ∑
i = 1

n
Ii, j− Ti

2

Maximum Absolute Difference (MaxAD)

The MaxAD metric is also known as the Uniform Distance metric. It sums the maximum of absolute
values of the differences between pixels in the original image and the corresponding pixels in the
template image. This distance metric provides the l∞ norm of the difference image. The general
MaxAD distance metric becomes:

d∞(I j, T) = lim
x ∞

∑
i = 1

n
Ii, j− Ti

p

which simplifies to:

d∞(I j, T) = max
i

n
Ii, j− Ti

p

References
[1] Koga T., et. Al. Motion-compensated interframe coding for video conferencing. In National

Telecommunications Conference. Nov. 1981, G5.3.1–5, New Orleans, LA.

[2] Zakai M., “General distance criteria” IEEE Transaction on Information Theory, pp. 94–95, January
1964.

[3] Yu, J., J. Amores, N. Sebe, Q. Tian, "A New Study on Distance Metrics as Similarity Measurement"
IEEE International Conference on Multimedia and Expo, 2006 .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Block Matching

Topics
“Video Stabilization”

Introduced in R2009b

1 Blocks

1-350



To Multimedia File
Write video frames and audio samples to multimedia file
Library: Computer Vision Toolbox / Sinks

Description
The To Multimedia File block writes video frames, audio samples, or both to a multimedia file
(.avi, .wav, .mj2, .mp4, or .m4v format).

You can compress the video frames or audio samples by selecting a compression algorithm. You can
also control the type of video or audio in addition to other related properties the multimedia file
receives.

If you have a Simulink Coder license, you can generate a code from a model containing this block. To
run a generated executable file, you may need to add precompiled shared library files to your system
path. See “Simulink Shared Library Dependencies”, and “Accelerating Simulink Models” for details.

Note This block supports code generation for platforms that have file I/O available. You cannot use
this block with Simulink Desktop Real-Time software, because that product does not support file I/O.

This block performs best on platforms with Version 11 or later of Windows Media® Player software.
This block supports only uncompressed RGB24 AVI files on Linux and Mac platforms.

Ports
Input

Image — Input image frame
matrix | array

Specify the input image frame as a matrix or an array. To write an intensity image frame to a
multimedia file, specify it as an M-by-N matrix. For a color image frame, specify it as an M-by-N-by-3
array.

Dependencies

To enable this port:

• Set the File type parameter to AVI, MJ-2000, WMV, or MPEG4.
• If the File type parameter value is not MJ-2000, set the Write parameter to Video and audio

or Video only.
• If the File type parameter value is AVI or MPEG4, set the File color format parameter to RGB.
• Set the Image signal parameter to One multidimensional signal.

 To Multimedia File

1-351



Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

R — Red color component of image
matrix

Specify the red color component of the input image frame as an M-by-N matrix.

Dependencies

To enable this port:

• Set the File type parameter to AVI, MJ-2000, WMV, or MPEG4.
• If the File type parameter value is not MJ-2000, set the Write parameter to Video and audio

or Video only.
• If the File type parameter value is AVI or MPEG4, set the File color format parameter to RGB.
• Set the Image signal parameter to Separate color signals.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

G — Green color component of image
matrix

Specify the green color component of the input image frame as an M-by-N matrix.

Dependencies

To enable this port:

• Set the File type parameter to AVI, MJ-2000, WMV, or MPEG4.
• If the File type parameter value is not MJ-2000, set the Write parameter to Video and audio

or Video only.
• If the File type parameter value is AVI or MPEG4, set the File color format parameter to RGB.
• Set the Image signal parameter to Separate color signals.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

B — Blue color component of image
matrix

Specify the blue color component of the input image frame as an M-by-N matrix.

Dependencies

To enable this port:

• Set the File type parameter to AVI, MJ-2000, WMV, or MPEG4.
• If the File type parameter value is not MJ-2000, set the Write parameter to Video and audio

or Video only.
• If the File type parameter value is AVI or MPEG4, set the File color format parameter to RGB.
• Set the Image signal parameter to Separate color signals.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

1 Blocks

1-352



Y — Luma component of image
matrix

Specify the luma component of the input image frame as an M-by-N matrix.

Dependencies

To enable this port:

• Set the File type parameter to AVI or MPEG4.
• Set the Write parameter to Video and audio or Video only.
• Set the File color format parameter to YCbCr 4:2:2.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Cb — Blue-difference chrominance component of image
matrix

Specify the blue-difference chrominance component of the input image as an M-by-N/2 matrix.

Dependencies

To enable this port:

• Set the File type parameter to AVI or MPEG4.
• Set the Write parameter to Video and audio or Video only.
• Set the File color format parameter to YCbCr 4:2:2.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Cr — Red-difference chrominance component of image
matrix

Specify the red-difference chrominance component of the input image as an M-by-N/2 matrix.

Dependencies

To enable this port:

• Set the File type parameter to AVI or MPEG4.
• Set the Write parameter to Video and audio or Video only.
• Set the File color format parameter to YCbCr 4:2:2.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Audio — Input audio signal
vector | matrix

Specify the input audio signal as a vector or a matrix. When specified as a matrix, the block treats
each column as an independent channel.

Dependencies

To enable this port:

 To Multimedia File

1-353



• Set the File type parameter to AVI, WAV, WMA, MPEG4, FLAC, or OGG.
• If the File type parameter value is AVI, WMV, or MPEG4 set the Write parameter to Video and

audio or Audio only.

Data Types: single | double | int16 | int32 | uint8

Parameters
File name — Name of multimedia file
output.avi (default) | character vector

Specify the name for the multimedia file the block writes. The block appends a file extension
automatically based on the specified File type parameter. If the specified file name, including the file
extension, already exists, the block overwrites the data in the existing file with the new input data.

By default, the block saves the file in the current working directory. To specify a different file location,
click the Save As... button.

File type — Type of multimedia file
AVI (default) | WAV | MJ2000 | WMA | WMV | MPEG4 | FLAC | OGG

Specify the type of multimedia file to write. The block supports the AVI, WAV, MJ2000, WMA, WMV,
MPEG4, FLAC, and OGG file formats.

Write — Type of media
Video only (default) | Audio only | Video and audio

Specify the type of media to write. Depending on the value of the File type parameter, you can select
Video only, Audio only, or Video and audio.

Type of file Supported type of media
AVI • Video only

• Audio only
• Video and audio

WMV • Video only
• Video and audio

MPEG4 • Video only
• Audio only

Dependencies

To enable this parameter, set the File type parameter to AVI, WMV, or MPEG4.

Video compressor — Video compression algorithm
None (uncompressed) (default) | DV Video Encoder | MJPEG Compressor | Lossy | Lossless

Specify a video compression algorithm to reduce the size of the output file. The available options
depend on the value of the File type parameter.

• AVI — Select either the DV Video Encoder or MJPEG Compressor algorithm. If you do not
want to reduce the size of the file, select None (uncompressed).

1 Blocks

1-354



• MJ2000 — Select either the Lossy or Lossless algorithm.

Note The options for this parameter are the video compression algorithms installed on your system.
For information about a specific video compressor, see the documentation for that compressor.

Dependencies

To enable this parameter, set the File type parameter to MJ2000 or AVI. For the AVI file type, set the
Write parameter to Video only or Video and audio.

Compression Factor (>1) — Compression factor
10 (default) | integer greater than 1

Specify the compression factor as an integer greater than 1.

Dependencies

To enable this parameter, set the File type parameter to MJ2000 and the Video compressor
parameter to Lossy.

Video Quality (0-100) — Quality of video
75 (default) | integer in range [0, 100]

Specify the quality of the video as an integer in the range [0, 100].

Dependencies

To enable this parameter, set the File type parameter to MPEG4 and the Write parameter to Video
only.

File color format — Color format of output video
RGB (default) | YCbCr 4:2:2

Specify the color format of the video for the output file. The block supports the RGB and YCbCr
4:2:2 color formats.

Dependencies

To enable this parameter, set the File type parameter to AVI or MPEG4.

Image signal — Input port configuration for RGB video
One multidimensional signal (default) | Separate color signals

Specify how the block accepts an RGB color video input. If you select One multidimensional
signal, the block accepts input using only the Image port. If you select Separate color
signals, the block accepts an input video using three separate color channels, divided across the R,
G, and B ports.

Dependencies

To enable this parameter:

• Set the File type parameter to AVI, MJ-2000, WMV, or MPEG4.
• Set the Write parameter to Video and audio or Video only.

 To Multimedia File

1-355



• If the File type parameter value is AVI or MPEG4, set the File color format parameter to RGB.

Audio compressor — Audio compression algorithm
None (uncompressed) (default) | CCITT A-Law | CCITT u-Law | GSM 6.10 | IMA ADPCM |
Microsoft ADPCM | PCM

Specify an audio compression algorithm to reduce the size of the output file. The block supports the
CCITT A-Law, CCITT u-Law, GSM 6.10, IMA ADPCM, Microsoft ADPCM, and PCM algorithms. If
you do not want to reduce the size of the file, select None (uncompressed).

Note The options for this parameter are the audio compression algorithms installed on your system.
For information about a specific audio compressor, see the documentation for that compressor.

Dependencies

To enable this parameter, use either of these options:

• Set the File type parameter to AVI and set the Write parameter to Video and audio or Audio
only.

• Set the File type parameter to WAV.

Audio data type — Audio data type
Determine from input data type (default) | 8-bit integer | 16-bit integer | 24-bit
integer | 32-bit integer | 32-bit float | 64-bit float

Specify the audio data type for the output file.

Dependencies

To enable this parameter select, use either of these options:

• Set the File type parameter to WAV and the Audio compressor parameter to None
(uncompressed).

• Set the File type parameter to FLAC. This file type supports only the 8-bit integer, 16-bit
integer, and 24-bit integer data types.

Block Characteristics
Data Types double | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a Supports 16- and 32-bit signed and 8-bit unsigned integers.

1 Blocks

1-356



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Host computer only. Excludes Simulink Desktop Real-Time code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll files)

included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed ZIP file. Using this ZIP file, you can relocate, unpack,
and rebuild your project in another development environment where MATLAB is not installed. For
more details, see “Code Generation, GPU, and Third-Party Support” .

See Also
Blocks
From Multimedia File | Video From Workspace | Image From File | Video To Workspace

Introduced before R2006a

 To Multimedia File

1-357



To Simulink Image
Pack numeric matrix into a Simulink image
Library: Computer Vision Toolbox / Utilities

Description
The To Simulink Image block converts matrix data to Simulink image data.

Ports
Input

Port_1 — Input signal
matrix

Input signal to the To Simulink Image block. The input is a numerical matrix.
Data Types: integer | single | double | Boolean

Output

Port_1 — Output signal
Simulink.ImageType

Output signal from the To Simulink Image block. The output is an image of Simulink.ImageType
data type.
Data Types: Simulink.ImageType

Parameters
Output data type — Data type of output signal values
Inherit: auto (default) | Simulink.ImageType(480,640,3)

Specify the output data type of the image signal.

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

You can specify any of these options:

• Inherited data type
• Simulink image data type — Use the constructor for Simulink.ImageType object and specify the

properties to describe the image. By default, the data type uses
Simulink.ImageType(480,640,3) expression.

• Custom data type — Use a MATLAB expression that represents the rows, columns, and channels of
the image respectively.

1 Blocks

1-358



Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Value: Inherit: auto | Simulink.ImageType(480,640,3) | <data type expression>
Default: Inherit: auto

Block Characteristics
Data Types double | single | integer | Boolean | image
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Supports C++ code generation.

See Also
From Simulink Image

Introduced in R2022a

 To Simulink Image

1-359



To Video Display
Display images or video frames
Library: Computer Vision Toolbox / Sinks

Description
The To Video Display block displays RGB or YCbCr formatted images and video frames. The display
created by the block is lightweight and high performance, capable of displaying high definition video
at high frame rates.

Ports
Input

Image — Input image
matrix | array

Input image or video, specified as an M-by-N matrix, M-by-N-by-T array, or M-by-N-by-C-by-T array. If
the input is a 3-D array, the third dimension is the number of frames in the video. If the input is a 4-D
array, the third dimension is the number of color channels, and the fourth dimension is the number of
frames in the video.

Dependencies

To enable this port, set the Input Color Format parameter to RGB, and set Image signal to One
multidimensional signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

R — Red color component of image
matrix | array

Red color component of the input image or video, specified as an M-by-N matrix or M-by-N-by-T array.
If the input is a 3-D array, the third dimension is the number of frames in the video.

Note Inputs to the R, G, and B ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Input Color Format parameter to RGB, and set Image signal to
Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

1 Blocks

1-360



G — Green color component of image
matrix | array

Green color component of the input image or video, specified as an M-by-N matrix or M-by-N-by-T
array. If the input is a 3-D array, the third dimension is the number of frames in the video.

Note Inputs to the R, G, and B ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Input Color Format parameter to RGB, and set Image signal to
Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

B — Blue color component of image
matrix | array

Blue color component of the input image or video, specified as an M-by-N matrix or M-by-N-by-T
array. If the input is a 3-D array, the third dimension is the number of frames in the video.

Note Inputs to the R, G, and B ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Input Color Format parameter to RGB, and set Image signal to
Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Y — Luma component of image
matrix | array

Luma component of the input image or video, specified as an M-by-N matrix or M-by-N-by-T array. If
the input is a 3-D array, the third dimension is the number of frames in the video.

Dependencies

To enable this port, set the Input Color Format parameter to YCbCr 4:2:2.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Cb — Blue-difference chroma component of image
matrix | array

Blue-difference chroma component of the input image or video, specified as an M-by-N/2 matrix or M-
by-N/2-by-T array. If the input is a 3-D array, the third dimension is the number of frames in the video.

Dependencies

To enable this port, set the Input Color Format parameter to YCbCr 4:2:2.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

 To Video Display

1-361



Cr — Red-difference chroma component of image
matrix | array

Red-difference chroma component of the input image or video, specified as an M-by-N/2 matrix or M-
by-N/2-by-T array. If the input is a 3-D array, the third dimension is the number of frames in the video.

Dependencies

To enable this port, set the Input Color Format parameter to YCbCr 4:2:2.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
View

Window size — Display window size
Normal (default) | Full-screen (Esc to exit) | True size (1:1)

Display the video stream in various window sizes:

• Normal — Modify the display size at the start of the simulation.
• Full-screen (Esc to exit) — Display the video stream in a full-screen window. To exit the

full-screen view, press Esc.
• True size (1:1) — Display the input image at a one-to-one pixel ratio, at the start of the

simulation.

Open at Start of Simulation — Open window at start of simulation
on (default) | off

To set the Video Display window to open automatically and display video frames when the simulation
begins, select Open at Start of Simulation. If you clear this parameter, the block is not included
during runtime, and the simulation runs in “Accelerator Mode” (Simulink).

Settings

Input Color Format — Input color format
RGB (default) | YCbCr 4:2:2

Specify the color format of the input image:

• RGB — Specify the input colorspace as RGB. You can select whether to input the image as a single
signal or as individual color signals using the Image signal parameter.

• YCbCr 4:2:2— Specify the input colorspace as YCbCr. You must input the image as separate
signals to the three input ports, Y, Cb and Cr.

Image signal — Configure input port
One multidimensional signal (default) | Separate color signals

Specify whether the block accepts an RGB color input as a single signal or as separate signals for
each color channel..

• One multidimensional signal — The block accepts RGB input as a single array through one
port.

1 Blocks

1-362



• Separate color signals — The block accepts RGB input as three separate matrices or arrays,
one for each color channel, to the R, G, and B ports.

Dependencies

To enable this parameter, set the Input Color Format parameter to RGB.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Note This block supports code generation for platforms that have file I/O available. You cannot use
this block with Simulink Desktop Real-Time software, because that product does not support file I/O.

The generated code for this block relies on prebuilt library files. You can run this code outside the
MATLAB environment, or redeploy it, but be sure to account for these extra library files when doing
so. The packNGo function creates a single ZIP file containing all of the pieces required to run or
rebuild this code. See packNGo for more information.

To know the code generation process of Simulink blocks, see “Simulink Coder”. To run an executable
file that was generated from a model containing this block, you may need to add precompiled shared
library files to your system path. See “Simulink Shared Library Dependencies” and “Accelerating
Simulink Models” for details.

Usage notes and limitations:

• Host computer only. Excludes Simulink Desktop Real-Time code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll files)

included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed ZIP file. Using this ZIP file, you can relocate, unpack,
and rebuild your project in another development environment where MATLAB is not installed. For
more details, see “Code Generation, GPU, and Third-Party Support”.

See Also
Blocks
Frame Rate Display | From Multimedia File | To Multimedia File | Video To Workspace | Video Viewer

Introduced before R2006a

 To Video Display

1-363



Top-hat
Perform morphological top-hat filtering on intensity or binary images
Library: Computer Vision Toolbox / Morphological Operations

Description
The Top-hat block performs top-hat filtering on an intensity or binary image using a predefined
neighborhood or structuring element. Top-hat filtering is the equivalent of subtracting the result of
performing a morphological opening operation on the input image from the input image itself.

To define the structuring element that the block applies to the image, use the Neighborhood or
structuring element parameter. Specify this element by entering a vector or matrix of 1s and 0s or
by using the strel function.

This block uses two-dimensional flat structuring elements only.

Ports
Input

I — Input image
matrix

Specify an input image as a matrix of intensity values. This port is unnamed unless you set the
Neighborhood or structuring element source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Nhood — Neighborhood values
vector | matrix

Specify neighborhood values representing a structuring element as a vector or matrix of 1s and 0s or
by using the strel function.

Dependencies

To enable this port, set the Neighborhood or structuring element source parameter to Input
port.
Data Types: Boolean

Output

Port_1 — Filtered image
matrix

1 Blocks

1-364



The top-hat filtered image is returned as a matrix of intensity values. The size and data type of the
filtered image are the same as those of the input image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Input image type — Type of input image
Intensity (default) | Binary

Specify the type of image as one of these options:

• Intensity — If the input image is an intensity image, select this option.
• Binary — If the input image is a binary image, select this option.

Neighborhood or structuring element source — Source of neighborhood or structuring
element
Specify via dialog (default) | Input port

Specify the source of neighborhood or structuring element as one of these options:

• Specify via dialog — Use the Neighborhood or structuring element parameter to specify
a neighborhood or structuring element.

• Input port — Use the Nhood input port to specify neighborhood values representing a
structuring element.

Neighborhood or structuring element — Neighborhood or structuring element
strel('square',4) (default) | vector | matrix

Specify neighborhood or structuring element as a vector or matrix of 1s and 0s, a strel object or an
array of strel objects. When you specify this value as an array of strel objects, the block applies
each object to the entire image in turn.

If the structuring element is decomposable into smaller elements, the block executes at higher speed
due to the use of a more efficient algorithm.

Dependencies

To enable this parameter, set the Neighborhood or structuring element source parameter, to
Specify via dialog.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

 Top-hat

1-365



More About
Top-hat Transform

Image processing tasks like background equalization, feature extraction, and image enhancement can
be achieved using the top-hat transform. This process returns an image which contains objects that
are:

• Smaller in dimension than the structuring element chosen and
• Brighter than the surroundings

References
[1] Soille, Pierre. Morphological Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg,

2004. https://doi.org/10.1007/978-3-662-05088-0.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Erosion | Dilation | Opening | Closing | Label | Bottom-hat

Functions
imerode | imdilate | imopen | imclose | imbothat | imtophat

Objects
strel

Introduced before R2006a

1 Blocks

1-366



Trace Boundary
Trace object boundaries in binary images

Library
Analysis & Enhancement

visionanalysis

Description
The Trace Boundary block traces object boundaries in binary images, where nonzero pixels represent
objects and 0 pixels represent the background.

Port Descriptions

Port Input/Output Supported Data Types
BW Vector or matrix that represents a

binary image
Boolean

Start Pt One-based [x y] coordinates of the
boundary starting point.

• Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

 Trace Boundary

1-367



Port Input/Output Supported Data Types
Pts M-by-2 matrix of [x y] coordinates

of the boundary points, where M
represents the number of traced
boundary pixels. M must be less
than or equal to the value
specified by the Maximum
number of boundary pixels
parameter.

x1 y1
x2 y2
x3 y3
. .
. .
. .

xm ym

Same as Start Pts port

Parameters
Connectivity

Specify which pixels are connected to each other. If you want a pixel to be connected to the pixels
on the top, bottom, left, and right, select 4. If you want a pixel to be connected to the pixels on
the top, bottom, left, right, and diagonally, select 8. For more information about this parameter,
see the Label block reference page.

Initial search direction
Specify the first direction in which to look to find the next boundary pixel that is connected to the
starting pixel.

If, for the Connectivity parameter, you select 4, the following figure illustrates the four possible
initial search directions:

If, for the Connectivity parameter, you select 8, the following figure illustrates the eight possible
initial search directions:

1 Blocks

1-368



Trace direction
Specify the direction in which to trace the boundary. Your choices are Clockwise or
Counterclockwise.

Maximum number of boundary pixels
Specify the maximum number of boundary pixels for each starting point. The block uses this
value to preallocate the number of rows of the Pts port output matrix so that it can hold all the
boundary pixel location values.

Use the Maximum number of boundary pixels parameter to specify the maximum number of
boundary pixels for the starting point.

See Also
Edge Detection Computer Vision Toolbox software
Label Computer Vision Toolbox software
bwboundaries Image Processing Toolbox software
bwtraceboundary Image Processing Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2011b

 Trace Boundary

1-369



Translate
Translate image in 2-D plane using displacement vector

Library
Geometric Transformations

visiongeotforms

Description
Use the Translate block to move an image in a two-dimensional plane using a displacement vector, a
two-element vector that represents the number of pixels by which you want to translate your image.
The block outputs the image produced as the result of the translation.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image /
Input

M-by-N matrix of intensity values or an
M-by-N-by-P color video signal where P is
the number of color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Offset Vector of values that represent the
number of pixels by which to translate
the image

Same as I port No

Output Translated image Same as I port No

The input to the Offset port must be the same data type as the input to the Image port. The output is
the same data type as the input to the Image port.

Use the Output size after translation parameter to specify the size of the translated image. If you
select Full, the block outputs a matrix that contains the entire translated image. If you select Same
as input image, the block outputs a matrix that is the same size as the input image and contains a
portion of the translated image. Use the Background fill value parameter to specify the pixel values
outside the image.

Use the Offset source parameter to specify how to enter your displacement vector. If you select
Specify via dialog, the Offset parameter appears in the dialog box. Use it to enter your

1 Blocks

1-370



displacement vector, a two-element vector, [r c], of real, integer values that represent the number
of pixels by which you want to translate your image. The r value represents how many pixels up or
down to shift your image. The c value represents how many pixels left or right to shift your image.
The axis origin is the top-left corner of your image. For example, if you enter [2.5 3.2], the block
moves the image 2.5 pixels downward and 3.2 pixels to the right of its original location. When the
displacement vector contains fractional values, the block uses interpolation to compute the output.

Use the Interpolation method parameter to specify which interpolation method the block uses to
translate the image. If you translate your image in either the horizontal or vertical direction and you
select Nearest neighbor, the block uses the value of the nearest pixel for the new pixel value. If
you translate your image in either the horizontal or vertical direction and you select Bilinear, the
new pixel value is the weighted average of the four nearest pixel values. If you translate your image
in either the horizontal or vertical direction and you select Bicubic, the new pixel value is the
weighted average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the computation. Therefore, the
nearest-neighbor interpolation is the most computationally efficient. However, because the accuracy
of the method is roughly proportional to the number of pixels considered, the bicubic method is the
most accurate.

If, for the Output size after translation parameter, you select Full, and for the Offset source
parameter, you select Input port, the Maximum offset parameter appears in the dialog box. Use
the Maximum offset parameter to enter a two-element vector of real, scalar values that represent
the maximum number of pixels by which you want to translate your image. The block uses this
parameter to determine the size of the output matrix. If the input to the Offset port is greater than
the Maximum offset parameter values, the block saturates to the maximum values.

If, for the Offset source parameter, you select Input port, the Offset port appears on the block. At
each time step, the input to the Offset port must be a vector of real, scalar values that represent the
number of pixels by which to translate your image.

Fixed-Point Data Types

The following diagram shows the data types used in the Translate block for bilinear interpolation of
fixed-point signals.

 Translate

1-371



You can set the product output, accumulator, and output data types in the block mask as discussed in
the next section.

Parameters
Output size after translation

If you select Full, the block outputs a matrix that contains the translated image values. If you
select Same as input image, the block outputs a matrix that is the same size as the input
image and contains a portion of the translated image.

Offset source
Specify how to enter your translation parameters. If you select Specify via dialog, the
Offset parameter appears in the dialog box. If you select Input port, port O appears on the
block. The block uses the input to this port at each time step as your translation values.

Offset source
Enter a vector of real, scalar values that represent the number of pixels by which to translate
your image.

Background fill value
Specify a value for the pixels that are outside the image.

Interpolation method
Specify which interpolation method the block uses to translate the image. If you select Nearest
neighbor, the block uses the value of one nearby pixel for the new pixel value. If you select
Bilinear, the new pixel value is the weighted average of the four nearest pixel values. If you
select Bicubic, the new pixel value is the weighted average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the computation. Therefore,
the Nearest-neighbor interpolation is the most computationally efficient. However, because
the accuracy of the method is proportional to the number of pixels considered, the Bicubic
method is the most accurate.

1 Blocks

1-372



Maximum offset
Enter a vector of real, scalar values that represent the maximum number of pixels by which you
want to translate your image. This parameter must have the same data type as the input to the
Offset port. This parameter is visible if, for the Output size after translation parameter, you
select Full and, for the Offset source parameter, you select Input port.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Offset values
Choose how to specify the word length and the fraction length of the offset values.

• When you select Same word length as input, the word length of the offset values match
that of the input to the block. In this mode, the fraction length of the offset values is
automatically set to the binary-point only scaling that provides you with the best precision
possible given the value and word length of the offset values.

• When you select Specify word length, you can enter the word length of the offset values,
in bits. The block automatically sets the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the offset values, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the offset values. The bias of all signals in the Computer Vision Toolbox blocks is 0.

This parameter is visible if, for the Offset source parameter, you select Specify via dialog.
Product output

As depicted in the previous figure, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate this product output word
and fraction lengths.

• When you select Same as first input, these characteristics match those of the first input
to the block.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

 Translate

1-373



Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data
type. The output of the adder remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this accumulator word and fraction
lengths.

• When you select Same as product output, these characteristics match those of the
product output.

• When you select Same as first input, these characteristics match those of the first input
to the block.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of the first input
to the block.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool
in the Simulink documentation.

References

[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press, 1990.

1 Blocks

1-374



See Also
Resize Computer Vision Toolbox software
Rotate Computer Vision Toolbox software
Shear Computer Vision Toolbox software

More About
Nearest Neighbor Interpolation Method

For nearest neighbor interpolation, the block uses the value of nearby translated pixel values for the
output pixel values.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 1.7 pixels in the positive horizontal
direction using nearest neighbor interpolation. The block's nearest neighbor interpolation algorithm
is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.

2 Create the output matrix by replacing each input pixel value with the translated value nearest to
it. The result is the following matrix:

0 0 1 2 3
0 0 4 5 6
0 0 7 8 9

Note You wanted to translate the image by 1.7 pixels, but this method translated the image by 2
pixels. Nearest neighbor interpolation is computationally efficient but not as accurate as bilinear or
bicubic interpolation methods.

 Translate

1-375



Bilinear Interpolation

For bilinear interpolation, the block uses the weighted average of two translated pixel values for each
output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bilinear interpolation. The block's bilinear interpolation algorithm is illustrated by the
following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

2 Create the output matrix by replacing each input pixel value with the weighted average of the
translated values on either side. The result is the following matrix where the output matrix has
one more column than the input matrix:

0.5 1.5 2.5 1.5
2 4.5 5.5 3

3.5 7.5 8.5 4.5

Bicubic Interpolation

For bicubic interpolation, the block uses the weighted average of four translated pixel values for each
output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bicubic interpolation. The block's bicubic interpolation algorithm is illustrated by the
following steps:

1 Blocks

1-376



1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

2 Create the output matrix by replacing each input pixel value with the weighted average of the
two translated values on either side. The result is the following matrix where the output matrix
has one more column than the input matrix:

0.375 1.5 3 1.625
1.875 4.875 6.375 3.125
3.375 8.25 9.75 4.625

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Translate

1-377



Video Viewer
Display images or video frames
Library: Computer Vision Toolbox / Sinks

Description
The Video Viewer block displays images or video frames. This block provides simulation controls to
play, pause, and step while streaming a video or image sequence. This block also provides tools to
analyze the pixels of a region of interest.

Features of Video Viewer

• Playback control — Control video playback using the Run, Step Forward, and Stop buttons.
• Export to Image Viewer — To open the displayed image in a separate window using the Image

Viewer app, select File > Export to Image Tool. Alternatively, select the Export to Image Tool
button in the toolbar. For more information, see “Get Started with Image Viewer App”.

1 Blocks

1-378



• Pixel region analysis— To open the displayed image in a separate window using the Pixel Region
tool, select Tools > Pixel Region. Alternatively, select the Inspect pixel values button in the
toolbar. For more information about Pixel Region tool, see impixelregion.

Ports
Input

Image — Input image or video
matrix | array

Input image or video, specified as an M-by-N matrix, M-by-N-by-T array, or M-by-N-by-C-by-T array. T
is the number of frames in a video or image sequence, and C is the number of color channels.

Dependencies

To enable this port, select the One Multi-Dimensional Signal parameter. This parameter is enabled
by default.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
Simulink.ImageType

R — Red color component of image or video
matrix | array

Red color component of the image or video, specified as an M-by-N matrix or M-by-N-by-T array. T is
the number of frames in a video or image sequence.

Note Inputs to the R, G, and B ports must all have the same dimensions and data type.

Dependencies

To enable this port, select the Separate Color Signals parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

G — Green color component of image or video
matrix | array

Green color component of the image or video, specified as an M-by-N matrix or M-by-N-by-T array. T
is the number of frames in a video or image sequence.

Note Inputs to the R, G, and B ports must all have the same dimensions and data type.

Dependencies

To enable this port, select the Separate Color Signals parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

B — Blue color component of image or video
matrix | array

 Video Viewer

1-379



Blue color component of the image or video, specified as an M-by-N matrix or M-by-N-by-T array. T is
the number of frames in a video or image sequence.

Note Inputs to the R, G, and B ports must all have the same dimensions and data type.

Dependencies

To enable this port, select the Separate Color Signals parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
File

To access these parameters, select the File menu in the Video Viewer window

Open at Start of Simulation — Open video viewer window at start of simulation
on (default) | off

Select this parameter to automatically open the Video Viewer window at the start of the simulation.
Clear this parameter to prevent the Video Viewer window from opening at the start of the simulation.

Separate Color Signals — Enable separate R, G, and B color channels as input
off (default) | on

Select this parameter to enable the R, G, and B input ports for separate color channels. If you select
this parameter, the One Multi-Dimensional Signal parameter clears automatically.

One Multi-Dimensional Signal — Enable one multi-dimensional signal as input
on (default) | off

Select this parameter to enable the Image input port for one multi-dimensional signal. If you select
this parameter, the Separate Color Signals parameter clears automatically.

File > Configuration > Edit > Core

The Video Viewer Configuration parameters enable you to change the behavior and appearance of
the graphic user interface (GUI).

• To open the Configuration dialog box and edit parameters, select File > Configuration > Edit.

The Core tab in the Configuration dialog box lists the general settings of the GUI.

• In the Core tab, select General UI item and click the Properties button to open the General UI
Properties dialog box.

Display the full path — Display full path of source data in the title bar
off (default) | on

Select this parameter to display the model name and full path to the source data in the title bar of the
Video Viewer window. If you clear this parameter, the window displays a shortened name.

1 Blocks

1-380



File > Configuration > Edit > Tools

The Video Viewer Configuration parameters enable you to change the behavior and appearance of
the graphic user interface (GUI).

• To open the Configuration dialog box and edit parameters, select File > Configuration > Edit.

The Tools tab in the Configuration dialog box lists the tools associated with the Video Viewer block.

• In the Tools tab, select the Image Tool item and click the Properties button to open the Image
Tool Properties dialog box.

Open new Image Tool window for each export — Open new Image Viewer window for
each exported video frame
on (default) | off

Select this parameter to open a new Image Viewer window for each exported video frame or image
in an image sequence..

Tools > Colormap

The Colormap parameters enable you to display an intensity image in various colormap formats and
control the output intensity range. To access these parameters, select Tools > Colormap or press C.

Note The Colormap parameters are available for intensity images only.

Colormap — Set colormap
gray(256) (default) | parula(256) | jet(256) | hot(256) | bone(256) | cool(256) |
copper(256)

This parameter specifies the colormap in which to display the input intensity image. This block
supports the gray(256), parula(256), jet(256), hot(256), bone(256), and copper(256)
colormaps.

Specify range of displayed pixel values [-Inf to Inf] — Specify range of intensity
value to display
off (default) | on

Select this parameter to enable the Min and Max parameters, through which you can specify the
display range of pixel intensities.

Min — Minimum intensity value
0 (default) | numeric scalar

If a pixel has an intensity value less than or equal to the value of this parameter, Video Viewer
displays it as the first color in the selected colormap.

Note When specifying a value for Min, remember that the data type of the input image or video
determines the range of intensity values representing that image or video.

 Video Viewer

1-381



Dependencies

To enable this parameter, select the Specify range of displayed pixel values [-Inf to Inf]
parameter.

Max — Maximum intensity value
255 (default) | numeric scalar

If a pixel has an intensity value higher than or equal to the value of this parameter, Video Viewer
displays it as the last color in the selected colormap.

Note When specifying a value for Max, remember that the data type of the input image or video
determines the range of intensity values representing that image or video.

Dependencies

To enable this parameter, select the Specify range of displayed pixel values [-Inf to Inf]
parameter.

Simulation

To access this parameter, select the Simulation menu in the Video Viewer window.

Drop Frames to Improve Performance — Drop frame rate of input video signal
on (default) | off

Select this parameter to reduce the frame rate of the input video signal to improve performance of
the simulation. If you unselect this parameter, the block displays all the frames in the input video
signal during simulation.

Block Characteristics
Data Types Boolean | double | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

See Also
Blocks
From Multimedia File | To Multimedia File | To Video Display | Video To Workspace | Video From
Workspace | Image From Workspace | Image From File

Introduced before R2006a

1 Blocks

1-382



Video From Workspace
Import video from MATLAB workspace
Library: Computer Vision Toolbox / Sources

Description
The Video From Workspace block imports a video from the MATLAB workspace. The output of the
block depends on the format of the video in the workspace.

• If the video is represented by an M-by-N-by-T array, the block outputs a grayscale video. M and N
are the number of rows and columns in each video frame, and T is the number of frames in the
video.

• If the video is represented by an M-by-N-by-C-by-T array, the block outputs a color video. M and N
are the number of rows and columns in each video frame, C is the number of color channels, and T
is the number of frames in the video.

Note

• If you generate code from a model that contains this block, it takes long to compile the code as the
Simulink Coder puts all of the video data into the .c file. To shorten code generation time, convert
your video data into a format supported by the From Multimedia File or Read Binary File block.

• The Video From Workspace block also supports fi objects. For more information on fi objects,
see fi Object Properties (Fixed-Point Designer).

Ports
Output

Image — Output image or video
M-by-N-by-T array | M-by-N-by-C-by-T array

Output image or video, returned as an M-by-N-by-T array or M-by-N-by-C-by-T array. If the output is a
3-D array, the third dimension is the number of frames in the video. If the output is a 4-D array, the
third dimension is the number of color channels, and the fourth dimension is the number of frames in
the video.

Note If an RGB image of size, M-by-N-by-3 array is imported from the MATLAB workspace, the block
considers the third dimension to be the number of frames and processes the image as a grayscale
video with 3 identical frames.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

 Video From Workspace

1-383



R — Red color component of input video
3-D array

Red color component of the input video, returned as a 3-D array. The third dimension is the number of
frames in the input video.

Note The port label can be changed by using the Output port labels parameter.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

G — Green color component of input video
3-D array

Green color component of the input video, returned as a 3-D array. The third dimension is the number
of frames in the input video.

Note The port label can be changed by using the Output port labels parameter.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

B — Blue color component of input video
3-D array

Blue color component of the input video, returned as a 3-D array. The third dimension is the number
of frames in the input video.

Note The port label can be changed by using the Output port labels parameter.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Signal — Video to read
rand(32,32,3,5) (default) | M-by-N-by-T array | M-by-N-by-C-by-T array | MATLAB workspace
variable

1 Blocks

1-384



Specify the video to read from the workspace. The value for this parameter can be a 3-D numeric
array, 4-D numeric array, or a MATLAB workspace variable.

To import an AVI file from the MATLAB workspace, use this process.

1 Read the file by using the VideoReader function.

mov = VideoReader('filename.avi')
2 Specify the workspace variable, in this case mov as the value for the Signal parameter. If the AVI

file has an associated colormap, it must satisfy these conditions.

• The colormap must be empty or have 256 values.
• The data must represent a grayscale image.
• The data type of the pixel values must be uint8.

Sample time — Sample period of the output video
1 (default) | -1 | positive scalar

This parameter specifies the sample period of the output video as a positive scalar or -1. When set to
-1, the block inherits the sample time from the simulink model.

Form output after final value by — Form of block output after final video frame
Setting to zero (default) | Holding final value | Cyclic repetition

Specify the block output for the duration of the simulation after the block generates the final video
frame.

• Setting to zero — Generate zero-valued outputs.
• Holding final value — Repeat the final frame.
• Cyclic repetition — Repeat the video from the beginning.

Image signal — Output mode of video signal
One multidimensional signal (default) | Separate color signals

Specify the format in which the block returns a color video.

• One multidimensional signal — Return all color channels of the video in a single 4-D array.
The third dimension is the number of color channels in the video.

• Separate color signals — Return each color channel of the video as a separate 3-D array.
This setting enables a number of output ports on the block equal to the number of color channels
in the video. Each port returns a single color channel.

Output port labels — Output port names
R|G|B (default) | text labels separated by vertical bars

Name the output ports. Use the vertical bar character, |, as a delimiter.

Example:: Red|Green|Blue

Dependencies

To enable this parameter, set the Image signal parameter to Separate color signals.

 Video From Workspace

1-385



Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Video To Workspace | Image From Workspace | Video Viewer

Introduced before R2006a

1 Blocks

1-386



Video To Workspace
Export image or video to MATLAB workspace
Library: Computer Vision Toolbox / Sinks

Description
The Video To Workspace block exports an image or video to the MATLAB workspace. It accepts
images or videos as a matrix, 3-D array, 4-D array and converts them to a 3-D or 4-D array. The input
size determines the output size.

• M-by-N, the block exports it as an M-by-N-by-2 array. M and N are the number of rows and
columns, respectively, in an image frame and 2 is the number of frames in the image.

• M-by-N-by-3, the block exports it as a M-by-N-by-3-by-2 array. M and N are the number of rows
and columns in a image or video frame, 3 is the number of color channels, and 2 is the number of
frames in the video.

• M-by-N-by-3-by-T, the block exports it as a M-by-N-by-3-by-T array. M and N are the number of
rows and columns in a video frame, 3 represents the number of color channels, and T is the
number of frames in the video.

Note

• Simulink Coder does not generate code for this block.
• The block supports grayscale and color images, which are exported to the MATLAB workspace

with an extra dimension that represents the number of frames. An image is always exported with a
frame value of 2.

Ports
Input

Image — Input video
matrix | 3-D array | 4-D array

The input image or video, specified as a matrix, 3-D array, or 4-D array. The type of signal determines
the dimensions of the input. Inputs are defined in terms of M, N, C, and T. M and N are the number of
rows and columns in the signal respectively. C is the number of color channels in the signal, and T is
the number of frames.

 Video To Workspace

1-387



Input - Output

Signal Type Input Dimensions Output Dimensions
Grayscale image M-by-N M-by-N-by-2
Color image M-by-N-by-3 M-by-N-by-3-by-2
Grayscale video M-by-N-by-T M-by-N-by-T
Color video M-by-N-by-3-by-T M-by-N-by-3-by-T

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

R — Red color channel
scalar | vector | matrix

Red color channel of the input image or video, specified as a scalar, vector, or matrix.

Note The port label can be changed using the Input port labels parameter.

Dependencies

To enable this port, set the Number of inputs parameter to a value greater than or equal to 2.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

G — Green color channel
scalar | vector | matrix

Green color channel of the input image or video, specified as a scalar, vector, or matrix.

Note The port label can be changed using the Input port labels parameter.

Dependencies

To enable this port, set the Number of inputs parameter to a value greater than or equal to 2.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

B — Blue color channel
scalar | vector | matrix

Blue color component of the input image or video, specified as a scalar, vector, or matrix.

Note The port label can be changed using the Input port labels parameter.

Dependencies

To enable this port, set the Number of inputs parameter to a value equal to 3.

1 Blocks

1-388



Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Variable name — MATLAB workspace variable name
vout (default) | valid MATLAB variable name

Specify the MATLAB workspace variable name for the exported image or video.

Number of inputs — Number of inputs ports
1 (default) | positive integer

Specify the number of inputs to the block. To separate the color channels in a RBG image or video,
specify the number of channels. If it is a grayscale video, enter 1. If it is a color (R, G, B) video, enter
3.

Limit data points to last — Maximum number of frames to export
10 (default) | positive integer

Specify the maximum number of frames to export to the MATLAB workspace.

Decimation — Downsample video signal
1 (default) | positive integer

Enter the decimation factor by which to downsample the image or video.

Log fixed-point data as a fi object — Create fixed-point numeric object
off (default) | on

Select Log fixed-point data as a fi object to create a fi object in the MATLAB workspace when the
input signal has a fixed point data type. For more information on fi objects, see the fi Object
Properties (Fixed-Point Designer).

Input port labels — Input port names
R|G|B (default)

Name the input ports using the vertical bar character as a delimiter.

Dependencies

To enable this parameter, set the Number of inputs parameter to a value greater than 1.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals no

 Video To Workspace

1-389



See Also
Blocks
Image From Workspace | Video From Workspace | Write Binary File

Introduced before R2006a

1 Blocks

1-390



Warp
Apply projective or affine transformation
Library: Computer Vision Toolbox / Geometric Transformations

Description
The Warp block transforms an image by applying projective on page 1-397 or affine on page 1-397
transformation. You can transform the entire image or a region of the image by defining a rectangular
region of interest (ROI).

Ports
Input

Image — Input image
matrix | 3-D numeric array

Input image, specified as one of these values:

• matrix — For intensity images of size M-by-N.
• 3-D numeric array — For true color images of size M-by-N-by-3.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TForm — Transformation matrix
3-by-2 matrix | 3-by-3 matrix

Transformation matrix, specified as any one of these values:

• 3-by-2 matrix — For affine transformation.
• 3-by-3 matrix — For projective transformation.

For more information about the transformations, see “Algorithms” on page 1-397.
Dependencies

To enable this input port, set the Transformation matrix source parameter value to Input port.
Data Types: double | single

ROI — Region of interest
4-element vector

Region of interest, specified as a 4-element vector of form [xs ys width height]. xs and ys are the x and
y coordinates of the top left corner of the ROI, respectively.

If you specify the ROI input, the Warp block applies transformation only to the specified region and
returns the transformed region at the output.

 Warp

1-391



Dependencies

To enable this input port, select the Enable ROI input port parameter.

Output

Image — Transformed image
matrix | 3-D numeric array

Transformed image, returned as one of these values:

• matrix — If input is an intensity image of size P-by-Q1.
• 3-D numeric array — If input is a true color image of size P-by-Q-by-3.

The data type of the output transformed image is same as that of the input image. The size of the
output transformed image is either same as the input image or equal to the value set for the Output
image position vector [x y width height] parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Err_roi — Indicator for transformed ROI outside image region
0 | 1

Indicator for transformed ROI outside image region, returned as 0 or 1.
Data Types: Boolean

Parameters
Transformation matrix for source — Source for passing transformation matrix
Input port (default) | Custom

Source for passing transformation matrix, specified as either Input port or Custom. If you select
Custom, you can enter the transformation matrix coefficients by using the Transformation matrix
parameter that appears with this selection.

Transformation matrix — Value for transformation matrix
3-by-2 matrix | 3-by-3 matrix

Value for transformation matrix, specified as a 3-by-2 matrix for affine transformation or 3-by-3
matrix for projective transformation.
Dependencies

To enable this parameter, set the Transformation matrix for source parameter value to Custom.

Interpolation method — Method for interpolating transformed pixel values
Bilinear (default) | Nearest neighbor | Bicubic

Method for interpolating transformed pixel values, specified as Nearest neighbor, Bilinear, or
Bicubic.

If you select Nearest neighbor, the block uses the value of an nearby pixel for the new pixel value.
If you select Bilinear, the new pixel value is the weighted average of the four nearest pixel values.
If you select Bicubic, the new pixel value is the weighted average of the sixteen nearest pixel
values.

1 Blocks

1-392



The number of pixels the block considers affects the complexity of the computation. Therefore, the
Nearest neighbor interpolation is the most computationally efficient. However, because the
accuracy of the method is proportional to the number of pixels considered, the Bicubic method is
the most accurate. For information about the interpolation methods, see the “More About” on page 1-
394 section.

Background fill value — Intensity value for background pixels in the transformed image
0 (default) | scalar | 3-element vector

Intensity value for background pixels in the transformed image, specified as one of these values:

• scalar — If input image is a gray scale image.
• 3-element vector — If input image is a true color image. The vector is of the form [r g b] specifying

the red (r), green (g), and blue (b) color channel values for the background pixels.

The default fill value is 0 and sets the background color to black.

Output image position source — Source for passing output image size
Same as input image (default) | Custom

Source for passing a value for the output image size, specified as either Same as input image or
Custom.

• If you select Same as input image, the output transformed image is of same size as that of the
input image.

• If you select Custom, you must specify a bounding box to output only the image region that lies
within the bounding box. This selection enables the Output image position vector [x y width
height] parameter that you can use for specifying the bounding box value.

Output image position vector [x y width height] — Size of the output image
[1 1 512 512] (default) | 4-element vector

Size of the output image, specified as a four element vector of form [x y width height]. When you
specify this parameter, the Warp block creates a bounding box of specified width and height values.
The size of the output image is set to the size of the bounding box and will contain the transformed
image region that lies within the bounding box. If the size of the output image is greater than the size
of the transformed image region within the bounding box, the intensity value of the extraneous pixels
in the output image are set to the value specified for Background fill value parameter.

x and y are the spatial coordinates that define top-left corner position of the bounding box with
respect to the input image.
Dependencies

To enable this parameter, set the Output image position source parameter value to Custom.

 Warp

1-393



Enable ROI input port — Input ROI
off (default) | on

Select this parameter to enable the ROI input port and specify the ROI to be transformed.

Enable output port indicating if any part of ROI is outside input image —
Output if transformed ROI is outside the specified image size
off (default) | on

Select this parameter to enable the Err_roi output port.

Dependencies

To enable this parameter, select the Enable ROI input port parameter.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation method, specified as Interpreted Execution or Code Generation. If you want
your block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block
to run as compiled code, choose Code Generation. For more information, see “Choosing a
Simulation Mode” (Simulink).

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes

More About
Nearest Neighbor Interpolation Method

For nearest neighbor interpolation, the block uses the value of nearby translated pixel values for the
output pixel values.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 1.7 pixels in the positive horizontal
direction using nearest neighbor interpolation. The block's nearest neighbor interpolation algorithm
is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.

1 Blocks

1-394



2 Create the output matrix by replacing each input pixel value with the translated value nearest to
it. The result is the following matrix:

0 0 1 2 3
0 0 4 5 6
0 0 7 8 9

Note You wanted to translate the image by 1.7 pixels, but this method translated the image by 2
pixels. Nearest neighbor interpolation is computationally efficient but not as accurate as bilinear or
bicubic interpolation methods.

Bilinear Interpolation

For bilinear interpolation, the block uses the weighted average of two translated pixel values for each
output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bilinear interpolation. The block's bilinear interpolation algorithm is illustrated by the
following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

 Warp

1-395



2 Create the output matrix by replacing each input pixel value with the weighted average of the
translated values on either side. The result is the following matrix where the output matrix has
one more column than the input matrix:

0.5 1.5 2.5 1.5
2 4.5 5.5 3

3.5 7.5 8.5 4.5

Bicubic Interpolation

For bicubic interpolation, the block uses the weighted average of four translated pixel values for each
output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bicubic interpolation. The block's bicubic interpolation algorithm is illustrated by the
following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

1 Blocks

1-396



2 Create the output matrix by replacing each input pixel value with the weighted average of the
two translated values on either side. The result is the following matrix where the output matrix
has one more column than the input matrix:

0.375 1.5 3 1.625
1.875 4.875 6.375 3.125
3.375 8.25 9.75 4.625

Algorithms
Affine Transformation

The affine transformation matrix is a 3-by-2 matrix of form

H =
h1 h4
h2 h5
h3 h6

where h1, h2,...,h6 are transformation coefficients.

The value of the pixel located at x, y  in the input image determines the value of the pixel located at
x , y  in the output transformed image. The relationship between the input and output point locations

is defined by:

x = xh1 + yh2 + h3

y = xh4 + yh5 + h6

Projective Transformation

The projective transformation matrix is a 3-by-3 matrix of form

H =
h1 h4 h7
h2 h5 h8
h3 h6 h9

where h1, h2,...,h9 are transformation coefficients.

The value of the pixel located at x, y  in the input image determines the value of the pixel located at
x , y  in the output transformed image.

The relationship between the input and output point locations is defined by:

x =
xh1 + yh2 + h3
xh7 + yh8 + h9

y =
xh4 + yh5 + h6
xh7 + yh8 + h9

The values of pixels in the output point locations are calculated using any of these interpolation
methods: Nearest neighbor, bilinear, and bicubic interpolation.

 Warp

1-397



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
imwarp

Blocks
Estimate Geometric Transformation | Resize | Rotate | Shear | Translate

Introduced in R2015b

1 Blocks

1-398



ToOpenCV
Converts Simulink data types to OpenCV data types
Library: Computer Vision Toolbox Interface for OpenCV in Simulink

Description
The ToOpenCV block converts the Simulink data types to Simulink OpenCV data types.

Ports
Inputs

Port_1 — Input signal
scalar | vector | matrix | simulink bus | simulink image

Input signal to the ToOpenCV block. The input can be of different data types. Each of the input data
types determines the output data type of the block.
Data Types: uint8 | uint16 | int8 | int16 | int32 | single | double | Simulink.ImageType |
CV_DMATCH_BUS | CV_RECT_BUS | CV_ROTATEDRECT_BUS | CV_TERMCRITERIA_BUS |
CV_SIZE_BUS | CV_RANGE_BUS | CV_POINT2I_BUS | CV_POINT2F_BUS | CV_POINT2D_BUS |
CV_POINT3I_BUS | CV_POINT3F_BUS | CV_POINT3D_BUS

Output

Port_1 — Output signal
scalar | vector | matrix | simulink bus | simulink image

Output signal from the ToOpenCV block. The output signal supports OpenCV types. For more
information, see Mapping Input and Output Data Types on page 1-400.
Data Types: OpenCV types

Parameters
DataType — Data type of the Input signal of ToOpenCV block
input data type (default)

Specifies the input data type of the ToOpenCV block. The table on page 1-400 lists the one-to-one
mapping of the input versus output data types of the ToOpenCV block.

Programmatic Use
Block Parameter: DataType
Type: character vector
Value: input data type
Default: 'Point2i'

 ToOpenCV

1-399



Block Characteristics
Data Types
Direct Feedthrough Yes
Multidimensional
Signals

Yes

Variable-Size Signals No

More About
Mapping of Input and Output Data Types

The table lists the one-to-one mapping of the input versus output data types of the ToOpenCV block.

DataType Parameter ToOpenCV Block Output
Signal Data Type

ToOpenCV Block Input Signal
Data Type

Mat or Mat-Image cv_Mat uint8 array
uint16 array
int8 array
int16 array
int32 array
single array
double array
Simulink.ImageType

Simulink.ImageType cv_Mat Simulink.ImageType
DMatch cv_DMatch CV_DMATCH_BUS
vector<DMatch> vector_cv_DMatch CV_DMATCH_BUS (1d array)
vector<vector<DMatch>> vector_vector_cv_DMatch CV_DMATCH_BUS (2d array)
Rect cv_Rect CV_RECT_BUS
vector<Rect> vector_cv_Rect CV_RECT_BUS (1d array)
RotatedRect cv_RotatedRect CV_ROTATEDRECT_BUS
vector<RotatedRect> vector_cv_RotatedRect CV_ROTATEDRECT_BUS (1d

array)
TermCriteria cv_TermCriteria CV_TERMCRITERIA_BUS
Scalar cv_Scalar double array
Size cv_Size CV_SIZE_BUS
Range cv_Range CV_RANGE_BUS
Point cv_Point CV_POINT2I_BUS
Point2f cv_Point2f CV_POINT2F_BUS
Point2d cv_Point2d CV_POINT2D_BUS
Point3i cv_Point3i CV_POINT3I_BUS

1 Blocks

1-400



DataType Parameter ToOpenCV Block Output
Signal Data Type

ToOpenCV Block Input Signal
Data Type

Point3f cv_Point3f CV_POINT3F_BUS
Point3d cv_Point3d CV_POINT3D_BUS
vector<Point> vector_cv_Point CV_POINT2I_BUS (1d array)
vector<Point2f> vector_cv_Point2f CV_POINT2F_BUS (1d array)
vector<Point2d> vector_cv_Point2d CV_POINT2D_BUS (1d array)
vector<Point3i> vector_cv_Point3i CV_POINT3I_BUS (1d array)
vector<Point3f> vector_cv_Point3f CV_POINT3F_BUS (1d array)
vector<Point3d> vector_cv_Point3d CV_POINT3D_BUS (1d array)
vector<vector<Point>> vector_vector_cv_Point CV_POINT2I_BUS (2d array)
vector<vector<Point2f>> vector_vector_cv_Point2f CV_POINT2F_BUS (2d array)
vector<vector<Point2d>> vector_vector_cv_Point2d CV_POINT2D_BUS (2d array)
vector<vector<Point3i>> vector_vector_cv_Point3i CV_POINT3I_BUS (2d array)
vector<vector<Point3f>> vector_vector_cv_Point3f CV_POINT3F_BUS (2d array)
vector<vector<Point3d>> vector_vector_cv_Point3d CV_POINT3D_BUS (2d array)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Supports C++ code generation.

See Also
FromOpenCV | Matrix To Image | Image To Matrix

Topics
“Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink”

Introduced in R2020a

 ToOpenCV

1-401



FromOpenCV
Converts OpenCV data types to Simulink data types
Library: Computer Vision Toolbox Interface for OpenCV in Simulink

Description
The FromOpenCV block converts the Simulink OpenCV data types to Simulink data types.

Ports
Inputs

Port_1 — First input signal
scalar | vector | matrix | simulink bus | simulink image

Input signal to the FromOpenCV block. The input can be of different data types. Each of the input
data types determines the output data type of the block. For more information, see Mapping Input
and Output Data Types. on page 1-403
Data Types: OpenCV types

Output

Port_1 — Output signal
scalar | vector | matrix | simulink bus | simulink image

Output signal from the FromOpenCV block.
Data Types: Converted Simulink types

Parameters
DataType — Data type of the Input signal of FromOpenCV block
input data type (default)

Specifies the input data type of the FromOpenCV block. The table on page 1-403 lists the one-to-one
mapping of the input versus output data types of the FromOpenCV block.

Programmatic Use
Block Parameter: DataType
Type: character vector
Value: input data type
Default: 'Point2i'

1 Blocks

1-402



Block Characteristics
Data Types
Direct Feedthrough Yes
Multidimensional
Signals

Yes

Variable-Size Signals No

More About
Mapping of Input and Output Data Types

The table lists the one-to-one mapping of the input versus output data types of the FromOpenCV
block.

DataType Parameter FromOpenCV Block Input
Signal Data Type

FromOpenCV Block Output
Signal Data Type

Mat or Mat-Image cv_Mat uint8 array
uint16 array
int8 array
int16 array
int32 array
single array
double array
Simulink.ImageType

Simulink.ImageType cv_Mat Simulink.ImageType
DMatch cv_DMatch CV_DMATCH_BUS
vector<DMatch> vector_cv_DMatch CV_DMATCH_BUS (1d array)
vector<vector<DMatch>> vector_vector_cv_DMatch CV_DMATCH_BUS (2d array)
Rect cv_Rect CV_RECT_BUS
vector<Rect> vector_cv_Rect CV_RECT_BUS (1d array)
RotatedRect cv_RotatedRect CV_ROTATEDRECT_BUS
vector<RotatedRect> vector_cv_RotatedRect CV_ROTATEDRECT_BUS (1d

array)
TermCriteria cv_TermCriteria CV_TERMCRITERIA_BUS
Scalar cv_Scalar double array
Size cv_Size CV_SIZE_BUS
Range cv_Range CV_RANGE_BUS
Point cv_Point CV_POINT2I_BUS
Point2f cv_Point2f CV_POINT2F_BUS
Point2d cv_Point2d CV_POINT2D_BUS

 FromOpenCV

1-403



DataType Parameter FromOpenCV Block Input
Signal Data Type

FromOpenCV Block Output
Signal Data Type

Point3i cv_Point3i CV_POINT3I_BUS
Point3f cv_Point3f CV_POINT3F_BUS
Point3d cv_Point3d CV_POINT3D_BUS
vector<Point> vector_cv_Point CV_POINT2I_BUS (1d array)
vector<Point2f> vector_cv_Point2f CV_POINT2F_BUS (1d array)
vector<Point2d> vector_cv_Point2d CV_POINT2D_BUS (1d array)
vector<Point3i> vector_cv_Point3i CV_POINT3I_BUS (1d array)
vector<Point3f> vector_cv_Point3f CV_POINT3F_BUS (1d array)
vector<Point3d> vector_cv_Point3d CV_POINT3D_BUS (1d array)
vector<vector<Point>> vector_vector_cv_Point CV_POINT2I_BUS (2d array)
vector<vector<Point2f>> vector_vector_cv_Point2f CV_POINT2F_BUS (2d array)
vector<vector<Point2d>> vector_vector_cv_Point2d CV_POINT2D_BUS (2d array)
vector<vector<Point3i>> vector_vector_cv_Point3i CV_POINT3I_BUS (2d array)
vector<vector<Point3f>> vector_vector_cv_Point3f CV_POINT3F_BUS (2d array)
vector<vector<Point3d>> vector_vector_cv_Point3d CV_POINT3D_BUS (2d array)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Supports C++ code generation.

See Also
ToOpenCV | Matrix To Image | Image To Matrix

Topics
“Install and Use Computer Vision Toolbox Interface for OpenCV in Simulink”

Introduced in R2020a

1 Blocks

1-404



Objects

2



inflated3dVideoClassifier
Inflated-3D (I3D) video classifier. Requires Computer Vision Toolbox Model for Inflated-3D Video
Classification

Description
The inflated3dVideoClassifier object is an Inflated-3D (I3D) video classifier pretrained on the
Kinetics-400 data set. You can use the pretrained video classifier to classify 400 human actions, such
as running, walking, and shaking hands. The I3D classifier model contains two subnetworks: the
video network and the optical flow network. Both of these networks are trained on Kinetics-400 with
RGB data and optical flow data respectively.

Creation

Syntax
i3d = inflated3dVideoClassifier
i3d = inflated3dVideoClassifier(classifierName,classes)
i3d = inflated3dVideoClassifier( ___ ,Name=Value)

Description

i3d = inflated3dVideoClassifier returns the I3D video classifier pretrained on the
Kinetics-400 dataset.

i3d = inflated3dVideoClassifier(classifierName,classes) configures the pretrained
Inflated 3D (I3D) video classifer for transfer learning on a new set of classes, classes, using one of
two pretrained classifiers, specified by classifierName.

i3d = inflated3dVideoClassifier( ___ ,Name=Value) sets properties using name-value
arguments in addition to the input arguments from the previous syntax. For example, i3d =
inflated3dVideoClassifier("googlenet-
video","wavingHello","clapping",InputSize=[224,224,3,64]) sets the input size of the
network to 64 frames of 224-by-224 pixels with 3 channels. You can specify multiple name-value
arguments.

Note This object requires the Computer Vision Toolbox Model for Inflated-3D Video Classification.
You can install the Computer Vision Toolbox Model for Inflated-3D Video Classification from Add-On
Explorer. For more information about installing add-ons, see Get and Manage Add-Ons. To use this
object, you must have a license for the Deep Learning Toolbox™.

Input Arguments

classifierName — Classifier name
"googlenet-video" | "googlenet-video-flow"

2 Objects

2-2



Classifier name, specified as "googlenet-video" or "googlenet-video-flow".

Classifier Description
"googlenet-video" GoogLeNet-based I3D model pretrained on the

Kinetics-400 video data for transfer learning.
"googlenet-video-flow" GoogLeNet-based I3D model pretrained on the

Kinetics-400 video and optical flow data for
transfer learning. During training and inference,
both video and optical flow data are used for
classification.

Properties
Configure Classifier Properties

InputSize — Size of network
[224,224,3,64] (default) | four-element row vector

This property is read-only.

Size of the video classifier network, specified as a four-element row vector in the form [H,W,C,T],
where H and W represent the height and width respectively, C represents the number of channels,
and T represents the number of frames for the video subnetwork.

The input size of the flow subnetwork is equal in height, width, and number of frames, but the
number of channels is fixed to 2.

Typical values for the number of frames are 8, 16, 32, or 64. Increase the number of frames to
capture the temporal nature of activities when training the classifier. When you are using optical flow
data, the number of channels must equal 2, which correspond to the x- and y-components of velocity.

InputNormalizationStatistics — Normalization statistics for the video and optical flow
data
(default) | structure

This property is read-only.

Normalization statistics for the video and optical flow data, specified as a structure with field names
Video and OpticalFlow, which are also structures with field names, Min, Max, Mean, and
StandardDeviation. The Min and Max field values define the minimum and maximum values for
rescaling the video and optical flow data. The Mean, and StandardDeviation values define the
mean and standard deviation for input normalization. All field values must be specified as a row
vector of size equal to the number of channels for the video input data. When you are using optical
flow data, the number of channels must equal 2, which correspond to the x- and y components of
velocity.

The default structure contains:

• A Video field, which contains the field Min set to [0,0,0], and the field Max set to
[255,255,255].

• Empty OpticalFlow, Mean, and StandardDeviation field values.

 inflated3dVideoClassifier

2-3



For a video input, the data is rescaled between -1 and 1 using the Min and Max field values. For an
optical flow input, the data is rescaled between -1 and 1 using computed minimum and maximum
values from the input data.

Note When the Min and Max field values are not empty, the object first rescales the input data
between -1 and 1. Then, if the Mean, and StandardDeviation field values are not empty, the object
normalizes the rescaled values by subtracting the mean and dividing by the standard deviation.

An example using this property:

stats.Video = struct(Min=[0,0,0],Max=[255,255,255], ...
Mean=[],StandardDeviation=[]);
stats.OpticalFlow = struct(Min=[-20,-20],Max=[20,20] ,...
Mean=[],StandardDeviation=[]);
i3d = inflated3dVideoClassifier('googlenet-video-flow',["waving","clapping"],InputNormalizationStatistics=stats);

ModelName — Name of trained video classifier
string scalar

Name of the trained video classifier, specified as a string scalar.

Classes — Classes that the video classifier is configured to train or classify
vector of strings | cell array of character vectors

This property is read-only.

Classes that the video classifier is configured to train or classify, specified as a vector of strings or a
cell array of character vectors. For example:

classes = ['kiss','laugh','pick','pour','pushup'];

Training Properties

VideoLearnables — Learnable parameters for video subnetwork of I3D video classifier
table with three columns

Learnable parameters for the video subnetwork of the I3D video classifier, specified as a table with
three columns.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Parameter value, specified as a dlarray object.

The network learnable parameters contain the features learned by the network. For example, the
weights of convolution and fully connected layers.

VideoState — State of the nonlearnable parameters for the video subnetwork of the I3D
video classifier
table with three columns

State of the nonlearnable parameters for the video subnetwork of the I3D video classifier, specified as
a table with three columns.

2 Objects

2-4



• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Parameter value, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of LSTM and batch normalization layers. During training or inference, you can update the
network state using the output of the forward and predict functions.

OpticalLearnables — Learnable parameters for the optical flow subnetwork of the I3D
video classifier
table with three columns

Learnable parameters for the optical flow subnetwork of the I3D video classifier, specified as a table
with three columns. Network learnable parameters, specified as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Parameter value, specified as a dlarray object.

The network learnable parameters contain the features learned by the network. For example, the
weights of convolution and fully connected layers.

OpticalFlowState — State of the nonlearnable parameters for the optical flow subnetwork
of the I3D video classifier
table with three columns

State of the nonlearnable parameters for the video subnetwork of the I3D video classifier, specified as
a table with three columns. Network learnable parameters, specified as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Parameter value, specified as a dlarray object.

The network learnable parameters contain the features learned by the network. For example, the
weights of convolution and fully connected layers.

Streaming Video Classification Properties

VideoSequence — Video sequence used for streaming classification
4-D numeric array

This property is read-only.

Video sequence used to update and classify sequences for for streaming classification, specified as a
4-D numeric array. Each vector in the array is of the form [H,W,C,T], where H and W represent the
height and width respectively, C represents the number of channels, and T represents the number of
frames, for the video subnetwork. The updateSequence and classifySequence object functions
use the video sequence specified by the VideoSequence property.

OpticalFLowSequence — Optical flow sequence used for streaming classification
4-D numeric array

This property is read-only.

 inflated3dVideoClassifier

2-5



Optical flow sequence used to update and classify sequences for streaming classification, specified as
a 4-D numeric array. Each vector in the array is of the form (H,W,C,T), where H and W represent the
height and width respectively, C represents the number of channels, and T represents the number of
frames, for the optical flow subnetwork. The updateSequence and classifySequence object
functions use the optical flow sequence specified by the OpticalFlowSequence.

Object Functions

Video Classification
classifyVideoFile Classify a video file
resetSequence Reset video and optical flow sequence properties for streaming video

classification
updateSequence Update video or optical flow sequence for classification
classifySequence Classify video and optical flow sequence

Custom Training and Inference
forward Compute video classifier outputs for training
predict Compute video classifier predictions

Examples

Classify Video File Using Inflated 3D Video Classifier

This example shows how to use classifyVideoFile to classify a video using an Inflated 3D video
classifier.

Load a pretrained Inflated-3D video network.

i3d = inflated3dVideoClassifier();

Specify the video file name to classify.

videoFilename = 'visiontraffic.avi';

Classify the video using the video classifier.

label = classifyVideoFile(i3d, videoFilename);

Note that the classifier is not fine-tuned to compute the correct predictions for visiontraffic.avi,
therefore, the predicted label will not be correct. You must train the classifier for optimal
performance on your video data.

See Also
Apps
Video Labeler

Functions
sceneTimeRanges | writeVideoScenes

2 Objects

2-6



Objects
dlnetwork | r2plus1dVideoClassifier | slowFastVideoClassifier

Topics
“Getting Started with Video Classification Using Deep Learning”
“Evaluate a Video Classifier”
“Classify Streaming Webcam Video Using SlowFast Video Classifier”
“Activity Recognition from Video and Optical Flow Data Using Deep Learning”

Introduced in R2021b

 inflated3dVideoClassifier

2-7



slowFastVideoClassifier
SlowFast video classifier. Requires Computer Vision Toolbox Model for SlowFast Video Classification

Description
The slowFastVideoClassifier object is a SlowFast video classifier pretrained on the Kinetics-400
data set with a ResNet-50 3-D convolutional neural network (CNN). You can use the pretrained video
classifier to classify 400 human actions such as running, walking, and shaking hands.

Creation

Syntax
sf = slowFastVideoClassifier
sf = slowFastVideoClassifier("resnet50-3d",classes)
sf = slowFastVideoClassifier( ___ ,Name=Value)

Description

sf = slowFastVideoClassifier returns a SlowFast video classifier pretrained on the
Kinetics-400 data set.

sf = slowFastVideoClassifier("resnet50-3d",classes) configures the pretrained
SlowFast video classifier for transfer learning on a new set of classes, classes.

sf = slowFastVideoClassifier( ___ ,Name=Value) sets properties using name-value
arguments in addition to the input arguments from the previous syntax. For example, sf =
slowFastVideoClassifier("resnet50-3d",classes,InputSize=[256,256,3,32]) sets the
input size of the network. You can specify multiple name-value arguments.

Note This function requires the Computer Vision Toolbox Model for SlowFast Video Classification.
You can install Computer Vision Toolbox Model for SlowFast Video Classification from Add-On
Explorer. For more information about installing add-ons, see Get and Manage Add-Ons. To use this
object, you must have a license for the Deep Learning Toolbox.

Properties
Configure Classifier Properties

InputSize — Size of the network
[256,256,3,32] (default) | four-element row vector

This property is read-only.

2 Objects

2-8



Size of the video classifier network, specified as a four-element row vector in the form [H,W,C,T],
where H and W represent the height and width respectively, C represents the number of channels,
and T represents the number of frames for the video subnetwork.

Typical values for the number of frames are 8, 16, 32, or 64. Increase the number of frames to
capture the temporal nature of activities when training the classifier.

InputNormalizationStatistics — Normalization statistics for the video data
structure (default)

This property is read-only.

Normalization statistics for the video data, specified as a structure with field names Min, Max, Mean,
and StandardDeviation. The Min and Max field values define the minimum and maximum values
for rescaling the video data. The Mean, and StandardDeviation values define the mean and
standard deviation for input normalization. All field values must be specified as a row vector of size
equal to the number of channels for the video input data.

The default structure contains the fields, Min, Max, Mean and StandardDeviation with values
[0,0,0], [255,255,255], [0.45,0.45,0.45], and [0.225,0.225,0.225], respectively. You
must calculate the statistics values from the dataset for which you are training the video classifier. To
rescale the data using minimum and maximum values precomputed from your dataset, specify both
Min and Max. Otherwise, the minimum and maximum values are calculated from each input sequence
when using updateSequence or classifyVideoFile.

Note The object normalizes the data by rescaling it between 0 and 1, and then the rescaled data is
standardized by subtracting the mean and dividing by the standard deviation. The rescaled data is
standardized if the Mean and StandardDeviation fields are non-empty. The input is automatically
normalized when using updateSequence or classifyVideoFile object functions. The data must
be manually normalized when using the forward or predict object functions.

ModelName — Name of trained video classifier
string scalar

Name of the trained video classifier, specified as a string scalar.

Classes — Classes that the video classifier is configured to train or classify
vector of strings | cell array of character vectors

This property is read-only.

Classes that the video classifier is configured to train or classify, specified as a vector of strings or a
cell array of character vectors. For example:

classes = ['kiss','laugh','pick','pour','pushup'];

Training Properties

Learnables — Learnable parameters for the SlowFast video classifier
table with three columns

Learnable parameters for the SlowFast video classifier, specified as a table with three columns.

 slowFastVideoClassifier

2-9



• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Parameter value, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of long short term networks (LSTM) and batch normalization layers. During training or
inference, you can update the network state using the output of the forward and predict object
functions.

State — State of the nonlearnable parameters of the SlowFast video classifier
table with three columns

State of the nonlearnable parameters of the SlowFast video classifier, specified as a table with three
columns.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Parameter value, specified as a dlarray object.

The network learnable parameters contain the features learned by the network. For example, the
weights of convolution and fully connected layers.

Streaming Video Classification Properties

VideoSequence — Video sequence used for streaming classification
4-D numeric array

This property is read-only.

Video sequence used to update and classify sequences for for streaming classification, specified as a
4-D numeric array. Each vector in the array is of the form [H,W,C,T], where H and W represent the
height and width respectively, C represents the number of channels, and T represents the number of
frames, for the video subnetwork. The updateSequence and classifySequence object functions
use the video sequence specified by the VideoSequence property.

Object Functions

Video Classification
classifyVideoFile Classify a video file
classifySequence Classify video sequence
resetSequence Reset video sequence properties for streaming video classification
updateSequence Update video sequence for classification

Custom Training and Inference
forward Compute video classifier outputs for training
predict Compute video classifier predictions

Examples

2 Objects

2-10



Classify Video File Using Video Classifier

Load a slowfast video classifier pretrained on the Kinetics-400 data set.

sf = slowFastVideoClassifier;

Specify the file name of the video to classify.

videoFilename = "washingHands.avi";

For video classification, set the number of randomly selected video sequences to 15.

numSequences = 15;

Classify the video using the classifyVideoFile function.

[label,score] = classifyVideoFile(sf,videoFilename,NumSequences=numSequences)

label = categorical
     washing hands 

score = single
    0.0034

Display the classified label using a vision.VideoPlayer.

player = vision.VideoPlayer('Name','Washing Hands');
reader = VideoReader(videoFilename);
while hasFrame(reader)    
    frame = readFrame(reader);
    % Resize the frame by 1.5 times for display
    frame = imresize(frame,1.5);
    frame = insertText(frame,[2,2], string(label),'FontSize',18);
    step(player,frame);
end

 slowFastVideoClassifier

2-11



See Also
Apps
Video Labeler

Functions
sceneTimeRanges | writeVideoScenes

Objects
dlnetwork | inflated3dVideoClassifier | r2plus1dVideoClassifier

2 Objects

2-12



Topics
“Getting Started with Video Classification Using Deep Learning”
“Evaluate a Video Classifier”
“Classify Streaming Webcam Video Using SlowFast Video Classifier”
“Gesture Recognition using Videos and Deep Learning”

Introduced in R2021b

 slowFastVideoClassifier

2-13



r2plus1dVideoClassifier
R(2+1)D video classifier. Requires Computer Vision Toolbox Model for R(2+1)D Video Classification

Description
The r2plus1dVideoClassifier object returns an R(2+1)D video classifier pretrained on the
Kinetics-400 data set. You can use the pretrained video classifier to classify 400 human actions, such
as running, walking, and shaking hands.

Creation

Syntax
rd = r2plus1dVideoClassifier
rd = r2plus1dVideoClassifier("resnet-3d-18",classes)
rd = r2plus1dVideoClassifier( ___ ,Name=Value)

Description

rd = r2plus1dVideoClassifier returns a R(2+1)D video classifier pretrained on the
Kinetics-400 dataset.

rd = r2plus1dVideoClassifier("resnet-3d-18",classes) configures the pretrained
R(2+1)D video classifier for transfer learning on a new set of classes, classes. The video classifier is
pretrained on the Kinetics-400 dataset with a ResNet3D convolutional neural network(CNN) with 18
spatio-temporal layers.

rd = r2plus1dVideoClassifier( ___ ,Name=Value) sets properties using name-value
arguments in addition to the input arguments from the previous syntax. For example, rd =
r2plus1dVideoClassifier("resnet-3d-18",classes,InputSize=[112,112,3,32]) sets
the input size of the network. You can specify multiple name-value arguments.

Note This function requires the Computer Vision Toolbox Model for R(2+1)D Video Classification.
You can install the Computer Vision Toolbox Model for R(2+1)D Video Classification from Add-On
Explorer. For more information about installing add-ons, see Get and Manage Add-Ons. To use this
object, you must have a license for the Deep Learning Toolbox.

Properties
Configure Classifier Properties

InputSize — Size of the network
[112,112,3,32] (default) | four-element row vector

This property is read-only.

2 Objects

2-14



Size of the video classifier network, specified as a four-element row vector in the form [H,W,C,T],
where H and W represent the height and width respectively, C represents the number of channels,
and T represents the number of frames for the video subnetwork.

Typical values for the number of frames are 8, 16, 32, or 64. Increase the number of frames to
capture the temporal nature of activities when training the classifier.

InputNormalizationStatistics — Normalization statistics for the video data
structure (default)

This property is read-only.

Normalization statistics for the video data, specified as a structure with field names Min, Max, Mean,
and StandardDeviation. The Min and Max field values define the minimum and maximum values
for rescaling the video data. The Mean, and StandardDeviation values define the mean and
standard deviation for input normalization. All field values must be specified as a row vector of size
equal to the number of channels for the video input data.

The default structure contains the fields, Min, Max, Mean and StandardDeviation with values
[0,0,0], [255,255,255], [0.45,0.45,0.45], and [0.225,0.225,0.225], respectively. You
must calculate the statistics values from the dataset for which you are training the video classifier. To
rescale the data using minimum and maximum values precomputed from your dataset, specify both
Min and Max. Otherwise, the minimum and maximum values are calculated from each input sequence
when using updateSequence or classifyVideoFile.

Note The object normalizes the data by rescaling it between 0 and 1, and then the rescaled data is
standardized by subtracting the mean and dividing by the standard deviation. The rescaled data is
standardized if the Mean and StandardDeviation fields are non-empty. The input is automatically
normalized when using updateSequence or classifyVideoFile object functions. The data must
be manually normalized when using the forward or predict object functions.

ModelName — Name of trained video classifier
string scalar

Name of the trained video classifier, specified as a string scalar.

Classes — Classes that the video classifier is configured to train or classify
vector of strings | cell array of character vectors

This property is read-only.

Classes that the video classifier is configured to train or classify, specified as a vector of strings or a
cell array of character vectors. For example:

classes = ['kiss','laugh','pick','pour','pushup'];

Training Properties

Learnables — Learnable parameters for the ResNet (2+1)D video classifier
table with three columns

Learnable parameters for the ResNet (2+1)D video classifier, specified as a table with three columns.

 r2plus1dVideoClassifier

2-15



• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Parameter value, specified as a dlarray object.

The network learnable parameters contain the features learned by the network. For example, the
weights of convolution and fully connected layers.

State — State of the nonlearnable parameters of the R(2+1)D video classifier
table with three columns

State of the nonlearnable parameters for the ResNet (2+1)D video classifier, specified as a table with
three columns.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Parameter value, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of long short term networks (LSTM) and batch normalization layers. During training or
inference, you can update the network state using the output of the forward and predict object
functions.

Streaming Video Classification Properties

VideoSequence — Video sequence used for streaming classification
4-D numeric array

This property is read-only.

Video sequence used to update and classify sequences for streaming classification, specified as a 4-D
numeric array. Each vector in the array is of the form [H,W,C,T], where H and W represent the height
and width respectively, C represents the number of channels, and T represents the number of frames,
for the video subnetwork. The updateSequence and classifySequence object functions use the
video sequence specified by the VideoSequence property.

Object Functions

Video Classification
classifyVideoFile Classify a video file
classifySequence Classify video sequence
resetSequence Reset video sequence properties for streaming video classification
updateSequence Update video sequence for classification

Custom Training and Inference
forward Compute video classifier outputs for training
predict Compute video classifier predictions

Examples

2 Objects

2-16



Classify Video Stream Using R(2+1)D Video Classifier

This example shows how to classify a video stream using a pretrained R(2+1)D video classifier.

Load a pretrained R(2+1)D video classifier.

rd = r2plus1dVideoClassifier();

Create a VideoReader to read a video frame by frame.

videoFilename = "visiontraffic.avi";
reader = VideoReader(videoFilename);

Create a video player to visualize the video data and update the player position to match the size of
the video.

player = vision.VideoPlayer;
player.Position(:,3:4) = [reader.Width reader.Height];

Specify the frequency at which the streaming video frames will be classified as 10. The classifier will
be applied to a sequence of video frames every 10 frames to balance runtime performance against
classification performance.

classificationFrequency = 10;

Specify the sequence length required by the classifier. This is based on the inuput size of the video
classifier. You can begin to classify the sequence only after the sequence length reaches the required
length.

sequenceLength = rd.InputSize(4);

Read through the video frame by frame, update the sequence with each new frame using
updateSequence, and then classify the collected frames using classifySequence.

numFrames = 0;
text = "";

while hasFrame(reader)
    frame = readFrame(reader);
    numFrames = numFrames + 1;

    % Update the sequence with the next video frame.
    rd = updateSequence(rd,frame);

    % Classify the sequence based on the classificationFrequency.
    if mod(numFrames, classificationFrequency) == 0 && numFrames >= sequenceLength
        [label,score] = classifySequence(rd);
        text = string(label) + "; " + num2str(score, "%0.2f");
    end

    % Insert the predicted label into the video frame.
    frame = insertText(frame,[30,30],text,'FontSize',18);

    % Display the video and label. 
    step(player,frame);
end

 r2plus1dVideoClassifier

2-17



See Also
Apps
Video Labeler

Functions
sceneTimeRanges | writeVideoScenes

Objects
dlnetwork | inflated3dVideoClassifier | slowFastVideoClassifier

Topics
“Getting Started with Video Classification Using Deep Learning”
“Evaluate a Video Classifier”
“Activity Recognition Using R(2+1)D Video Classification”
“Gesture Recognition using Videos and Deep Learning”
“Classify Streaming Webcam Video Using SlowFast Video Classifier”

Introduced in R2021b

2 Objects

2-18



classifySequence
Classify video sequence

Syntax
label = classifySequence(classifier)
[label,score] = classifySequence(classifier)
[ ___ ] = classifySequence(classifier,ExecutionEnvironment=env)

Description
label = classifySequence(classifier) classifies a video sequence using the video classifier
classifier. The function returns label, a scalar categorical that specifies the classification of the
video or optical flow sequence. label is one of the values of the Classes property of the video
classifier object.

[label,score] = classifySequence(classifier) additionally returns the classification score
associated with the label. The score represents the confidence of the predicted class label, and
contains values between 0 and 1.

[ ___ ] = classifySequence(classifier,ExecutionEnvironment=env) specifies the
hardware resources for running the classifier in addition to any combination of arguments from
previous syntaxes, as one of these options:

• "auto" — Sets the execution environment to the GPU, if available. Otherwise the function sets it
to the CPU.

• "gpu" — Sets the execution environment to the GPU. Usage of the GPU requires Parallel
Computing Toolbox™ and a CUDA enabled NVIDIA® GPU. For information about the supported
compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

• "cpu" — Sets the execution environment to the CPU.

Examples

Classify Video Sequences in a Video File

This example shows how to classify video sequences in a video file using a SlowFast Video Classifier
pretrained on the Kinetics-400 video activity recognition dataset. To learn more about how to train a
video classifier network for your dataset, see “Gesture Recognition using Videos and Deep Learning”.

Load SlowFast Video Classifier

sf = slowFastVideoClassifier();

Setup Video Player and Video Reader

Specify the video file name to stream video frames.

videoFilename = "pushup.mp4";

 classifySequence

2-19



Create a VideoReader to read video.

reader = VideoReader(videoFilename);

Setup a video player.

player = vision.VideoPlayer;

Classify Video Sequences

Specify how frequently the classifier should be applied to incoming video frames.

classifyInterval = 10;

A value of 10 balances runtime performance against classification performance. Increase this value to
improve runtime performance at the cost of missing actions from the video file.

Obtain the sequence length of the SlowFast Video Classifier. Classify only after capturing at least
sequenceLength number of frames from the video file.

sequenceLength = sf.InputSize(4);

Read video frames using the hasFrame and readFrame functions of the VideoReader. Using the
updateSequence function update the video classifier's sequence. Using the classifySequence
function classify the updated sequence.

numFrames = 0;
text = "";

while hasFrame(reader)
    frame = readFrame(reader);
    numFrames = numFrames + 1;

    % Update the sequence with the next video frame.
    sf = updateSequence(sf,frame);

    % Classify the sequence only at every classifyInterval number of frames.
    if mod(numFrames, classifyInterval) == 0 && numFrames >= sequenceLength
        [label,score] = classifySequence(sf);
        text = string(label) + "; " + num2str(score, "%0.2f");
    end
    frame = insertText(frame,[30,30],text,'FontSize',24);
    step(player,frame);
end

2 Objects

2-20



Classify Streaming Webcam Video Using SlowFast Video Classifier

This example shows how to classify a streaming video from a webcam using a pretrained SlowFast
Video Classifier. To learn more about how to train a video classifier network for your dataset, see
“Gesture Recognition using Videos and Deep Learning”.

Download Pretrained Video Classifier

Download the pretrained SlowFast video classifier.

 classifySequence

2-21



downloadFolder = fullfile(tempdir,"gesture");
zipFile = "slowFastPretrained_fourClasses.zip";
if ~isfile(fullfile(downloadFolder,zipFile))
    disp("Downloading the pretrained network...");    
    downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + zipFile;
    zipFile = fullfile(downloadFolder,zipFile);
    websave(zipFile,downloadURL);
    unzip(zipFile,downloadFolder);
end

Load the pretrained SlowFast video classifier.

pretrainedDataFile = fullfile(downloadFolder,"slowFastPretrained_fourClasses.mat");
pretrained = load(pretrainedDataFile);
slowFastClassifier = pretrained.data.slowFast;

Display the class label names of the pretrained video classifier. Any gesture such as "clapping" and
"wavingHello" on to the webcam will be recognized by the SlowFast Video Classifier.

classes = slowFastClassifier.Classes

classes = 4×1 categorical
     clapping 
     noAction 
     somethingElse 
     wavingHello 

Setup the Webcam and the Video Player

In this example, a webcam object is used to capture streaming video. A Video Player is used to display
the streaming video along with the predicted class.

Create a webcam object using the webcam function.

cam = webcam;

Create a Video Player using vision.VideoPlayer function. Make sure to place the Video Player in
a position where you can clearly see the streaming video when running the classification.

player = vision.VideoPlayer;

Classify the Webcam Streaming Video

Specify how frequently the classifier should be applied to incoming video frames.

classifyInterval = 10;

A value of 10 balances runtime performance against classification performance. Increase this value to
improve runtime performance at the cost of missing gestures from the live video stream.

Obtain the sequence length of the SlowFast Video Classifier. Classify only after capturing at least
sequenceLength number of frames from the webcam.

sequenceLength = slowFastClassifier.InputSize(4);

Specify the maximum number of frames to capture in a loop using the maxNumFrames variable. Make
sure you wave one of your hands to recognize "wavingHello" label, and clap using both your hands
for the classifier to recognize "clapping" label.

2 Objects

2-22



maxNumFrames = 280;

Capture the webcam snapshot in a loop. Update the streaming video sequence of the classifier using
the updateSequence method, and classify the streaming sequence using the classifySequence
method.

numFrames = 0;
text = "";

while numFrames <= maxNumFrames
    frame = snapshot(cam);
    
    numFrames = numFrames + 1;
    slowFastClassifier = updateSequence(slowFastClassifier,frame);
    if mod(numFrames, classifyInterval) == 0 && numFrames >= sequenceLength
        [label,scores] = classifySequence(slowFastClassifier);
        if ~isempty(label)
            text = string(label) + "; " + num2str(max(scores), "%0.2f");
        end
    end
    frame = insertText(frame,[30,30],text,'FontSize',18);
    step(player,frame);
end

 classifySequence

2-23



Input Arguments
classifier — Classifier
r2plus1dVideoClassifier object | slowFastVideoClassifier object

Classifier, specified as a r2plus1dVideoClassifier or slowFastVideoClassifier object.

Output Arguments
label — Classification of video or optical flow sequence
categorical scalar

2 Objects

2-24



Classification of the video or optical flow sequence, returned as a categorical scalar.

score — Classification score associated with the label
scalar value between 0 and 1

Classification score associated with the label, returned as a scalar value between 0 and 1. The score
represents the confidence of the predicted class label.

See Also
Functions
sceneTimeRanges | writeVideoScenes | updateSequence | classifyVideoFile | predict |
forward | resetSequence

Objects
r2plus1dVideoClassifier | slowFastVideoClassifier | inflated3dVideoClassifier

Topics
“Getting Started with Video Classification Using Deep Learning”
“Evaluate a Video Classifier”
“Classify Streaming Webcam Video Using SlowFast Video Classifier”

Introduced in R2021b

 classifySequence

2-25



classifySequence
Classify video and optical flow sequence

Syntax
label = classifySequence(i3d)
[label,score] = classifySequence(i3d)
[ ___ ] = classifySequence(i3d,ExecutionEnvironment=env)

Description
label = classifySequence(i3d) classifies a video and optical flow sequence using the
Inflated-3D (I3D) video classifier i3d. The function returns label, a scalar categorical that specifies
the classification of the video or optical flow sequence. label is one of the values of the Classes
property of the video classifier object.

[label,score] = classifySequence(i3d) additionally returns the classification score
associated with the label. The score represents the confidence of the predicted class label, and
contains values between 0 and 1.

[ ___ ] = classifySequence(i3d,ExecutionEnvironment=env) specifies the hardware
resources for running the classifier in addition to any combination of arguments from previous
syntaxes, as one of these options:

• "auto" — Sets the execution environment to the GPU, if available. Otherwise the function sets it
to the CPU.

• "gpu" — Sets the execution environment to the GPU. Usage of the GPU requires Parallel
Computing Toolbox and a CUDA enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

• "cpu" — Sets the execution environment to the CPU.

Examples

Classify Video Sequences in a Video File

This example shows how to classify video sequences in a video file using a SlowFast Video Classifier
pretrained on the Kinetics-400 video activity recognition dataset. To learn more about how to train a
video classifier network for your dataset, see “Gesture Recognition using Videos and Deep Learning”.

Load SlowFast Video Classifier

sf = slowFastVideoClassifier();

Setup Video Player and Video Reader

Specify the video file name to stream video frames.

videoFilename = "pushup.mp4";

2 Objects

2-26



Create a VideoReader to read video.

reader = VideoReader(videoFilename);

Setup a video player.

player = vision.VideoPlayer;

Classify Video Sequences

Specify how frequently the classifier should be applied to incoming video frames.

classifyInterval = 10;

A value of 10 balances runtime performance against classification performance. Increase this value to
improve runtime performance at the cost of missing actions from the video file.

Obtain the sequence length of the SlowFast Video Classifier. Classify only after capturing at least
sequenceLength number of frames from the video file.

sequenceLength = sf.InputSize(4);

Read video frames using the hasFrame and readFrame functions of the VideoReader. Using the
updateSequence function update the video classifier's sequence. Using the classifySequence
function classify the updated sequence.

numFrames = 0;
text = "";

while hasFrame(reader)
    frame = readFrame(reader);
    numFrames = numFrames + 1;

    % Update the sequence with the next video frame.
    sf = updateSequence(sf,frame);

    % Classify the sequence only at every classifyInterval number of frames.
    if mod(numFrames, classifyInterval) == 0 && numFrames >= sequenceLength
        [label,score] = classifySequence(sf);
        text = string(label) + "; " + num2str(score, "%0.2f");
    end
    frame = insertText(frame,[30,30],text,'FontSize',24);
    step(player,frame);
end

 classifySequence

2-27



Input Arguments
i3d — Classifier
inflated3dVideoClassifier object

Classifier, specified as an inflated3dVideoClassifier object.

Output Arguments
label — Classification of video or optical flow sequence
categorical scalar

2 Objects

2-28



Classification of the video or optical flow sequence, returned as a categorical scalar.

score — Classification score associated with the label
scalar value between 0 and 1

Classification score associated with the label, returned as a scalar value between 0 and 1. The score
represents the confidence of the predicted class label.

See Also
Functions
sceneTimeRanges | writeVideoScenes | classifyVideoFile | resetSequence |
updateSequence | predict | forward

Objects
r2plus1dVideoClassifier | slowFastVideoClassifier | inflated3dVideoClassifier

Topics
“Getting Started with Video Classification Using Deep Learning”
“Evaluate a Video Classifier”
“Classify Streaming Webcam Video Using SlowFast Video Classifier”

Introduced in R2021b

 classifySequence

2-29



classifyVideoFile
Classify a video file

Syntax
label = classifyVideoFile(classifier,videoFilename)
[label,score] = classifyVideoFile( ___ )
[ ___ ] = classifySequence( ___ ,Name=Value)

Description
label = classifyVideoFile(classifier,videoFilename) predicts the class label for the
video file, specified by videoFilename using the specified classifier classifier. The video file
must be readable by the VideoReader object.

Use the classifyVideoFile object function for applications where the entire input video can be
classified with one label. For example, you can use this object function to evaluate the performance of
the classifier on a collection of ground truth video files. If the video contains sequences with different
class labels, use the classifySequence object function.

This function selects sequences of frames from the video file using uniform random sampling to select
the start of time of each sequence. The number of frames is set by the InputSize property of the
classifier object. The function selects the most frequently occurring label in the video file as the
classification label for the file. The video file must contain at least the number of frames set by the
InputSize property.

[label,score] = classifyVideoFile( ___ ) additionally returns the classification score
associated with the label using the combination of input arguments from the previous syntax.. The
score represents the confidence of the predicted class label and contains values between 0 and 1.

[ ___ ] = classifySequence( ___ ,Name=Value) specifies options using name-value arguments
in addition to any combination of arguments from previous syntaxes. For example, label =
classifySequence(i3d,ExecutionEnvironment="cpu") specifies for the classifier to run on
the CPU.

Examples

Classify Video File Using Video Classifier

Load a slowfast video classifier pretrained on the Kinetics-400 data set.

sf = slowFastVideoClassifier;

Specify the file name of the video to classify.

videoFilename = "washingHands.avi";

For video classification, set the number of randomly selected video sequences to 15.

numSequences = 15;

2 Objects

2-30



Classify the video using the classifyVideoFile function.

[label,score] = classifyVideoFile(sf,videoFilename,NumSequences=numSequences)

label = categorical
     washing hands 

score = single
    0.0034

Display the classified label using a vision.VideoPlayer.

player = vision.VideoPlayer('Name','Washing Hands');
reader = VideoReader(videoFilename);
while hasFrame(reader)    
    frame = readFrame(reader);
    % Resize the frame by 1.5 times for display
    frame = imresize(frame,1.5);
    frame = insertText(frame,[2,2], string(label),'FontSize',18);
    step(player,frame);
end

 classifyVideoFile

2-31



Input Arguments
classifier — Classifier
inflated3dVideoClassifier object | r2plus1dVideoClassifier object |
slowFastVideoClassifier object

Classifier, specified as an inflated3dVideoClassifier, r2plus1dVideoClassifier, or
slowFastVideoClassifier object.

videoFilename — Video file name
character vector | string scalar

2 Objects

2-32



Video file name, specified as a character vector or a string scalar. The video file must be readable by
the VideoReader object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: label = classifySequence(i3d,ExecutionEnvironment="cpu") specifies for the
classifier to run on the CPU.

ExecutionEnvironment — Hardware execution environment
"auto" (default) | "gpu" | "cpu"

Hardware execution environment on which to run the classifier, specified as "auto", "gpu", or
"cpu".

• "auto" — Sets the execution environment to the GPU, if available. Otherwise the function sets it
to the CPU.

• "gpu" — Sets the execution environment to the GPU. Usage of the GPU requires Parallel
Computing Toolbox and a CUDA enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

• "cpu" — Sets the execution environment to the CPU.

NumSequences — Maximum number of sequences to sample from video file
"auto" (default) | positive integer

Maximum number of sequences to sample from the video file, specified as "auto" or a positive
integer. When you set this value to "auto", the function sets the number of sequences to twice the
number of sequences that can be selected from the video file based on the number of frames
available. The "auto" setting provides a uniform coverage of the entire video. Increasing the value of
NumSequences increases the uniform coverage of the video.

MiniBatchSize — Mini-batch size for processing a large video
16 | positive integer

Mini-batch size used for processing a large video, specified as a positive integer. Video sequences are
grouped and processed in mini-batches to improve computational efficiency. Increasing the value of
MiniBatchSize increases processing speed, but uses more memory.

Output Arguments
label — Classification of video
categorical scalar

Classification of video, returned as a categorical scalar.

score — Classification score associated with the label
scalar value between 0 and 1

Classification score associated with the label, returned as a scalar value between 0 and 1. The score
represents the confidence of the predicted class label.

 classifyVideoFile

2-33



See Also
Objects
inflated3dVideoClassifier | slowFastVideoClassifier | r2plus1dVideoClassifier

Topics
“Getting Started with Video Classification Using Deep Learning”
“Evaluate a Video Classifier”
“Classify Streaming Webcam Video Using SlowFast Video Classifier”

Introduced in R2021b

2 Objects

2-34



forward
Compute video classifier outputs for training

Syntax
dLYVideo = forward(classifier,dlXVideo)
[dLYVideo,stateVideo] = forward(classifier,dlXVideo)
[dLYVideo,dlYFlow] = forward(classifier,dlXVideo,dlXFlow)
[dLYVideo,dlYFlow,stateVideo,stateFlow] = forward(classifier,dlXVideo,
dlXFlow)

Description
dLYVideo = forward(classifier,dlXVideo) computes the video classifier outputs for training.
You can use this function with dlfeval to automatically compute gradients for updating the
learnable parameters of the video classifier. classifier is specified as a
r2plus1dVideoClassifier or slowFastVideoClassifier classifier object.

[dLYVideo,stateVideo] = forward(classifier,dlXVideo) also returns the updated video
network state. The output, stateVideo, contains information maintained by the classifier between
training iterations. For example, the state of batch normalization operation.

[dLYVideo,dlYFlow] = forward(classifier,dlXVideo,dlXFlow) also returns the optical
flow outputs from the classifier for training. Use this syntax when you set the OpticalFlowMethod
property of the classifier object to "Farneback".

[dLYVideo,dlYFlow,stateVideo,stateFlow] = forward(classifier,dlXVideo,
dlXFlow) also returns the updated video network and the optical flow network states.

Examples

Compute Video Classifier Outputs for Training

This example shows how to compute video classifier outputs for training. To learn more about how to
train a video classifier network for your dataset, see “Gesture Recognition using Videos and Deep
Learning”.

Load a video classifier pretrained on the Kinetics-400 data set.

sf = slowFastVideoClassifier;

Specify the video file name.

videoFilename = "washingHands.avi";

Create a VideoReader to read the video frames.

reader = VideoReader(videoFilename);

 forward

2-35



Read the required number of video frames corresponding to the video classifier network from the
beginning of the video file. The required number of frames is defined by the value of the 4th element
of the InputSize property of the video classifier.

sequenceLength = sf.InputSize(4);
sequenceRange = [1,sequenceLength];
videoFrames = read(reader,sequenceRange);

Resize the video frames for training. The required height and width are defined by the first two
elements of the InputSize property of the video classifier.

heightWidth = sf.InputSize(1:2);
resized = imresize(videoFrames,heightWidth);

Convert the input to type single.

resized = single(resized);

Rescale the input between 0 and 1.

minValue = sf.InputNormalizationStatistics.Min;
maxValue = sf.InputNormalizationStatistics.Max;
minValue = reshape(minValue,1,1,3);
maxValue = reshape(maxValue,1,1,3);
resized = rescale(resized,0,1,InputMin=minValue,InputMax=maxValue);

Normalize the video data using the mean and standard deviation.

meanValue = sf.InputNormalizationStatistics.Mean;
stdValue = sf.InputNormalizationStatistics.StandardDeviation;
meanValue = reshape(meanValue,1,1,3);
stdValue = reshape(stdValue,1,1,3);
resized = resized - meanValue;
resized = resized./stdValue;

Convert the input to a dlarray object.

dlVideo = dlarray(resized,"SSCTB");
trainingActivations = forward(sf,dlVideo);

Find the class label corresponding to the maximum score.

[score,idx] = max(trainingActivations);
label = sf.Classes(idx)

label = categorical
     washing hands 

score

score = 
  1(S) × 1(S) × 1(S) × 1(C) × 1(B) single dlarray

    0.0026

Display the class label.

2 Objects

2-36



frame = videoFrames(:,:,:,end);
frame = insertText(frame,[2,2],string(label),FontSize=24);
imshow(frame)

Input Arguments
classifier — Classifier object
r2plus1dVideoClassifier object | slowFastVideoClassifier object

Classifier object, specified as a r2plus1dVideoClassifier or slowFastVideoClassifier
object.

dlXVideo — Video input
H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object

Video input, specified as an H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object that
corresponds to the video input of the classifier.

• H — Height.
• W — Width.
• C — Number of channels. The number of channels must be equal to the channels value of the

InputSize property of the classifier object.
• T — Number of frames. The number of frames must be equal to the frames value of the

InputSize property of the classifier object.
• B — Batch size.

dlXFlow — Video and optical flow input
SSCTB formatted dlarray object

 forward

2-37



Video and optical flow input, specified as an H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object
that corresponds to the video and optical flow input of the classifier.

• H — Height.
• W — Width.
• C — Number of channels. The number of channels must be equal to the channels value of the

InputSize property of the classifier object.
• T — Number of frames. The number of frames must be equal to the frames value of the

InputSize property of the classifier object.
• B — Batch size.

Output Arguments
dLYVideo — Activations of video network
dlarray object

Activations of the video network, returned as a formatted dlarray object .

stateVideo — Updated video network state
table

Updated video network state, returned as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of the parameter, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of the LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.

dlYFlow — Activations of optical flow network
dlarray object

Activations of the optical flow network, returned as a formatted dlarray object .

stateFlow — Updated optical flow network state
table

Updated optical flow network state, returned as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of the parameter, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.

2 Objects

2-38



See Also
Functions
sceneTimeRanges | writeVideoScenes | classifySequence | updateSequence |
classifyVideoFile | predict

Objects
r2plus1dVideoClassifier | slowFastVideoClassifier | inflated3dVideoClassifier

Topics
“Gesture Recognition using Videos and Deep Learning”

Introduced in R2021b

 forward

2-39



forward
Compute video classifier outputs for training

Syntax
dLYVideo = forward(i3d,dlXVideo)
[dLYVideo,stateVideo] = forward(i3d,dlXVideo)
[dLYVideo,dlYFlow] = forward(i3d,dlXVideo,dlXFlow)
[dLYVideo,dlYFlow,stateVideo,stateFlow] = forward(i3d,dlXVideo,dlXFlow)

Description
dLYVideo = forward(i3d,dlXVideo) computes the video classifier outputs for training. You can
use this function with dlfeval to automatically compute gradients for updating the learnable
parameters of the video classifier. i3d is specified as an inflated3dVideoClassifier classifier
object. Use this syntax when you set the OpticalFlowMethod property of the classifier object to
"none".

[dLYVideo,stateVideo] = forward(i3d,dlXVideo) also returns the updated video network
state. The output, stateVideo, contains information maintained by the classifier between training
iterations. For example, the state of batch normalization operation.

[dLYVideo,dlYFlow] = forward(i3d,dlXVideo,dlXFlow) also returns the optical flow
outputs from the classifier for training. Use this syntax when you set the OpticalFlowMethod
property of the classifier object to "Farneback".

[dLYVideo,dlYFlow,stateVideo,stateFlow] = forward(i3d,dlXVideo,dlXFlow) also
returns the updated video network and the optical flow network states.

Examples

Compute Video Classifier Outputs for Training

This example shows how to compute video classifier outputs for training. To learn more about how to
train a video classifier network for your dataset, see “Gesture Recognition using Videos and Deep
Learning”.

Load a video classifier pretrained on the Kinetics-400 data set.

sf = slowFastVideoClassifier;

Specify the video file name.

videoFilename = "washingHands.avi";

Create a VideoReader to read the video frames.

reader = VideoReader(videoFilename);

2 Objects

2-40



Read the required number of video frames corresponding to the video classifier network from the
beginning of the video file. The required number of frames is defined by the value of the 4th element
of the InputSize property of the video classifier.

sequenceLength = sf.InputSize(4);
sequenceRange = [1,sequenceLength];
videoFrames = read(reader,sequenceRange);

Resize the video frames for training. The required height and width are defined by the first two
elements of the InputSize property of the video classifier.

heightWidth = sf.InputSize(1:2);
resized = imresize(videoFrames,heightWidth);

Convert the input to type single.

resized = single(resized);

Rescale the input between 0 and 1.

minValue = sf.InputNormalizationStatistics.Min;
maxValue = sf.InputNormalizationStatistics.Max;
minValue = reshape(minValue,1,1,3);
maxValue = reshape(maxValue,1,1,3);
resized = rescale(resized,0,1,InputMin=minValue,InputMax=maxValue);

Normalize the video data using the mean and standard deviation.

meanValue = sf.InputNormalizationStatistics.Mean;
stdValue = sf.InputNormalizationStatistics.StandardDeviation;
meanValue = reshape(meanValue,1,1,3);
stdValue = reshape(stdValue,1,1,3);
resized = resized - meanValue;
resized = resized./stdValue;

Convert the input to a dlarray object.

dlVideo = dlarray(resized,"SSCTB");
trainingActivations = forward(sf,dlVideo);

Find the class label corresponding to the maximum score.

[score,idx] = max(trainingActivations);
label = sf.Classes(idx)

label = categorical
     washing hands 

score

score = 
  1(S) × 1(S) × 1(S) × 1(C) × 1(B) single dlarray

    0.0026

Display the class label.

 forward

2-41



frame = videoFrames(:,:,:,end);
frame = insertText(frame,[2,2],string(label),FontSize=24);
imshow(frame)

Input Arguments
i3d — Classifier
inflated3dVideoClassifier object

Classifier, specified as an inflated3dVideoClassifier object.

dlXVideo — Video input
H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object

Video input, specified as an H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object that
corresponds to the video input of the classifier.

• H — Height.
• W — Width.
• C — Number of channels. The number of channels must be equal to the channels value of the

InputSize property of the classifier object.
• T — Number of frames. The number of frames must be equal to the frames value of the

InputSize property of the classifier object.
• B — Batch size.

dlXFlow — Video and optical flow input
SSCTB formatted dlarray object

2 Objects

2-42



Video and optical flow input, specified as an H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object
that corresponds to the video and optical flow input of the classifier.

• H — Height.
• W — Width.
• C — Number of channels. The number of channels must be equal to the channels value of the

InputSize property of the classifier object.
• T — Number of frames. The number of frames must be equal to the frames value of the

InputSize property of the classifier object.
• B — Batch size.

Output Arguments
dLYVideo — Activations of video network
dlarray object

Activations of the video network, returned as a formatted dlarray object .

stateVideo — Updated video network state
table

Updated video network state, returned as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of the parameter, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of the LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.

dlYFlow — Activations of optical flow network
dlarray object

Activations of the optical flow network, returned as a formatted dlarray object .

stateFlow — Updated optical flow network state
table

Updated optical flow network state, returned as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of the parameter, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.

 forward

2-43



See Also
Functions
sceneTimeRanges | writeVideoScenes | classifySequence | updateSequence |
classifyVideoFile | predict | resetSequence

Objects
r2plus1dVideoClassifier | slowFastVideoClassifier | inflated3dVideoClassifier

Introduced in R2021b

2 Objects

2-44



predict
Compute video classifier predictions

Syntax
dLYVideo = predict(classifier,dlXVideo)
[dLYVideo,stateVideo] = predict(classifier,dlXVideo)
[dLYVideo,dlYFlow] = predict(classifier,dlXVideo,dlXFlow)
[dLYVideo,dlYFlow,stateVideo,stateFlow] = predict(classifier,dlXVideo,
dlXFlow)

Description
dLYVideo = predict(classifier,dlXVideo) computes the predictions of the video classifier.
classifier is specified as a r2plus1dVideoClassifier or slowFastVideoClassifier
classifier object.

[dLYVideo,stateVideo] = predict(classifier,dlXVideo) also returns the updated video
network state. The output, stateVideo, contains information between training iterations maintained
by the classifier. For example, the state of batch normalization operation.

[dLYVideo,dlYFlow] = predict(classifier,dlXVideo,dlXFlow) also returns the optical
flow predictions from the classifier for training. Use this syntax when you set the
OpticalFlowMethod property of the classifier object to "Farneback".

[dLYVideo,dlYFlow,stateVideo,stateFlow] = predict(classifier,dlXVideo,
dlXFlow) also returns the updated video network and the optical flow network states.

Examples

Compute Predictions for Video Using Video Classifier

This example shows how to compute predictions for a video using a video classifier. To learn more
about how to train a video classifier network for your dataset, see “Gesture Recognition using Videos
and Deep Learning”.

Load a video classifier pretrained on the Kinetics-400 data set.

sf = slowFastVideoClassifier;

Specify the video file name.

videoFilename = "pushup.mp4";

Create a VideoReader to read the video frames.

reader = VideoReader(videoFilename);

 predict

2-45



Read the required number of video frames corresponding to the video classifier network, from the
beginning of the video file. The required number of frames is defined by the value of the 4th element
of the InputSize property of the video classifier.

sequenceLength = sf.InputSize(4);
sequenceRange = [1, sequenceLength];
videoFrames = read(reader,sequenceRange);

Resize video frames for prediction. The required height and width are defined by the first two
elements of the InputSize property of the video classifier.

heightWidth = sf.InputSize(1:2);
resized = imresize(videoFrames,heightWidth);

Convert the input to type single.

resized = single(resized);

Rescale the input between 0 and 1.

minValue = sf.InputNormalizationStatistics.Min;
maxValue = sf.InputNormalizationStatistics.Max;
minValue = reshape(minValue,1,1,3);
maxValue = reshape(maxValue,1,1,3);
resized = rescale(resized,0,1,InputMin=minValue,InputMax=maxValue);

Normalize the video data using the mean and standard deviation.

meanValue = sf.InputNormalizationStatistics.Mean;
stdValue = sf.InputNormalizationStatistics.StandardDeviation;
meanValue = reshape(meanValue,1,1,3);
stdValue = reshape(stdValue,1,1,3);
resized = resized - meanValue;
resized = resized./stdValue;

Convert the input to dlarray object.

dlVideo = dlarray(resized,"SSCTB");
predictionScores = predict(sf,dlVideo);

Find the class label corresponding to the maximum score.

[score,idx] = max(predictionScores);
label = sf.Classes(idx)

label = categorical
     push up 

Display the predicted class label and the score.

text = string(label) + "; " + num2str(score,"%0.2f");
frame = videoFrames(:,:,:,end);
frame = insertText(frame,[30,30],text,FontSize=24);

imshow(frame)

2 Objects

2-46



Input Arguments
classifier — Classifier object
r2plus1dVideoClassifier object | slowFastVideoClassifier object

Classifier object, specified as a r2plus1dVideoClassifier or slowFastVideoClassifier
object.

dlXVideo — Video input
H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object

Video input, specified as an H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object that
corresponds to the video input of the classifier.

• H — Height.
• W — Width.
• C — Number of channels. The number of channels must be equal to the channels value of the

InputSize property of the classifier object.
• T — Number of frames. The number of frames must be equal to the frames value of the

InputSize property of the classifier object.
• B — Batch size.

dlXFlow — Video and optical flow input
SSCTB formatted dlarray object

Video and optical flow input, specified as an H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object
that corresponds to the video and optical flow input of the classifier.

 predict

2-47



• H — Height.
• W — Width.
• C — Number of channels. The number of channels must be equal to the channels value of the

InputSize property of the classifier object.
• T — Number of frames. The number of frames must be equal to the frames value of the

InputSize property of the classifier object.
• B — Batch size.

Output Arguments
dLYVideo — Activations of video network
dlarray object

Activations of the video network, returned as a formatted dlarray object .

stateVideo — Updated video network state
table

Updated video network state, returned as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of the parameter, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of the LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.

dlYFlow — Activations of optical flow network
dlarray object

Activations of the optical flow network, returned as a formatted dlarray object .

stateFlow — Updated optical flow network state
table

Updated optical flow network state, returned as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of the parameter, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.

2 Objects

2-48



See Also
Functions
sceneTimeRanges | writeVideoScenes | classifySequence

Objects
r2plus1dVideoClassifier | slowFastVideoClassifier | inflated3dVideoClassifier

Topics
“Gesture Recognition using Videos and Deep Learning”

Introduced in R2021b

 predict

2-49



predict
Compute video classifier predictions

Syntax
dLYVideo = predict(i3d,dlXVideo)
[dLYVideo,stateVideo] = predict(i3d,dlXVideo)
[dLYVideo,dlYFlow] = predict(i3d,dlXVideo,dlXFlow)
[dLYVideo,dlYFlow,stateVideo,stateFlow] = predict(i3d,dlXVideo,dlXFlow)

Description
dLYVideo = predict(i3d,dlXVideo) computes the predictions of the video classifier. i3d is
specified as an inflated3dVideoClassifier, r2plus1dVideoClassifier, or
slowFastVideoClassifier classifier object. Use this syntax when you set the
OpticalFlowMethod property of the classifier object to "none".

[dLYVideo,stateVideo] = predict(i3d,dlXVideo) also returns the updated video network
state. The output, stateVideo, contains information between training iterations maintained by the
classifier. For example, the state of batch normalization operation.

[dLYVideo,dlYFlow] = predict(i3d,dlXVideo,dlXFlow) also returns the optical flow
predictions from the classifier for training. Use this syntax when you set the OpticalFlowMethod
property of the classifier object to "Farneback".

[dLYVideo,dlYFlow,stateVideo,stateFlow] = predict(i3d,dlXVideo,dlXFlow) also
returns the updated video network and the optical flow network states.

Examples

Compute Predictions for Video Using Video Classifier

This example shows how to compute predictions for a video using a video classifier. To learn more
about how to train a video classifier network for your dataset, see “Gesture Recognition using Videos
and Deep Learning”.

Load a video classifier pretrained on the Kinetics-400 data set.

sf = slowFastVideoClassifier;

Specify the video file name.

videoFilename = "pushup.mp4";

Create a VideoReader to read the video frames.

reader = VideoReader(videoFilename);

2 Objects

2-50



Read the required number of video frames corresponding to the video classifier network, from the
beginning of the video file. The required number of frames is defined by the value of the 4th element
of the InputSize property of the video classifier.

sequenceLength = sf.InputSize(4);
sequenceRange = [1, sequenceLength];
videoFrames = read(reader,sequenceRange);

Resize video frames for prediction. The required height and width are defined by the first two
elements of the InputSize property of the video classifier.

heightWidth = sf.InputSize(1:2);
resized = imresize(videoFrames,heightWidth);

Convert the input to type single.

resized = single(resized);

Rescale the input between 0 and 1.

minValue = sf.InputNormalizationStatistics.Min;
maxValue = sf.InputNormalizationStatistics.Max;
minValue = reshape(minValue,1,1,3);
maxValue = reshape(maxValue,1,1,3);
resized = rescale(resized,0,1,InputMin=minValue,InputMax=maxValue);

Normalize the video data using the mean and standard deviation.

meanValue = sf.InputNormalizationStatistics.Mean;
stdValue = sf.InputNormalizationStatistics.StandardDeviation;
meanValue = reshape(meanValue,1,1,3);
stdValue = reshape(stdValue,1,1,3);
resized = resized - meanValue;
resized = resized./stdValue;

Convert the input to dlarray object.

dlVideo = dlarray(resized,"SSCTB");
predictionScores = predict(sf,dlVideo);

Find the class label corresponding to the maximum score.

[score,idx] = max(predictionScores);
label = sf.Classes(idx)

label = categorical
     push up 

Display the predicted class label and the score.

text = string(label) + "; " + num2str(score,"%0.2f");
frame = videoFrames(:,:,:,end);
frame = insertText(frame,[30,30],text,FontSize=24);

imshow(frame)

 predict

2-51



Input Arguments
i3d — Classifier
inflated3dVideoClassifier object

Classifier, specified as an inflated3dVideoClassifier object.

dlXVideo — Video input
H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object

Video input, specified as an H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object that
corresponds to the video input of the classifier.

• H — Height.
• W — Width.
• C — Number of channels. The number of channels must be equal to the channels value of the

InputSize property of the classifier object.
• T — Number of frames. The number of frames must be equal to the frames value of the

InputSize property of the classifier object.
• B — Batch size.

dlXFlow — Video and optical flow input
SSCTB formatted dlarray object

Video and optical flow input, specified as an H-by-W-by-C-by-T-by-B SSCTB formatted dlarray object
that corresponds to the video and optical flow input of the classifier.

2 Objects

2-52



• H — Height.
• W — Width.
• C — Number of channels. The number of channels must be equal to the channels value of the

InputSize property of the classifier object.
• T — Number of frames. The number of frames must be equal to the frames value of the

InputSize property of the classifier object.
• B — Batch size.

Output Arguments
dLYVideo — Activations of video network
dlarray object

Activations of the video network, returned as a formatted dlarray object .

stateVideo — Updated video network state
table

Updated video network state, returned as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of the parameter, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of the LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.

dlYFlow — Activations of optical flow network
dlarray object

Activations of the optical flow network, returned as a formatted dlarray object .

stateFlow — Updated optical flow network state
table

Updated optical flow network state, returned as a table with three columns:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of the parameter, specified as a dlarray object.

The network state contains information remembered by the network between iterations. For example,
the state of LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.

 predict

2-53



See Also
Functions
sceneTimeRanges | writeVideoScenes | classifySequence | forward | resetSequence

Objects
r2plus1dVideoClassifier | slowFastVideoClassifier | inflated3dVideoClassifier

Topics
“Gesture Recognition using Videos and Deep Learning”

Introduced in R2021b

2 Objects

2-54



resetSequence
Reset video sequence properties for streaming video classification

Syntax
classifierReset = resetSequence(classifier)

Description
classifierReset = resetSequence(classifier) resets the video sequences for
classification. classifier is the classifier, specified as a r2plus1dVideoClassifier or
slowFastVideoClassifier object.

Examples

Classify Two Videos Using a Video Classifier

This example shows how to classify two different video sequences one after the other by reseting the
video sequences of the video classifier using the resetSequence function. To learn more about how
to train a video classifier network for your dataset, see “Gesture Recognition using Videos and Deep
Learning”.

Load SlowFast Video Classifier

Load the SlowFast Video Classifier pretrained on the Kinetics-400 dataset.

sf = slowFastVideoClassifier();

Classify First Video Sequence

Specify the video file name.

videoFilename = "washingHands.avi";

Create a VideoReader to read the video frames.

reader = VideoReader(videoFilename);

Update the video classifier sequence with video frames before using classifySequence. The
required number of frames is defined by the value of the 4th element of InputSize property of the
video classifier.

sequenceLength = sf.InputSize(4);

Read a video sequence starting from the first frame.

startSequenceIndex = 1;
sequenceRange = [startSequenceIndex, startSequenceIndex + sequenceLength - 1];

Update the video classifier sequence with video frames.

 resetSequence

2-55



for ii = sequenceRange
    videoFrame = read(reader, ii);
    sf = updateSequence(sf,videoFrame);
end

Classify the video sequence updated so far.

[label1, score1] = classifySequence(sf)

label1 = categorical
     washing hands 

score1 = single
    0.0031

Display the classified label.

player = vision.VideoPlayer('Name','Washing Hands');
for ii = sequenceRange    
    frame = read(reader,ii);
    % Resize the frame by 1.5 times for display
    frame = imresize(frame,1.5);
    frame = insertText(frame,[2,2], string(label1),'FontSize',18);
    step(player,frame);
end

2 Objects

2-56



Classify Second Video Sequence

Reset the video sequence of the video classifier without creating a new video classifier.

sf = resetSequence(sf);

Specify another video file to classify.

videoFilename = "vipmen.avi";

Create a VideoReader to read the video frames.

reader = VideoReader(videoFilename);

 resetSequence

2-57



Read a video sequence starting from the 131st frame, where the "shaking hands" action begins.

startSequenceIndex = 131;
sequenceRange = [startSequenceIndex, startSequenceIndex + sequenceLength - 1];

Classify the second video sequence.

for ii = sequenceRange    
    videoFrame = read(reader,ii);
    sf = updateSequence(sf,frame);
end

[label2, score2] = classifySequence(sf)

label2 = categorical
     shaking hands 

score2 = single
    0.0039

Display the classified label.

player = vision.VideoPlayer('Name','Shaking Hands');
for ii = sequenceRange    
    frame = read(reader,ii);
    % Resize the frame by 4 times for display
    frame = imresize(frame, 4);
    frame = insertText(frame,[2,2], string(label2),'FontSize',18);
    step(player,frame);
end 

2 Objects

2-58



Input Arguments
classifier — Classifier
r2plus1dVideoClassifier object | slowFastVideoClassifier object

Classifier, specified as a r2plus1dVideoClassifier or slowFastVideoClassifier object.

Output Arguments
classifierReset — Reset video classifier
r2plus1dVideoClassifier object | slowFastVideoClassifier object

 resetSequence

2-59



Reset video classifier, returned as a r2plus1dVideoClassifier or slowFastVideoClassifier
object.

See Also
Functions
sceneTimeRanges | writeVideoScenes | classifySequence | updateSequence |
classifyVideoFile | predict | forward

Objects
r2plus1dVideoClassifier | slowFastVideoClassifier | inflated3dVideoClassifier

Topics
“Classify Streaming Webcam Video Using SlowFast Video Classifier”

Introduced in R2021b

2 Objects

2-60



resetSequence
Reset video and optical flow sequence properties for streaming video classification

Syntax
i3dReset = resetSequence(i3d)

Description
i3dReset = resetSequence(i3d) resets the video and optical flow sequences for classification.
i3d is the classifier, specified as an inflated3dVideoClassifier object.

Examples

Classify Two Videos Using a Video Classifier

This example shows how to classify two different video sequences one after the other by reseting the
video sequences of the video classifier using the resetSequence function. To learn more about how
to train a video classifier network for your dataset, see “Gesture Recognition using Videos and Deep
Learning”.

Load SlowFast Video Classifier

Load the SlowFast Video Classifier pretrained on the Kinetics-400 dataset.

sf = slowFastVideoClassifier();

Classify First Video Sequence

Specify the video file name.

videoFilename = "washingHands.avi";

Create a VideoReader to read the video frames.

reader = VideoReader(videoFilename);

Update the video classifier sequence with video frames before using classifySequence. The
required number of frames is defined by the value of the 4th element of InputSize property of the
video classifier.

sequenceLength = sf.InputSize(4);

Read a video sequence starting from the first frame.

startSequenceIndex = 1;
sequenceRange = [startSequenceIndex, startSequenceIndex + sequenceLength - 1];

Update the video classifier sequence with video frames.

for ii = sequenceRange
    videoFrame = read(reader, ii);

 resetSequence

2-61



    sf = updateSequence(sf,videoFrame);
end

Classify the video sequence updated so far.

[label1, score1] = classifySequence(sf)

label1 = categorical
     washing hands 

score1 = single
    0.0031

Display the classified label.

player = vision.VideoPlayer('Name','Washing Hands');
for ii = sequenceRange    
    frame = read(reader,ii);
    % Resize the frame by 1.5 times for display
    frame = imresize(frame,1.5);
    frame = insertText(frame,[2,2], string(label1),'FontSize',18);
    step(player,frame);
end

2 Objects

2-62



Classify Second Video Sequence

Reset the video sequence of the video classifier without creating a new video classifier.

sf = resetSequence(sf);

Specify another video file to classify.

videoFilename = "vipmen.avi";

Create a VideoReader to read the video frames.

reader = VideoReader(videoFilename);

 resetSequence

2-63



Read a video sequence starting from the 131st frame, where the "shaking hands" action begins.

startSequenceIndex = 131;
sequenceRange = [startSequenceIndex, startSequenceIndex + sequenceLength - 1];

Classify the second video sequence.

for ii = sequenceRange    
    videoFrame = read(reader,ii);
    sf = updateSequence(sf,frame);
end

[label2, score2] = classifySequence(sf)

label2 = categorical
     shaking hands 

score2 = single
    0.0039

Display the classified label.

player = vision.VideoPlayer('Name','Shaking Hands');
for ii = sequenceRange    
    frame = read(reader,ii);
    % Resize the frame by 4 times for display
    frame = imresize(frame, 4);
    frame = insertText(frame,[2,2], string(label2),'FontSize',18);
    step(player,frame);
end 

2 Objects

2-64



Input Arguments
i3d — Classifier
inflated3dVideoClassifier object

Classifier, specified as an inflated3dVideoClassifier object.

Output Arguments
i3dReset — Reset video classifier
inflated3dVideoClassifier object

 resetSequence

2-65



Reset video classifier, returned as an inflated3dVideoClassifier object.

See Also
Functions
sceneTimeRanges | writeVideoScenes | classifyVideoFile | classifySequence |
updateSequence | forward | predict

Objects
r2plus1dVideoClassifier | slowFastVideoClassifier | inflated3dVideoClassifier

Topics
“Classify Streaming Webcam Video Using SlowFast Video Classifier”

Introduced in R2021b

2 Objects

2-66



updateSequence, updateSequence
Update video sequence for classification

Syntax
classifierUpdated = updateSequence(classifier,videoFrame)
classifierUpdated = updateSequence(classifier,
videoFrame,ExecutionEnvironment=env)

Description
classifierUpdated = updateSequence(classifier,videoFrame) updates the video
sequence with the video frame videoFrame, and outputs an updated classifier. The output contains
the updated classifier object.

To classify the updated sequence, use the classifySequence object function.

The video classifier object maintains the sequence as a first-in first-out (FIFO) queue. The InputSize
property of the classifier object specifies the number of frames in the queue.

classifierUpdated = updateSequence(classifier,
videoFrame,ExecutionEnvironment=env) specifies the hardware resources for running the
classifier in addition to any combination of arguments from previous syntaxes, as one of these
options:

• "auto" — Sets the execution environment to the GPU, if available. Otherwise the function sets it
to the CPU.

• "gpu" — Sets the execution environment to the GPU. Usage of the GPU requires Parallel
Computing Toolbox and a CUDA enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

• "cpu" — Sets the execution environment to the CPU.

Examples

Classify Video Sequences in a Video File

This example shows how to classify video sequences in a video file using a SlowFast Video Classifier
pretrained on the Kinetics-400 video activity recognition dataset. To learn more about how to train a
video classifier network for your dataset, see “Gesture Recognition using Videos and Deep Learning”.

Load SlowFast Video Classifier

sf = slowFastVideoClassifier();

Setup Video Player and Video Reader

Specify the video file name to stream video frames.

videoFilename = "pushup.mp4";

 updateSequence, updateSequence

2-67



Create a VideoReader to read video.

reader = VideoReader(videoFilename);

Setup a video player.

player = vision.VideoPlayer;

Classify Video Sequences

Specify how frequently the classifier should be applied to incoming video frames.

classifyInterval = 10;

A value of 10 balances runtime performance against classification performance. Increase this value to
improve runtime performance at the cost of missing actions from the video file.

Obtain the sequence length of the SlowFast Video Classifier. Classify only after capturing at least
sequenceLength number of frames from the video file.

sequenceLength = sf.InputSize(4);

Read video frames using the hasFrame and readFrame functions of the VideoReader. Using the
updateSequence function update the video classifier's sequence. Using the classifySequence
function classify the updated sequence.

numFrames = 0;
text = "";

while hasFrame(reader)
    frame = readFrame(reader);
    numFrames = numFrames + 1;

    % Update the sequence with the next video frame.
    sf = updateSequence(sf,frame);

    % Classify the sequence only at every classifyInterval number of frames.
    if mod(numFrames, classifyInterval) == 0 && numFrames >= sequenceLength
        [label,score] = classifySequence(sf);
        text = string(label) + "; " + num2str(score, "%0.2f");
    end
    frame = insertText(frame,[30,30],text,'FontSize',24);
    step(player,frame);
end

2 Objects

2-68



Input Arguments
classifier — Classifier object
r2plus1dVideoClassifier object | slowFastVideoClassifier object

Classifier object, specified as r2plus1dVideoClassifier or slowFastVideoClassifier object.

videoFrame — Video frame
numeric array

 updateSequence, updateSequence

2-69



Video frame for updating the classifier, specified as an H-by-W-by-C numeric array. H, W, and C
represent the height, width, and number of channels, respectively. The number of channels must
match the number of channels set by the InputSize property of the classifier object.

Output Arguments
classifierUpdated — Updated video classifier
r2plus1dVideoClassifier object | slowFastVideoClassifier object

Updated video classifier, returned as a r2plus1dVideoClassifier or
slowFastVideoClassifier object.

See Also
Objects
inflated3dVideoClassifier | slowFastVideoClassifier | r2plus1dVideoClassifier

Functions
classifySequence | resetSequence | classifyVideoFile | forward | predict

Topics
“Classify Streaming Webcam Video Using SlowFast Video Classifier”

Introduced in R2021b

2 Objects

2-70



updateSequence
Update video or optical flow sequence for classification

Syntax
i3dUpdated = updateSequence(i3d,videoFrame)
i3dUpdated = udpateSequence(i3d,videoFrame,ExecutionEnvironment=env)

Description
i3dUpdated = updateSequence(i3d,videoFrame) updates the video or optical flow sequence
with the video frame videoFrame, and outputs the updated Inflated-3D (I3D) video classifier i3d
classifier. The output contains the updated classifier object.

To classify the updated sequence, use the classifySequence object function.

The video classifier object maintains the sequence as a first-in first-out (FIFO) queue. The InputSize
property of the classifier object specifies the number of frames in the queue.

i3dUpdated = udpateSequence(i3d,videoFrame,ExecutionEnvironment=env) specifies
the hardware resources for running the classifier in addition to any combination of arguments from
previous syntaxes, as one of these options:

• "auto" — Sets the execution environment to the GPU, if available. Otherwise the function sets it
to the CPU.

• "gpu" — Sets the execution environment to the GPU. Usage of the GPU requires Parallel
Computing Toolbox and a CUDA enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

• "cpu" — Sets the execution environment to the CPU.

Examples

Classify Video Sequences in a Video File

This example shows how to classify video sequences in a video file using a SlowFast Video Classifier
pretrained on the Kinetics-400 video activity recognition dataset. To learn more about how to train a
video classifier network for your dataset, see “Gesture Recognition using Videos and Deep Learning”.

Load SlowFast Video Classifier

sf = slowFastVideoClassifier();

Setup Video Player and Video Reader

Specify the video file name to stream video frames.

videoFilename = "pushup.mp4";

Create a VideoReader to read video.

 updateSequence

2-71



reader = VideoReader(videoFilename);

Setup a video player.

player = vision.VideoPlayer;

Classify Video Sequences

Specify how frequently the classifier should be applied to incoming video frames.

classifyInterval = 10;

A value of 10 balances runtime performance against classification performance. Increase this value to
improve runtime performance at the cost of missing actions from the video file.

Obtain the sequence length of the SlowFast Video Classifier. Classify only after capturing at least
sequenceLength number of frames from the video file.

sequenceLength = sf.InputSize(4);

Read video frames using the hasFrame and readFrame functions of the VideoReader. Using the
updateSequence function update the video classifier's sequence. Using the classifySequence
function classify the updated sequence.

numFrames = 0;
text = "";

while hasFrame(reader)
    frame = readFrame(reader);
    numFrames = numFrames + 1;

    % Update the sequence with the next video frame.
    sf = updateSequence(sf,frame);

    % Classify the sequence only at every classifyInterval number of frames.
    if mod(numFrames, classifyInterval) == 0 && numFrames >= sequenceLength
        [label,score] = classifySequence(sf);
        text = string(label) + "; " + num2str(score, "%0.2f");
    end
    frame = insertText(frame,[30,30],text,'FontSize',24);
    step(player,frame);
end

2 Objects

2-72



Input Arguments
i3d — Classifier
inflated3dVideoClassifier object

Classifier, specified as an inflated3dVideoClassifier object.

videoFrame — Video frame
numeric array

 updateSequence

2-73



Video frame for updating the classifier, specified as an H-by-W-by-C numeric array. H, W, and C
represent the height, width, and number of channels, respectively. The number of channels must
match the number of channels set by the InputSize property of the classifier object.

Output Arguments
i3dUpdated — Updated video classifier
inflated3dVideoClassifier object

Updated video classifier, returned as an inflated3dVideoClassifier object.

See Also
Objects
inflated3dVideoClassifier | slowFastVideoClassifier | r2plus1dVideoClassifier

Functions
classifyVideoFile | forward | predict | resetSequence | classifySequence

Introduced in R2021b

2 Objects

2-74



vision.calibration.PatternDetector class
Package: vision.calibration

Interface for defining custom planar pattern detectors

Description
The vision.calibration.PatternDetector class specifies the interface for defining custom
planar pattern detectors for the Camera Calibrator and Stereo Camera Calibrator apps, as well
as on the MATLAB command line.

To define a custom pattern detector, you must construct a class that inherits from the
vision.OpenPatternDetectorTemplate class. This is an abstract class that defines the methods
and properties for detecting calibration pattern keypoints in the images, invoked during the
calibration process, and to generate corresponding points in the world coordinates.

You can define a custom pattern detector for single camera calibration, starting with a template, by
typing this command at the MATLAB prompt:

vision.OpenPatternDetectorTemplate('monocular')

You can define a custom pattern detector for stereo camera calibration, starting with a template, by
typing the following at the MATLAB prompt:

vision.OpenPatternDetectorTemplate('stereo')

The vision.calibration.PatternDetector class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Properties
Clients of the PatternDetector class specify these predefined properties.

Name — Pattern detector name
character vector | string scalar

Pattern detector name, specified as a character vector or a string scalar.

WorldUnits — World point units
character vector | string scalar

World point units, specified as a character vector or a string scalar. WorldUnits specifies the unit of
measure for the pattern keypoints in world coordinates.

panel — Properties panel user-defined UI components
uipanel object

 vision.calibration.PatternDetector class

2-75



Properties panel user-defined UI components for displaying and specifying detector properties,
specified as a uipanel object. To set this property, use the propertiesPanel function with a
uipanel object, which the PatternDetector invokes.

Methods
Public Methods

Clients of a PatternDetector implement these user-defined functions to define execution of the
algorithm. For more information on creating a custom detection pattern, see “Camera Calibration
Using AprilTag Markers”.
generateWorldPoints Generate world coordinates for planar pattern keypoints
propertiesPanel Define properties panel for custom pattern detector
drawImageAxesLabels Display location and orientation of axes labels
detectPatternPoints Detect calibration pattern keypoints in images

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
generateCircleGridPoints | detectCircleGridPoints | estimateCameraParameters |
detectCheckerboardPoints | generateCheckerboardPoints

Objects
cameraParameters | stereoParameters

Topics
“Camera Calibration Using AprilTag Markers”

Introduced in R2021b

2 Objects

2-76



propertiesPanel
Package: vision.calibration

Define properties panel for custom pattern detector

Syntax
propertiesPanel(detectorObj,panel)

Description
propertiesPanel(detectorObj,panel) displays properties contained in the detector object
detecterObj in the parent user interface (UI) panel panel.

The Camera Calibrator or the Stereo Camera Calibrator app invokes the propertiesPanel
object function when you select a custom pattern from one of the available patterns. Use this object
function to define UI elements in the Properties section of the Image and Pattern Properties dialog
box of the Camera Calibrator or the Load Stereo Images dialog box of the Stereo Camera
Calibrator app.

Examples

Custom Pattern Properties Panel for Camera Calibrator

The propertiesPanel function enables you to customize the properties panel of a calibrator app by
creating UI elements and defining their behavior. This propertiesPanel code snippet creates a
properties panel related to a checkerboard detection:

function propertiesPanel(this,panel)
  %--------------------------------------------------------------
  % UI components for square size selector 
  %--------------------------------------------------------------
  this.Panel = panel;

  % Label 
      position = [90, 40, 185, 20];
      labelText = 'Square Size (in millimeters): ';
      uicontrol('Parent',this.Panel,'Style','text','FontUnits', ...
                'pixels',FontSize', 12,'Position',position, ...
                'HorizontalAlignment','left','String',labelText);
            
  % Editbox
      position = [275, 37, 50, 25];
      initSquareSize = 25;
      squareSizeEditBox = uicontrol('Parent',this.Panel, ...
                 'Style','edit','FontUnits','pixels','FontSize',15, ...
                 'String',initSquareSize,'Position', position, ...
                 'Callback',@(~, ~) doSquareSizeChanged(this));
            
  % Initialize property values

 propertiesPanel

2-77



      this.SquareSize = str2double(get(squareSizeEditBox,'String'));
end

%--------------------------------------------------------------------
function doSquareSizeChanged(this)
   this.SquareSize = str2double(get(this.SquareSizeEditBox,'String'));
         
   if this.SquareSize <= 0 || isnan(this.SquareSize)
      errordlg('Square size must be a numeric value greater than zero.');
   end
end

This function produces this UI pane:

Input Arguments
detectorObj — Detector object
vision.calibration.PatternDetector object

Detector object, specified as a single or stereo vision.calibration.PatternDetector object.

panel — User-defined UI components
uipanel object

User-defined UI components for displaying and specifying detector properties, specified as a
uipanel object. When you invoke the propertiesPanel function with a uipanel object.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
generateWorldPoints | drawImageAxesLabels | detectPatternPoints

Objects
vision.calibration.PatternDetector

2 Objects

2-78



Topics
“Camera Calibration Using AprilTag Markers”

Introduced in R2021b

 propertiesPanel

2-79



drawImageAxesLabels
Package: vision.calibration

Display location and orientation of axes labels

Syntax
[originLabel,xLabel,yLabel] = drawImageAxesLabels(detectorObj,imagePoints)

Description
[originLabel,xLabel,yLabel] = drawImageAxesLabels(detectorObj,imagePoints)
displays the orientation and location of the origin originLabel and the X- and Y-axis labels xLabel
and yLabel of the circle grid pattern detected in the images rendered in the Camera Calibrator
and Stereo Camera Calibrator apps.

If you do not implement this function, or if the returned values are empty, then the function does not
render origin or axes labels in the image.

Examples

Label Image in Calibrator App

Use the drawImageAxesLabels function to identify and label the orientation and location for the
origin and the X- and Y-axis labels of a detected pattern grid in an image. For example:

Calculate Orientation and Location for Pattern Origin

Use this function template, which includes the use of the drawImageAxesLabels object function, to
calculate the orientation and location of the origin of the detected calibration pattern in an image.

2 Objects

2-80



The function omits the X- and Y-labels. The function includes both programmatic and app workflows
for detecting the points.

function [originLabel,xLabel,yLabel] = drawImageAxesLabels(this,imagePoints) 
    
    numBoardRows = this.BoardSize(1) - 1;
    numBoardCols = this.BoardSize(2) - 1;
    
    % Reshape checkerboard corners to boardSize-shaped array
    boardCoordsX = reshape(imagePoints(:,1),[numBoardRows numBoardCols]);
    boardCoordsY = reshape(imagePoints(:,2),[numBoardRows numBoardCols]);
    boardCoords = cat(3,boardCoordsX,boardCoordsY);
    
    % Origin label (check if the origin location is inside the image)
    if ~isnan(boardCoordsX(1,1))
        p1 = boardCoords(1,1,:);
        
        refPointIdx = find(~isnan(boardCoordsX(:,1)),2);
        p2 = boardCoords(refPointIdx(2),1,:);
        
        refPointIdx = find(~isnan(boardCoordsX(1,:)),2);
        p3 = boardCoords(1,refPointIdx(2),:);
        
        [loc, theta] = getAxesLabelPosition(p1,p2,p3);
        
        originLabel.Location = loc;
        originLabel.Orientation = theta;
    else
        originLabel = struct;
    end
    
    % X-axis and Y-axis labels
    xLabel = struct('Orientation',[],'Location',[]);
    yLabel = struct('Orientation',[],'Location',[]);
    
    %--------------------------------------------------------------
    % p1+v
    %  \
    %   \     v1
    %    p1 ------ p2
    %    |
    % v2 |
    %    |
    %    p3
    function [loc, theta] = getAxesLabelPosition(p1,p2,p3)
        v1 = p3 - p1;
        theta = -atan2d(v1(2),v1(1));
        
        v2 = p2 - p1;
        v = -v1 - v2;
        d = hypot(v(1),v(2));
        minDist = 40;
        if d < minDist
            v = (v/d) * minDist;
        end
        loc = p1 + v;
    end
end

 drawImageAxesLabels

2-81



Input Arguments
detectorObj — Detector object
vision.calibration.PatternDetector object

Detector object, specified as a single or stereo vision.calibration.PatternDetector object.

imagePoints — Image coordinates of detected circle grid
M-by-2 array

Image coordinates of the detected circle grid, returned as an M-by-2 array of x,y coordinates.

Output Arguments
originLabel — Orientation and location for pattern origin label
structure

Orientation and location of the pattern origin label, returned as a structure with two fields. The
Orientation field contains the rotation of the origin label in the image frame, specified in degrees.
The Location field contains the x,y location of the origin label in the image frame.

xLabel — Orientation and location of X-axis label
structure

Orientation and location of the X-axis label, returned as a structure with two fields. The
Orientation field contains the rotation of the axis label in the image frame, specified in degrees.
The Location field contains the x,y location of the axis label in the image frame.

yLabel — Orientation and location for Y- axis label
structure

Orientation and location of the Y-axis label, returned as a structure with two fields. The
Orientation field contains the rotation of the axis label in the image frame, specified in degrees.
The Location field contains the x,y location of the axis label in the image frame.

2 Objects

2-82



See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
generateWorldPoints | propertiesPanel | detectPatternPoints

Objects
cameraParameters | stereoParameters | vision.calibration.PatternDetector

Topics
“Camera Calibration Using AprilTag Markers”

Introduced in R2021b

 drawImageAxesLabels

2-83



generateWorldPoints
Package: vision.calibration

Generate world coordinates for planar pattern keypoints

Syntax
worldPoints = generateWorldPoints(detectorObj)
worldPoints = generateWorldPoints(detectorObj,varargin)

Description
worldPoints = generateWorldPoints(detectorObj) generates world coordinates for the
detected keypoints of the calibration pattern.

worldPoints = generateWorldPoints(detectorObj,varargin) uses the varargin input to
parse any additional parameters or options necessary to generate world points. For example, you can
provide the parameters or options obtained from the properties pane of your calibrator app.

Examples

Generate World Points for Checkerboard Pattern

Use this function template, which includes the use of the generateCheckerboardPoints object
function, to generate world points for a checkerboard pattern generator. The function includes both
programmatic and app workflows for generating the world (image) points. The function uses name-
value arguments for board and square size to set the corresponding fields in the Properties pane of
the calibrator app.

function worldPoints = generateWorldPoints(this,varargin) 
    
    if nargin > 1 % Command Line workflow
        parser = inputParser;
        parser.addParameter('SquareSize',25,@checkSquareSize);
        parser.addParameter('BoardSize',this.BoardSize,@checkBoardSize);
        parser.parse(varargin{:});
        
        boardSize = parser.Results.BoardSize;
        squareSize = parser.Results.SquareSize;
    else % Calibrator App workflow
        boardSize = this.BoardSize;
        squareSize = this.SquareSize;
    end
    
    worldPoints = generateCheckerboardPoints(boardSize,squareSize);
    
    %--------------------------------------------------------------
    % Validation functions for command line workflow
    %--------------------------------------------------------------
    function tf = checkSquareSize(squareSize)

2 Objects

2-84



        validateattributes(squareSize, {'numeric'}, ...
            {'scalar','positive','finite','nonsparse'},mfilename,'SquareSize');
        tf = true;
    end
    
    %--------------------------------------------------------------
    function tf = checkBoardSize(boardSize)
        validateattributes(boardSize,{'numeric'},...
            {'nonempty','vector','numel',2,'integer','positive','>=', 3},...
            mfilename,'BoardSize'); 
        tf = true;
    end
end

Input Arguments
detectorObj — Pattern detector
vision.calibration.PatternDetector object.

Pattern detector, specified as a single or stereo vision.calibration.PatternDetector object.

varargin — Variable number of inputs
1-by-N cell array

Variable number of inputs, specified as a 1-by-N cell array, where N is the number of inputs to the
function after detectorObj. For more details about using this input, see varargin.

Output Arguments
worldPoints — Image coordinates of detected key points
M-by-2 array

Image coordinates of detected keypoints in the calibration pattern, returned as an M-by-2 array of x,y
coordinates. M is the number of pattern keypoints detected in the calibration images by using
thedetectPatternPoints function.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
generateCircleGridPoints | detectPatternPoints | detectCheckerboardPoints |
propertiesPanel | drawImageAxesLabels | detectPatternPoints

Objects
cameraParameters | stereoParameters | vision.calibration.PatternDetector

Topics
“Camera Calibration Using AprilTag Markers”

Introduced in R2021b

 generateWorldPoints

2-85



detectPatternPoints
Package: vision.calibration

Detect calibration pattern keypoints in images

Syntax
[imagePoints,imagesUsed] = detectPatternPoints(detectorObj,imageFileNames)
[imagePoints,pairsUsed] = detectPatternPoints(detectorObj,imageFileNames1,
imageFileNames2)

[ ___ ] = detectPatternPoints( ___ ,varargin)

Description
[imagePoints,imagesUsed] = detectPatternPoints(detectorObj,imageFileNames)
detects the calibration pattern keypoints in the image files, specified by imageFileNames. The
function also indicates in which of the images it detects the calibration pattern.

[imagePoints,pairsUsed] = detectPatternPoints(detectorObj,imageFileNames1,
imageFileNames2) detects the calibration pattern keypoints in the stereo pairs of image files
specified in imageFileNames1 and imageFileNames2. The function also indicates in which of the
image pairs it detects the calibration pattern.

[ ___ ] = detectPatternPoints( ___ ,varargin) parses any parameters or options needed for
detection . For example, you can provide the parameters or options obtained from the properties
panel of your calibrator app while using it from the command line.

Examples

Detect Pattern Points for a Checkerboard Pattern

Use this function template, which includes the use of the detectPatternPoints object function, to
detect the keypoints of a calibration pattern. The function includes both programmatic and app
workflows for detecting the points.

function [imagePoints,imagesUsed] = detectPatternPoints(this,imageFileNames,varargin) 
    parser = inputParser;
    parser.addParameter('HighDistortion',false,@checkHighDistortion);
    parser.parse(varargin{:});
    highDistortion = parser.Results.HighDistortion;
    
    % Use 'IsDistortionHigh' member value when the default value is
    % being used for HighDistortion
    if ismember('HighDistortion',parser.UsingDefaults)
       highDistortion = this.IsDistortionHigh;  
    end
    
    [imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints( ...
        imageFileNames,HighDistortion=highDistortion);

2 Objects

2-86



    
    this.BoardSize = boardSize;
    
    %--------------------------------------------------------------
    function tf = checkHighDistortion(highDistortion)
        validateattributes(highDistortion,{'logical','numeric'}, ...
            {'scalar','binary'},mfilename,'HighDistortion');
        tf = true;
    end
end

Input Arguments
detectorObj — Detector object
vision.calibration.PatternDetector object

Detector object, specified as a single or stereo vision.calibration.PatternDetector object.

imageFileNames — Image file names
cell array of character vectors | vector of strings

Image file names, specified as a cell array of character vectors or a vector of strings.

imageFileNames1 — Stereo image file names for camera one
cell array of character vectors | array of string vectors

Stereo image file names for camera one, specified as a cell array of character vectors or an array of
strings.

imageFileNames2 — Stereo image file names for camera two
cell array of character vectors | array of string vectors

Stereo image file names for camera two, specified as a cell array of character vectors or an array of
strings.

varargin — Variable number of inputs
1-by-N cell array

Variable number of inputs, specified as a 1-by-N cell array, where N is the number of inputs to the
function receives after the explicitly declared inputs. For more details about using this input, see
varargin.

Output Arguments
imagePoints — Image coordinates of detected pattern keypoints
M-by-2- by-numImages | M-by-2-by-numPairs-by-2 array

Image x-y coordinates of detected pattern keypoints, returned as an M-by-2-by-numImages array for
single camera calibration or an M-by-2-by-numPairs-by-2 array for stereo camera calibration.
numImages is the number of images in which a circle grid is detected. numPairs is the number of
image pairs in which a circle grid is detected. For stereo images, imagePoints(:,:,:,1) returns
the pattern keypoints from the first set of images, and imagePoints(:,:,:,2) returns the pattern
keypoints from the second set of images. If the function cannot detect the complete pattern, then it
returns a partially detected pattern with [NaN,NaN] for those x-y coordinates that could not be
detected.

 detectPatternPoints

2-87



imagesUsed — Pattern detection flag
logical vector

Pattern detection flag, returned as a logical vector. A value of true for an element of the
imagesUsed vector indicates that the function has detected the pattern in the corresponding image.

pairsUsed — Stereo pair pattern detection flag
logical vector

Stereo pair pattern detection flag, returned as a logical vector. A value of true for an element of the
pairsUsed vector indicates that the function has detected the pattern in the corresponding image
pair.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
estimateCameraParameters | detectCheckerboardPoints | generateWorldPoints |
propertiesPanel | detectCircleGridPoints | readAprilTag

Objects
cameraParameters | stereoParameters | vision.calibration.PatternDetector

Topics
“Camera Calibration Using AprilTag Markers”

Introduced in R2021b

2 Objects

2-88



scanContextLoopDetector
Detect loop closures using scan context descriptors

Description
scanContextLoopDetector detects loop closures in point cloud data using global scan context
descriptors. A scan context descriptor encodes a point cloud view into a 2-D descriptor.
scanContextLoopDetector stores the descriptors with a corresponding view identifier to associate
the detected loop closures to a view in a pcviewset for map building.

Creation

Syntax
loopDetector = scanContextLoopDetector()

Description

loopDetector = scanContextLoopDetector() creates a default scanContextLoopDetector
object. Use the addDescriptor object function to add descriptors to the loop detector. Use the
detectLoop object function to detect loop closures.

Properties
ViewIds — View identifiers
P-element vector

This property is read-only.

View identifiers, specified as a P-element vector of unique positive integers, where P is the number of
descriptors added to the detector.

Descriptors — Scan context descriptors
M-by-N-by-P array

This property is read-only.

Scan context descriptors, specified as an M-by-N-by-P array. M is the number of radial bins and N is
the number of azimuthal bins in the descriptor. P is the number of descriptors in the detector.

Object Functions
addDescriptor Add descriptor to the loop closure detector
deleteDescriptor Delete descriptors from the loop closure detector
detectLoop Detect loop closures

 scanContextLoopDetector

2-89



Examples

Detect Loop Closure Against Recently Added Descriptor

Create a loop closure detector.

loopDetector = scanContextLoopDetector;

Create a Velodyne PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read the point clouds and extract the scan context descriptor from each point cloud scan. Add the
descriptors to the detector.

for viewId = 1:10
    ptCloud = readFrame(veloReader,viewId);
    descriptor = scanContextDescriptor(ptCloud);
    addDescriptor(loopDetector,viewId,descriptor);
end

Check if the next point cloud can be classified as a loop closure detection without excluding any
recently added descriptors.

viewId = viewId + 1;
ptCloud = readFrame(veloReader,viewId);
descriptor = scanContextDescriptor(ptCloud);
[loopViewId,dists] = detectLoop(loopDetector,descriptor,'NumExcludedDescriptors',0)

loopViewId = uint32
    10

dists = single
    0.0858

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pointCloud | pcviewset | pcmapndt

Functions
scanContextDescriptor | scanContextDistance | pcregisterndt

Topics
“Implement Point Cloud SLAM in MATLAB”
“Build a Map from Lidar Data Using SLAM”

Introduced in R2021b

2 Objects

2-90



addDescriptor
Add descriptor to the loop closure detector

Syntax
addDescriptor(loopDetector,viewID,descriptor)

Description
addDescriptor(loopDetector,viewID,descriptor) adds the scan context descriptor
descriptor that corresponds to the view identifier viewID to the loop closure detector
loopDetector.

Compute descriptors to add to the loop closure detector over the same radial range, with the same
number of radial and azimuthal bins. Use the viewID input to associate descriptors with a view in
pcviewset.

Examples

Add Descriptor to Loop Closure Detector

Create a loop closure detector.

loopDetector = scanContextLoopDetector;

Load point cloud data into the workspace.

data = load("drivingLidarPoints.mat");
ptCloud = data.ptCloud;

Extract a scan context descriptor from the point cloud data.

descriptor = scanContextDescriptor(ptCloud);

Add the descriptor to the loop closure detector.

viewId = 1;
addDescriptor(loopDetector,viewId,descriptor);

Input Arguments
loopDetector — Loop closure detector
scanContextLoopDetector object

Loop closure detector, specified as a scanContextLoopDetector object.

viewID — View identifier
positive integer

 addDescriptor

2-91



View identifier, specified as a positive integer. You can use the same viewID to associate descriptors
with a view in a pcviewset.

descriptor — Scan context descriptor
M-by-N matrix

Scan context descriptor, specified as an M-by-N matrix, where M is the number of radial bins and N is
the number of azimuthal bins.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pointCloud | scanContextLoopDetector

Functions
scanContextDescriptor | scanContextDistance | detectLoop | deleteDescriptor

Topics
“Implement Point Cloud SLAM in MATLAB”
“Build a Map from Lidar Data Using SLAM”

Introduced in R2021b

2 Objects

2-92



deleteDescriptor
Delete descriptors from the loop closure detector

Syntax
deleteDescriptor(loopDetector,viewIDs)

Description
deleteDescriptor(loopDetector,viewIDs) deletes the descriptors that correspond to the view
identifiers viewIDs from the loop closure detector loopDetector. viewIDs is a vector of positive
integers.

Examples

Delete Descriptor From Loop Closure Detector

Create a loop closure detector.

loopDetector = scanContextLoopDetector;

Create a Velodyne PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read the first and second point cloud scans.

ptCloud1 = readFrame(veloReader,1);
ptCloud2 = readFrame(veloReader,2);

Extract the descriptor for the first point cloud and add it to the loop closure detector.

viewId1 = 1;
descriptor1 = scanContextDescriptor(ptCloud1);
addDescriptor(loopDetector,viewId1,descriptor1);

Extract the second descriptor and add it to the loop closure detector.

viewId2 = 2;
descriptor2 = scanContextDescriptor(ptCloud2);
addDescriptor(loopDetector,viewId2,descriptor2);

Delete the descriptor that corresponds to view identifier 2, from the detector.

deleteDescriptor(loopDetector,viewId2);

Input Arguments
loopDetector — Loop closure detector
scanContextLoopDetector object

 deleteDescriptor

2-93



Loop closure detector, specified as a scanContextLoopDetector object.

viewIDs — View identifiers
vector of integers

View identifiers, specified as a vector of positive integers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pointCloud | scanContextLoopDetector

Functions
scanContextDescriptor | addDescriptor | detectLoop

Topics
“Implement Point Cloud SLAM in MATLAB”

Introduced in R2021b

2 Objects

2-94



detectLoop
Detect loop closures

Syntax
loopViewIds = detectLoop(loopDetector)
loopViewIds = detectLoop(loopDetector,descriptor)
[loopViewIds,dists] = detectLoop( ___ )
[ ___ ] = detectLoop( ___ ,Name=Value)

Description
loopViewIds = detectLoop(loopDetector) detects loop closures for the last added descriptor
and returns the view identifiers loopViewIds that correspond to loop closures. If the function
detects no loop closures, loopViewIds is empty. The loop closure detector ignores the number of
most recently added descriptors, set by the NumExcludedDescriptors name-value argument, to
avoid detecting loop closures against recent descriptors.

loopViewIds = detectLoop(loopDetector,descriptor) detects loop closures using the scan
context descriptor descriptor.

[loopViewIds,dists] = detectLoop( ___ ) returns the scan context distances dists between
the loop descriptor and the query descriptors, using any combination of input arguments from
previous syntaxes. The function computes distance between scan context descriptors, normalized to
the range [0,1], using a modified cosine distance.

[ ___ ] = detectLoop( ___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from the previous syntaxes. For example,
detectLoop(loopDetector,NumExcludedDescriptors=15) detects loop closures for the last
added descriptor while ignoring only the 15 most recently added loop descriptors.

Examples

Detect Loop Closure Against Recently Added Descriptor

Create a loop closure detector.

loopDetector = scanContextLoopDetector;

Create a Velodyne PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read the point clouds and extract the scan context descriptor from each point cloud scan. Add the
descriptors to the detector.

for viewId = 1:10
    ptCloud = readFrame(veloReader,viewId);
    descriptor = scanContextDescriptor(ptCloud);

 detectLoop

2-95



    addDescriptor(loopDetector,viewId,descriptor);
end

Check if the next point cloud can be classified as a loop closure detection without excluding any
recently added descriptors.

viewId = viewId + 1;
ptCloud = readFrame(veloReader,viewId);
descriptor = scanContextDescriptor(ptCloud);
[loopViewId,dists] = detectLoop(loopDetector,descriptor,'NumExcludedDescriptors',0)

loopViewId = uint32
    10

dists = single
    0.0858

Input Arguments
loopDetector — Loop closure detector
scanContextLoopDetector object

Loop closure detector, specified as a scanContextLoopDetector object.

descriptor — Scan context descriptor
M-by-N matrix

Scan context descriptor, specified as an M-by-N matrix, where M is the number of radial bins and N is
the number of azimuthal bins.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: detectLoop(loopDetector,NumExcludedDescriptors=15) detects loop closures for
the last added descriptor while ignoring only the 15 most recently added loop descriptors.

DistanceThreshold — Scan context distance threshold
0.1 (default) | positive scalar

Scan distance threshold to classify a view as a loop closure, specified as a positive scalar. Increasing
this value can return more loop closures, but this can also increase false positives.

NumExcludedDescriptors — Number of most recently added descriptors to exclude
30 (default) | nonnegative integer

Number of most recently added descriptors to exclude as loop closure candidates, specified as a
nonnegative integer. Exclude the most recently added descriptors to avoid detecting loop closures for
the most recently added descriptor against recent descriptors. Increase NumExcludedDescriptors
if many consecutive descriptors correspond to the same area.

SearchRadius — Search radius
0.3 (default) | positive scalar

2 Objects

2-96



Search radius in a subdescriptor space, specified as a positive scalar. The function computes the scan
context distance for only those descriptors within the search radius. Increasing this value can return
more loop closures, but can also increase false positives. Typical values range between 0.2 and 0.4.

MaxDetections — Maximum number of strongest loop closure detections returned
3 (default) | positive integer

Maximum number of strongest loop closure detections returned, specified as a positive integer.
Increase this value to increase the potential number of loop closure detections returned. However,
increasing this value can decrease computation speed. Set this value to Inf to return all loop closure
detections.

Output Arguments
loopViewIds — Loop closure view identifiers
P-element vector

Loop closure view identifiers corresponding to loop closures, returned as a P-element vector of
integer values. If the function finds no loop closures, it returns loopViewIds as an empty vector. The
loop closure detector ignores the last “NumExcludedDescriptors” on page 2-0  descriptors to avoid
detecting loop closures against recent descriptors.

dists — Scan context distance
P-element vector

Scan context distances, returned as a P-element vector of positive values. The distances represent the
scan context distance between the loop descriptor and the corresponding query descriptor. The
function computes the distance between scan context descriptors, normalized to the range [0,1],
using a modified cosine distance.

Algorithms
The ring key descriptor is a subdescriptor extracted from a scan context descriptor. It is the
occupancy ratio of each azimuthal bin that makes it rotation-invariant.

The scan context loop closure detector is a two-phase algorithm. It first uses the ring key descriptor
for a nearest neighbor search to find candidate loop closures. Then, it computes the scan context
distance using the scan context descriptors, and thresholds it to identify the best loop closure
detections.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pointCloud | scanContextLoopDetector | pcviewset

Functions
scanContextDescriptor | addDescriptor | deleteDescriptor | scanContextDistance

 detectLoop

2-97



Topics
“Implement Point Cloud SLAM in MATLAB”
“Build a Map from Lidar Data Using SLAM”

Introduced in R2021b

2 Objects

2-98



SIFTPoints
Object for storing SIFT interest points

Description
The SIFTPoints object enables you to pass data between the detectSIFTFeatures and
extractFeatures functions. You can also use it to manipulate and plot the data returned by these
functions. You can use the object to fill interest points interactively.

Creation
Syntax
points = SIFTPoints(location)
points = SIFTPoints(location,Name=Value)

Description

points = SIFTPoints(location) constructs a SIFTPoints object from an M-by-2 matrix of [x y]
point coordinates in location.

points = SIFTPoints(location,Name=Value) sets properties using one or more name-value
arguments. For example, SIFTPoints(Metric=0.0)

Input Arguments

location — Point coordinates
M-by-2 matrix of [x y] point coordinates.

Point coordinates, specified as an M-by-2 matrix of [x y] point coordinates. M is the number of points.

Properties
Scale — Scale
1.6 (default) | scalar

Scale at which the interest points are detected, specified as a value greater than 0.

Metric — Strength of detected feature
0.0 (default) | numeric scalar

Strength of the detected feature, specified as a value in the range [0 1]. The SIFT algorithm uses
the contrast threshold to determine strong features.

Orientation — Orientation
0.0 (default) | angle in radians

Orientation of the detected feature, specified as an angle, in radians. The angle is measured
counterclockwise from the X-axis with the origin specified by the location input. Do not set this

 SIFTPoints

2-99



property manually. Instead, use the call to extractFeatures to fill in this value. The
extractFeatures function modifies the default value of 0.0.The Orientation is mainly useful for
visualization purposes.

Octave — Index of the Gaussian pyramid octave layer
0 (default) | non-negative integer

Index of the Gaussian pyramid octave layer that the keypoint is extracted from, specified as an
integer. An octave is a collection of difference-of-Gaussian pyramid layers, and is used for scale-space.

Layer — Layer within the octave
0 (default) | integer

Layer within the octave from which the keypoint was extracted, specified as an integer.

Object Functions
plot Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics
size Return size of points object
selectUniform Select uniformly distributed subset of feature points

Examples

Detect SIFT Features in Image

Read an image.

I = imread("cameraman.tif");

Detect SIFT features in the image.

points = detectSIFTFeatures(I)

points = 
  274x1 SIFTPoints array with properties:

          Scale: [274x1 single]
    Orientation: [274x1 single]
         Octave: [274x1 int32]
          Layer: [274x1 int32]
       Location: [274x2 single]
         Metric: [274x1 single]
          Count: 274

Display the location and scale of the 10 strongest points in the image.

strongest = points.selectStrongest(10);
imshow(I)
hold on
plot(strongest) 

2 Objects

2-100



Display the [x y] coordinates for the selected points.

strongest.Location

ans = 10x2 single matrix

  183.2607  205.7324
  112.7613  206.8682
  140.7289   96.1705
  135.5473  125.4136
  101.5411  174.0036
  111.1929  156.2148
  167.3374   77.7732
  131.6280  114.0382
  114.2321   48.5672
  135.2517   92.6351

Detect SIFT Features and Display Points

Read an image into the workspace.

I = imread("cameraman.tif");

Detect SIFT features in the image.

points = detectSIFTFeatures(I);

Display the last 5 detected points.

 SIFTPoints

2-101



imshow(I)
hold on
plot(points(end-4:end))

Tips
• Although SIFTPoints may hold many points, it is a scalar object. Therefore,

numel(SIFTPoints) always returns 1. This value may differ from length(SIFTPoints), which
returns the true number of points held by the object.

• Properties can be specified as a scalar or a vector whose length matches the number of
coordinates in location.

References
[1] Lowe, David G.. "Distinctive Image Features from Scale-Invariant Keypoints." Int. J. Comput.

Vision 60 , no. 2 (2004): 91--110.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for points
object. See visionRecovertformCodeGeneration_kernel.m, which is used in the “Introduction to
Code Generation with Feature Matching and Registration” example.

2 Objects

2-102



See Also
Objects
MSERRegions | BRISKPoints | cornerPoints | detectORBFeatures | ORBPoints

Functions
detectSIFTFeatures | detectBRISKFeatures | detectKAZEFeatures | detectFASTFeatures
| detectORBFeatures | detectMinEigenFeatures | detectHarrisFeatures |
detectMSERFeatures | detectSURFFeatures | extractFeatures | matchFeatures

Topics
“Detect SURF Interest Points in a Grayscale Image” on page 3-434
“Display MSER Feature Regions from the MSERRegions Object” on page 2-464
“Find MSER Regions in an Image” on page 3-422
“Detect MSER Features in an Image” on page 2-463

Introduced in R2021b

 SIFTPoints

2-103



pcmapndt
Localization map based on normal distributions transform (NDT)

Description
The pcmapndt object creates a normal distributions transform (NDT) map from a prebuilt point cloud
map of the environment. The NDT map is a compressed, memory-efficient representation suitable for
localization. The object converts the point cloud map into a set of voxels (3-D boxes), each
represented by a 3-D normal distribution. Use the selectSubmap object function to select a submap
within the map from a coarse position estimate. Use the findPose object function to localize the
pose of the sensor based on the assembled map.

Creation

Syntax
ndtMap = pcmapndt(ptCloudMap,voxelSize)

Description

ndtMap = pcmapndt(ptCloudMap,voxelSize) returns an NDT map from a point cloud map,
ptCloudMap.

Properties
SelectedSubmap — Currently selected submap
entire map (default) | 6-element vector

This property is read-only.

Currently selected submap, specified as a 6-element vector of the form [xmin,xmax ymin ymax zmin
zmax] that describes the range of the submap along each axis. The elements of the vector describe
the region of interest represented by the submap.

VoxelSize — Size of voxels
scalar

This property is read-only.

Size of the voxels, specified as a scalar value in world units.

XLimits — Range of map along x-axis
2-element vector

This property is read-only.

Range of the map along the x-axis, specified as a 2-element vector of the form [xmin xmax] .

2 Objects

2-104



YLimits — Range of map along the Y-axis
2-element vector

This property is read-only.

Range of the map along the Y-axis, specified as a 2-element vector of the form [ymin ymax] .

ZLimits — Range of map along the z-axis
2-element vector

This property is read-only.

Range of the map along the z-axis, specified as a 2-element vector of the form [zmin zmax] .

VoxelMean — Mean value of each voxel
M-by-3 matrix

This property is read-only.

Mean value of each voxel, specified as an M-by-3 matrix. Each row of the matrix contains the [x y z]
values for a voxel. M is the number of voxels.

VoxelCovariance — Covariance of each voxel
3-by-3-by-M array

This property is read-only.

Covariance of each voxel, specified as a 3-by-3-by-M array for M voxels.

VoxelNumPoints — Number of points in each voxel
M-by-1 vector

This property is read-only.

Number of points in each voxel, specified as an M-by-1 vector for M voxels.

Object Functions
selectSubmap Select submap within map
isInsideSubmap Check if query position is inside selected submap
findPose Localize a point cloud within a map using the normal distributions transform (NDT)

algorithm
show Visualize normal distributions transform (NDT) map

Examples

Create an NDT Map Representation

Load a point cloud view set, which was saved from a pcviewset object.

data = load('vSetPointClouds.mat');
vSet = data.vSet;

Extract point clouds and absolute poses to build a map.

 pcmapndt

2-105



ptClouds = vSet.Views.PointCloud;
tforms   = vSet.Views.AbsolutePose;

Create a point cloud map by aligning the point cloud scans using the absolute poses.

ptCloudMap = pcalign(ptClouds,tforms);

Create and visualize an NDT map from a point cloud map.

voxelSize = 1;
ndtMap = pcmapndt(ptCloudMap,voxelSize);
figure
show(ndtMap)
view(2)     % Change viewing angle to top-view

Lidar Localization Using NDT

Load a normal distributions transform (NDT) map from a MAT file.

data = load('ndtMapParkingLot.mat');
ndtMap = data.ndtMapParkingLot;

Load point cloud scans and pose estimates from a second MAT file.

2 Objects

2-106



data = load('parkingLotData.mat');
ptCloudScans = data.parkingLotData.ptCloudScans;
initPoseEsts = data.parkingLotData.initPoseEsts;

Display the NDT map.

show(ndtMap)

Change the viewing angle to top-view.

view(2)

Select the submap centered around the first estimate.

center = initPoseEsts(1).Translation;
sz = [70 50 20];
ndtMap = selectSubmap(ndtMap,center,sz);

Set the radius for visualization of the current location and the distance threshold to update the
submap.

radius = 0.5;
distThresh = 15;

Loop over the point clouds, localize them in the map, and update the selected submap as needed.

numScans   = numel(ptCloudScans);
  
for n = 1:numScans
    ptCloud = ptCloudScans(n);
    initPose = initPoseEsts(n);

    poseTranslation = initPose.Translation;
    [isInside,distToEdge] = isInsideSubmap(ndtMap,poseTranslation);
    submapNeedsUpdate = ~isInside ...       % Current pose is outside submap
        || any(distToEdge(1:2) < distThresh);   % Current pose is close to submap edge

if submapNeedsUpdate
    ndtMap = selectSubmap(ndtMap,poseTranslation,sz);
end

% Localize the point cloud scan in the map.
currPose = findPose(ndtMap,ptCloud,initPose);

% Display the position of the estimate as a circle.
pos = [currPose.Translation(1:2) radius]; 
showShape('circle',pos,'Color','r');

% Pause to view the change.
pause(0.05)
end

 pcmapndt

2-107



References
Biber, P., and W. Strasser. “The Normal Distributions Transform: A New Approach to Laser Scan
Matching.” In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No.03CH37453) Vol. 3, 2743–48. Las Vegas, Nevada, USA: IEEE, 2003.
https://doi.org/10.1109/IROS.2003.1249285.

[1] Magnusson, Martin. "The Three-Dimensional Normal-Distributions Transform: An Efficient
Representation forRegistration, Surface Analysis, and Loop Detection." PhD thesis, Örebro
universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-8458
urn:nbn:se:oru:diva-8458.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Because of architectural differences between the CPU and the GPU, there may be minor
differences in results from simulation and code generation.

2 Objects

2-108



• In certain cases, there may be differences in the location of points in a voxel between simulation
and code generation. However, the total number of points remains the same.

See Also
Functions
selectSubmap | findPose | pcregisterndt | pcalign

Introduced in R2021a

 pcmapndt

2-109



selectSubmap
Select submap within map

Syntax
ndtMapOut = selectSubmap(ndtMapIn,roi)
ndtMapOut = selectSubmap(ndtMapIn,center,sz)

Description
ndtMapOut = selectSubmap(ndtMapIn,roi) selects a submap within the NDT map ndtMapIn
using the specified region of interest roi.

Use this function to confine the search space for localization when using coarse position estimates.

ndtMapOut = selectSubmap(ndtMapIn,center,sz) selects a submap specified by the center
center and size sz of the submap.

Examples

Lidar Localization Using NDT

Load a normal distributions transform (NDT) map from a MAT file.

data = load('ndtMapParkingLot.mat');
ndtMap = data.ndtMapParkingLot;

Load point cloud scans and pose estimates from a second MAT file.

data = load('parkingLotData.mat');
ptCloudScans = data.parkingLotData.ptCloudScans;
initPoseEsts = data.parkingLotData.initPoseEsts;

Display the NDT map.

show(ndtMap)

Change the viewing angle to top-view.

view(2)

Select the submap centered around the first estimate.

center = initPoseEsts(1).Translation;
sz = [70 50 20];
ndtMap = selectSubmap(ndtMap,center,sz);

Set the radius for visualization of the current location and the distance threshold to update the
submap.

radius = 0.5;
distThresh = 15;

2 Objects

2-110



Loop over the point clouds, localize them in the map, and update the selected submap as needed.

numScans   = numel(ptCloudScans);
  
for n = 1:numScans
    ptCloud = ptCloudScans(n);
    initPose = initPoseEsts(n);

    poseTranslation = initPose.Translation;
    [isInside,distToEdge] = isInsideSubmap(ndtMap,poseTranslation);
    submapNeedsUpdate = ~isInside ...       % Current pose is outside submap
        || any(distToEdge(1:2) < distThresh);   % Current pose is close to submap edge

if submapNeedsUpdate
    ndtMap = selectSubmap(ndtMap,poseTranslation,sz);
end

% Localize the point cloud scan in the map.
currPose = findPose(ndtMap,ptCloud,initPose);

% Display the position of the estimate as a circle.
pos = [currPose.Translation(1:2) radius]; 
showShape('circle',pos,'Color','r');

% Pause to view the change.
pause(0.05)
end

 selectSubmap

2-111



Input Arguments
ndtMapIn — NDT map
pcmapndt object

NDT map, specified as a pcmapndt object.

roi — Region of interest
6-element vector

Region of interest, specified as a 6-element vector of the form [xmin xmax ymin ymax zmin zmax] .

center — Center of submap
3-element vector

Center of the submap, specified as 3-element vector of the form [xc yc zc].

sz — Size of submap along each axis
3-element vector

Size of the submap along each axis, specified as 3-element vector of the form [xsz ysz zsz].

Output Arguments
ndtMapOut — NDT map
pcmapndt object

NDT map, returned as a pcmapndt object with an updated SelectedSubmap property.

If a region of the selected submap is outside of the limits of the map, the selected submap is
constrained to the map limits as described by the XLimits, YLimits, and ZLimits properties of the
pcmapndt object .

Tips
• Use a submap size large enough to include the uncertainty of the position estimates and the range

of the sensor used with findPose. A larger submap can increase computation time during each
call to the findPose function, but it can also reduce the frequency of submap updates.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcmapndt

Functions
isInsideSubmap | show | showShape

2 Objects

2-112



Introduced in R2021a

 selectSubmap

2-113



isInsideSubmap
Check if query position is inside selected submap

Syntax
isInside = isInsideSubmap(ndtMap pos)
[isInside,distToEdge] = isInsideSubmap(ndtMap,pos)

Description
isInside = isInsideSubmap(ndtMap pos) check if the query position pos, is inside the
selected submap of the NDT map ndtMap.

[isInside,distToEdge] = isInsideSubmap(ndtMap,pos) also returns the distance from the
query position to the closest edge of the submap along the X-,Y-, and Z-axes respectively.

Examples

Check if Query Position Is in Submap

Load an NDT map from a MAT file.

data = load('ndtMapParkingLot.mat');
ndtMap = data.ndtMapParkingLot;

Select a submap with a specified center and set size.

center = [40 0 0];
sz = [50 50 20];
ndtMap = selectSubmap(ndtMap,center,sz);

Display the extent of the submap.

disp(ndtMap.SelectedSubmap)

   15.0000   65.0000  -25.0000   25.0000   -9.1840    5.4975

Check if a query position is inside the submap.

pos1 = [40 0 0]; % near center
[isInside1,distToEdge1] = isInsideSubmap(ndtMap,pos1)

isInside1 = logical
   1

distToEdge1 = 1×3

   25.0000   25.0000    5.4975

2 Objects

2-114



pos2 = [66 0 0]; % completely outside
[isInside2,distToEdge2] = isInsideSubmap(ndtMap,pos2)

isInside2 = logical
   0

distToEdge2 = 1×3

    1.0000   25.0000    5.4975

pos3 = [60 0 0]; % inside, 5 meters from edge in x direction
[isInside3,distToEdge3] = isInsideSubmap(ndtMap,pos3)

isInside3 = logical
   1

distToEdge3 = 1×3

    5.0000   25.0000    5.4975

Input Arguments
ndtMap — NDT map
pcmapndt object

NDT map, specified as a pcmapndt object.

pos — Query position
3-element vector

Query position, specified as a 3-element vector of the form [x y z].

Output Arguments
isInside — Indication of position inside submap
true | false

Indication of position inside submap, returned as a logical true or false.

distToEdge — Distance from the query position to closest edge of the submap
3-element vector

Distance from the query position to the closest edge of the submap in the X-, Y-, and Z-axes
respectively, returned as a 3-element vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 isInsideSubmap

2-115



See Also
Functions
selectSubmap | findPose

Objects
pcmapndt

Introduced in R2021a

2 Objects

2-116



findPose
Localize a point cloud within a map using the normal distributions transform (NDT) algorithm

Syntax
currPose = findPose(ndtMap,ptCloud,initPose)
currPose = findPose( ___ ,Name,Value)

Description
currPose = findPose(ndtMap,ptCloud,initPose) localizes the pose of the point cloud
ptCloud within the NDT map ndtMap using the NDT algorithm. The function confines the search
space to the submap, specified by the SelectedSubmap property of the ndtMap object.

currPose = findPose( ___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in previous syntax. For example, 'MaxIterations',30
sets the maximum number of iterations before the function stops the NDT algorithm.

Examples

Lidar Localization Using NDT

Load a normal distributions transform (NDT) map from a MAT file.

data = load('ndtMapParkingLot.mat');
ndtMap = data.ndtMapParkingLot;

Load point cloud scans and pose estimates from a second MAT file.

data = load('parkingLotData.mat');
ptCloudScans = data.parkingLotData.ptCloudScans;
initPoseEsts = data.parkingLotData.initPoseEsts;

Display the NDT map.

show(ndtMap)

Change the viewing angle to top-view.

view(2)

Select the submap centered around the first estimate.

center = initPoseEsts(1).Translation;
sz = [70 50 20];
ndtMap = selectSubmap(ndtMap,center,sz);

Set the radius for visualization of the current location and the distance threshold to update the
submap.

radius = 0.5;
distThresh = 15;

 findPose

2-117



Loop over the point clouds, localize them in the map, and update the selected submap as needed.

numScans   = numel(ptCloudScans);
  
for n = 1:numScans
    ptCloud = ptCloudScans(n);
    initPose = initPoseEsts(n);

    poseTranslation = initPose.Translation;
    [isInside,distToEdge] = isInsideSubmap(ndtMap,poseTranslation);
    submapNeedsUpdate = ~isInside ...       % Current pose is outside submap
        || any(distToEdge(1:2) < distThresh);   % Current pose is close to submap edge

if submapNeedsUpdate
    ndtMap = selectSubmap(ndtMap,poseTranslation,sz);
end

% Localize the point cloud scan in the map.
currPose = findPose(ndtMap,ptCloud,initPose);

% Display the position of the estimate as a circle.
pos = [currPose.Translation(1:2) radius]; 
showShape('circle',pos,'Color','r');

% Pause to view the change.
pause(0.05)
end

2 Objects

2-118



Input Arguments
ndtMap — NDT map
pcmapndt object

NDT map, specified as a pcmapndt object.

ptCloud — Point cloud
pointCloud object

Point cloud in the sensor coordinate system, specified as a pointCloud object.

initPose — Initial estimate for the pose of the sensor in the map
rigid3d object

Initial estimate for the pose of the sensor in the map, specified as a rigid3d object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxIterations',30 stops the NDT algorithm after 30 iterations.

OutlierRatio — Expected percentage of outliers
0.55 (default) | scalar in the range [0, 1)

Expected percentage of outliers with respect to a normal distribution, specified as a scalar in the
range [0, 1). The NDT algorithm assumes a point is generated by the mixture of a normal distribution
for inliers and a uniform distribution for outliers. A larger value of 'OutlierRatio' reduces the
influence of outliers.
Data Types: single | double

MaxIterations — Maximum number of iterations
30 (default) | nonnegative integer

Maximum number of iterations before the NDT algorithm stops, specified as a nonnegative integer.
Data Types: single | double

Tolerance — Tolerance between consecutive NDT iterations
[0.01 0.5] (default) | 2-element vector

Tolerance between consecutive NDT iterations, specified as a 2-element vector with nonnegative
values. The vector, [Tdiff Rdiff], represents the tolerance of absolute difference in translation and
rotation, respectively, estimated in consecutive NDT iterations. Tdiff measures the Euclidean distance
between two translation vectors. Rdiff measures the angular difference in degrees. The algorithm
stops when the difference between estimated rigid transformations in the most recent consecutive
iterations falls below the specified tolerance values.
Data Types: single | double

 findPose

2-119



Verbose — Display progress information
false or 0 (default) | true or 1

Display progress information, specified as a logical 0 (false) or 1 (true). Set 'Verbose' to true to
display progress information.
Data Types: logical

Output Arguments
currPose — Pose of sensor in map
rigid3d object

Pose of the sensor in the map, returned as a rigid3d object. The function confines the search space
to the submap, specified by the SelectedSubmap property of ndtMap.

Tips
• To improve the accuracy and efficiency of localization, consider downsampling the point cloud

using pcdownsample before using this function.

References
Biber, P., and W. Strasser. “The Normal Distributions Transform: A New Approach to Laser Scan
Matching.” In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No.03CH37453) Vol. 3, 2743–48. Las Vegas, Nevada, USA: IEEE, 2003.
https://doi.org/10.1109/IROS.2003.1249285.

[1] Magnusson, Martin. "The Three-Dimensional Normal-Distributions Transform: An Efficient
Representation forRegistration, Surface Analysis, and Loop Detection." PhD thesis, Örebro
universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-8458
urn:nbn:se:oru:diva-8458.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcmapndt | pointCloud | rigid3d

Functions
selectSubmap | show | pcregisterndt | isInsideSubmap | pcdownsample

Introduced in R2021a

2 Objects

2-120



show
Visualize normal distributions transform (NDT) map

Syntax
show(ndtMap)
show(ndtMap,spatialExtent)
show( ___ ,Name,Value)

ax = show( ___ )

Description
show(ndtMap) visualizes the NDT map as a point cloud. The function uses voxel means, covariances,
and point counts to generate points for the display. These points are not the points used to build the
map. The NDT map is a compressed representation of the point cloud map that stores the voxels and
their 3-D normal distributions.

show(ndtMap,spatialExtent) displays points within the spatial map or submap specified by
spatialExtent.

show( ___ ,Name,Value) specifies options using one or more name-value arguments in addition to
any combination of input arguments in previous syntaxes. For example, 'MarkerSize',6 sets the
marker size to 6 points.

ax = show( ___ ) returns the axes used to plot the NDT map.

Examples

Select and Visualize Submap

Load an NDT map from a MAT file.

data = load('ndtMapParkingLot.mat');
ndtMap = data.ndtMapParkingLot;

Select a submap from within the loaded NDT map at the specified location and size.

center  = [50  0  0];
sz      = [50 50 10];
ndtMap = selectSubmap(ndtMap,center,sz);

Visualize the full NDT map.

figure
show(ndtMap)
title('Full NDT Map')

Highlight the selected submap on the full NDT map.

 show

2-121



pos = [center,sz,zeros(1, 3)];
showShape('cuboid',pos,'Color','y','Opacity',0.2);

Visualize the selected submap.

figure
show(ndtMap,'submap')
title('Selected Submap')

2 Objects

2-122



Input Arguments
ndtMap — NDT map
pcmapndt object

NDT map, specified as a pcmapndt object.

spatialExtent — Spatial extent
'map' | 'submap'

Spatial extent, specified as 'map' or 'submap'. When you specify 'submap', only points within the
current submap are displayed.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MarkerSize',6 sets the marker size to 6 points.

MarkerSize — Diameter of marker
6 (default) | positive scalar

 show

2-123



Diameter of marker, specified as a positive scalar. This value specifies the approximate diameter of
the point marker. Units are in points. A marker size larger than six can reduce rendering
performance.

Parent — Axes on which to display visualization
Axes object

Axes on which to display the visualization, specified as an Axes object. To create an Axes object, use
the axes function. To display the visualization in a new figure, leave 'Parent' unspecified.

Output Arguments
ax — Plot axes
Axes object

Plot axes, returned as an axes graphics object.

See Also
Objects
pcmapndt

Functions
pcshow | selectSubmap

Introduced in R2021a

2 Objects

2-124



worldpointset
Manage 3-D to 2-D point correspondences

Description
The worldpointset object stores correspondences between 3-D world points and 2-D image points
across camera views. You can use a worldpointset object with an imageviewset object to manage
image and map data for structure-from-motion, visual odometry, and visual simultaneous localization
and mapping (SLAM).

Creation

Syntax
wpSet = worldpointset

Description

wpSet = worldpointset creates a worldpointset object with default properties. Use the object
functions to perform actions such as adding, modifying or removing correspondences, finding points
in a view, and finding views of points.

Properties
WorldPoints — 3-D world points
[ ] (default) | M-by-3 matrix

This property is read-only.

3-D world points, specified as an M-by-3 matrix with rows containing [x y z] world points. M is the
number of 3-D world points.

ViewIds — Identifiers for views
[ ] (default) | N-element row vector of integers

This property is read-only.

Identifiers for views associated with world points, specified as an N-element row vector of integers.

Count — Number of 3-D world points
0 (default) | scalar

This property is read-only.

Number of 3-D world points, specified as a scalar.

Correspondences — 3-D to 2-D point correspondences
empty three-column table (default) | three-column table

 worldpointset

2-125



This property is read-only.

3-D to 2-D point correspondences, specified as a three-column table.

Column Description
PointIndex Each row contains the linear index of a world

point.
ViewId Each row contains a 1-by-N vector specifying the

IDs of the views associated with the
corresponding world points. N is the number of
views associated with the world point.

FeatureIndex Each row contains a 1-by-N vector specifying the
indices of the feature points that correspond to
the world point. Each element is the index of the
feature point in the view specified by the
corresponding element in the ViewID cell.

Object Functions
addWorldPoints Add world points to world point set
removeWorldPoints Remove world points from world point set
updateWorldPoints Update world points in world point set
addCorrespondences Update world points in a world point set
removeCorrespondences Remove 3-D to 2-D correspondences from world point set
updateCorrespondences Update 3-D to 2-D correspondences in world point set
findViewsOfWorldPoint Find views that observe a world point
findWorldPointsInTracks Find world points that correspond to point tracks
findWorldPointsInView Find world points observed in view

Examples

Triangulate Stereo Images

Load a MAT-file containing stereo parameters into the workspace.

load('webcamsSceneReconstruction.mat');

Read a stereo pair of images into the workspace.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Undistort the images.

I1 = undistortImage(I1,stereoParams.CameraParameters1);
I2 = undistortImage(I2,stereoParams.CameraParameters2);

Define a rectangular region of interest (ROI), in the format [x y width height] .

roi = [30 30 size(I1,2)-30 size(I1,1)-30];

Detect and extract Speeded-Up Robust Features (SURF) from both images using the ROI.

2 Objects

2-126



imagePoints1 = detectSURFFeatures(im2gray(I1),'ROI',roi);
imagePoints2 = detectSURFFeatures(im2gray(I2),'ROI',roi);
  
[feature1,validPoints1] = extractFeatures(im2gray(I1),imagePoints1,'Upright',true);
[feature2,validPoints2] = extractFeatures(im2gray(I2),imagePoints2,'Upright',true);

Match the extracted features to each other.

indexPairs = matchFeatures(feature1,feature2);

Compute the 3-D world points.

matchedPoints1 = validPoints1(indexPairs(:,1));
matchedPoints2 = validPoints2(indexPairs(:,2));
worldPoints    = triangulate(matchedPoints1,matchedPoints2,stereoParams);

Create a worldpointset object to manage correspondences.

wpSet = worldpointset;

Add the world points to the worldpointset.

[wpSet,newPointIndices] = addWorldPoints(wpSet,worldPoints);

Add the 3-D to 2-D point correspondences to the worldpointset.

wpSet = addCorrespondences(wpSet,1,newPointIndices,indexPairs(:,1));
wpSet = addCorrespondences(wpSet,2,newPointIndices,indexPairs(:,2));

Display the world points.

pcshow(wpSet.WorldPoints,'VerticalAxis','y','VerticalAxisDir','down','MarkerSize',45)

 worldpointset

2-127



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pointTrack

Objects
imageviewset

Topics
“Monocular Visual Simultaneous Localization and Mapping”

Introduced in R2020b

2 Objects

2-128



addCorrespondences
Update world points in a world point set

Syntax
wpSet = addCorrespondences(wpSet,viewId,pointIndices,featureIndices)

Description
wpSet = addCorrespondences(wpSet,viewId,pointIndices,featureIndices) adds
correspondences between the specified 3-D world points pointIndices and 2-D feature points
featureIndices for the specified by view viewId to a world point set wpSet.

Examples

Add 3-D to 2-D Correspondences to World Point Set

Generate 3-D world points.

worldPoints = rand(100,3);

Create a worldpointset object.

wpSet = worldpointset;

Add world points.

wpSet = addWorldPoints(wpSet,worldPoints);

Add correspondences to View 1 for the first 10 points.

viewId = 1;
pointIndices   = 1:10;
featureIndices = 1:10;
wpSet  = addCorrespondences(wpSet,viewId,pointIndices,featureIndices);

Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

viewId — View identifier
scalar

View identifier, specified as a scalar.

pointIndices — World point indices
M-element column vector of integers

 addCorrespondences

2-129



World point indices, specified as an M-element column vector of integers. M is the number of world
points for which you are adding correspondences.

featureIndices — 2-D feature point indices
M-element column vector of integers

Feature point indices, specified as an M-element column vector of integers. M is the number of world
points for which you are adding correspondences.

Output Arguments
wpSet — World point set
worldpointset object

World point set, returned as a worldpointset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
updateCorrespondences | removeCorrespondences

Objects
imageviewset | worldpointset

Introduced in R2020b

2 Objects

2-130



addWorldPoints
Add world points to world point set

Syntax
wpSet = addWorldPoints(wpSet,worldPoints)
[wpSet,newPointIndices] = addWorldPoints(wpSet,worldPoints)

Description
wpSet = addWorldPoints(wpSet,worldPoints) adds world points to the world points set
wpSet.

[wpSet,newPointIndices] = addWorldPoints(wpSet,worldPoints) additionally returns the
indices in the world point set of the added world points.

Examples

Add World Points to World Point Set

Generate 3-D world points.

worldPoints = rand(100,3);

Create a worldpointset object.

wpSet = worldpointset

Add the world points to the world point set.

wpSet = addWorldPoints(wpSet,worldPoints)

Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

worldPoints — World points coordinates
M-by-3 matrix

World points coordinates, specified as an M-by-3 matrix in the form [x y z].

Output Arguments
wpSet — World point set
worldpointset object

 addWorldPoints

2-131



World point set, returned as a worldpointset object.

newPointIndices — Added world point indices
M-element column vector of integers

Added world point indices, returned as an M-element column vector of integers. M is the number of
world points added to the world point set.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
worldpointset

Functions
removeWorldPoints | updateWorldPoints

Introduced in R2020b

2 Objects

2-132



findViewsOfWorldPoint
Find views that observe a world point

Syntax
viewIds = findViewsOfWorldPoint(wpSet,pointIndex)
[viewIds,featureIndices] = findViewsOfWorldPoint(wpSet,pointIndex)

Description
viewIds = findViewsOfWorldPoint(wpSet,pointIndex) finds the identifiers for views
viewIds that observe the specified 3-D world points pointIndex in a world point set wpSet.

[viewIds,featureIndices] = findViewsOfWorldPoint(wpSet,pointIndex) additionally
returns the indices of the 2-D feature points that correspond to each 3-D world point for each
associated view.

Examples

Find Views of World Points

Generate 3-D world points.

worldPoints = rand(100,3);

Create a worldpointset object.

wpSet = worldpointset;

Add world points.

wpSet = addWorldPoints(wpSet,worldPoints);

Add 3-D to 2-D correspondences for view 1.

viewId1 = 1;
pointIndices1   = 1:10;
featureIndices1 = 1:10;
wpSet  = addCorrespondences(wpSet,viewId1,pointIndices1,featureIndices1);

Add 3-D to 2-D correspondences for view 2.

viewId2 = 2;
pointIndices2   = 6:10;
featureIndices2 = 1:5;
wpSet  = addCorrespondences(wpSet,viewId2,pointIndices2,featureIndices2);

Find views of world points.

pointIndex = 6:10;
viewIds = findViewsOfWorldPoint(wpSet,pointIndex);

 findViewsOfWorldPoint

2-133



Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

pointIndex — World point indices
scalar | N-element vector of integers

World point indices, specified as a scalar or an N-element vector of integers.

Output Arguments
viewIds — View identifiers
M-element column vector | N-element cell array

View identifiers, returned as an M-element column vector or N-element cell array. The function
returns an M-element vector column, where M is the number of views that observe the world point,
when pointIndex is a scalar. The function returns an N-element cell array when pointIndex is an
N-element vector of integers. Each cell contains a column vector of the view identifiers for the
associated world point.

featureIndices — 2-D feature point indices
M-element column vector | N-element cell array

2-D feature point indices, returned as an M-element column vector or N-element cell array. The
function returns an M-element vector column, where M is the number of views that observe the world
point, when pointIndex is a scalar. The function returns an N-element cell array when pointIndex
is an N-element vector of integers. Each cell contains a column vector of the corresponding feature
indices for the associated world point.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

If the input argument pointIndex is a scalar, the output arguments viewIds and featureIndices
returned by the generated code are M-element cell arrays. M is the number of views that observe the
world point.

See Also
Functions
findWorldPointsInView

Objects
imageviewset | worldpointset

Introduced in R2020b

2 Objects

2-134



findWorldPointsInTracks
Find world points that correspond to point tracks

Syntax
pointIndices = findWorldPointsInTracks(wpSet,tracks)
[pointIndices,validIndex] = findWorldPointsInTracks(wpSet,tracks)

Description
pointIndices = findWorldPointsInTracks(wpSet,tracks) finds the indices of world points
pointIndices that correspond to the specified point tracks tracks.

[pointIndices,validIndex] = findWorldPointsInTracks(wpSet,tracks) additionally
returns a vector that indicates whether each point track has a corresponding world point.

Examples

Find World Points in Tracks

Load precomputed world point set and image view set.

data = load(fullfile(toolboxdir('vision'),'visiondata','worldpointsetAndTracks.mat'));

Find point tracks across views.

tracks = findTracks(data.vSet);

Find 3-D world points corresponding to point tracks.

pointIndices = findWorldPointsInTracks(data.wpSet,tracks);

Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

tracks — Point tracks
M-element row vector of pointTrack objects

Point tracks, specified as an M-element row vector of pointTrack objects.

Output Arguments
pointIndices — 3-D world point indices
N-element column vector

 findWorldPointsInTracks

2-135



3-D world point indices, returned as an N-element column vector. N is the number of world points for
which the function detects corresponding point tracks.

validIndex — Logical index
M-element logical vector

Logical index of point track correspondences, returned as an M-element logical vector. M is the
number of point tracks in the tracks argument. A value of 1 (true) indicates that the associated
point track has a corresponding world point, and a value of 0 (false) indicates that it does not.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
findTracks | findWorldPointsInView | findViewsOfWorldPoint

Objects
imageviewset | worldpointset

Introduced in R2020b

2 Objects

2-136



findWorldPointsInView
Find world points observed in view

Syntax
pointIndices = findWorldPointsInView(wpSet,viewId)
[pointIndices,featureIndices] = findWorldPointsInView(wpSet,viewId)

Description
pointIndices = findWorldPointsInView(wpSet,viewId) finds the indices of the 3-D world
points pointIndices observed in the specified view viewId.

[pointIndices,featureIndices] = findWorldPointsInView(wpSet,viewId) additionally
returns the indices of the corresponding 2-D feature points in the view.

Examples

Find World Points in World Points Set

Generate 3-D world points.

worldPoints = rand(100,3);

Create a worldpointset object.

wpSet = worldpointset;

Add world points.

wpSet = addWorldPoints(wpSet,worldPoints);

Add 3-D to 2-D correspondences for view 1.

viewId1 = 1;
pointIndices1   = 1:10;
featureIndices1 = 1:10;
wpSet  = addCorrespondences(wpSet,viewId1,pointIndices1,featureIndices1);

Add 3-D to 2-D correspondences for view 2.

viewId2 = 2;
pointIndices2   = 6:10;
featureIndices2 = 1:5;
wpSet  = addCorrespondences(wpSet,viewId2,pointIndices2,featureIndices2);

Find world points in view 2.

[pointIndices,featureIndices] = findWorldPointsInView(wpSet,viewId2)

pointIndices = 5×1

 findWorldPointsInView

2-137



     6
     7
     8
     9
    10

featureIndices = 5×1

     1
     2
     3
     4
     5

Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

viewId — View identifier
scalar | N-element vector

View identifier, specified as a scalar or an N-element vector. N is the number of views specified. The
dimensions of the pointIndices and featureIndices arguments depends on the value of the
viewId argument.

viewId pointIndices featureIndices
scalar M-element column vector M-element column vector
N-element array N-element cell array N-element cell array

Output Arguments
pointIndices — 3-D world point indices
M-element column vector | N-element cell array

3-D world point indices, returned as an M-element column vector or an N-element cell array. M is the
number of world points with corresponding feature points in the specified view. N is the number of
views specified, and each element of the cell array contains a column vector of the world point
indices with corresponding feature points in the associated view.

featureIndices — 2-D feature point indices
M-element column vector | N-element cell array

2-D feature point indices, returned as an M-element column vector or an N-element cell array. M is
the number of world points with corresponding feature points in the specified view. N is the number
of views specified, and each element of the cell array contains a column vector of the feature point
indices in the associated view with corresponding world points.

2 Objects

2-138



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

If the input argument viewId is a scalar, the output arguments pointIndices and
featureIndices returned by the generated code are M-element cell arrays. M is the number of
world points with corresponding feature points in the specified view.

See Also
Functions
findViewsOfWorldPoint | addCorrespondences

Objects
imageviewset

Introduced in R2020b

 findWorldPointsInView

2-139



removeCorrespondences
Remove 3-D to 2-D correspondences from world point set

Syntax
wpSet = removeCorrespondences(wpSet,viewId,pointIndices)

Description
wpSet = removeCorrespondences(wpSet,viewId,pointIndices) removes the
correspondences between the specified 3-D world points pointIndices and 2-D feature points for
the specified view viewId from a world point set.

Examples

Remove Correspondences in World Point Set

Generate 3-D world points.

worldPoints = rand(100,3);

Create a worldpointset object.

wpSet = worldpointset;

Add world points.

wpSet = addWorldPoints(wpSet,worldPoints);

Add correspondences for a view.

viewId = 1;
pointIndices   = 1:10;
featureIndices = 1:10;
wpSet  = addCorrespondences(wpSet,viewId,pointIndices,featureIndices);

Remove the first 5 correspondences.

pointIndices = 1:5;
wpSet  = removeCorrespondences(wpSet,viewId,pointIndices);

Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

viewId — View identifier
scalar

2 Objects

2-140



View identifier, specified as a scalar.

pointIndices — World point indices
M-element column vector of integers

World point indices, specified as an M-element column vector of integers. M is the number of world
points from which to remove correspondences.

Output Arguments
wpSet — World point set
worldpointset object

World point set, returned as a worldpointset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
addCorrespondences | findViewsOfWorldPoint

Objects
imageviewset | worldpointset

Introduced in R2020b

 removeCorrespondences

2-141



removeWorldPoints
Remove world points from world point set

Syntax
wpSet = removeWorldPoints(wpSet,pointIndices)

Description
wpSet = removeWorldPoints(wpSet,pointIndices) removes the world points at the specified
indices pointIndices from the world point set wpSet

Examples

Remove Points from World Point Set

Generate 3-D world points.

worldPoints = rand(100,3);

Create a worldpointset object.

wpSet = worldpointset;

Add the world points to the world point set. Display the world point set.

[wpSet,newPointIndices] = addWorldPoints(wpSet,worldPoints);
wpSet

wpSet = 
  worldpointset with properties:

        WorldPoints: [100×3 single]
            ViewIds: [1×0 uint32]
              Count: 100
    Correspondences: [100×3 table]

Remove the first 50 world points from the world point set.

wpSet = removeWorldPoints(wpSet,newPointIndices(1:50))

wpSet = 
  worldpointset with properties:

        WorldPoints: [50×3 single]
            ViewIds: [1×0 uint32]
              Count: 50
    Correspondences: [50×3 table]

2 Objects

2-142



Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

pointIndices — World point indices
M-element array vector of integers

World point indices, specified as an M-element vector of integers. M is the number of world points to
remove from the worldpointset object.

Output Arguments
wpSet — World point set
worldpointset object

World point set, returned as a worldpointset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
addWorldPoints | updateWorldPoints

Objects
imageviewset | worldpointset

Introduced in R2020b

 removeWorldPoints

2-143



updateCorrespondences
Update 3-D to 2-D correspondences in world point set

Syntax
wpSet = updateCorrespondences(wpSet,viewId,pointIndices,featureIndices)

Description
wpSet = updateCorrespondences(wpSet,viewId,pointIndices,featureIndices) updates
the correspondences between the specified 3-D world points pointIndices and 2-D feature points
featureIndices for the specified view viewId in a world point set wpSet.

Examples

Update Correspondences in World Point Set

Generate 3-D world points.

worldPoints = rand(100,3);

Create a worldpointset object.

wpSet = worldpointset;

Add world points.

wpSet = addWorldPoints(wpSet,worldPoints);

Add correspondences for a view.

viewId = 1;
pointIndices   = 1:10;
featureIndices = 1:10;
wpSet  = addCorrespondences(wpSet,viewId,pointIndices,featureIndices);

Update the feature indices .

newFeatureIndices = 11:20;
wpSet  = updateCorrespondences(wpSet,viewId,pointIndices,newFeatureIndices);

Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

viewId — View identifier
scalar

2 Objects

2-144



View identifier, specified as a scalar.

pointIndices — World point indices
M-element column vector of integers

World point indices, specified as an M-element column vector of integers. M is the number of world
points for which to update correspondences in the world point set.

featureIndices — 2-D feature point indices
M-element column vector of integers

Feature point indices, specified as an M-element column vector of integers. M is the number of world
points for which to update correspondences in the world point set.

Output Arguments
wpSet — World point set
worldpointset object

World point set, returned as a worldpointset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
removeCorrespondences | addCorrespondences

Objects
imageviewset | worldpointset

Introduced in R2020b

 updateCorrespondences

2-145



updateWorldPoints
Update world points in world point set

Syntax
wpSet = updateWorldPoints(wpSet,pointIndices,worldPoints)

Description
wpSet = updateWorldPoints(wpSet,pointIndices,worldPoints) updates the locations of
the world points at the specified indices pointIndices of the world point set wpSet.

Examples

Update World Point Set

Generate 3-D world points.

worldPoints = rand(100,3);

Create a worldpointset object.

wpSet = worldpointset;

Add the world points to the world point set.

wpSet = addWorldPoints(wpSet,worldPoints);

Update the first 50 world points with new locations.

pointIndices = 1:50;
newWorldPoints = worldPoints(pointIndices,:) + [0 0 5];
wpSet = updateWorldPoints(wpSet,pointIndices,newWorldPoints);

Input Arguments
wpSet — World point set
worldpointset object

World point set, specified as a worldpointset object.

pointIndices — World point indices
M-element column vector of integers

World point indices, specified as an M-element column vector of integers. M is the number of world
points to update in the worldpointset object.

worldPoints — World points coordinates
M-by-3 matrix

2 Objects

2-146



World points coordinates, specified as an M-by-3 matrix in the form [x y z].

Output Arguments
wpSet — World point set
worldpointset object

World point set, returned as a worldpointset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
worldpointset

Functions
addWorldPoints | removeWorldPoints

Introduced in R2020b

 updateWorldPoints

2-147



pcviewset
Manage data for point cloud based visual odometry and SLAM

Description
The pcviewset object stores point cloud odometry and simultaneous localization and mapping
(SLAM) data as a set of views and pairwise connections between views.

Creation

Syntax
vSet = pcviewset

Description

vSet = pcviewset creates a pcviewset object with default property names. Use object functions to
perform actions such as adding, modifying, or removing views or connections.

Properties
Views — View attributes
empty three-column table (default) | three-column table

This property is read-only.

View attributes, specified as a three-column table. The table contains columns as described in this
table.

Column Description
ViewID View identifier, specified as an integer. View

identifiers are unique to a specific view.
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.
PointCloud Point cloud, specified as a pointCloud object.

Connections — Pairwise connections between views
empty four-column table (default) | four-column table

This property is read-only.

Pairwise connections between views, specified as a four-column table. The table contains columns as
described in this table. Each row corresponds to one connection.

2 Objects

2-148



Column Description
ViewID1 View identifier for the first view, specified as a

unique integer.
ViewID2 View identifier for the second view, specified as a

unique integer.
RelativePose Relative pose of the second view with respect to

the first view, specified as a rigid3d object.
InformationMatrix Information matrix, specified as a 6-by-6 matrix.

The information matrix represents the
uncertainty of the measurement error and is the
inverse of the covariance matrix.

NumViews — Number of views
0 (default) | nonnegative integer

This property is read-only.

Number of views, specified as a nonnegative integer.

NumConnections — Number of connections
0 (default) | nonnegative integer

This property is read-only.

Number of connections, specified as a nonnegative integer.

Object Functions
addView Add views to view set
updateView Update view in view set
deleteView Delete view from view set
hasView Check if view is in view set
addConnection Add connection between views in view set
updateConnection Update connection between views in a view set
deleteConnection Delete a connection between views in view set
hasConnection Check if connection between two views is in view set
findView Find views associated with view identifiers
findConnection Find connections associated with view identifiers
connectedViews Connected views in view set
poses Absolute poses associated with views in view set
createPoseGraph Create pose graph
optimizePoses Optimize absolute poses using relative pose constraints
plot Plot view set views and connections

Examples

Perform Lidar Odometry Using Point Cloud Registration

Create a view set to hold odometry.

 vSet = pcviewset;

 pcviewset

2-149



Create a Velodyne reader to read point clouds.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');
ptCloud = readFrame(veloReader);

Preprocess one frame to remove the ground plane and to downsample point cloud.

elevationDelta = 25;
gridStep = 0.2;
groundPtsIdx = segmentGroundFromLidarData(ptCloud, ...
    'ElevationAngleDelta',elevationDelta);
ptCloud = select(ptCloud,~groundPtsIdx,'Output','full');
ptCloud = pcdownsample(ptCloud,'gridAverage',gridStep);

Initialize attributes for the first view.

absPose = rigid3d;
relPose = rigid3d;

Add the first view to the point cloud view set.

vSet = addView(vSet,1,absPose,'PointCloud',ptCloud);

Initialize a point cloud map using the first view.

ptCloudMap = copy(ptCloud);

skipFrames = 5;
prevViewId = 1;
prevPtCloud = ptCloud;

Loop over frames to update odometry and the point cloud map.

for viewId = 6:skipFrames:40
    % Read point cloud.
    ptCloud = readFrame(veloReader,viewId);

    %Preprocess the frame.
    groundPtsIdx = segmentGroundFromLidarData(ptCloud, ...
        'ElevationAngleDelta',elevationDelta);
    ptCloud = select(ptCloud,~groundPtsIdx,'Output','full');
    ptCloud = pcdownsample(ptCloud,'gridAverage',gridStep);

    % Register new point cloud against the previous one.
    regGridStep = 5;
    relPose = pcregisterndt(ptCloud,prevPtCloud,regGridStep, ...
        'InitialTransform',relPose);

    % Update the absolute transform.
    absPose = rigid3d(relPose.T*absPose.T);

    % Add new view and connection to the previous view.
    vSet = addView(vSet,viewId,absPose,'PointCloud',ptCloud);
    vSet = addConnection(vSet,prevViewId,viewId,relPose);

    prevPtCloud = ptCloud;
    prevViewId = viewId;
end

2 Objects

2-150



Display the view set in a default 2-D view.

plot(vSet,'ShowViewIds','on')
view(2)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
table | digraph

Topics
“Build a Map from Lidar Data Using SLAM”

Introduced in R2020a

 pcviewset

2-151



addView
Add views to view set

Syntax
vSet = addView(vSet,viewId)
vSet = addView(vSet,viewId,absPose)
vSet = addView( ___ ,'PointCloud',ptCloud)

vSet = addView(vSet,viewTable)

Description
vSet = addView(vSet,viewId) adds the view specified by viewId to the view set, vSet.

vSet = addView(vSet,viewId,absPose) specifies the absolute pose of the view.

vSet = addView( ___ ,'PointCloud',ptCloud) specifies the point cloud associated with the
view in addition to any of the input argument combinations in previous syntaxes.

vSet = addView(vSet,viewTable) adds one or more views in the table specified by viewTable.

Examples

Update View in Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Add a view to the point cloud view set.

viewId  = 1;
ptCloud = pcread('teapot.ply');

vSet = addView(vSet,viewId,'PointCloud',ptCloud);

Update the absolute pose of the view.

absPose = rigid3d(eye(3),[2 0 0]);
vSet = updateView(vSet,viewId,absPose);

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

2 Objects

2-152



viewId — View identifier
positive integer

View identifier, specified as an integer. View identifiers are unique to a specific view.

absPose — Absolute pose of the view
rigid3d object

Absolute pose of the view, specified as a rigid3d object.

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

viewTable — One or more views
two-column table | three-column table

One or more views, specified as a two-column or three-column table. The table must contain the
columns ViewId and AbsolutePose. Points column is optional.

Column Description
ViewID View identifier, specified as an integer. View

identifiers are unique to a specific view.
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.
Points Point cloud for the view, specified as a

pointCloud object.

Output Arguments
vSet — View set with added views
pcviewset object

View set with added views, returned as a pcviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When you specify table as an input argument, then code generation has limitations. For information
about the limitations, see “Code Generation for Tables” (MATLAB Coder) and “Table Limitations for
Code Generation” (MATLAB Coder).

See Also
Objects
rigid3d | pcviewset

 addView

2-153



Introduced in R2020a

2 Objects

2-154



updateView
Update view in view set

Syntax
vSet = updateView(vSet,viewId,absPose)
vSet = updateView( ___ ,'PointCloud',ptCloud)

vSet = updateView(vSet,viewTable)

Description
vSet = updateView(vSet,viewId,absPose) updates the view specified by viewId with the
absolute pose absPose.

vSet = updateView( ___ ,'PointCloud',ptCloud) specifies the point cloud associated with
the view.

vSet = updateView(vSet,viewTable) updates the views specified in the table viewTable.

Examples

Update View in Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Add a view to the point cloud view set.

viewId  = 1;
ptCloud = pcread('teapot.ply');

vSet = addView(vSet,viewId,'PointCloud',ptCloud);

Update the absolute pose of the view.

absPose = rigid3d(eye(3),[2 0 0]);
vSet = updateView(vSet,viewId,absPose);

Input Arguments
vSet — Point cloud view set
pcviewset object

View set, specified as an pcviewset object.

viewId — View identifier
integer

 updateView

2-155



Point cloud view identifier, specified as a unique integer.

absPose — Absolute pose
rigid3d object

Absolute pose, specified as a rigid3d object.

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

viewTable — New view or set of views
two-column table | three-column table

New view or set of views, specified as a two- or three- column table. The table must contain the
columns ViewId and AbsolutePose, and an optional column, Points.

Column Description
ViewID View identifier for the view, specified as a unique

integer
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.
Points A pointCloud.

Output Arguments
vSet — View set with updated view
pcviewset object

View set with updated view, returned as a pcviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When you specify table as an input argument, then code generation has limitations. For information
about the limitations, see “Code Generation for Tables” (MATLAB Coder) and “Table Limitations for
Code Generation” (MATLAB Coder).

See Also
Objects
rigid3d | pcviewset

Introduced in R2020a

2 Objects

2-156



deleteView
Delete view from view set

Syntax
vSet = deleteView(vSet,viewId)

Description
vSet = deleteView(vSet,viewId) deletes the view specified by viewId from the view set,
vSet.

Examples

Delete View from Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Add two views to the point cloud view set.

viewId1 = 1;
viewId2 = 2;
ptCloud1 = pcread('teapot.ply');
ptCloud2 = pctransform(ptCloud1,rigid3d(eye(3),[2 0 0]));

vSet = addView(vSet,viewId1,'PointCloud',ptCloud1);
vSet = addView(vSet,viewId2,'PointCloud',ptCloud2);

Delete the first view.

vSet = deleteView(vSet,viewId1);

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

viewId — View identifier
positive integer

View identifier, specified as an integer. View identifiers are unique to a specific view.

 deleteView

2-157



Output Arguments
vSet — View set with deleted views
pcviewset object

View set with deleted views, returned as a pcviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcviewset

Introduced in R2020a

2 Objects

2-158



hasView
Check if view is in view set

Syntax
tf = hasView(vSet,viewId)

Description
tf = hasView(vSet,viewId) returns 1 (true), if the view specified by viewId is in the view set,
vSet. The function returns 0 (false), if the view is not in vSet.

Examples

Check If View Is in Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Add a view with ID 1 to the point cloud view set.

ptCloud = pcread('teapot.ply');
vSet = addView(vSet,1,'PointCloud',ptCloud);

Check if a view with ID 1 is in the view set.

hasView(vSet,1)

ans = logical
   1

Check if a view with ID 2 is in the view set.

hasView(vSet,2)

ans = logical
   0

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

viewId — View identifier
positive integer

 hasView

2-159



View identifier, specified as an integer. View identifiers are unique to a specific view.

Output Arguments
tf — True or false result
1 | 0

True or false result indicating if view is in view set vSet, returned as a 1 or 0 data type logical.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcviewset

Introduced in R2020a

2 Objects

2-160



addConnection
Add connection between views in view set

Syntax
vSet = addConnection(vSet,viewId1,viewId2)
vSet = addConnection(vSet,viewId1,viewId2,relPose)
vSet = addConnection(vSet,viewId1,viewId2,relPose,infoMat)

Description
vSet = addConnection(vSet,viewId1,viewId2) adds a connection between views viewId1
and viewId2 to the view set, vSet.

vSet = addConnection(vSet,viewId1,viewId2,relPose) specifies the relative pose of
viewId2 with respect to viewId1.

vSet = addConnection(vSet,viewId1,viewId2,relPose,infoMat) specifies the information
matrix associated with the connection.

Examples

Add Connection to Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Load point cloud data.

data = load('livingRoom.mat');
ptCloud1 = data.livingRoomData{1};
ptCloud2 = data.livingRoomData{2};

Add ptCloud1 to the point cloud view set. Specify a rigid3d object as the origin.

absPose1 = rigid3d;
vSet = addView(vSet,1,absPose1,'PointCloud',ptCloud1);

Add ptCloud2 to the point cloud view set. Specify a rigid3d object as the origin.

vSet = addView(vSet,2,absPose1,'PointCloud',ptCloud2);

Estimate the rigid transformation between the two point clouds.

ptCloud2Downsampled = pcdownsample(ptCloud2,'gridAverage',0.1);
gridStep = 0.5;
relPose = pcregisterndt(ptCloud2Downsampled,ptCloud1,gridStep);

Add a connection between the views.

vSet = addConnection(vSet,1,2,relPose);

 addConnection

2-161



Compute the accumulated absolute pose.

absPose2 = rigid3d( absPose1.T*relPose.T );

Update the absolute pose of second view.

vSet = updateView(vSet,2,absPose2);

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

viewId1 — View identifier 1
positive integer

View identifier 1, specified as an integer. View identifiers are unique to a specific view.

viewId2 — View identifier 2
positive integer

View identifier 2, specified as an integer. View identifiers are unique to a specific view.

relPose — Relative pose
rigid3d object

Relative pose of viewId2 with respect to viewId1, specified as a rigid3d object.

infoMat — Information matrix
6-by-6 numeric matrix

Information matrix associated with the connection, specified as a 6-by-6 numeric matrix.

Output Arguments
vSet — View set with added connections
pcviewset object

View set with added connections between views, returned as a pcviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
rigid3d | pcviewset

2 Objects

2-162



Introduced in R2020a

 addConnection

2-163



updateConnection
Update connection between views in a view set

Syntax
vSet = updateConnection(vSet,viewId1,viewId2,relPose)
vSet = updateConnection(vSet,viewId1,viewId2,relPose,infoMat)

Description
vSet = updateConnection(vSet,viewId1,viewId2,relPose) updates the connection
between views viewId1 and viewId2 with the relative pose specified by relPose.

vSet = updateConnection(vSet,viewId1,viewId2,relPose,infoMat) specifies the
information matrix associated with the connection.

Examples

Update Connection in Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Load point cloud data.

data = load('livingRoom.mat');
ptCloud1 = data.livingRoomData{1};
ptCloud2 = data.livingRoomData{2};

Add two views to the point cloud view set.

vSet = addView(vSet,1,'PointCloud',ptCloud1);
vSet = addView(vSet,2,'PointCloud',ptCloud2);

Add a connection between the two views.

vSet = addConnection(vSet,1,2);

Estimate the rigid transformation between the two point clouds.

ptCloud2Downsampled = pcdownsample(ptCloud2,'gridAverage',0.1);

gridStep = 0.5;
relPose = pcregisterndt(ptCloud2Downsampled,ptCloud1,gridStep);

Compute the accumulated absolute pose for each view.

absPose1 = rigid3d;
absPose2 = rigid3d(absPose1.T*relPose.T );

Update the connection with relative pose between views.

2 Objects

2-164



vSet = updateConnection(vSet,1,2,relPose);

Update the views with the absolute poses.

vSet = updateView(vSet,1,absPose1);
vSet = updateView(vSet,2,absPose2);

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

viewId1 — View identifier 1
positive integer

View identifier 1, specified as an integer. View identifiers are unique to a specific view.

viewId2 — View identifier 2
positive integer

View identifier 2, specified as an integer. View identifiers are unique to a specific view.

relPose — Relative pose
rigid3d object

Relative pose of viewId2 with respect to viewId1, specified as a rigid3d object.

infoMat — Information matrix
6-by-6 numeric matrix

Information matrix associated with the connection, specified as a 6-by-6 numeric matrix.

Output Arguments
vSet — View set with updated connections
pcviewset object

View set with updated connections between views, returned as a pcviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
rigid3d | pcviewset

 updateConnection

2-165



Introduced in R2020a

2 Objects

2-166



deleteConnection
Delete a connection between views in view set

Syntax
vSet = deleteConnection(vSet,viewId1,viewId2)

Description
vSet = deleteConnection(vSet,viewId1,viewId2) deletes the connection between views
viewId1 and viewId2 in the view set, vSet.

Examples

Delete Connection Between Views in Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Add two views and one connection to the view set.

vSet = addView(vSet,1);
vSet = addView(vSet,2);
vSet = addConnection(vSet,1,2);

Delete the connection between the two views.

vSet = deleteConnection(vSet,1,2);

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

viewId1 — View identifier 1
positive integer

View identifier 1, specified as an integer. View identifiers are unique to a specific view.

viewId2 — View identifier 2
positive integer

View identifier 2, specified as an integer. View identifiers are unique to a specific view.

 deleteConnection

2-167



Output Arguments
vSet — View set with deleted connections
pcviewset object

View set with deleted connections between views, returned as a pcviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcviewset

Introduced in R2020a

2 Objects

2-168



hasConnection
Check if connection between two views is in view set

Syntax
tf = hasConnection(vSet,viewId1,viewId2)

Description
tf = hasConnection(vSet,viewId1,viewId2) returns 1 (true), if the connection between views
viewId1 and viewId2 is in the view set, vSet. The function returns 0 (false), if the connection does
not exist in vSet.

Examples

Check for Connection Between Views in Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Add two views to the point cloud view set.

vSet = addView(vSet,1);
vSet = addView(vSet,2);

Add a connection to the point cloud view set.

vSet = addConnection(vSet,1,2);

Check if the connection is between views is in the point cloud view set.

tf = hasConnection(vSet,1,2)

tf = logical
   1

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

viewId1 — View identifier 1
positive integer

View identifier 1, specified as an integer. View identifiers are unique to a specific view.

 hasConnection

2-169



viewId2 — View identifier 2
positive integer

View identifier 2, specified as an integer. View identifiers are unique to a specific view.

Output Arguments
tf — True or false result
1 | 0

True or false result indicating if the connection between views viewId1 and viewId2 exists in view
set vSet, returned as a 1 or 0 data type logical.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcviewset

Introduced in R2020a

2 Objects

2-170



connectedViews
Connected views in view set

Syntax
viewTable = connectedViews(vSet,viewId)

Description
viewTable = connectedViews(vSet,viewId) returns a table of views from vSet that are
connected to the view specified by viewId.

Examples

Get Connected Views in View Set

Create an empty point cloud view set object.

vSet = pcviewset;

Add views to the point cloud view set.

vSet = addView(vSet,1);
vSet = addView(vSet,2);
vSet = addView(vSet,3);
vSet = addView(vSet,4);

Connect views in the point cloud view set.

vSet = addConnection(vSet,1,2);
vSet = addConnection(vSet,2,3);
vSet = addConnection(vSet,2,4);

Get the connected views for the view with ID 2.

viewTable = connectedViews(vSet,2)

viewTable=3×3 table
    ViewId    AbsolutePose      PointCloud  
    ______    ____________    ______________

      1       1x1 rigid3d     1x1 pointCloud
      3       1x1 rigid3d     1x1 pointCloud
      4       1x1 rigid3d     1x1 pointCloud

Input Arguments
vSet — Point cloud view set
pcviewset object

 connectedViews

2-171



Point cloud view set, specified as a pcviewset object.

viewId — View identifier
positive integer

View identifier, specified as an integer. View identifiers are unique to a specific view.

Output Arguments
viewTable — One or more views
two-column table | three-column table

One or more views, returned as a three-column table. The table must contain the columns as
described in this table.

Column Description
ViewID View identifier, specified as an integer. View

identifiers are unique to a specific view.
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.
Points Point cloud for the view, specified as a

pointCloud object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcviewset | rigid3d

Introduced in R2020a

2 Objects

2-172



poses
Absolute poses associated with views in view set

Syntax
sensorPoses = poses(vSet)

Description
sensorPoses = poses(vSet) returns a table of absolute poses associated with the views
contained in the view set, vSet.

Examples

Get Absolute Poses from Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Load point cloud data.

data = load('livingRoom.mat');
ptCloud1 = data.livingRoomData{1};
ptCloud2 = data.livingRoomData{2};

Add ptCloud1 to the view set.

absPose1 = rigid3d;
vSet = addView(vSet,1,absPose1,'PointCloud',ptCloud1);

Add ptCloud2 to the view set.

vSet = addView(vSet,2,'PointCloud',ptCloud2);

Estimate the rigid transformation between the two point clouds.

ptCloud2Downsampled = pcdownsample(ptCloud2,'gridAverage',0.1);

gridStep = 0.5;
relPose = pcregisterndt(ptCloud2Downsampled,ptCloud1,gridStep);

Add a connection between the two views.

vSet = addConnection(vSet,1,2,relPose);

Compute the accumulated absolute pose.

absPose2 = rigid3d(absPose1.T*relPose.T );

Update the absolute pose of second view.

 poses

2-173



vSet = updateView(vSet,2,absPose2);

Get absolute poses.

sensorPoses = poses(vSet)

sensorPoses=2×2 table
    ViewId    AbsolutePose
    ______    ____________

      1       1x1 rigid3d 
      2       1x1 rigid3d 

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

Output Arguments
sensorPoses — Absolute poses
two-column table

Absolute poses, returned as a two-column table. The table contains columns as described in this
table.

Column Description
ViewID View identifier, returned as a positive integer.

View identifiers are unique to a specific view.
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When generating code, the output argument sensorPoses is returned as a structure with fields
ViewID and AbsolutePose.

See Also
Objects
pcviewset | rigid3d

Introduced in R2020a

2 Objects

2-174



optimizePoses
Optimize absolute poses using relative pose constraints

Syntax
vSetOptim = optimizePoses(vSet)
vSetOptim = optimizePoses(vSet,Name,Value)

Description
vSetOptim = optimizePoses(vSet) returns a point cloud view set whose absolute poses are
optimized. vSetOptim and vSet are pcviewset objects.

The optimizePoses function performs pose graph optimization on the absolute poses for the Views
in the view set using the relative pose constraints established by the Connections property. You can
use optimizePoses to correct drift in odometry after detecting loop closures.

vSetOptim = optimizePoses(vSet,Name,Value) specifies options using one or more name-
value pair arguments. For example, 'Tolerance',0.2 sets the tolerance of the optimization cost
function to 0.2.

Examples

Create and Optimize Poses Using Point Cloud View Set

Create a view set.

vSet = pcviewset;

Add four nodes and specify absolute poses.

absPoses = repelem(rigid3d, 4, 1);   

absPoses(1).Translation = [ 0   0 0];
absPoses(2).Translation = [ 1   0 0];
absPoses(3).Translation = [ 2   0 0];
absPoses(4).Translation = [ 0.1 0 0];

vSet = addView(vSet, 1, absPoses(1));
vSet = addView(vSet, 2, absPoses(2));
vSet = addView(vSet, 3, absPoses(3));
vSet = addView(vSet, 4, absPoses(4));

Define 4 edges, 3 odometry and 1 loop closure.

relPoses = repelem(rigid3d, 4, 1);

relPoses(1).Translation = [ 1   0 0];
relPoses(2).Translation = [ 1   0 0];
relPoses(3).Translation = [-1.9 0 0];
relPoses(4).Translation = [ 0.2 0 0];

 optimizePoses

2-175



vSet = addConnection(vSet, 1, 2, relPoses(1)); % odometry
vSet = addConnection(vSet, 2, 3, relPoses(2)); % odometry
vSet = addConnection(vSet, 3, 4, relPoses(3)); % odometry
vSet = addConnection(vSet, 4, 1, relPoses(4)); % loop closure

Optimize view set.

vSetOptim = optimizePoses(vSet);

DIsplay original and optimized locations.

disp('Original absolute translations:')

Original absolute translations:

disp(vertcat(vSet.Views.AbsolutePose.Translation))

         0         0         0
    1.0000         0         0
    2.0000         0         0
    0.1000         0         0

disp('Optimized absolute translations:')

Optimized absolute translations:

disp(vertcat(vSetOptim.Views.AbsolutePose.Translation))

         0         0         0
    0.9250         0         0
    1.8500         0         0
   -0.1250         0         0

Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxIterations',300 sets the maximum number of iterations to 300.

MaxIterations — Maximum number of iterations
300 (default) | positive integer

Maximum number of iterations before the function terminates optimization, specified as the comma-
separated pair consisting of 'MaxIterations' and a positive integer. Increase this value for greater
accuracy in the results. Decrease this value for faster results.

2 Objects

2-176



Tolerance — Tolerance of optimization cost function
1e-8 (default) | positive scalar

Tolerance of the optimization cost function between two consecutive iterations, specified as the
comma-separated pair consisting of 'Tolerance' and a positive scalar. If the cost function changes by
less than the 'Tolerance' value between two consecutive iterations, the function terminates
optimization.

Verbose — Display progress information
false or 0 (default) | true or 1

Display progress information, specified as the comma-separated pair consisting of Verbose and a
numeric or logical 0 (false) or 1 (true). To display the progress information, set 'Verbose' to true.

Output Arguments
vSetOptim — Optimized absolute poses
pcviewset object

Point cloud view set that contains optimized absolute poses, specified as a pcviewset object.

Tips
• To update a view set with optimized poses, use the updateView object function.
• The optimizePoses object function holds the first view fixed.

Algorithms
The optimizePoses function uses the Levenberg-Marquardt optimization algorithm with sparse
Cholesky decomposition from the general (hyper) graph optimization (G2o) library, [1 on page 2-177].

References
[1] Kümmerle, Rainer, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard. “G2o: A

General Framework for Graph Optimization.” In 2011 IEEE International Conference on
Robotics and Automation, 3607–13, 2011. https://doi.org/10.1109/ICRA.2011.5979949.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Supports code generation only in host target platforms.

See Also
Functions
createPoseGraph

Objects
imageviewset | pcviewset

 optimizePoses

2-177



Introduced in R2020a

2 Objects

2-178



createPoseGraph
Create pose graph

Syntax
G = createPoseGraph(vSet)

Description
G = createPoseGraph(vSet) returns a pose graph derived from the views and connections in the
view set, vSet.

Examples

Create Pose Graph from Point Cloud View Set

Create an empty point cloud view set.

vSet = pcviewset;

Define three relative poses.

relPoses = repelem(rigid3d,3,1);
relPoses(1).Translation = [3 0 0];
relPoses(2).Translation = [5 0 0];
relPoses(3).Translation = [2 0 0]

relPoses = 
  3x1 rigid3d array with properties:

    Dimensionality
    T
    Rotation
    Translation

Accumulate absolute poses.

absPoses = repelem(rigid3d,4,1);
absPoses(2).T = relPoses(1).T*absPoses(1).T;
absPoses(3).T = relPoses(2).T*absPoses(2).T;
absPoses(4).T = relPoses(3).T*absPoses(3).T;

Add four views to the point cloud view set.

vSet = addView(vSet,1,absPoses(1));
vSet = addView(vSet,2,absPoses(2));
vSet = addView(vSet,3,absPoses(3));
vSet = addView(vSet,4,absPoses(4));

Add three connections to the point cloud view set.

 createPoseGraph

2-179



vSet = addConnection(vSet,1,2,relPoses(1));
vSet = addConnection(vSet,2,3,relPoses(2));
vSet = addConnection(vSet,3,4,relPoses(3));

Add a loop closure connection to the point cloud view set.

relPoses(4).Translation = [9 0 0];
vSet = addConnection(vSet,4,1,relPoses(4));

Create a pose graph.

G = createPoseGraph(vSet);

Input Arguments
vSet — View set
pcviewset object

View set, specified as a pcviewset object.

Output Arguments
G — Pose graph
digraph object

Pose graph, returned as a digraph object. The nodes in the object correspond to views, and the
edges in the object correspond to connections.

The EndNodes of the Edges in the G digraph correspond to indices into the Views table, (not
ViewIds).

Tips
• The EndNodes of the Edges in the G digraph correspond to indices into the Views table, (not

ViewIds).
• Use “Directed and Undirected Graphs” to inspect, modify, or visualize the pose graph.
• Use the optimizePoseGraph function to optimize the pose graph. Use of this function requires

the Navigation Toolbox™.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
digraph | optimizePoses | optimizePoseGraph

Objects
pcviewset

2 Objects

2-180



Introduced in R2020a

 createPoseGraph

2-181



findView
Find views associated with view identifiers

Syntax
views = findView(vSet,viewIds)

Description
views = findView(vSet,viewIds) returns a table containing view attributes that correspond to
the view identifiers in viewIds.

Examples

Find View Corresponding to View ID

Create an empty point cloud view set.

vSet = pcviewset;

Add two views to the view set.

viewId1 = 10;
viewId2 = 5;
ptCloud1 = pcread("teapot.ply");
ptCloud2 = pctransform(ptCloud1,rigid3d(eye(3),[2 0 0]));
vSet = addView(vSet,viewId1,PointCloud=ptCloud1);
vSet = addView(vSet,viewId2,PointCloud=ptCloud2);

Find the view associated with the view identifier 5, and then display the view table.

view = findView(vSet,5);    
disp(view)

    ViewId    AbsolutePose      PointCloud  
    ______    ____________    ______________

      5       1x1 rigid3d     1x1 pointCloud

Get the point cloud that corresponds to view identifier 5.

ptCloud = view.PointCloud;

Get the absolute pose associated with view identifier 5.

absPose = view.AbsolutePose;

2 Objects

2-182



Input Arguments
vSet — Point cloud view set
pcviewset object

Point cloud view set, specified as a pcviewset object.

viewIds — View identifier
M-element vector

View identifiers, specified as an M-element vector of integers. View identifiers are unique to a specific
view.

Output Arguments
views — Table containing view attributes
three-column table

Table containing view attributes, specified as a three-column table. The table contains the columns
ViewId, AbsolutePose, and pointCloud attribute descriptions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcviewset

Introduced in R2021b

 findView

2-183



findConnection
Find connections associated with view identifiers

Syntax
conn = findConnection(vSet,viewIds1,viewIds2)

Description
conn = findConnection(vSet,viewIds1,viewIds2) returns a table containing connection
attributes for connections between viewIds1 and viewIds2. viewIds1 and viewIds2 are M-
element vectors of view identifiers.

Examples

Find Connection and Relative Pose Between Two Views

Create an empty point cloud view set.

vSet = pcviewset;

Add two views to the view set.

viewId1 = 10;
viewId2 = 5;
vSet = addView(vSet,viewId1);
vSet = addView(vSet,viewId2);

Add a connection between viewId1 and viewId2.

vSet = addConnection(vSet,viewId1,viewId2);

Find and display the connection between viewId1 and viewId2.

conn = findConnection(vSet,viewId1,viewId2);
disp(conn)

    ViewId1    ViewId2    RelativePose    InformationMatrix
    _______    _______    ____________    _________________

      10          5       1x1 rigid3d       {6x6 double}   

Get the relative pose between viewId1 and viewId2.

relPose = conn.RelativePose;

Input Arguments
vSet — Point cloud view set
pcviewset object

2 Objects

2-184



Point cloud view set, specified as a pcviewset object.

viewIds1 — View identifiers
M-element vector

View identifiers, specified as an M-element vector of integers. View identifiers are unique to a specific
view.

viewIds2 — View identifiers
M-element vector

View identifiers, specified as an M-element vector of integers. View identifiers are unique to a specific
view.

Output Arguments
conn — Table containing connection attributes
four-column table

Table containing view attributes, specified as a four-column table. The table contains the columns
ViewId1, ViewId2, RelativePose, and InformationMatrix attribute descriptions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcviewset

Introduced in R2021b

 findConnection

2-185



imageviewset
Manage data for structure-from-motion, visual odometry, and visual SLAM

Description
The imageviewset object manages view attributes and pairwise connections between views of data
used in structure-from-motion, visual odometry, and simultaneous localization and mapping (SLAM)
data. View attributes can be feature descriptors, feature points, or absolute camera poses. Pairwise
connections between views can be point matches, relative camera poses, or an information matrix.
You can also use this object to find point tracks used by triangulateMultiview and
bundleAdjustment functions.

Creation

Syntax
vSet = imageviewset()

Description

vSet = imageviewset() returns an imageviewset object. You can add views and connections using
the addView and addConnection object functions.

Properties
Views — View attributes
empty three-column table (default) | three-column table

This property is read-only.

View attributes, specified as a three-column table. The table contains columns as described in this
table.

Column Description
ViewId View identifier for the view, specified as a unique

integer
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.
Features Feature vectors, specified as an M-by-N matrix of

M feature vectors or as a binaryFeatures.

2 Objects

2-186



Column Description
Points Image points, specified as one of these options:

• M-by-2 matrix of coordinates in the format
[x,y]

• M-element feature point array.

For more details, see “Point Feature Types”.

Connections — Pairwise connections between views
empty four-column table (default) | four-column table

This property is read-only.

Pairwise connections between views, specified as a four-column table. The table contains columns as
described in this table. Each row corresponds to one connection.

Column Description
ViewId1 View identifier for the first view, specified as a

unique integer.
ViewId2 View identifier for the second view, specified as a

unique integer.
RelativePose Relative pose of the second view with respect to

the first view, specified as a rigid3d or an
affine3d object. When you specify an
affine3d object, the relative pose must
represent a 3-D similarity transformation.

InformationMatrix Information matrix, specified as a 6-by-6 matrix
when you specify the RelativePoseas a
rigid3d object. When you specify
RelativePose as an affine3d object,
InformationMatrix must be a 7-by-7 matrix .
The information matrix represents the
uncertainty of the measurement error and is the
inverse of the covariance matrix.

Matches Indices of matched feature points between two
views, specified as M-by-2 matrix.

NumViews — Number of views
0 (default) | nonnegative integer

This property is read-only.

Number of views, specified as a nonnegative integer.

NumConnections — Number of connections
0 (default) | nonnegative integer

This property is read-only.

Number of connections, specified as a nonnegative integer.

 imageviewset

2-187



Object Functions
addView Add views to view set
updateView Update view in view set
deleteView Delete view from view set
hasView Check if view is in view set
addConnection Add connection between views in view set
updateConnection Update connection between views in a view set
deleteConnection Delete a connection between views in view set
hasConnection Check if connection between two views is in view set
findView Find views associated with view identifiers
findConnection Find connections associated with view identifiers
connectedViews Return connected views
poses Absolute poses associated with views in view set
createPoseGraph Create pose graph
findTracks Find matched points across multiple views
optimizePoses Optimize absolute poses using relative pose constraints
plot Plot view set views and connections

Examples

Find Point Tracks Across Sequence of Images

Load images in the workspace.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageDatastore(imageDir);

Compute features for the first image.

I = im2gray(readimage(images,1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Create an image view set and add one view to the set.

vSet = imageviewset;
vSet = addView(vSet,1,'Features',featuresPrev,'Points',pointsPrev);

Compute features and matches for the rest of the images.

for i = 2:numel(images.Files)
  I = im2gray(readimage(images, i));
  points = detectSURFFeatures(I);
  [features, points] = extractFeatures(I,points);
  vSet = addView(vSet,i,'Features',features,'Points',points);
  pairsIdx = matchFeatures(featuresPrev,features);
  vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
  featuresPrev = features;
end

Find point tracks across views in the image view set.

tracks = findTracks(vSet);

2 Objects

2-188



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The plot method of imageviewset object is not supported for code generation.

See Also
Functions
digraph | table | matchFeatures | optimizePoses | triangulateMultiview |
bundleAdjustment

Objects
rigid3d | worldpointset | pcviewset | affine3d

Topics
“Implement Visual SLAM in MATLAB”
“Monocular Visual Simultaneous Localization and Mapping”

Introduced in R2020a

 imageviewset

2-189



addView
Add views to view set

Syntax
vSet = addView(vSet,viewId)
vSet = addView(vSet,viewId,absPose)
vSet = addView( ___ ,Name,Value)

vSet = addView(vSet,viewTable)

Description
vSet = addView(vSet,viewId) adds the view specified by viewId to the view set, vSet.

vSet = addView(vSet,viewId,absPose) specifies the absolute pose of the view.

vSet = addView( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes.

vSet = addView(vSet,viewTable) adds one or more views in the table specified by viewTable.

Examples

Add View to Image View Set

Create an empty image view set.

vSet = imageviewset;

Detect interest points in the image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(im2gray(I));

Add the interest points as a view to the image view set.

vSet = addView(vSet,1,'Points',points);

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewId — View identifier
positive integer

2 Objects

2-190



View identifier, specified as an integer. View identifiers are unique to a specific view.

absPose — Absolute pose of the view
rigid3d object

Absolute pose of the view, specified as a rigid3d object.

viewTable — One or more views
two-column table | three-column table

One or more views, specified as a two-column or three-column table. The table must contain the
columns ViewId and AbsolutePose. Points column is optional.

Column Description
ViewID View identifier, specified as an integer. View

identifiers are unique to a specific view.
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.
Points Point cloud for the view, specified as a

pointCloud object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Points',detectSURFFeatures(rgb2gray(i))

Features — Feature vectors
M-by-N matrix | binaryFeatures object

Feature vectors, specified as the comma-separated pair consisting of 'Features' and an M-by-N
matrix of M feature vectors or as a binaryFeatures object.

Points — Image points
M-by-2 matrix | M-element feature point array

Image points, specified as the comma-separated pair consisting of 'Points' and an M-by-2 matrix of
coordinates in the format [x,y] or an M-element feature point array. For more details, see “Point
Feature Types”.

Output Arguments
vSet — View set with added views
imageviewset object

View set with added views, returned as an imageviewset object.

 addView

2-191



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When you specify table as an input argument, then code generation has limitations. For information
about the limitations, see “Code Generation for Tables” (MATLAB Coder) and “Table Limitations for
Code Generation” (MATLAB Coder).

See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectHarrisFeatures |
detectMSERFeatures | detectFASTFeatures | detectBRISKFeatures | matchFeatures |
bundleAdjustment | triangulateMultiview

Objects
rigid3d | imageviewset

Introduced in R2020a

2 Objects

2-192



updateView
Update view in view set

Syntax
vSet = updateView(vSet,viewId,absPose)
vSet = updateView( ___ ,'PointCloud',ptCloud)

vSet = updateView(vSet,viewTable)

Description
vSet = updateView(vSet,viewId,absPose) updates the view specified by viewId with the
absolute pose absPose.

vSet = updateView( ___ ,'PointCloud',ptCloud) specifies the point cloud associated with
the view.

vSet = updateView(vSet,viewTable) updates the views specified in the table viewTable.

Examples

Update View in Image View Set

Create an empty image view set.

vSet = imageviewset;

Detect interest points in an image.

imageDir= fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));

Add a view to the image view set.

vSet = addView(vSet,1,'Points',points);

Update the absolute pose of the view.

absPose = rigid3d(eye(3),[0 0 1]);
vSet = updateView(vSet,1,absPose);

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

 updateView

2-193



viewId — View identifier
integer

Point cloud view identifier, specified as a unique integer.

absPose — Absolute pose
rigid3d object

Absolute pose, specified as a rigid3d object.

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

viewTable — New view or set of views
two-column table | three-column table

New view or set of views, specified as a two- or three- column table. The table must contain the
columns ViewId and AbsolutePose, and an optional column, Points.

Column Description
ViewID View identifier for the view, specified as a unique

integer
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.
Points A pointCloud.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Points',detectSURFFeatures(rgb2gray(i))

Features — Feature vectors
M-by-N matrix | binaryFeatures object

Feature vectors, specified as the comma-separated pair consisting of 'Features' and an M-by-N
matrix of M feature vectors or as a binaryFeatures object.

Points — Image points
M-by-2 matrix | M-element feature point array

Image points, specified as the comma-separated pair consisting of 'Points' and an M-by-2 matrix of
coordinates in the format [x,y] or an M-element feature point array. For more details, see “Point
Feature Types”.

2 Objects

2-194



Output Arguments
vSet — View set with updated view
imageviewset object

View set with updated view, returned as an imageviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When you specify table as an input argument, then code generation has limitations. For information
about the limitations, see “Code Generation for Tables” (MATLAB Coder) and “Table Limitations for
Code Generation” (MATLAB Coder).

See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectHarrisFeatures |
detectMSERFeatures | detectFASTFeatures | detectBRISKFeatures | matchFeatures |
bundleAdjustment | triangulateMultiview

Objects
rigid3d | imageviewset

Introduced in R2020a

 updateView

2-195



deleteView
Delete view from view set

Syntax
vSet = deleteView(vSet,viewId)

Description
vSet = deleteView(vSet,viewId) deletes the view specified by viewId from the view set,
vSet.

Examples

Delete View from Image View Set

Create an empty image view set.

vSet = imageviewset;

Detect interest points in an image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(im2gray(I));

Add a view to the image view set.

vSet = addView(vSet,1,'Points',points);

Delete the view

vSet = deleteView(vSet,1);

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewId — View identifier
positive integer

View identifier, specified as an integer. View identifiers are unique to a specific view.

2 Objects

2-196



Output Arguments
vSet — View set with deleted views
imageviewset object

View set with deleted views, returned as an imageviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
imageviewset

Introduced in R2020a

 deleteView

2-197



hasView
Check if view is in view set

Syntax
tf = hasView(vSet,viewId)

Description
tf = hasView(vSet,viewId) returns 1 (true), if the view specified by viewId is in the view set,
vSet. The function returns 0 (false), if the view is not in vSet.

Examples

Check If View Is in Image View Set

Create an empty image view set.

vSet = imageviewset;

Detect interest points in an image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir, 'image1.jpg'));
points = detectSURFFeatures(im2gray(I));

Add a view with ID 1 to the image view set.

vSet = addView(vSet,1,'Points',points);

Check if a view with ID 1 is in the view set.

hasView(vSet,1)

ans = logical
   1

Check if a view with ID 2 is in the view set.

hasView(vSet,2)

ans = logical
   0

Input Arguments
vSet — Image view set
imageviewset object

2 Objects

2-198



Image view set, specified as an imageviewset object.

viewId — View identifier
positive integer

View identifier, specified as an integer. View identifiers are unique to a specific view.

Output Arguments
tf — True or false result
1 | 0

True or false result indicating if view is in view set vSet, returned as a 1 or 0 data type logical.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
imageviewset

Introduced in R2020a

 hasView

2-199



addConnection
Add connection between views in view set

Syntax
vSet = addConnection(vSet,viewId1,viewId2)
vSet = addConnection(vSet,viewId1,viewId2,relPose)
vSet = addConnection(vSet,viewId1,viewId2,relPose,infoMat)
vSet = addConnection( ___ ,'Matches',featureMatches)

Description
vSet = addConnection(vSet,viewId1,viewId2) adds a connection between views viewId1
and viewId2 to the view set, vSet.

vSet = addConnection(vSet,viewId1,viewId2,relPose) specifies the relative pose of
viewId2 with respect to viewId1.

vSet = addConnection(vSet,viewId1,viewId2,relPose,infoMat) specifies the information
matrix associated with the connection.

vSet = addConnection( ___ ,'Matches',featureMatches) specifies the indices of matched
points between two views in addition to any of the input argument combinations in previous syntaxes.

Examples

Add Connection to Image View Set

Create an empty image view set.

vSet = imageviewset;

Read two images into the workspace.

imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
  'structureFromMotion');
I1 = im2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = im2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in each image.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Extract feature descriptors from the interest points.

[features1,validPoints1] = extractFeatures(I1,points1);
[features2,validPoints2] = extractFeatures(I2,points2);

Add the features and points for the two images to the image view set.

2 Objects

2-200



vSet = addView(vSet,1,'Features',features1,'Points',validPoints1);
vSet = addView(vSet,2,'Features',features2,'Points',validPoints2);

Match the features between the two images.

indexPairs = matchFeatures(features1,features2);

Store the matched features as a connection in the image view set.

vSet = addConnection(vSet,1,2,'Matches',indexPairs);

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewId1 — View identifier 1
positive integer

View identifier 1, specified as an integer. View identifiers are unique to a specific view.

viewId2 — View identifier 2
positive integer

View identifier 2, specified as an integer. View identifiers are unique to a specific view.

relPose — Relative pose
rigid3d object | affine3d object

Relative pose of viewId2 with respect to viewId1, specified as a rigid3d or an affine3d object.

infoMat — Information matrix
6-by-6 numeric matrix

Information matrix associated with the connection, specified as a 6-by-6 numeric matrix.

featureMatches — Indices of matched points between two views
M-b-2 matrix

Indices of matched points between two views, specified as an M-b-2 matrix.

Output Arguments
vSet — View set with added connections
imageviewset object

View set with added connections between views, returned as an imageviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 addConnection

2-201



See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectHarrisFeatures |
detectMSERFeatures | detectFASTFeatures | detectBRISKFeatures | matchFeatures |
bundleAdjustment | triangulateMultiview

Objects
rigid3d | imageviewset

Introduced in R2020a

2 Objects

2-202



updateConnection
Update connection between views in a view set

Syntax
vSet = updateConnection(vSet,viewId1,viewId2,relPose)
vSet = updateConnection(vSet,viewId1,viewId2,relPose,infoMat)
vSet = addConnection( ___ ,'Matches',featureMatches)

Description
vSet = updateConnection(vSet,viewId1,viewId2,relPose) updates the connection
between views viewId1 and viewId2 with the relative pose specified by relPose.

vSet = updateConnection(vSet,viewId1,viewId2,relPose,infoMat) specifies the
information matrix associated with the connection.

vSet = addConnection( ___ ,'Matches',featureMatches) specifies the indices of matched
points between two views in addition to any of the input argument combinations in previous syntaxes.

Examples

Update Connection in Image View Set

Create an empty image view set.

vSet = imageviewset;

Read two images into the workspace.

imageDir= fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = im2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = im2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in each image.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Extract feature descriptors from the interest points.

[features1,validPoints1] = extractFeatures(I1,points1);
[features2,validPoints2] = extractFeatures(I2,points2);

Add features and the points for the two images to the image view set.

vSet = addView(vSet,1,'Features',features1,'Points',validPoints1);
vSet = addView(vSet,2,'Features',features2,'Points',validPoints2);

Match the features between the two images. Then, store the matched features as a connection in the
image view set.

 updateConnection

2-203



indexPairs = matchFeatures(features1,features2);
vSet = addConnection(vSet,1,2,'Matches',indexPairs);

Create a relative pose between the views. Then,update the connection in the image view set.

theta = 30; % degrees
rot = [ cosd(theta) sind(theta) 0; ...
        -sind(theta) cosd(theta) 0; ...
        0           0  1];

trans = [2 3 4];
tform = rigid3d(rot,trans);
vSet = updateConnection(vSet,1,2,tform);

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewId1 — View identifier 1
positive integer

View identifier 1, specified as an integer. View identifiers are unique to a specific view.

viewId2 — View identifier 2
positive integer

View identifier 2, specified as an integer. View identifiers are unique to a specific view.

relPose — Relative pose
rigid3d object | affine3d object

Relative pose of viewId2 with respect to viewId1, specified as a rigid3d or an affine3d object.

infoMat — Information matrix
6-by-6 numeric matrix

Information matrix associated with the connection, specified as a 6-by-6 numeric matrix.

featureMatches — Indices of matched points between two views
M-b-2 matrix

Indices of matched points between two views, specified as an M-b-2 matrix.

Output Arguments
vSet — View set with updated connections
imageviewset object

View set with updated connections, returned as an imageviewset object.

2 Objects

2-204



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectHarrisFeatures |
detectMSERFeatures | detectFASTFeatures | detectBRISKFeatures | matchFeatures |
bundleAdjustment | triangulateMultiview

Objects
rigid3d | imageviewset

Introduced in R2020a

 updateConnection

2-205



deleteConnection
Delete a connection between views in view set

Syntax
vSet = deleteConnection(vSet,viewId1,viewId2)

Description
vSet = deleteConnection(vSet,viewId1,viewId2) deletes the connection between views
viewId1 and viewId2 in the view set, vSet.

Examples

Delete Connection Between Views in Image View Set

Create an empty image view set.

vSet = imageviewset;

Read two images into the workspace.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = im2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = im2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in each image.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Extract feature descriptors from the interest points.

[features1,validPoints1] = extractFeatures(I1,points1);
[features2,validPoints2] = extractFeatures(I2,points2);

Add the features and points for the two images to the image view set.

vSet = addView(vSet,1,'Features',features1,'Points',validPoints1);
vSet = addView(vSet,2,'Features',features2,'Points',validPoints2);

Match the features between the two images. Then, store the matches features as a connection in the
image view set.

indexPairs = matchFeatures(features1,features2);
vSet = addConnection(vSet,1,2,'Matches',indexPairs);

Delete the connection between the two views.

vSet = deleteConnection(vSet,1,2);

2 Objects

2-206



Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewId1 — View identifier 1
positive integer

View identifier 1, specified as an integer. View identifiers are unique to a specific view.

viewId2 — View identifier 2
positive integer

View identifier 2, specified as an integer. View identifiers are unique to a specific view.

Output Arguments
vSet — View set with deleted connections
imageviewset object

View set with deleted connections, returned as an imageviewset object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
imageviewset

Introduced in R2020a

 deleteConnection

2-207



hasConnection
Check if connection between two views is in view set

Syntax
tf = hasConnection(vSet,viewId1,viewId2)

Description
tf = hasConnection(vSet,viewId1,viewId2) returns 1 (true), if the connection between views
viewId1 and viewId2 is in the view set, vSet. The function returns 0 (false), if the connection does
not exist in vSet.

Examples

Check For Connection Between Views in View Set

Create an empty image view set.

vSet = imageviewset;

Add two views to the image view set.

vSet = addView(vSet,1);
vSet = addView(vSet,2);

Add a connection to the image view set.

vSet = addConnection(vSet,1,2);

Check if the connection between views is in the view set.

tf = hasConnection(vSet,1,2)

tf = logical
   1

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewId1 — View identifier 1
positive integer

View identifier 1, specified as an integer. View identifiers are unique to a specific view.

2 Objects

2-208



viewId2 — View identifier 2
positive integer

View identifier 2, specified as an integer. View identifiers are unique to a specific view.

Output Arguments
tf — True or false result
1 | 0

True or false result indicating if view is in view set vSet, returned as a 1 or 0 data type logical.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
imageviewset

Introduced in R2020a

 hasConnection

2-209



connectedViews
Return connected views

Syntax
viewTable = connectedViews(vSet,viewId)
viewTable = connectedViews(vSet,viewId,minNumMatches)

Description
viewTable = connectedViews(vSet,viewId) returns a table of views from vSet that are
connected to the view specified by viewId.

viewTable = connectedViews(vSet,viewId,minNumMatches) also specifies the minimum
number of matched feature points in a connection for the view to be counted as a connected view.

Examples

Get Connected Views in View Set

Create an empty imageviewset object.

vSet = imageviewset;

Add views to the image view set.

vSet = addView(vSet, 1);
vSet = addView(vSet, 2);
vSet = addView(vSet, 3);
vSet = addView(vSet, 4);

Connect views in the image view set.

vSet = addConnection(vSet,1,2);
vSet = addConnection(vSet,2,3);
vSet = addConnection(vSet,2,4);

Get the connected views for the view with ID 2.

viewTable = connectedViews(vSet,2)

viewTable=3×4 table
    ViewId    AbsolutePose      Features         Points   
    ______    ____________    ____________    ____________

      1       1x1 rigid3d     {0x0 double}    {0x0 double}
      3       1x1 rigid3d     {0x0 double}    {0x0 double}
      4       1x1 rigid3d     {0x0 double}    {0x0 double}

2 Objects

2-210



Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewId — View identifier
positive integer

View identifier, specified as an integer. View identifiers are unique to a specific view.

minNumMatches — Minimum number of matched feature points
positive integer

Minimum number of matched feature points in a connection for the view to be counted as a
connected view, specified as a positive integer.

Output Arguments
viewTable — One or more views
two-column table | three-column table

One or more views, returned as a three-column table. The table must contain the columns as
described in this table.

Column Description
ViewID View identifier, specified as an integer. View

identifiers are unique to a specific view.
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.
Points Point cloud for the view, specified as a

pointCloud object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
imageviewset | rigid3d

Introduced in R2020a

 connectedViews

2-211



poses
Absolute poses associated with views in view set

Syntax
sensorPoses = poses(vSet)

Description
sensorPoses = poses(vSet) returns a table of absolute poses associated with the views
contained in the view set, vSet.

Examples

Retrieve Absolute Poses From Image View Set

Load images into the workspace.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageDatastore(imageDir);

Compute features for the first image.

I = im2gray(readimage(images,1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Create an image view set and add the extracted feature points to the image view set.

vSet = imageviewset;
vSet = addView(vSet,1,'Points',pointsPrev);

Compute features and matches for the rest of the images.

for i = 2:numel(images.Files)
 I = im2gray(readimage(images,i));
 points = detectSURFFeatures(I);
 [features,points] = extractFeatures(I,points);
 vSet = addView(vSet,i,'Features',features,'Points',points);
 pairsIdx = matchFeatures(featuresPrev,features);
 vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
 featuresPrev = features;
end

Get the absolute poses.

sensorPoses = poses(vSet)

sensorPoses=5×2 table
    ViewId    AbsolutePose
    ______    ____________

2 Objects

2-212



      1       1x1 rigid3d 
      2       1x1 rigid3d 
      3       1x1 rigid3d 
      4       1x1 rigid3d 
      5       1x1 rigid3d 

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

Output Arguments
sensorPoses — Absolute poses
two-column table

Absolute poses, returned as a two-column table. The table contains columns as described in this
table.

Column Description
ViewID View identifier, returned as a positive integer.

View identifiers are unique to a specific view.
AbsolutePose Absolute pose of the view, specified as a rigid3d

object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When generating code, the output argument sensorPoses is returned as a structure with fields
ViewID and AbsolutePose.

See Also
Objects
imageviewset | rigid3d

Introduced in R2020a

 poses

2-213



optimizePoses
Optimize absolute poses using relative pose constraints

Syntax
vSetOptim = optimizePoses(vSet)
[vSetOptim,poseScale] = optimizePoses(vSet)
vSetOptim = optimizePoses(vSet, minNumMatches)
vSetOptim = optimizePoses( ___ ,Name,Value)

Description
vSetOptim = optimizePoses(vSet) returns an image view set whose absolute poses are
optimized. vSetOptim and vSet are imageviewset objects.

The optimizePoses function performs pose graph optimization on the absolute poses for the Views
in the view set using the relative pose constraints established by the Connections property. You can
use optimizePoses to correct drift in odometry after detecting loop closures.

[vSetOptim,poseScale] = optimizePoses(vSet) also returns the scales associated with the
optimized absolute poses. This output applies only when the RelativePose of at least one
connection is represented as an affine3d object.

vSetOptim = optimizePoses(vSet, minNumMatches) additionally specifies the minimum
number of matched feature points in a connection in order for the connection to be included in
optimization.

vSetOptim = optimizePoses( ___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Create and Optimize Poses Using Image View Set

Create a view set.

vSet = imageviewset;

Add four nodes and specify absolute poses.

absPoses = repelem(rigid3d, 4, 1);  

absPoses(1).Translation = [ 0   0 0];
absPoses(2).Translation = [ 1   0 0];
absPoses(3).Translation = [ 2   0 0];
absPoses(4).Translation = [ 0.1 0 0];

vSet = addView(vSet, 1, absPoses(1));
vSet = addView(vSet, 2, absPoses(2));

2 Objects

2-214



vSet = addView(vSet, 3, absPoses(3));
vSet = addView(vSet, 4, absPoses(4));

Define 4 edges, 3 odometry and 1 loop closure.

relPoses = repelem(rigid3d, 4, 1);

relPoses(1).Translation = [ 1   0 0];
relPoses(2).Translation = [ 1   0 0];
relPoses(3).Translation = [-1.9 0 0];
relPoses(4).Translation = [ 0.2 0 0];

vSet = addConnection(vSet, 1, 2, relPoses(1)); % odometry
vSet = addConnection(vSet, 2, 3, relPoses(2)); % odometry
vSet = addConnection(vSet, 3, 4, relPoses(3)); % odometry
vSet = addConnection(vSet, 4, 1, relPoses(4)); % loop closure

Optimize view set.

vSetOptim = optimizePoses(vSet);

DIsplay original and optimized locations.

disp('Original absolute translations:')

Original absolute translations:

disp(vertcat(vSet.Views.AbsolutePose.Translation))

         0         0         0
    1.0000         0         0
    2.0000         0         0
    0.1000         0         0

disp('Optimized absolute translations:')

Optimized absolute translations:

disp(vertcat(vSetOptim.Views.AbsolutePose.Translation))

         0         0         0
    0.9250         0         0
    1.8500         0         0
   -0.1250         0         0

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

minNumMatches — Minimum number of connections
positive integer

 optimizePoses

2-215



Minimum number of connections, specified as a positive integer. Set minNumMatches to the
minimum number of matched feature points in a connection for the connection to be included in
optimization.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxIterations',300

MaxIterations — Maximum number of iterations
300 (default) | positive integer

Maximum number of iterations before optimization is terminated, specified as the comma-separated
pair consisting of 'MaxIterations' and a positive integer. Increase this value for more accurate
results. Decrease this value for faster results.

Tolerance — Tolerance of the optimization cost function
1e-8 (default) | positive scalar

Tolerance of the optimization cost function between two iterations, specified as the comma-separated
pair consisting of 'Tolerance' and a positive scalar. Optimization is terminated when the cost
function changes by less than the Tolerance value between two iterations.

Verbose — Display progress information
false (default) | true

Display progress information, specified as the comma-separated pair consisting of Verbose and a
logical scalar. Set 'Verbose' to true to display progress information.

Output Arguments
vSetOptim — Optimized absolute poses
imageviewset object

Image view set that contains optimized absolute poses, returned as an imageviewset object.

poseScale — Scales of optimized absolute poses
vector of positive values

Scales of optimized absolute poses, returned as a vector of positive values. This output applies only
when the RelativePose of the pairwise “Connections” on page 2-0  property, of at least one
connection is represented as an affine3d object.

Tips
• To update a view set with optimized poses, use the updateView object function.
• The optimizePoses object function holds the first view fixed.

2 Objects

2-216



Algorithms
The optimizePoses function uses the Levenberg Marquardt optimization algorithm with sparse
Cholesky factorization from the general (hyper) graph optimization (g2o) library, (1 on page 2-217).

References
[1] Kuemmerle, R., G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. "g2o: A General Framework

for Graph Optimization IEEE International Conference on Robotics and Automation".
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Supports code generation only in host target platforms.

See Also
Functions
createPoseGraph

Objects
imageviewset

Introduced in R2020a

 optimizePoses

2-217



createPoseGraph
Create pose graph

Syntax
G = createPoseGraph(vSet)

Description
G = createPoseGraph(vSet) returns a pose graph derived from the views and connections in the
view set, vSet.

You can use the pose graph for inspection, modification, visualization, and pose graph optimization.

Examples

Create Pose Graph from Image View Set

Create an empty image view set.

vSet = imageviewset;

Define three relative poses.

relPoses = repelem(rigid3d,3,1);
relPoses(1).Translation = [3 0 0];
relPoses(2).Translation = [5 0 0];
relPoses(3).Translation = [2 0 0]

relPoses = 
  3x1 rigid3d array with properties:

    Dimensionality
    T
    Rotation
    Translation

Accumulate absolute poses.

absPoses = repelem(rigid3d,4,1);
absPoses(2).T = relPoses(1).T*absPoses(1).T;
absPoses(3).T = relPoses(2).T*absPoses(2).T;
absPoses(4).T = relPoses(3).T*absPoses(3).T;

Add four views to the image view set.

vSet = addView(vSet,1,absPoses(1));
vSet = addView(vSet,2,absPoses(2));
vSet = addView(vSet,3,absPoses(3));
vSet = addView(vSet,4,absPoses(4));

2 Objects

2-218



Add three connections to the image view set.

vSet = addConnection(vSet,1,2,relPoses(1));
vSet = addConnection(vSet,2,3,relPoses(2));
vSet = addConnection(vSet,3,4,relPoses(3));

Add a loop closure connection to the image view set.

relPoses(4).Translation = [9 0 0];
vSet = addConnection(vSet,4,1,relPoses(4));

Create a pose graph.

G = createPoseGraph(vSet);

Input Arguments
vSet — View set
imageviewset object

View set, specified as an imageviewset object.

Output Arguments
G — Pose graph
digraph object

Pose graph, returned as a digraph object. The nodes in the object correspond to views, and the
edges in the object correspond to connections.

The EndNodes of the Edges in the G digraph correspond to indices into the Views table, (not
ViewIds).

Tips
• The EndNodes of the Edges in the G digraph correspond to indices into the Views table, (not

ViewIds).
• Use “Directed and Undirected Graphs” to inspect, modify, or visualize the pose graph.
• Use the optimizePoseGraph function to optimize the pose graph. Use of this function requires

the Navigation Toolbox.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
digraph | optimizePoses | optimizePoseGraph

 createPoseGraph

2-219



Objects
imageviewset

Introduced in R2020a

2 Objects

2-220



findView
Find views associated with view identifiers

Syntax
views = findView(vSet,viewIds)

Description
views = findView(vSet,viewIds) finds the views associated with the specified view viewIds
and returns the view attributes.

Examples

Find View Corresponding to View ID

Create an empty image view set.

vSet = imageviewset;

Add two images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = im2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = im2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in the two images

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Extract features descriptors from the detected points.

[features1,validPoints1] = extractFeatures(I1,points1);
[features2,validPoints2] = extractFeatures(I2,points2);

Add the points to the imageviewset object.

vSet = addView(vSet,1,'Features',features1,'Points',validPoints1);
vSet = addView(vSet,2,'Features',features2,'Points',validPoints2);

Find the view that corresponds to viewID equal to 1.

view = findView(vSet,1)

view=1×4 table
    ViewId    AbsolutePose       Features              Points      
    ______    ____________    _______________    __________________

      1       1x1 rigid3d     {574x64 single}    {574x1 SURFPoints}

 findView

2-221



Check the feature points that correspond to viewID equal to 1.

view.Points{:}

ans = 
  574x1 SURFPoints array with properties:

              Scale: [574x1 single]
    SignOfLaplacian: [574x1 int8]
        Orientation: [574x1 single]
           Location: [574x2 single]
             Metric: [574x1 single]
              Count: 574

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewIds — View identifier
M-element vector

View identifiers, specified as an M-element vector of integers. Each view identifier is unique to a
specific view.

Output Arguments
views — View attributes
four-column table

View attributes, returned as a four-column table. The table contains the columns ViewId,
AbsolutePose, Features, and Points attribute descriptions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
imageviewset

Introduced in R2021b

2 Objects

2-222



findConnection
Find connections associated with view identifiers

Syntax
conn = findConnection(vSet,viewIds1,viewIds2)

Description
conn = findConnection(vSet,viewIds1,viewIds2) finds the connections between the
specified view identifiers viewIds1 and viewIds2 and returns the connection attributes conn.

Examples

Find Connection Between Two Image View Sets

Create an empty imageviewset object.

vSet = imageviewset;

Add three views to the view set.

viewId1 = 10;
viewId2 = 5;
viewId3 = 2;
vSet = addView(vSet,viewId1);
vSet = addView(vSet,viewId2);
vSet = addView(vSet,viewId3);

Add a connection between viewId1 and viewId2.

relPose1 = rigid3d(eye(3),[0 0 1]);
vSet = addConnection(vSet,viewId1,viewId2,relPose1);

Add a connection between viewId2 and viewId3.

relPose2 = rigid3d(eye(3),[0 0 2]);
vSet = addConnection(vSet,viewId2,viewId3,relPose2);

Find the connection between viewId1 and viewId2.

conn = findConnection(vSet,viewId1,viewId2)

conn=1×5 table
    ViewId1    ViewId2    RelativePose     InformationMatrix      Matches   
    _______    _______    _____________    _________________    ____________

      10          5       {1x1 rigid3d}      {6x6 double}       {0x2 uint32}

Check the relative pose between viewId1 and viewId2.

 findConnection

2-223



conn.RelativePose{:}

ans = 
  rigid3d with properties:

       Rotation: [3x3 double]
    Translation: [0 0 1]

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewIds1 — Initial view identifiers
M-element vector

Initial view identifiers, specified as an M-element vector of integers. Each view identifier is unique to
a specific view.

viewIds2 — Connected view identifiers
M-element vector

Connected view identifiers, specified as an M-element vector of integers. Each view identifier is
unique to a specific view.

Output Arguments
conn — Connection attributes
five-column table

Connection attributes, returned as a five-column table. The table contains the columns ViewId1,
ViewId2, RelativePose, InformationMatrix, and Matches.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
imageviewset

Introduced in R2021b

2 Objects

2-224



findTracks
Find matched points across multiple views

Syntax
tracks = findTracks(vSet)
tracks = findTracks(vSet,viewIds)
tracks = findTracks( ___ ,'MinTrackLength',trackLength)

Description
tracks = findTracks(vSet) finds and returns point tracks across multiple views in the view set,
vSet. Each track contains 2-D projections of the same 3-D world point.

tracks = findTracks(vSet,viewIds) finds point tracks across a subset of views specified by
viewIds.

tracks = findTracks( ___ ,'MinTrackLength',trackLength) specifies the minimum length
of the tracks.

Examples

Find Point Tracks Across Sequence of Images

Load images in the workspace.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageDatastore(imageDir);

Compute features for the first image.

I = im2gray(readimage(images,1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Create an image view set and add one view to the set.

vSet = imageviewset;
vSet = addView(vSet,1,'Features',featuresPrev,'Points',pointsPrev);

Compute features and matches for the rest of the images.

for i = 2:numel(images.Files)
  I = im2gray(readimage(images, i));
  points = detectSURFFeatures(I);
  [features, points] = extractFeatures(I,points);
  vSet = addView(vSet,i,'Features',features,'Points',points);
  pairsIdx = matchFeatures(featuresPrev,features);
  vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
  featuresPrev = features;
end

 findTracks

2-225



Find point tracks across views in the image view set.

tracks = findTracks(vSet);

Input Arguments
vSet — Image view set
imageviewset object

Image view set, specified as an imageviewset object.

viewIds — View identifiers
vector of integers

View identifiers, specified as a vector of positive integers. View identifiers are unique to a specific
view.

trackLength — Minimum length of the tracks
positive integer equal to or greater than 2

Minimum length of the tracks, specified as a positive integer equal to or greater than 2.

Output Arguments
tracks — Point tracks
pointTrack object

Point tracks across multiple views, returned as a pointTrack object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectHarrisFeatures |
detectMSERFeatures | detectFASTFeatures | detectBRISKFeatures | matchFeatures |
bundleAdjustment | triangulateMultiview

Objects
imageviewset | pointTrack

Introduced in R2020a

2 Objects

2-226



plot
Plot view set views and connections

Syntax
plot(vSet)
h = plot(vSet)
plot(vSet,Name,Value)

Description
plot(vSet) plots the views and connections in the view set, vSet.

h = plot(vSet) returns a graph plot, h

plot(vSet,Name,Value) specifies options using one or more name-value pair arguments.

Examples

Plot View Set View Identifiers

Create an empty image view set.

vSet = imageviewset;

Define three relative poses.

relPoses = repelem(rigid3d,3,1);
relPoses(1).Translation = [3 0 0];
relPoses(2).Translation = [5 0 0];
relPoses(3).Translation = [2 0 0];

Calculate and add absolute poses.

absPoses = repelem(rigid3d,4,1);
absPoses(2).T = relPoses(1).T*absPoses(1).T;
absPoses(3).T = relPoses(2).T*absPoses(2).T;
absPoses(4).T = relPoses(3).T*absPoses(3).T;

Add four views to the image view set.

vSet = addView(vSet,1,absPoses(1));
vSet = addView(vSet,2,absPoses(2));
vSet = addView(vSet,3,absPoses(3));
vSet = addView(vSet,4,absPoses(4));

Add connections between the added views.

vSet = addConnection(vSet,1,2,relPoses(1));
vSet = addConnection(vSet,2,3,relPoses(2));
vSet = addConnection(vSet,3,4,relPoses(3));

 plot

2-227



Plot the view set with view identifers.

plot(vSet,'ShowViewIds','on')

Input Arguments
vSet — Image view set
pcviewset object

Image view set, specified as a imageviewset object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ShowViewIds',off

Parent — Axes on which to plot view set
Axes object (default)

Axes on which to plot view set, specified as the comma-separated pair consisting of 'Parent' and an
Axes object. To create an Axes object, use the axes function.

2 Objects

2-228



ShowViewIds — Display of view identifiers
'off' (default) | 'on'

Display of view identifiers, specified as the comma-separated pair consisting of 'ShowViewIds' and
'on' or 'off'.

Output Arguments
h — Graph plot
GraphPlot object

Graph plot, returned as a GraphPlot object. You can use the GraphPlot object functions and
properties to inspect and adjust the plotted graph.

See Also
Functions
axes | GraphPlot

Objects
imageviewset | pcviewset

Introduced in R2020a

 plot

2-229



ssdObjectDetector
Detect objects using SSD deep learning detector

Description
The ssdObjectDetector detects objects from an image, using a single shot detector (SSD) object
detector. To detect objects in an image, pass the trained detector to the detect function. You can
also use the trained detector for multiclass object detection. For information about SSD deep learning
network, see “Getting Started with SSD Multibox Detection”.

Creation

Syntax
detector = ssdObjectDetector(net,classes,aboxes)
detector = ssdObjectDetector(baseNet,classes,aboxes,'DetectionNetworkSource',
layer)
detector = ssdObjectDetector( ___ ,Name=Value)

Description

detector = ssdObjectDetector(net,classes,aboxes) creates an object detector using the
SSD deep learning network net.

If net is a pretrained SSD deep learning network, the function creates a pretrained SSD object
detector. The classes and aboxes are values used for training the network.

If net is an untrained SSD deep learning network, the function creates a SSD object detector to use
for training and inference. classes and aboxes specify the object classes and the anchor boxes,
respectively, for training the SSD network.

Use the trainSSDObjectDetector function to train the network before performing object
detection.

detector = ssdObjectDetector(baseNet,classes,aboxes,'DetectionNetworkSource',
layer) creates a SSD object detector by adding detection heads to a base network, baseNet.

The function adds detection heads to the specified feature extraction layers layer in the base
network. To specify the names of the feature extraction layers, use the name-value argument
'DetectionNetworkSource',layer.

If baseNet is a pretrained deep learning network, the function creates a SSD object detector and
configures it to perform transfer learning with the specified object classes and anchor boxes.

If baseNet is an untrained deep learning network, the function creates a SSD object detector and
configures it for object detection. classes and aboxes specify the object classes and the anchor
boxes, respectively, for training the SSD network.

2 Objects

2-230



You must train the detector on a training dataset before performing object detection. Use the
trainSSDObjectDetector function for training the detector.

detector = ssdObjectDetector( ___ ,Name=Value) sets the InputSize on page 2-0
and ModelName on page 2-0  properties of the object detector by using name, value pair
arguments. Name is the property name and Value is the corresponding value. You must enclose each
property name in quotes.

Input Arguments

net — SSD deep learning network
LayerGraph object

SSD deep learning network, specified as a LayerGraph object. The input network can be either an
untrained or a pretrained deep learning network. The input network must not have loss layers.

baseNet — Base network
LayerGraph object

Base network for creating the SSD deep learning network, specified as a LayerGraph object. The
network can be either an untrained or a pretrained deep learning network. When you specify this
argument, you must also specify the value for DetectionNetworkSource name-value argument.

classes — Names of object classes
string vector | cell array of character vectors | categorical vector

Names of object classes for training the detector, specified as a string vector, cell array of character
vectors, or categorical vector. This argument sets the ClassNames property of the
ssdObjectDetector object.
Data Types: char | string | categorical

aboxes — Anchor boxes
N-by-1 cell array

Anchor boxes for training the detector, specified as an N-by-1 cell array. N is the number of output
layers in the SSD deep learning network. Each cell contains an M-by-2 matrix, where M is the number
of anchor boxes in that layer. Each row in the M-by-2 matrix denotes the size of an anchor box in the
form [height width].

The first element in the cell array specifies the anchor boxes to associate with the first output layer,
the second element in the cell array specifies the anchor boxes to associate with the second output
layer, and so on. For accurate detection results, specify large anchor boxes for the first output layer
and small anchor boxes for the last output layer. That is, the anchor box sizes must decrease for each
output layer in the order in which the layers appear in the SSD deep learning network.

This argument sets the AnchorBoxes property of the ssdObjectDetector object.
Data Types: cell

layer — Names of feature extraction layers
cell array of character vectors | string array

Names of the feature extraction layers in the base network, specified as a cell array of character
vectors, or a string array. The function creates a SSD network by adding classification and regression
layers to the output of the feature extraction layers in the base network.

 ssdObjectDetector

2-231



Example: layer = {'conv10','fire9-concat'}
Example: layer = ["conv10","fire9-concat"]
Data Types: char | string | cell

Properties
ModelName — Name of classification model
character vector | string scalar

This property is read-only.

Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainSSDObjectDetector function. You can modify this name after creating your
ssdObjectDetector object.

Network — Trained SSD multibox object detection network
DAGNetwork object

This property is read-only.

Trained SSD multibox object detection network, specified as a DAGNetwork object. This object stores
the layers that define the convolutional neural network used within the SSD detector.

AnchorBoxes — Size of anchor boxes
P-by-1 cell array

This property is read-only.

Size of anchor boxes, specified as a P-by-1 cell array for P number of feature extraction layers used
for object detection in the SSD network. Each element of the array contains an M-by-2 matrix of
anchor box sizes, in the format [height width]. Each cell can contain a different number of anchor
boxes. This value is set during training.

You can set this property by using the input argument aboxes.

ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the SSD detector was trained to find, specified as a cell array. You
can set this property by using the input argument classes.

Object Functions
detect Detect objects using SSD multibox object detector

Examples

2 Objects

2-232



Create Custom SSD Object Detector

This example shows how to create a SSD object detection network by using a pretrained ResNet -50
convolutional neural network as the base network.

Load a pretrained deep learning network to use as the base network. This example uses ResNet-50
pretrained network as the base network. For information about other available pretrained networks,
see “Pretrained Deep Neural Networks” (Deep Learning Toolbox) (Deep Learning Toolbox).

basenet = resnet50;

Use analyzeNetwork to display the architecture of the base network.

analyzeNetwork(basenet)

Specify the class names and anchor boxes to use for training the SSD deep learning network created
using resnet50 as the base network.

classNames = ["person" "car" "dog"];
anchorBoxes = {[30 60;60 30;50 50;100 100], ...
               [40 70;70 40;60 60;120 120], ...
               [50 80;80 60;70 70;140 140]};

Specify the names of the feature extraction layers in the base network to use as the detection heads.

featureExtractionLayers = ["activation_11_relu" "activation_22_relu" "activation_40_relu"];

Create a SSD object detector by using the specified base network and the detection heads.

basenet = layerGraph(basenet);
detector = ssdObjectDetector(basenet,classNames,anchorBoxes,DetectionNetworkSource=featureExtractionLayers);

Display and inspect the properties of the SSD object detector.

disp(detector)

  ssdObjectDetector with properties:

        Network: [1x1 DAGNetwork]
    AnchorBoxes: {3x1 cell}
     ClassNames: [3x1 string]
      InputSize: [224 224 3]
      ModelName: ''

Use analyzeNetwork to display the SSD network architecture and get information about the
network layers.

analyzeNetwork(detector.Network)

Detect Vehicles Using SSD Object Detector

Load a pretrained single shot detector (SSD) object to detect vehicles in an image. The detector is
trained with images of cars on a highway scene.

vehicleDetector = load('ssdVehicleDetector.mat','detector');
detector = vehicleDetector.detector;

 ssdObjectDetector

2-233



Read a test image into the workspace.

I = imread('highway.png');

Display the test image.

imshow(I);

Run the pretrained SSD object detector by using the detect function. The output contains the
bounding boxes, scores, and the labels for vehicles detected in the image. The labels are derived from
the ClassNames property of the detector.

[bboxes,scores,labels] = detect(detector,I)

bboxes = 2×4

   139    78    96    81
    99    67   165   146

scores = 2x1 single column vector

    0.8349
    0.6302

labels = 2x1 categorical
     vehicle 
     vehicle 

Annotate the image with the detection results.

if ~isempty(bboxes)
    detectedI = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));

2 Objects

2-234



else
   detectedI = insertText(I,[10 10],'No Detections');
end
   
figure
imshow(detectedI)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the detect method of the ssdObjectDetector is supported for code generation.
• The roi argument to the detect method must be a codegen constant (coder.const()) and a

1x4 vector.
• Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize Name-Value

pairs are supported. All Name-Value pairs must be compile-time constants.
• The channel and batch size of the input image must be fixed size.
• The labels output is returned as a categorical array.
• In the generated code, the input is rescaled to the size of the input layer of the network. But the

bounding box that the detect method returns is in reference to the original input size.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

 ssdObjectDetector

2-235



For code generation,

• Only the detect method of the ssdObjectDetector is supported for code generation.
• The roi argument to the detect method must be a codegen constant (coder.const()) and a

1x4 vector.
• Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize Name-Value

pairs are supported.
• The channel and batch size of the input image must be fixed size.
• The labels output is returned as a categorical array.

See Also
Apps
Image Labeler | Video Labeler

Objects
DAGNetwork

Functions
ssdLayers | trainSSDObjectDetector | trainYOLOv2ObjectDetector |
trainFasterRCNNObjectDetector | trainACFObjectDetector | trainNetwork |
selectStrongestBboxMulticlass | anchorBoxLayer | focalLossLayer

Topics
“Object Detection Using SSD Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using Single Shot Multibox Detector”
“Getting Started with SSD Multibox Detection”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2020a

2 Objects

2-236



detect
Detect objects using SSD multibox object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)
[ ___ ] = detect( ___ ,roi)

detectionResults = detect(detector,ds)

[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within a single image or an array of images, I,
using an single shot multibox detector (SSD). The locations of objects detected are returned as a set
of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU is highly recommended. The GPU
reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding
box.

[ ___ ,labels] = detect(detector,I) also returns a categorical array of labels assigned to the
bounding boxes, using either of the preceding syntaxes. The labels used for object classes are defined
during training using the trainSSDObjectDetector function.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi.

detectionResults = detect(detector,ds) detects objects within the series of images
returned by the read function of the input datastore.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'Threshold',0.75) sets the detection score
threshold to 0.75. Any detections with a lower score are removed.

Examples

Detect Vehicles Using SSD Object Detector

Load a pretrained single shot detector (SSD) object to detect vehicles in an image. The detector is
trained with images of cars on a highway scene.

 detect

2-237



vehicleDetector = load('ssdVehicleDetector.mat','detector');
detector = vehicleDetector.detector;

Read a test image into the workspace.

I = imread('highway.png');

Display the test image.

imshow(I);

Run the pretrained SSD object detector by using the detect function. The output contains the
bounding boxes, scores, and the labels for vehicles detected in the image. The labels are derived from
the ClassNames property of the detector.

[bboxes,scores,labels] = detect(detector,I)

bboxes = 2×4

   139    78    96    81
    99    67   165   146

scores = 2x1 single column vector

    0.8349
    0.6302

labels = 2x1 categorical
     vehicle 
     vehicle 

Annotate the image with the detection results.

2 Objects

2-238



if ~isempty(bboxes)
    detectedI = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));
else
   detectedI = insertText(I,[10 10],'No Detections');
end
   
figure
imshow(detectedI)

Input Arguments
detector — SSD object detector
ssdObjectDetector object

SSD object detector, specified as an ssdObjectDetector object. To create this object, call the
trainSSDObjectDetector function with training data as input.

I — Input image
H-by-W-by-C-by-B numeric array of images

Input image, specified as an H-by-W-by-C-by-B numeric array of images Images must be real,
nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• B: The number of images in the array.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was

 detect

2-239



trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the
scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale, RGB, or multichannel image. The function processes only the first column of the datastore,
which must contain images and must be cell arrays or tables with multiple columns.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SelectStrongest',true

Threshold — Detection threshold
0.5 (default) | scalar

Detection threshold, specified as a scalar in the range [0, 1]. Detections that have scores less than
this threshold value are removed. To reduce false positives, increase this value.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
            'RatioType','Union', ...
            'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

2 Objects

2-240



MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

MinSize — Minimum region size
[1 1] (default) | [height width] vector

Minimum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MinSize', and [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known minimum region size for the objects being
detected in the image. By default, 'MinSize' is set to [1 1].

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a
scalar value. Use the MiniBatchSize to process a large collection of images. Images are grouped
into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch
size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU. If a suitable GPU is not available, the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'cpu' — Use the CPU.

Acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.

• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU. If Parallel
Computing Toolbox or a suitable GPU is not available, then the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'none' — Disable all acceleration.

 detect

2-241



The default option is 'auto'. If 'auto' is specified, MATLAB applies a number of compatible
optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available for input data specified as a numeric array, cell array of numeric
arrays, table, or image datastore. No other types of datastore support the 'mex' option.

The 'mex' option is only available when you are using a GPU. You must also have a C/C++ compiler
installed. For setup instructions, see “MEX Setup” (GPU Coder).

'mex' acceleration does not support all layers. For a list of supported layers, see “Supported Layers”
(GPU Coder).

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | B-by-1 cell array

Location of objects detected within the input image or images, returned as an M-by-4 matrix or a B-
by-1 cell array. M is the number of bounding boxes in an image, and B is the number of M-by-4
matrices when the input contains an array of images.

Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of that corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 vector or a B-by-1 cell array. M is the number of
bounding boxes in an image, and B is the number of M-by-1 vectors when the input contains an array
of images. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array | B-by-1 cell array

Labels for bounding boxes, returned as an M-by-1 categorical array or a B-by-1 cell array. M is the
number of labels in an image, and B is the number of M-by-1 categorical arrays when the input
contains an array of images. You define the class names used to label the objects when you train the
input detector.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format

2 Objects

2-242



specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

See Also
Apps
Image Labeler | Video Labeler

Objects
fasterRCNNObjectDetector | boxLabelDatastore

Functions
trainSSDObjectDetector | trainYOLOv2ObjectDetector |
trainFasterRCNNObjectDetector | selectStrongestBboxMulticlass |
evaluateDetectionMissRate | evaluateDetectionPrecision

Topics
“Object Detection Using SSD Deep Learning”
“Create SSD Object Detection Network”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using Single Shot Multibox Detector”
“Getting Started with SSD Multibox Detection”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2020a

 detect

2-243



boxLabelDatastore
Datastore for bounding box label data

Description
The boxLabelDatastore object creates a datastore for bounding box label data. Use this object to
read labeled bounding box data for object detection.

To read bounding box label data from a boxLabelDatastore object, use the read function. This
object function returns a cell array with either two or three columns. You can create a datastore that
combines the boxLabelDatastore object with an ImageDatastore object using the combine
object function. Use the combined datastore to train object detectors using the training functions
such as trainYOLOv2ObjectDetector and trainFasterRCNNObjectDetector. You can access
and manage data in the datastore using object functions. To modify the ReadSize property, you can
use dot notation.

Creation

Syntax
blds = boxLabelDatastore(tbl1,...,tbln)
blds = boxLabelDatastore(tbl1,...,tbln,bSet)

Description

blds = boxLabelDatastore(tbl1,...,tbln) creates a boxLabelDatastore object from one
or more tables containing labeled bounding box data.

blds = boxLabelDatastore(tbl1,...,tbln,bSet) creates a boxLabelDatastore object
from a bigimage data by using the resolution level, block size, and block positions specified by the
block locations in bSet.

Input Arguments

tbl1,...,tbln — Labeled bounding box data (as separate arguments)
table with one or more columns

Labeled bounding box data, specified as a table with one or more columns. Each table corresponds to
a set of labels. The bounding boxes can be axis-aligned rectangles, rotated rectangles, or cuboids.
The table below describes the format of the bounding boxes.

2 Objects

2-244



Bounding Box Description
Axis-aligned rectangle Defined in spatial coordinates as an M-by-4 numeric matrix with rows of

the form [x y w h], where:

• M is the number of axis-aligned rectangles.
• x and y specify the upper-left corner of the rectangle.
• w specifies the width of the rectangle, which is its length along the x-

axis.
• h specifies the height of the rectangle, which is its length along the y-

axis.
Rotated rectangle Defined in spatial coordinates as an M-by-5 numeric matrix with rows of

the form [xctr yctr xlen ylen yaw], where:

• M is the number of rotated rectangles.
• xctr and yctr specify the center of the rectangle.
• xlen specifies the width of the rectangle, which is its length along the

x-axis before rotation.
• ylen specifies the height of the rectangle, which is its length along the

y-axis before rotation.
• yaw specifies the rotation angle in degrees. The rotation is clockwise-

positive around the center of the bounding box.

 boxLabelDatastore

2-245



Bounding Box Description
Cuboid Defined in spatial coordinates as an M-by-9 numeric matrix with rows of

the form [xctr yctr zctr xlen ylen zlen xrot yrot zrot], where:

• M is the number of cuboids.
• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid along the x-axis,

y-axis, and z-axis, respectively, before rotation.
• xrot, yrot, and zrot specify the rotation angles of the cuboid around

the x-axis, y-axis, and z-axis, respectively. The xrot, yrot, and zrot
rotation angles are in degrees about the cuboid center. Each rotation
is clockwise-positive with respect to the positive direction of the
associated spatial axis. The function computes rotation matrices
assuming ZYX order Euler angles [xrot yrot zrot].

The figure shows how these values determine the position of a cuboid.

• A table with one or more columns:

All columns contain bounding boxes. Each column must be a cell vector containing M-by-N
matrices. M is the number of images and N represents a single object class, such as stopSign,
carRear, or carFront.

2 Objects

2-246



• A table with two columns.

The first column contains bounding boxes. The second column must be a cell vector that contains
the label names corresponding to each bounding box. Each element in the cell vector must be an
M-by-1 categorical or string vector, where M represents the number of labels.

To create a ground truth table, use the Image Labeler or Video Labeler app. To create a table of
training data from the generated ground truth, use the objectDetectorTrainingData function.
Data Types: table

bSet — Block locations
blockLocationSet object

Block locations, specified as a blockLocationSet object. You can create this object by using the
balanceBoxLabels function.

Properties
LabelData — Labeled bounding box data
N-by-2 cell array

This property is read-only.

Labeled bounding box data, specified as an N-by-2 cell matrix of N images. The first column must be
a cell vector that contains bounding boxes. Each element in the cell contains a vector representing
either an axis-aligned rectangle, rotated rectangle, or a cuboid. The second column must be a cell
vector that contains the label names corresponding to each bounding box. An M-by-1 categorical
vector represents each label name.

 boxLabelDatastore

2-247



Bounding Box Descriptions
Bounding Box Cell Vector Format
Axis-aligned rectangle M-by-4 for M bounding boxes [x,y,width,height]
Rotated rectangle M-by-5 for M bounding boxes [xcenter,ycenter,width,height,ya

w]
Cuboid M-by-9 for M bounding boxes [xcenter,ycenter,zcenter,width,h

eight,depth,rx,ry,rz]

ReadSize — Maximum number of rows of label data
1 (default) | positive integer

Maximum number of rows of label data to read in each call to the read function, specified as a
positive integer.

Object Functions
combine Combine data from multiple datastores
countEachLabel Count occurrence of pixel or box labels
hasdata Determine if data is available to read from datastore
numpartitions Number of partitions for a datastore
partition Partition a label datastore
preview Read first row of data in datastore
progress Percentage of data read from a datastore
read Read data from a datastore
readall Read all data in datastore
reset Reset datastore to initial state
shuffle Return shuffled version of datastore
subset Create subset of datastore or file-set
transform Transform datastore
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Estimate Anchor Boxes for YOLO v2 Object Detection Network

This example shows how to estimate anchor boxes using a table containing the training data. The first
column contains the training images and the remaining columns contain the labeled bounding boxes.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Create a boxLabelDatastore object using the labeled bounding boxes from the training data.

blds = boxLabelDatastore(trainingData(:,2:end));

Estimate the anchor boxes using the boxLabelDatastore object.

numAnchors = 5;
anchorBoxes = estimateAnchorBoxes(blds,numAnchors);

Specify the image size.

2 Objects

2-248



inputImageSize = [128,228,3];

Specify the number of classes to detect.

numClasses = 1;

Use a pretrained ResNet-50 network as a base network for the YOLO v2 network.

network = resnet50();

Specify the network layer to use for feature extraction. You can use the analyzeNetwork function to
see all the layer names in a network.

featureLayer = 'activation_49_relu';

Create the YOLO v2 object detection network.

lgraph = yolov2Layers(inputImageSize,numClasses,anchorBoxes,network, featureLayer)

lgraph = 
  LayerGraph with properties:

         Layers: [182×1 nnet.cnn.layer.Layer]
    Connections: [197×2 table]
     InputNames: {'input_1'}
    OutputNames: {'yolov2OutputLayer'}

Visualize the network using the network analyzer.

analyzeNetwork(lgraph)

Combine Box Label Datastore and Image Label Datastore

Load a table of vehicle class training data that contains bounding boxes with labels.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Add the fullpath to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
trainingData.imageFilename = fullfile(dataDir,trainingData.imageFilename);

Create an imageDatastore object using the file names in the table.

imds = imageDatastore(trainingData.imageFilename);

Create a boxLabelDatastore object using the table with label data.

blds = boxLabelDatastore(trainingData(:,2:end));

Combine the imageDatastore and boxLabelDatastore objects.

cds = combine(imds,blds);

 boxLabelDatastore

2-249



Read the data for training. Use the read object function to return images, bounding boxes, and
labels.

read(cds)

ans=1×3 cell array
    {128x228x3 uint8}    {[126 78 20 16]}    {[vehicle]}

Combine Multiple Class Ground Truth Data

Load a table of vehicle class training data that contains bounding boxes with labels.

load('vehicleTrainingData.mat');

Load a table of stop signs and cars class training data that contains bounding boxes with labels.

load('stopSignsAndCars.mat');

Create ground truth tables from the training data.

vehiclesTbl  = vehicleTrainingData(:,2:end);
stopSignsTbl = stopSignsAndCars(:,2:end);

Create a boxLabelDatastore object using two tables: one with vehicle label data and the other
with the stop signs and cars label data.

blds = boxLabelDatastore(vehiclesTbl,stopSignsTbl);

Create an imageDatastore object using the file names in the training data tables.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
vehicleFiles = fullfile(dataDir,vehicleTrainingData.imageFilename);
stopSignFiles = fullfile(dataDir,stopSignsAndCars.imageFilename);
imds = imageDatastore([vehicleFiles;stopSignFiles]);

Combine the imageDatastore and boxLabelDatastore objects.

cds = combine(imds,blds);

Read the data for training. Use the read object function to return images, bounding boxes, and
labels.

read(cds)

ans=1×3 cell array
    {128x228x3 uint8}    {[126 78 20 16]}    {[vehicle]}

See Also
Apps
Image Labeler | Video Labeler

2 Objects

2-250



Functions
estimateAnchorBoxes | analyzeNetwork | yolov2Layers | balanceBoxLabels

Objects
imageDatastore | blockLocationSet | bigimage

Topics
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Training Data for Object Detection and Semantic Segmentation”

Introduced in R2019b

 boxLabelDatastore

2-251



pixelLabelImageDatastore
(To be removed) Datastore for semantic segmentation networks

Description
pixelLabelImageDatastore will be removed in a future release. Use the imageDatastore and
pixelLabelDatastore objects and the combine function instead.

Creation

Syntax
pximds = pixelLabelImageDatastore(gTruth)
pximds = pixelLabelImageDatastore(imds,pxds)
pximds = pixelLabelImageDatastore( ___ ,Name,Value)

Description

pximds = pixelLabelImageDatastore(gTruth) returns a datastore for training a semantic
segmentation network based on the input groundTruth object or array of groundTruth objects.
Use the output pixelLabelImageDatastore object with the Deep Learning Toolbox function
trainNetwork to train convolutional neural networks for semantic segmentation.

pximds = pixelLabelImageDatastore(imds,pxds) returns a datastore based on the input
image datastore and the pixel label datastore objects. imds is an ImageDatastore object that
represents the training input to the network. pxds is a PixelLabelDatastore object that
represents the required network output.

pximds = pixelLabelImageDatastore( ___ ,Name,Value) additionally uses name-value pairs
to set the DispatchInBackground and OutputSizeMode properties. For 2-D data, you can also use
name-value pairs to specify the ColorPreprocessing, DataAugmentation, and OutputSize
augmentation properties. You can specify multiple name-value pairs. Enclose each property name in
quotes.

For example, pixelLabelImageDatastore(gTruth,'PatchesPerImage',40) creates a pixel
label image datastore that randomly generates 40 patches from each ground truth object in gTruth.

Input Arguments

gTruth — Ground truth data
groundTruth object | array of groundTruth objects

Ground truth data, specified as a groundTruth object or as an array of groundTruth objects. Each
groundTruth object contains information about the data source, the list of label definitions, and all
marked labels for a set of ground truth labels.

imds — Collection of images
ImageDatastore object

2 Objects

2-252



Collection of images, specified as an ImageDatastore object.

pxds — Collection of pixel labeled images
PixelLabelDatastore object

Collection of pixel labeled images, specified as a PixelLabelDatastore object. The object contains
the pixel labeled images for each image contained in the imds input object.

Properties
Images — Image file names
character vector | cell array of character vectors

This property is read-only.

Image file names used as the source for ground truth images, specified as a character vector or a cell
array of character vectors.

PixelLabelData — Pixel label file names
character | cell array of characters

This property is read-only.

Pixel label data file names used as the source for ground truth label images, specified as a character
or a cell array of characters.

ClassNames — Class names
cell array of character vectors

This property is read-only.

Class names, specified as a cell array of character vectors.

ColorPreprocessing — Color channel preprocessing
'none' (default) | 'gray2rgb' | 'rgb2gray'

Color channel preprocessing for 2-D data, specified as 'none', 'gray2rgb', or 'rgb2gray'. Use
this property when you need the image data created by the data source must be only color or
grayscale, but the training set includes both. Suppose you need to train a network that expects color
images but some of your training images are grayscale. Set ColorPreprocessing to 'gray2rgb'
to replicate the color channels of the grayscale images in the input image set. Using the 'gray2rgb'
option creates M-by-N-by-3 output images.

The ColorPreprocessing property is not supported for 3-D data. To perform color channel
preprocessing of 3-D data, use the transform function.

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as an imageDataAugmenter object or 'none'.
When DataAugmentation is 'none', no preprocessing is applied to input images. Training data can
be augmented in real-time during training.

The DataAugmentation property is not supported for 3-D data. To preprocess 3-D data, use the
transform function.

 pixelLabelImageDatastore

2-253



DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, and classification, specified as
false or true. To use background dispatching, you must have Parallel Computing Toolbox. If
DispatchInBackground is true and you have Parallel Computing Toolbox, then
pixelLabelImageDatastore asynchronously reads patches, adds noise, and queues patch pairs.

MiniBatchSize — Number of observations in each batch
positive integer

Number of observations that are returned in each batch. The default value is equal to the ReadSize
of image datastore imds. You can change the value of MiniBatchSize only after you create the
datastore. For training, prediction, or classification, the MiniBatchSize property is set to the mini-
batch size defined in trainingOptions.

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the denoising image datastore. The number of observations is the
length of one training epoch.

OutputSize — Size of output images
[] (default) | vector of two positive integers

This property is read-only.

Size of output images, specified as a vector of two positive integers. The first element specifies the
number of rows in the output images, and the second element specifies the number of columns. When
you specify OutputSize, image sizes are adjusted as necessary. By default, this property is empty,
which means that the images are not adjusted.

The OutputSize property is not supported for 3-D data. To set the output size of 3-D data, use the
transform function.

OutputSizeMode — Method used to resize output images
'resize' (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as one of the following. This property applies only
when you set OutputSize to a value other than [].

• 'resize' — Scale the image to fit the output size. For more information, see imresize.
• 'centercrop' — Take a crop from the center of the training image. The crop has the same size

as the output size.
• 'randcrop' — Take a random crop from the training image. The random crop has the same size

as the output size.

Data Types: char | string

Object Functions
combine Combine data from multiple datastores

2 Objects

2-254



countEachLabel Count occurrence of pixel or box labels
hasdata Determine if data is available to read
partitionByIndex Partition pixelLabelImageDatastore according to indices
preview Preview subset of data in datastore
read Read data from a datastore
readall Read all data in datastore
readByIndex Read data specified by index from pixelLabelImageDatastore
reset Reset datastore to initial state
shuffle Return shuffled version of datastore
transform Transform datastore

Examples

Train A Semantic Segmentation Network

Load the training data.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an image datastore for the images.

imds = imageDatastore(imageDir);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle","background"];
labelIDs   = [255 0];
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Visualize training images and ground truth pixel labels.

I = read(imds);
C = read(pxds);

I = imresize(I,5);
L = imresize(uint8(C{1}),5);
imshowpair(I,L,'montage')

 pixelLabelImageDatastore

2-255



Create a semantic segmentation network. This network uses a simple semantic segmentation network
based on a downsampling and upsampling design.

numFilters = 64;
filterSize = 3;
numClasses = 2;
layers = [
    imageInputLayer([32 32 1])
    convolution2dLayer(filterSize,numFilters,'Padding',1)
    reluLayer()
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(filterSize,numFilters,'Padding',1)
    reluLayer()
    transposedConv2dLayer(4,numFilters,'Stride',2,'Cropping',1);
    convolution2dLayer(1,numClasses);
    softmaxLayer()
    pixelClassificationLayer()
    ];

Setup training options.

opts = trainingOptions('sgdm', ...
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',100, ...
    'MiniBatchSize',64);

Combine the image and pixel label datastore for training.

trainingData = combine(imds,pxds);

Train the network.

net = trainNetwork(trainingData,layers,opts);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|

2 Objects

2-256



|       1 |           1 |       00:00:00 |       58.11% |       1.3458 |          0.0010 |
|      17 |          50 |       00:00:12 |       97.30% |       0.0924 |          0.0010 |
|      34 |         100 |       00:00:24 |       98.09% |       0.0575 |          0.0010 |
|      50 |         150 |       00:00:37 |       98.56% |       0.0424 |          0.0010 |
|      67 |         200 |       00:00:49 |       98.48% |       0.0435 |          0.0010 |
|      84 |         250 |       00:01:02 |       98.66% |       0.0363 |          0.0010 |
|     100 |         300 |       00:01:14 |       98.90% |       0.0310 |          0.0010 |
|========================================================================================|
Training finished: Reached final iteration.

Read and display a test image.

testImage = imread('triangleTest.jpg');
imshow(testImage)

Segment the test image and display the results.

C = semanticseg(testImage,net);
B = labeloverlay(testImage,C);
imshow(B)

 pixelLabelImageDatastore

2-257



Tips
• The pixelLabelDatastore pxds and the imageDatastore imds store files that are located in

a folder in lexicographical order. For example, if you have twelve files named 'file1.jpg',
'file2.jpg', … , 'file11.jpg', and 'file12.jpg', then the files are stored in this order:

'file1.jpg'
'file10.jpg'
'file11.jpg'
'file12.jpg'
'file2.jpg'
'file3.jpg'
...
'file9.jpg'

Files that are stored in a cell array are read in the same order as they are stored.

If the order of files in pxds and imds are not the same, then you may encounter a mismatch when
you read a ground truth image and corresponding label data using a
pixelLabelImageDatastore. If this occurs, then rename the pixel label files so that they have
the correct order. For example, rename 'file1.jpg', … , 'file9.jpg' to 'file01.jpg', …,
'file09.jpg'.

• To extract semantic segmentation data from a groundTruth object generated by the Video
Labeler, use the pixelLabelTrainingData function.

Compatibility Considerations
pixelLabelImageDatastore will be removed
Not recommended starting in R2022b_plus

2 Objects

2-258



The pixelLabelImageDatastore will be removed in a future release. Use the imageDatastore
and pixelLabelDatastore objects and the combine function instead.

See Also
Functions
trainNetwork | combine

Objects
groundTruth | pixelLabelDatastore | pixelLabelTrainingData | imageDatastore

Topics
“Getting Started with Semantic Segmentation Using Deep Learning”
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2018a

 pixelLabelImageDatastore

2-259



partitionByIndex
Partition pixelLabelImageDatastore according to indices

Syntax
pximds2 = partitionByIndex(pximds,ind)

Description
pximds2 = partitionByIndex(pximds,ind) partitions a subset of observations in a pixel label
image datastore, pximds, into a new datastore, pximds2. The desired observations are specified by
indices, ind.

Input Arguments
pximds — Pixel label image datastore
pixelLabelImageDatastore

Pixel label image datastore, specified as a pixelLabelImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
pximds2 — Output datastore
pixelLabelImageDatastore object

Output datastore, returned as a pixelLabelImageDatastore object containing a subset of files
from pximds.

See Also
pixelLabelImageDatastore | readall | read | readByIndex

Introduced in R2018a

2 Objects

2-260



readByIndex
Read data specified by index from pixelLabelImageDatastore

Syntax
data = readByIndex(pximds,ind)
[data,info] = readByIndex(pximds,ind)

Description
data = readByIndex(pximds,ind) returns a subset of observations from a pixel label image
datastore, pximds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(pximds,ind) also returns information about the observations,
including metadata, in info.

Input Arguments
pximds — Pixel label image datastore
pixelLabelImageDatastore

Pixel label image datastore, specified as a pixelLabelImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
Filename Filename is a fully resolved path containing the path

string, name of the file, and file extension.
FileSize Total file size, in bytes. For MAT-files, FileSize is

the total number of key-value pairs in the file.

 readByIndex

2-261



See Also
pixelLabelImageDatastore | partitionByIndex | readall | read

Introduced in R2018a

2 Objects

2-262



anchorBoxLayer
(To be removed) Create anchor box layer for object detection

Note  will be removed in a future release. Use the ssdObjectDetector function to specify the
anchor boxes for training a SSD object detection network, instead.

Description
An anchor box layer stores anchor boxes for a feature map used in object detection networks.

Creation
Syntax
layer = anchorBoxLayer(anchorBoxes)
layer = anchorBoxLayer(anchorBoxes,Name,Value)

Description

layer = anchorBoxLayer(anchorBoxes) creates an anchor box layer, specifying the size of the
anchor boxes by using anchorBoxes. The anchorBoxes input sets the AnchorBoxes property.

layer = anchorBoxLayer(anchorBoxes,Name,Value) set properties of the anchor box layer by
using one or more name-value pair arguments. Enclose each property name in quotes.

For example, anchorBoxLayer(anchorBoxes,'Name','anchorboxlayer') creates an anchor
box layer with the name "anchorboxlayer" from anchor boxes specified by anchorBoxes.

Properties
AnchorBoxes — Size of anchor boxes
M-by-2 matrix

Size of anchor boxes, specified as an M-by-2 matrix of M anchor boxes. Each row of the matrix is of
the form [height width].

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

Examples

 anchorBoxLayer

2-263



Create Anchor Box Layer

Specify the size of four anchor boxes.

anchorBoxes = [50 50; 100 100; 50 100; 100 50];

Create an anchor box layer named "anchorboxlayer" and display the results.

layer = anchorBoxLayer(anchorBoxes,'Name','anchorboxlayer')

layer = 
  AnchorBoxLayer with properties:

           Name: 'anchorboxlayer'

   Hyperparameters
    AnchorBoxes: [4x2 double]

Compatibility Considerations
AnchorBoxLayer function will be removed
Not recommended starting in R2022a

AnchorBoxLayer will be removed in a future release. You can use the ssdObjectDetector
function to specify the anchor boxes for training a SSD object detection network, instead.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder™, you must first construct and train a deep
neural network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM®

GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

See Also
trainNetwork | trainSSDObjectDetector

Topics
“Getting Started with Object Detection Using Deep Learning”
“Getting Started with SSD Multibox Detection”
“Anchor Boxes for Object Detection”
“List of Deep Learning Layers” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Specify Layers of Convolutional Neural Network” (Deep Learning Toolbox)

2 Objects

2-264



Introduced in R2020a

 anchorBoxLayer

2-265



dicePixelClassificationLayer
Create pixel classification layer using generalized Dice loss for semantic segmentation

Description
A Dice pixel classification layer provides a categorical label for each image pixel or voxel using
generalized Dice loss.

The layer uses generalized Dice loss to alleviate the problem of class imbalance in semantic
segmentation problems. Generalized Dice loss controls the contribution that each class makes to the
loss by weighting classes by the inverse size of the expected region.

Creation

Syntax
layer = dicePixelClassificationLayer
layer = dicePixelClassificationLayer(Name,Value)

Description

layer = dicePixelClassificationLayer creates a Dice pixel classification output layer for
semantic image segmentation networks. The layer outputs the categorical label for each image pixel
or voxel processed by a CNN. The layer automatically ignores undefined pixel labels during training.

layer = dicePixelClassificationLayer(Name,Value) returns a Dice pixel classification
output layer using Name,Value pair arguments to set the optional Classes and Name properties. You
can specify multiple name-value pairs. Enclose each property name in quotes.

For example, dicePixelClassificationLayer('Name','pixclass') creates a Dice pixel
classification layer with the name 'pixclass'.

Properties
Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at
training time. If you specify the string array or cell array of character vectors str, then the software
sets the classes of the output layer to categorical(str,str).
Data Types: char | categorical | string | cell

OutputSize — Output size
'auto' (default)

This property is read-only.

2 Objects

2-266



The output size of the layer. The value is 'auto' prior to training, and is specified as a numeric value
at training time.

LossFunction — Loss function
'generalizedDiceLoss' (default)

This property is read-only.

Loss function used for training, specified as 'generalizedDiceLoss'.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Create 2-D Semantic Segmentation Network with Dice Pixel Classification Layer

Predict the categorical label of every pixel in an input image using a generalized Dice loss function.

layers = [
      imageInputLayer([480 640 3])
      convolution2dLayer(3,16,'Stride',2,'Padding',1)
      reluLayer
      transposedConv2dLayer(2,4,'Stride',2)
      softmaxLayer
      dicePixelClassificationLayer
      ]  

layers = 
  6x1 Layer array with layers:

     1   ''   Image Input                       480x640x3 images with 'zerocenter' normalization

 dicePixelClassificationLayer

2-267



     2   ''   Convolution                       16 3x3 convolutions with stride [2  2] and padding [1  1  1  1]
     3   ''   ReLU                              ReLU
     4   ''   Transposed Convolution            4 2x2 transposed convolutions with stride [2  2] and cropping [0  0  0  0]
     5   ''   Softmax                           softmax
     6   ''   Dice Pixel Classification Layer   Generalized Dice loss 

More About
Dice Loss

The Dice loss function is based on the Sørensen-Dice similarity coefficient for measuring overlap
between two segmented images.

The generalized Dice loss function L used by dicePixelClassificationLayer for the loss
between one image Y and the corresponding ground truth T is given by:

L = 1−
2∑k = 1

K wk∑m = 1
M YkmTkm

∑k = 1
K wk∑m = 1

M Ykm
2 + Tkm

2

K is the number of classes, M is the number of elements along the first two dimensions of Y, and wk is
a class specific weighting factor that controls the contribution each class makes to the loss. This
weighting helps counter the influence of larger regions on the Dice score, making it easier for the
network to learn how to segment smaller regions. wk is typically the inverse area of the expected
region:

wk = 1

∑m = 1
M Tkm

2

There are several variations of generalized Dice Loss functions [1], [2]. The function used in
dicePixelClassificationLayer has squared terms to ensure that the derivative is 0 when the
prediction matches the ground truth [3].

References
[1] Crum, William R., Oscar Camara, and Derek LG Hill. "Generalized overlap measures for evaluation

and validation in medical image analysis." IEEE Transactions on Medical Imaging. 25.11,
2006, pp. 1451–1461.

[2] Sudre, Carole H., et al. "Generalised Dice overlap as a deep learning loss function for highly
unbalanced segmentations." Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support. Springer, Cham, 2017, pp. 240–248.

[3] Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation". Fourth International Conference on
3D Vision (3DV). Stanford, CA, 2016: pp. 565–571.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

2 Objects

2-268



To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

See Also
trainNetwork | semanticseg | pixelLabelImageDatastore | pixelLabelDatastore |
fcnLayers | segnetLayers | pixelClassificationLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Getting Started with Semantic Segmentation Using Deep Learning”
“List of Deep Learning Layers” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Specify Layers of Convolutional Neural Network” (Deep Learning Toolbox)

Introduced in R2019b

 dicePixelClassificationLayer

2-269



focalLossLayer
Create focal loss layer using focal loss function

Description
A focal loss layer predicts object classes using focal loss. Add the focal loss layer to train an object
detection, semantic segmentation, or a classification network when imbalance exists between
foreground and background classes. To compensate for class imbalance, the focal loss function
multiplies the cross entropy function with a modulating factor that increases the sensitivity of the
network to misclassified observations.

Creation

Syntax
layer = focalLossLayer
layer = focalLossLayer(Name,Value)

Description

layer = focalLossLayer creates a focal loss layer for deep learning networks. For information on
how to use focal loss layer in an object detection network, see “Create SSD Object Detection
Network”.

layer = focalLossLayer(Name,Value) sets properties of the focal loss layer by using one or
more name-value pair arguments. Enclose each property name in quotes.

For example, focalLossLayer('Name','focalloss') creates a focal loss layer with the name
'focalloss' and the specified balancing and focusing parameters.

Properties
Alpha — Balancing parameter
0.25 (default) | positive real number

Balancing parameter of the focal loss function, specified as a positive real number. The Alpha value
scales the loss function linearly and is typically set to 0.25. If you decrease Alpha, increase Gamma.

Gamma — Focusing parameter
2.0 (default) | positive real number

Focusing parameter of the focal loss function, specified as a positive real number. Increasing the
value of Gamma increases the sensitivity of the network to misclassified observations.

Classes — Object classes to detect
'auto' (default) | string vector | categorical vector | cell array of character vectors

2 Objects

2-270



Object classes that the network is trained to detect, specified as a string vector, categorical vector,
cell array of character vectors, or 'auto'. When you set Classes to 'auto', the classes are
automatically set at training time. When you specify a string vector or cell array of character vectors,
then the elements of Classes are sorted according to the output of the categories function.
Data Types: string | categorical | cell | char

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

Examples

Create Focal Loss Layer

Specify class names.

classes = ["Vehicle","Background"];

Specify the balancing paramete, and focusing parameter of the focal loss function. Create a focal loss
layer named "focallosslayer" for the two classes, displaying results.

layer = focalLossLayer('Classes',classes,'Name','focallosslayer')

layer = 
  FocalLossLayer with properties:

            Name: 'focallosslayer'

   Hyperparameters
           Gamma: 2
           Alpha: 0.2500
         Classes: [2x1 categorical]
    LossFunction: 'focalLoss'

Create 2-D Semantic Segmentation Network with Focal Loss Layer

Create a DeepLab v3+ network based on ResNet-18.

imageSize = [480 640 3];
numClasses = 5;
network = 'resnet18';
lgraph = deeplabv3plusLayers(imageSize,numClasses,network,'DownsamplingFactor',16)

lgraph = 
  LayerGraph with properties:

         Layers: [100x1 nnet.cnn.layer.Layer]

 focalLossLayer

2-271



    Connections: [113x2 table]
     InputNames: {'data'}
    OutputNames: {'classification'}

Display the output layer of the network. The output layer of the DeepLab v3+ network is a Pixel
Classification Layer that uses cross-entropy loss to predict the categorical label for every pixel
in an input 2-D image.

lgraph.Layers(end)

ans = 
  PixelClassificationLayer with properties:

            Name: 'classification'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Replace the output Pixel Classification Layer with the Focal Loss Layer to handle
imbalanced classes in data.

layer = focalLossLayer("Name","focalloss");
lgraph = replaceLayer(lgraph,"classification",layer);

Display the network.

analyzeNetwork(lgraph);

Create 3-D Semantic Segmentation Network with Focal Loss Layer

Create a 3-D U-Net network for semantic segmentation by using unet3dLayers function. Set the
encoder-decoder depth to 2 and specify the number of output channels for the first convolution layer
as 16.

imageSize = [128 128 128 3];
numClasses = 5;
lgraph = unet3dLayers(imageSize,numClasses,'EncoderDepth',2,...
                     'NumFirstEncoderFilters',16);
figure
plot(lgraph)

2 Objects

2-272



Create a focal loss layer and replace the Segmentation-Layer in the network with the focal loss
layer. The layer predicts the categorical label for every voxel in an input 3-D volume.

layer = focalLossLayer("Name","focalloss");
lgraph = replaceLayer(lgraph,"Segmentation-Layer",layer)

lgraph = 
  LayerGraph with properties:

         Layers: [40x1 nnet.cnn.layer.Layer]
    Connections: [41x2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'focalloss'}

Display the network.

analyzeNetwork(lgraph);

More About
Focal Loss

The focal loss function is based on cross-entropy loss. Focal loss compensates for class imbalance by
using a modulating factor that emphasizes hard negatives during training.

 focalLossLayer

2-273



The focal loss function, L, used by the focalLossLayer object for the loss between one image Y and
the corresponding ground truth T is given by:

L = − 1
M ∑

m = 1

M
∑

k = 1

K
Tmkα 1− Ymk

γln Ymk

K is the number of classes. M is the number of observations, which is typically the number of
elements along the first two dimensions of Y multiplied by the number of anchor boxes. The function
used by the focalLossLayer object ensures that the input to the natural logarithm is greater than
0.

References
[1] Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. "Focal Loss for Dense

Object Detection." In 2017 IEEE® International Conference on Computer Vision (ICCV), 2999–
3007. Venice: IEEE, 2017. https://doi.org/10.1109/ICCV.2017.324.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

See Also
trainNetwork | trainSSDObjectDetector | focalCrossEntropy

Topics
“Getting Started with Object Detection Using Deep Learning”
“Getting Started with SSD Multibox Detection”
“List of Deep Learning Layers” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Specify Layers of Convolutional Neural Network” (Deep Learning Toolbox)

Introduced in R2020a

2 Objects

2-274



pixelClassificationLayer
Create pixel classification layer for semantic segmentation

Description
A pixel classification layer provides a categorical label for each image pixel or voxel.

Creation

Syntax
layer = pixelClassificationLayer
layer = pixelClassificationLayer(Name,Value)

Description

layer = pixelClassificationLayer creates a pixel classification output layer for semantic
image segmentation networks. The layer outputs the categorical label for each image pixel or voxel
processed by a CNN. The layer automatically ignores undefined pixel labels during training.

layer = pixelClassificationLayer(Name,Value) returns a pixel classification output layer
using Name,Value pair arguments to set the optional Classes, ClassWeights, and Name properties
by using name-value pairs. You can specify multiple name-value pairs. Enclose each property name in
quotes.

For example, pixelClassificationLayer('Name','pixclass') creates a pixel classification
layer with the name 'pixclass'.

Properties
Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at
training time. If you specify the string array or cell array of character vectors str, then the software
sets the classes of the output layer to categorical(str,str).
Data Types: char | categorical | string | cell

ClassWeights — Class weights
'none' (default) | vector of real scalar

Class weights, specified as 'none' or as a vector of real scalar. The elements of the vector
correspond to the classes in Classes. If you specify ClassWeights, then you must specify
Classes.

Use class weighting to balance classes when there are underrepresented classes in the training data.

 pixelClassificationLayer

2-275



OutputSize — Output size
'auto' (default)

This property is read-only.

The output size of the layer. The value is 'auto' prior to training, and is specified as a numeric value
at training time.

LossFunction — Loss function
'crossentropyex' (default)

This property is read-only.

Loss function used for training, specified as 'crossentropyex'.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Use Pixel Classification Layer to Create Semantic Segmentation Network

Predict the categorical label of every pixel in an input image.

layers = [
         imageInputLayer([32 32 3])
         convolution2dLayer(3,16,'Stride',2,'Padding',1)
         reluLayer
         transposedConv2dLayer(3,1,'Stride',2,'Cropping',1)
         softmaxLayer
         pixelClassificationLayer
      ]

2 Objects

2-276



layers = 
  6x1 Layer array with layers:

     1   ''   Image Input                  32x32x3 images with 'zerocenter' normalization
     2   ''   Convolution                  16 3x3 convolutions with stride [2  2] and padding [1  1  1  1]
     3   ''   ReLU                         ReLU
     4   ''   Transposed Convolution       1 3x3 transposed convolutions with stride [2  2] and cropping [1  1  1  1]
     5   ''   Softmax                      softmax
     6   ''   Pixel Classification Layer   Cross-entropy loss 

Use Weighting to Balance Classes in Training Data

Balance classes using inverse class frequency weighting when some classes are underrepresented in
the training data. First, count class frequencies over the training data using pixelLabelDatastore.
Then, set the 'ClassWeights' in pixelClassificationLayer to the computed inverse class frequencies.

Set the location of image and pixel label data.

  dataDir = fullfile(toolboxdir('vision'),'visiondata');
  imDir = fullfile(dataDir,'building');
  pxDir = fullfile(dataDir,'buildingPixelLabels');

Create a pixel label image datastore using the ground truth images in imds and the pixel labeled
images in pxds.

  imds = imageDatastore(imDir);
  classNames = ["sky" "grass" "building" "sidewalk"];
  pixelLabelID = [1 2 3 4];
  pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);     

Tabulate class distribution in dataset.

  tbl = countEachLabel(pxds)

tbl=4×3 table
        Name        PixelCount    ImagePixelCount
    ____________    __________    _______________

    {'sky'     }    3.1485e+05       1.536e+06   
    {'grass'   }    1.5979e+05       1.536e+06   
    {'building'}    1.0312e+06       1.536e+06   
    {'sidewalk'}         25313       9.216e+05   

Calculate inverse frequency class weights.

  totalNumberOfPixels = sum(tbl.PixelCount);
  frequency = tbl.PixelCount / totalNumberOfPixels;
  inverseFrequency = 1./frequency

inverseFrequency = 4×1

    4.8632
    9.5827
    1.4848

 pixelClassificationLayer

2-277



   60.4900

Set 'ClassWeights' to the inverse class frequencies.

  layer = pixelClassificationLayer(...
      'Classes',tbl.Name,'ClassWeights',inverseFrequency)

layer = 
  PixelClassificationLayer with properties:

            Name: ''
         Classes: [sky    grass    building    sidewalk]
    ClassWeights: [4x1 double]
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

See Also
Objects
layerGraph | DAGNetwork | dicePixelClassificationLayer

Functions
fcnLayers | segnetLayers | unetLayers | trainNetwork | semanticseg |
deeplabv3plusLayers | evaluateSemanticSegmentation

Topics
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Specify Layers of Convolutional Neural Network” (Deep Learning Toolbox)

Introduced in R2017b

2 Objects

2-278



rcnnBoxRegressionLayer
Box regression layer for Fast and Faster R-CNN

Description
A box regression layer refines bounding box locations by using a smooth L1 loss function. Use this
layer to create a Fast or Faster R-CNN object detection network.

Creation

Syntax
layer = rcnnBoxRegressionLayer
layer = rcnnBoxRegressionLayer('Name',Name)

Description

layer = rcnnBoxRegressionLayer creates a box regression layer for a Fast or Faster R-CNN
object detection network.

layer = rcnnBoxRegressionLayer('Name',Name) creates a box regression layer and sets the
optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.

 rcnnBoxRegressionLayer

2-279



Data Types: cell

Examples

Create R-CNN Box Regression Layer

Create an R-CNN box regression layer with the name 'rcnn_box_reg'.

rcnnBoxRegression = rcnnBoxRegressionLayer('Name','rcnn_box_reg');

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

See Also
trainFasterRCNNObjectDetector | trainFastRCNNObjectDetector | regressionLayer

Topics
“Create Fast R-CNN Object Detection Network”
“Create Faster R-CNN Object Detection Network”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

2 Objects

2-280



regionProposalLayer
Region proposal layer for Faster R-CNN

Description
A region proposal layer outputs bounding boxes around potential objects in an image as part of the
region proposal network (RPN) within Faster R-CNN. These outputs are further refined by additional
layers within Faster R-CNN to produce the final object detection results.

There are two inputs to this layer:

• 'scores' — The classification scores produced by the RPN classification branch
• 'boxDeltas' — The bounding box deltas produced by the RPN regression branch

Use the input names when connecting or disconnecting the region proposal layer to other layers
using connectLayers or disconnectLayers (requires Deep Learning Toolbox).

Creation

Syntax
layer = regionProposalLayer(anchorBoxes)
layer = regionProposalLayer(anchorBoxes,'Name',Name)

Description

layer = regionProposalLayer(anchorBoxes) creates a region proposal layer for building
Faster R-CNN object detection networks, and sets the AnchorBoxes property.

layer = regionProposalLayer(anchorBoxes,'Name',Name) creates a region proposal layer
and sets the optional Name property.

Properties
AnchorBoxes — Anchor boxes
M-by-2 matrix

Anchor boxes, specified as an M-by-2 matrix defining the [height width] of M anchor boxes.

Anchor boxes are predefined bounding box templates of fixed size. The size of each anchor box is
typically determined based on a priori knowledge of the scale and aspect ratio of objects in the
training dataset. An RPN network is trained to predict the translation and rescaling needed to align
the anchor boxes with the ground truth bounding boxes. [1]

Name — Layer name
'' (default) | character vector | string scalar

 regionProposalLayer

2-281



Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames — Input names
{'scores' 'boxDeltas'} (default)

Input names of the layer. This layer has two inputs, named 'scores' and 'boxDeltas'.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Region Proposal Layer

Define three square anchor boxes for the region proposal layer.

anchorBoxes = [
    16 16
    64 64
    128 128
    ];

Create a region proposal layer with the name 'region_proposal'.

regionProposal = regionProposalLayer(anchorBoxes,'Name','region_proposal');

2 Objects

2-282



References
[1] Ren, S., K. He, R. Girshick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks." Advances in Neural Information Processing Systems. Vol. 28,
2015.

See Also
trainFasterRCNNObjectDetector | layerGraph | connectLayers | removeLayers

Topics
“Create Faster R-CNN Object Detection Network”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

 regionProposalLayer

2-283



roiAlignLayer
Non-quantized ROI pooling layer for Mask-CNN

Description
An ROI align layer outputs fixed size feature maps for every rectangular ROI within an input feature
map. Use this layer to create a Mask R-CNN network.

Given an input feature map of size [H W C N], where C is the number of channels and N is the
number of observations, the output feature map size is [h w C sum(M)], where h and w are the
specified output size. M is a vector of length N and M(i) is the number of ROIs associated with the i-th
input feature map.

There are two inputs to this layer:

• 'in' — The input feature map
• 'roi' — A list of ROIs to pool

Use the input names when connecting or disconnecting the ROI align layer to other layers using
connectLayers or disconnectLayers (requires Deep Learning Toolbox).

Creation

Syntax
layer = roiAlignLayer(outputSize)
layer = roiAlignLayer(outputSize,Name,Value)

Description

layer = roiAlignLayer(outputSize) creates an ROI align layer with pooled output size
outputSize. The outputSize input sets the OutputSize property.

layer = roiAlignLayer(outputSize,Name,Value) set properties of the ROI align layer by
using one or more name-value pair arguments. Enclose each property name in quotes.

For example, roiAlignLayer([7 7],'Name','roialignlayer') creates an ROI align layer with
a pooled output size of 7-by-7 pixels and name 'roialignlayer'.

Properties
OutputSize — Pooled output size
vector of two positive integers

Pooled output size, specified as a vector of two positive integers [h w], where h is the height and w is
the width.
Data Types: double

2 Objects

2-284



ROIScale — Scale of input feature map to input image
1 (default) | positive number

Scale of the input feature map to the input image, specified as a positive number.
Data Types: double

SamplingRatio — Number of samples in each pooled bin
'auto' (default) | row vector of two positive integers

Number of samples in each pooled bin, specified as 'auto' or a row vector of two positive integers.
The two elements are the number of vertical and horizontal samples, respectively.

If you do not specify the sampling ratio, then the number of vertical samples has the default value
ceil(roiHeight/outputHeight). Likewise, the number of horizontal samples has the default
value ceil(roiWidth/outputWidth).
Data Types: double | char

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer accepts two inputs.
Data Types: double

InputNames — Input names
{'in' 'roi'} (default)

Input names of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

 roiAlignLayer

2-285



Examples

Create ROI Align Layer

Specify the pooled output size.

outputSize = [7 7];

Create an ROI align layer named 'roialign'.

layer = roiAlignLayer(outputSize,'Name','roialign')

layer = 
  ROIAlignLayer with properties:

             Name: 'roialign'
        NumInputs: 2
       InputNames: {'in'  'roi'}
       OutputSize: [7 7]

   Hyperparameters
         ROIScale: 1
    SamplingRatio: 'auto'

More About
ROI Align Layer

An ROI align layer outputs fixed size feature maps for every rectangular ROI within an input feature
map. The layer first partitions an ROI into fixed sized bins of size OutputSize without quantizing the
grid points. Each bin is further sampled at SamplingRatio locations. The value at each sampled
point is inferred using bilinear interpolation. The average of the sampled values is returned as the
output value of each pooled bin.

See Also
roiMaxPooling2dLayer | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector

Topics
“Getting Started with Object Detection Using Deep Learning”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2020b

2 Objects

2-286



roiInputLayer
ROI input layer for Fast R-CNN

Description
An ROI input layer inputs images to a Fast R-CNN object detection network.

Creation

Syntax
layer = roiInputLayer
layer = roiInputLayer('Name',Name)

Description

layer = roiInputLayer creates an ROI input layer.

layer = roiInputLayer('Name',Name) creates an ROI input layer and sets the optional Name
property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

 roiInputLayer

2-287



Examples

Connect ROI Input Layer to ROI Max Pooling Layer

Create an ROI input layer.

roiInput = roiInputLayer('Name','roi_input');

Create an ROI max pooling layer with output size [4 4].

outputSize = [4 4];
roiPool = roiMaxPooling2dLayer(outputSize,'Name','roi_pool');

Add the layers to a LayerGraph.

lgraph = layerGraph;
lgraph = addLayers(lgraph,roiInput);
lgraph = addLayers(lgraph,roiPool);

Specify that the output of the ROI input layer is the 'roi' input of the ROI max pooling layer.

lgraph = connectLayers(lgraph,'roi_input','roi_pool/roi');
plot(lgraph)

2 Objects

2-288



See Also
trainFastRCNNObjectDetector | roiMaxPooling2dLayer | imageInputLayer

Topics
“Create Fast R-CNN Object Detection Network”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

 roiInputLayer

2-289



roiMaxPooling2dLayer
Neural network layer used to output fixed-size feature maps for rectangular ROIs

Description
An ROI max pooling layer outputs fixed size feature maps for every rectangular ROI within the input
feature map. Use this layer to create a Fast or Faster R-CNN object detection network.

Given an input feature map of size [H W C N], where C is the number of channels and N is the
number of observations, the output feature map size is [height width C sum(M)], where height and
width are the output size. M is a vector of length N and M(i) is the number of ROIs associated with
the i-th input feature map.

There are two inputs to this layer:

• 'in' — The input feature map that will be cropped
• 'roi' — A list of ROIs to pool

Use the input names when connecting or disconnecting the ROI max pooling layer to other layers
using connectLayers or disconnectLayers (requires Deep Learning Toolbox).

Creation

Syntax
layer = roiMaxPooling2dLayer(outputSize)
layer = roiMaxPooling2dLayer(outputSize,'Name',Name)

Description

layer = roiMaxPooling2dLayer(outputSize) creates a max pooling layer for ROIs and sets
the OutputSize property.

layer = roiMaxPooling2dLayer(outputSize,'Name',Name) creates a max pooling layer for
ROIs and sets the optional Name property. To create a network containing an ROI max pooling layer,
you must specify a layer name.

Properties
OutputSize — Pooled output size
two-element vector of positive integers

Pooled output size, specified as a two-element vector of positive integers of the form [height
width].

Name — Layer name
'' (default) | character vector | string scalar

2 Objects

2-290



Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames — Input names
{'in' 'roi'} (default)

Input names of the layer. This layer has two inputs, named 'in' and 'roi'.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Connect ROI Input Layer to ROI Max Pooling Layer

Create an ROI input layer.

roiInput = roiInputLayer('Name','roi_input');

Create an ROI max pooling layer with output size [4 4].

outputSize = [4 4];
roiPool = roiMaxPooling2dLayer(outputSize,'Name','roi_pool');

Add the layers to a LayerGraph.

lgraph = layerGraph;
lgraph = addLayers(lgraph,roiInput);
lgraph = addLayers(lgraph,roiPool);

 roiMaxPooling2dLayer

2-291



Specify that the output of the ROI input layer is the 'roi' input of the ROI max pooling layer.

lgraph = connectLayers(lgraph,'roi_input','roi_pool/roi');
plot(lgraph)

See Also
trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector | roiInputLayer |
maxPooling2dLayer | layerGraph | connectLayers | removeLayers

Topics
“Create Fast R-CNN Object Detection Network”
“Create Faster R-CNN Object Detection Network”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

2 Objects

2-292



rpnClassificationLayer
Classification layer for region proposal networks (RPNs)

Description
A region proposal network (RPN) classification layer classifies image regions as either object or
background by using a cross entropy loss function. Use this layer to create a Faster R-CNN object
detection network.

Creation

Syntax
layer = rpnClassificationLayer
layer = rpnClassificationLayer('Name',Name)

Description

layer = rpnClassificationLayer creates a two-class classification layer for a Faster R-CNN
object detection network.

layer = rpnClassificationLayer('Name',Name) creates a two-class classification layer and
sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

 rpnClassificationLayer

2-293



Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Create Classification Branch of RPN

Create an RPN softmax layer with the name 'rpn_softmax'.

rpnSoftmax = rpnSoftmaxLayer('Name','rpn_softmax')

rpnSoftmax = 
  RPNSoftmaxLayer with properties:

    Name: 'rpn_softmax'

Create an RPN classification layer with the name 'rpn_cls'.

rpnClassification = rpnClassificationLayer('Name','rpn_cls')

rpnClassification = 
  RPNClassificationLayer with properties:

    Name: 'rpn_cls'

Add the RPN softmax and RPN classification layers to a Layer array, to form the classification branch
of an RPN.

numAnchors = 3;
rpnClassLayers = [
    convolution2dLayer(1,numAnchors*2,'Name','conv1x1_box_cls')
    rpnSoftmax
    rpnClassification
    ]

rpnClassLayers = 
  3x1 Layer array with layers:

     1   'conv1x1_box_cls'   Convolution                 6 1x1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'rpn_softmax'       RPN Softmax                 rpn softmax
     3   'rpn_cls'           RPN Classification Output   cross-entropy loss with 'object' and 'background' classes

See Also
trainFasterRCNNObjectDetector | classificationLayer | rpnSoftmaxLayer

Topics
“Create Faster R-CNN Object Detection Network”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

2 Objects

2-294



Introduced in R2018b

 rpnClassificationLayer

2-295



rpnSoftmaxLayer
Softmax layer for region proposal network (RPN)

Description
A region proposal network (RPN) softmax layer applies a softmax activation function to the input. Use
this layer to create a Faster R-CNN object detection network.

Creation

Syntax
layer = rpnSoftmaxLayer
layer = rpnSoftmaxLayer('Name',Name)

Description

layer = rpnSoftmaxLayer creates a softmax layer for a Faster R-CNN object detection network.

layer = rpnSoftmaxLayer('Name',Name) creates a softmax layer and sets the optional Name
property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.

2 Objects

2-296



Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Classification Branch of RPN

Create an RPN softmax layer with the name 'rpn_softmax'.

rpnSoftmax = rpnSoftmaxLayer('Name','rpn_softmax')

rpnSoftmax = 
  RPNSoftmaxLayer with properties:

    Name: 'rpn_softmax'

Create an RPN classification layer with the name 'rpn_cls'.

rpnClassification = rpnClassificationLayer('Name','rpn_cls')

rpnClassification = 
  RPNClassificationLayer with properties:

    Name: 'rpn_cls'

Add the RPN softmax and RPN classification layers to a Layer array, to form the classification branch
of an RPN.

numAnchors = 3;
rpnClassLayers = [
    convolution2dLayer(1,numAnchors*2,'Name','conv1x1_box_cls')
    rpnSoftmax
    rpnClassification
    ]

rpnClassLayers = 
  3x1 Layer array with layers:

 rpnSoftmaxLayer

2-297



     1   'conv1x1_box_cls'   Convolution                 6 1x1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'rpn_softmax'       RPN Softmax                 rpn softmax
     3   'rpn_cls'           RPN Classification Output   cross-entropy loss with 'object' and 'background' classes

See Also
trainFasterRCNNObjectDetector | rpnClassificationLayer | softmaxLayer

Topics
“Create Faster R-CNN Object Detection Network”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

2 Objects

2-298



ssdMergeLayer
Create SSD merge layer for object detection

Description
An SSD merge layer merges the outputs of feature maps for subsequent regression and classification
loss computation. Use the merged feature maps to compute focal loss for classification and smooth L1
loss for regression.

Creation

Syntax
layer = ssdMergeLayer(NumChannels,NumInputs)
layer = ssdMergeLayer(NumChannels,NumInputs,'Name',Name)

Description

layer = ssdMergeLayer(NumChannels,NumInputs) creates an SSD merge layer, specifying the
NumChannels and NumInputs properties as the number of feature map channels and number of
inputs to merge, respectively.

layer = ssdMergeLayer(NumChannels,NumInputs,'Name',Name) creates an SSD merge layer
and sets the optional Name property using a name-value pair. Enclose the property name in single
quotes.

For example, ssdMergeLayer(4,6,'Name','sm1') creates an SSD merge layer with the name
'sm1' that merges four dimensions and six feature maps.

Properties
NumChannels — Number of feature map channels
positive integer

Number of feature map channels per anchor box, specified as a positive integer. For regression
problems, NumChannels is 4 (for x, y, w, and h). For classification problems, NumChannels equals
the number of classes that are being detected plus one for the background class.

NumInputs — Number of inputs to merge
positive integer

Number of inputs to merge, specified as a positive integer.

Name — Layer name
'' (default) | character vector | string scalar

 ssdMergeLayer

2-299



Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

Examples

Create SSD Merge Layer for Regression

Specify the number of feature map channels per anchor box. Regression merges four channels.

numChannels = 4;

Specify the number of inputs to merge.

numInputs = 6;

Create an SSD merge layer named regressionMergeLayer.

layer = ssdMergeLayer(numChannels,numInputs,'Name','regressionMergeLayer')

layer = 
  SSDMergeLayer with properties:

           Name: 'regressionMergeLayer'
    NumChannels: 4
      NumInputs: 6

Setup SSD Merge Layer For Classification

Specify the number of classes, e.g. person and vehicle.

numClasses = 2

numClasses = 2

Specify the number of inputs.

numInputs = 6

numInputs = 6

Create an SSD merge layer for classification. The number of channels equals the number of classes +
1 for the background class.

numChannels = numClasses + 1;
clsMergeLayer = ssdMergeLayer(numChannels, numInputs,'Name','clsMergeLayer')

clsMergeLayer = 
  SSDMergeLayer with properties:

           Name: 'clsMergeLayer'

2 Objects

2-300



    NumChannels: 3
      NumInputs: 6

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), or the NVIDIA TensorRT high performance inference library.

See Also
trainNetwork | trainSSDObjectDetector

Topics
“Getting Started with Object Detection Using Deep Learning”
“Getting Started with SSD Multibox Detection”
“List of Deep Learning Layers” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Specify Layers of Convolutional Neural Network” (Deep Learning Toolbox)

Introduced in R2020a

 ssdMergeLayer

2-301



yolov2OutputLayer
Create output layer for YOLO v2 object detection network

Description
The yolov2OutputLayer function creates a YOLOv2OutputLayer object, which represents the
output layer for you only look once version 2 (YOLO v2) object detection network. The output layer
provides the refined bounding box locations of the target objects.

Creation

Syntax
layer = yolov2OutputLayer(anchorBoxes)
layer = yolov2OutputLayer(anchorBoxes,Name,Value)

Description

layer = yolov2OutputLayer(anchorBoxes) creates a YOLOv2OutputLayer object, layer,
which represents the output layer for YOLO v2 object detection network. The layer outputs the
refined bounding box locations that are predicted using a predefined set of anchor boxes specified at
the input.

layer = yolov2OutputLayer(anchorBoxes,Name,Value) sets the additional properties using
name-value pairs and the input from the preceding syntax. Enclose each property name in single
quotes. For example, yolov2OutputLayer('Name','yolo_Out') creates an output layer with the
name 'yolo_Out'.

Input Arguments

anchorBoxes — Set of anchor boxes
M-by-2 matrix

Set of anchor boxes, specified as an M-by-2 matrix, where each row is of the form [height width]. The
matrix defines the height and the width of M number of anchor boxes. This input sets the
AnchorBoxes property of the output layer. You can use the clustering approach for estimating
anchor boxes from the training data. For more information, see “Estimate Anchor Boxes From
Training Data”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Properties
Name — Layer name
'' (default) | character vector | string scalar

2 Objects

2-302



Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.
Data Types: char | string

LossFunction — Loss function
'mean-squared-error' (default)

This property is read-only.

Loss function, set as 'mean-squared-error'. For more information about the loss function, see
“Loss Function for Bounding Box Refinement” on page 2-305.

AnchorBoxes — Set of anchor boxes
M-by-2 matrix

This property is read-only.

Set of anchor boxes used for training, specified as a M-by-2 matrix defining the width and the height
of M number of anchor boxes. This property is set by the input anchorBoxes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LossFactors — Weights in the loss function
[5 1 1 1] (default) | 1-by-4 vector

This property is read-only.

Weights in the loss function, specified as a 1-by-4 vector of form [K1 K2 K3 K4]. Weights increase the
stability of the network model by penalizing incorrect bounding box predictions and false
classifications. For more information about the weights in loss the function, see “Loss Function for
Bounding Box Refinement” on page 2-305.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. Use this name-value pair to specify the names of the object classes in the input
training data.

If the value is set to 'auto', then the software automatically sets the classes at training time. If you
specify the string array or cell array of character vectors str, then the software sets the classes of
the output layer to categorical(str). The default value is 'auto'.
Data Types: char | string | cell | categorical

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

 yolov2OutputLayer

2-303



InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Create YOLO v2 Output Layer

Create a YOLO v2 output layer with two anchor boxes.

Define the height and the width of the anchor boxes.

anchorBoxes = [16 16;32 32];

Specify the names of the object classes in the training data.

classNames = {'Vehicle','Person'};

Generate a YOLO v2 output layer with the name "yolo_Out".

layer = yolov2OutputLayer(anchorBoxes,'Name','yolo_Out','Classes',classNames);

Inspect the properties of the YOLO v2 output layer.

layer

layer = 
  YOLOv2OutputLayer with properties:

            Name: 'yolo_Out'

   Hyperparameters
         Classes: [2x1 categorical]
    LossFunction: 'mean-squared-error'
     AnchorBoxes: [2x2 double]
     LossFactors: [5 1 1 1]

You can read the values for Classes property by using dot notation layer.Classes. The function
stores the class names as a categorical array.

layer.Classes

ans = 2x1 categorical
     Vehicle 
     Person 

2 Objects

2-304



More About
Loss Function for Bounding Box Refinement

During training, the output layer of YOLO v2 network predicts refined bounding box locations by
optimizing the mean squared error loss between predicted bounding boxes and the ground truth. The
loss function is defined as

K1 ∑
i = 0

S2

∑
j = 0

B
1i j

ob j xi− x i
2 + yi− y i

2

+ K1 ∑
i = 0

S2

∑
j = 0

B
1i j

ob j wi− w i
2 + hi− h i

2

+K2 ∑
i = 0

S2

∑
j = 0

B
1i j

ob j Ci− C i
2

+K3 ∑
i = 0

S2

∑
j = 0

B
1i j

noob j Ci− C i
2

+ K4 ∑
i = 0

S2

1i
ob j ∑

c ∈ classes
pi c − p i c 2

where:

• S is the number of grid cells
• B is the number of bounding boxes in each grid cell.
• 1i j

ob j is 1 if the jth bounding box in grid cell i is responsible for detecting the object. Otherwise it is
set to 0. A grid cell i is responsible for detecting the object, if the overlap between the ground
truth and a bounding box in that grid cell is greater than or equal to 0.6.

• 1i j
noob j is 1 if the jth bounding box in grid cell i does not contain any object. Otherwise it is set to 0.

• 1i
ob j is 1 if an object is detected in grid cell i. Otherwise it is set to 0.

• K1, K2, K3, and K4 are the weights. To adjust the weights, modify the LossFactors property.

The loss function can be split into three parts:

• Localization loss

The first and second terms in the loss function comprise the localization loss. It measures error
between the predicted bounding box and the ground truth. The parameters for computing the
localization loss include the position, size of the predicted bounding box, and the ground truth.
The parameters are defined as follows.

• xi, yi , is the center of the jth bounding box relative to grid cell i.
• x i, y i , is the center of the ground truth relative to grid cell i.
• wi and hi is the width and the height of the jth bounding box in grid cell i, respectively. The size

of the predicted bounding box is specified relative to the input image size.

 yolov2OutputLayer

2-305



• w i and h i is the width and the height of the ground truth in grid cell i, respectively.

• K1 is the weight for localization loss. Increase this value to increase the weightage for
bounding box prediction errors.

• Confidence loss

The third and fourth terms in the loss function comprise the confidence loss. The third term
measures the objectness (confidence score) error when an object is detected in the jth bounding
box of grid cell i. The fourth term measures the objectness error when no object is detected in the
jth bounding box of grid cell i. The parameters for computing the confidence loss are defined as
follows.

• Ci is the confidence score of the jth bounding box in grid cell i.
• Ĉi is the confidence score of the ground truth in grid cell i.
• K2 is the weight for objectness error, when an object is detected in the predicted bounding box.

You can adjust the value of K2 to weigh confidence scores from grid cells that contain objects.
• K3 is the weight for objectness error, when an object is not detected in the predicted bounding

box. You can adjust the value of K3 to weigh confidence scores from grid cells that do not
contain objects.

The confidence loss can cause the training to diverge when the number of grid cells that do not
contain objects is more than the number of grid cells that contain objects. To remedy this,
increase the value for K2 and decrease the value for K3.

• Classification loss

The fifth term in the loss function comprises the classification loss. For example, suppose that an
object is detected in the predicted bounding box contained in grid cell i. Then, the classification
loss measures the squared error between the class conditional probabilities for each class in grid
cell i. The parameters for computing the classification loss are defined as follows.

• pi (c) is the estimated conditional class probability for object class c in grid cell i.
• p i c  is the actual conditional class probability for object class c in grid cell i.

• K4 is the weight for classification error when an object is detected in the grid cell. Increase this
value to increase the weightage for classification loss.

Tips
To improve prediction accuracy, you can:

• Train the network with more number of images. You can expand the training dataset through data
augmentation. For information on how to apply data augmentation for training dataset, see
“Preprocess Images for Deep Learning” (Deep Learning Toolbox).

• Perform multiscale training by using the trainYOLOv2ObjectDetector function. To do so,
specify the 'TrainingImageSize' argument of trainYOLOv2ObjectDetector function for
training the network.

• Choose anchor boxes appropriate to the dataset for training the network. You can use the
estimateAnchorBoxes function to compute anchor boxes directly from the training data.

2 Objects

2-306



References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-Time Object

Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. Honolulu, HI: CVPR,
2017.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

See Also
yolov2Layers | spaceToDepthLayer | yolov2ObjectDetector |
trainYOLOv2ObjectDetector

Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using YOLO v2”
“Getting Started with YOLO v2”
“Anchor Boxes for Object Detection”

Introduced in R2019a

 yolov2OutputLayer

2-307



yolov2ReorgLayer
(Not recommended) Create reorganization layer for YOLO v2 object detection network

Note  function is not recommended. Use spaceToDepthLayer instead.

Description
The yolov2ReorgLayer function creates a YOLOv2ReorgLayer object, which represents the
reorganization layer for you only look once version 2 (YOLO v2) object detection network. The
reorganization layer reorganizes the high-resolution feature maps from a lower layer by stacking
adjacent features into different channels. The output of reorganization layer is fed to the depth
concatenation layer. The depth concatenation layer concatenates the reorganized high-resolution
features with the low-resolution features from a higher layer.

Creation

Syntax
layer = yolov2ReorgLayer(stride)
layer = yolov2ReorgLayer(stride,'Name',layerName)

Description

layer = yolov2ReorgLayer(stride) creates the reorganization layer for YOLO v2 object
detection network. The layer reorganizes the dimension of the input feature maps according to the
step size specified in stride. For details on creating a YOLO v2 network with reorganization layer,
see “Design a YOLO v2 Detection Network with a Reorg Layer”.

layer = yolov2ReorgLayer(stride,'Name',layerName) sets the Name property using a
name-value pair. Enclose the property name in single quotes. For example,
yolov2ReorgLayer('Name','yolo_Reorg') creates reorganization layer with the name
'yolo_Reorg'.

Input Arguments

stride — Step size for traversing input
vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a 2-element vector of
positive integers in form [a b]. a is the vertical step size and b is the horizontal step size.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

layerName — Name of reorganization layer
character vector | string scalar

2 Objects

2-308



Name of reorganization layer, specified as a character vector or string scalar. This input argument
sets the Name property of the layer. If you do not specify the name, then the function automatically
sets Name to ''.
Data Types: char | string

Properties
Name — Layer name
'' (default) | character vector

Layer name, specified as a character vector. To include a layer in a layer graph, you must specify a
nonempty unique layer name. If you train a series network with the layer and Name is set to '', then
the software automatically assigns a name to the layer at training time.
Data Types: char

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

 yolov2ReorgLayer

2-309



Create YOLO v2 Reorganization Layer

Specify the step size for reorganising the dimension of input feature map.

stride = [2 2];

Create a YOLO v2 reorganization layer with the specified step size and the name as "yolo_Reorg".

layer = yolov2ReorgLayer(stride,'Name','yolo_Reorg');

Inspect the properties of the YOLO v2 reorganization layer.

layer

layer = 
  YOLOv2ReorgLayer with properties:

      Name: 'yolo_Reorg'

   Hyperparameters
    Stride: [2 2]

Tips
• You can find the desired value of stride using:

stride = floor size of input feature map to reorganization layer
size of output feature map from higher layer

Algorithms
The reorganization layer improves the performance of the YOLO v2 object detection network by
facilitating feature concatenation from different layers. It reorganizes the dimension of a lower layer
feature map so that it can be concatenated with the higher layer feature map.

Consider an input feature map of size [H W C], where:

• H is the height of the feature map.
• W is the width of the feature map.
• C is the number of channels.

The reorganization layer chooses feature map values from locations based on the step sizes in
stride and adds those feature values to the third dimension C. The size of the reorganized feature
map from the reorganization layer is

[floor(H/stride(1)) floor(W/stride(2)) C×stride(1)×stride(2)].

For feature concatenation, the height and width of the reorganized feature map must match with the
height and width of the higher layer feature map.

2 Objects

2-310



Compatibility Considerations
yolov2ReorgLayer function will be removed
Not recommended starting in R2020b

The YOLOv2ReorgLayer function will be removed in a future release. Use spaceToDepthLayer
instead.

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-Time Object

Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. Honolulu, HI: CVPR,
2017.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
yolov2Layers | yolov2OutputLayer | yolov2TransformLayer | yolov2ObjectDetector |
trainYOLOv2ObjectDetector

Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using YOLO v2”
“Getting Started with YOLO v2”
“Anchor Boxes for Object Detection”

Introduced in R2019a

 yolov2ReorgLayer

2-311



yolov2TransformLayer
Create transform layer for YOLO v2 object detection network

Description
The yolov2TransformLayer function creates a YOLOv2TransformLayer object, which represents
the transform layer for you only look once version 2 (YOLO v2) object detection network. The
transform layer in YOLO v2 object detection network improves the stability of the network by
constraining the location predictions. The transform layer extracts activations of the last
convolutional layer and transforms the bounding box predictions to fall within the bounds of the
ground truth.

Creation

Syntax
layer = yolov2TransformLayer(numAnchorBoxes)
layer = yolov2TransformLayer(numAnchorBoxes,Name,Value)

Description

layer = yolov2TransformLayer(numAnchorBoxes) creates the transform layer for YOLO v2
object detection network.

layer = yolov2TransformLayer(numAnchorBoxes,Name,Value) sets the Name property using
a name-value pair. Enclose the property name in single quotes. For example,
yolov2TransformLayer('Name','yolo_Transform') creates a transform layer with the name
'yolo_Transform'.

Input Arguments

numAnchorBoxes — Number of anchor boxes
positive integer

Number of anchor boxes used for training, specified as a positive integer. This input sets the
NumAnchorBoxes property of the transform layer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with name ''.

2 Objects

2-312



Data Types: char | string

NumAnchorBoxes — Number of anchor boxes
positive integer

This property is read-only.

Number of anchor boxes used for training, specified as a positive integer. This property is set by the
input numAnchorBoxes.

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create YOLO v2 Transform Layer

Specify the number of anchor boxes.

numAnchorBoxes = 5;

Create a YOLO v2 transform layer with the name "yolo_Transform".

layer = yolov2TransformLayer(numAnchorBoxes,'Name','yolo_Transform');

 yolov2TransformLayer

2-313



Inspect the properties of the YOLO v2 transform layer.

layer

layer = 
  YOLOv2TransformLayer with properties:

              Name: 'yolo_Transform'

   Hyperparameters
    NumAnchorBoxes: 5

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-Time Object

Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. Honolulu, HI: CVPR,
2017.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
yolov2Layers | yolov2OutputLayer | spaceToDepthLayer | yolov2ObjectDetector |
trainYOLOv2ObjectDetector

Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using YOLO v2”

2 Objects

2-314



“Getting Started with YOLO v2”
“Anchor Boxes for Object Detection”

Introduced in R2019a

 yolov2TransformLayer

2-315



pixelLabelDatastore
Datastore for pixel label data

Description
You can use a PixelLabelDatastore object to read pixel label data for semantic segmentation.

To read pixel label data from a PixelLabelDatastore, use the read function. This function returns
a categorical array that contains a categorical label assigned to every (i,j) pixel location or (i,j,k) voxel
location.

Creation
Create a PixelLabelDatastore object using the pixelLabelDatastore function described here.
Once the object is created, you can use functions that access and manage the data. You can use dot
notation to modify the ReadSize and ReadFcn properties.

Syntax
pxds = pixelLabelDatastore(gTruth)
pxds = pixelLabelDatastore(location,classNames,pixelLabelIDs)
pxds = pixelLabelDatastore( ___ ,Name,Value)

Description

pxds = pixelLabelDatastore(gTruth) creates a PixelLabelDatastore object from a
groundTruth object or an array of groundTruth objects.

pxds = pixelLabelDatastore(location,classNames,pixelLabelIDs) creates a
PixelLabelDatastore object from image files that store pixel label data, in the folder or files
specified by location. The function creates the object using pixel IDs that map image pixel label
values to class names.

pxds = pixelLabelDatastore( ___ ,Name,Value) creates a PixelLabelDatastore object
using name-value pair arguments to set one or both of the ReadSize or
AlternateFileSystemRoots properties. For image file input, you can also use name-value pair
arguments to set the ReadFcn property or to specify options on page 2-318 about files to include in
the datastore. You can specify multiple name-value pairs. Enclose each property name in quotes.

For example,
pixelLabelDatastore(loc,names,ids,'ReadSize',8,'FileExtensions','png') creates a
pixel label datastore that includes only PNG images and that reads eight images during each call to
the read function.

Input Arguments

gTruth — Ground truth data
groundTruth object | array of groundTruth objects

2 Objects

2-316



Ground truth data, specified as a groundTruth object or as an array of groundTruth objects. Each
groundTruth object contains information about the data source, the list of label definitions, and all
marked labels for a set of ground truth labels.

location — Folder or image file names
character vector | cell array of character vectors | string array

Folder or image file names, specified as a character vector, string array, or cell array of character
vectors. Images must contain uint8 data.

location Description
character vector, string array Name of a folder. Files within subfolders of the specified folder

are not automatically included in the datastore. The datastore
includes only images with supported file formats and ignores
any other format. See a list of supported file formats by using
the imformats function.

cell array of character vectors File names of multiple images.

pixelLabelDatastore expands the file names and stores the full file paths in the Files property.

You can use the wildcard character (*) when specifying location. This character indicates that all
matching files or all files in the matching folders are included in the datastore.

If the files are not in the current folder, then you must include the full or relative path.

If the files are not available locally, then the full path of the files or folders must be an
internationalized resource identifier (IRI), such as hdfs://hostname:portnumber/
path_to_file. For information on using a datastore with Amazon S3™ and HDFS™, see “Work
with Remote Data”.
Example: 'file1.jpg'
Example: '../dir/data/file1.png'
Example: {'C:\dir\data\file1.tif','C:\dir\data\file2.tif'}
Example: 'C:\dir\data\*.jpg'
Data Types: char | cell

classNames — Class names
cell array of character vectors | cell array of strings

Class names, specified as a cell array of strings or character vectors. pixelLabelDatastore
converts the names to a cell array and stores the names in the ClassNames property.
Example: ["sky" "grass" "building" "sidewalk"]

pixelLabelIDs — IDs to relate pixel labels to class names
vector | m-by-3 matrix | cell array of column vectors | cell array of m-by-3 matrices

IDs to map pixel labels to ClassNames, specified as a vector, an m-by-3 matrix, a cell array of column
vectors, or a cell array of m-by-3 matrices. Values must be integers in the range [0, 255]. m-by-3
matrices are only supported for RGB images.

 pixelLabelDatastore

2-317



Format Description
vector The length of the vector must equal the number

of class names. Values must be unique.
m-by-3 matrix m corresponds to the number of class names.

Each row contains a 3-element vector
representing the RGB pixel value to associate
with each class name. Vectors must be unique.
Use this format for pixel label data stored as RGB
images.

cell array of column vectors

cell array of m-by-3 matrices

Use a cell array to map multiple pixel label IDs to
one class name.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IncludeSubfolders',true

IncludeSubfolders — Include subfolders
false (default) | true

Include subfolders, specified as the comma-separated pair consisting of 'IncludeSubfolders' and
false (0), or true (1). Specify true to include all files and subfolders within each folder or false to
include only the files within each folder.

The IncludeSubfolders argument is not supported when you specify ground truth data gTruth.

FileExtensions — File extensions
character vector | cell array of character vectors | string scalar | string array

File extensions of files to include in the datastore, specified as the comma-separated pair consisting
of 'FileExtensions' and a character vector, cell array of character vectors, string scalar, or string
array. By default, the datastore includes files with all extensions supported by the imformats
function.

The FileExtensions argument is not supported when you specify ground truth data gTruth.
Example: ["png" "gif" "bmp"]

Properties
Files — Files included in datastore
character vector | cell array of character vectors

This property is read-only.

Files included in the datastore, specified as a character vector or cell array of character vectors. Each
character vector is a full path to a file. When you create a PixelLabelDatastore object, use the
location argument to set this property.

2 Objects

2-318



ClassNames — Class names
cell array of character vectors

This property is read-only.

Class names, specified as a cell array of character vectors.

ReadSize — Maximum number of image files
1 (default) | positive integer

Maximum number of image files to read in each call to the read function, specified as a positive
integer.

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the name-value argument consisting of
"AlternateFileSystemRoots" and a string vector or a cell array. Use
"AlternateFileSystemRoots" when you create a datastore on a local machine, but need to
access and process the data on another machine (possibly of a different operating system). Also,
when processing data using the Parallel Computing Toolbox and the MATLAB Parallel Server™, and
the data is stored on your local machines with a copy of the data available on different platform cloud
or cluster machines, you must use "AlternateFileSystemRoots" to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
"AlternateFileSystemRoots" as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]
• To associate multiple sets of root paths that are equivalent for the datastore, specify

"AlternateFileSystemRoots" as a cell array containing multiple rows where each row
represents a set of equivalent root paths. Specify each row in the cell array as either a string
vector or a cell array of character vectors. For example:

• Specify "AlternateFileSystemRoots" as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify "AlternateFileSystemRoots" as a cell array of cell array of
character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of "AlternateFileSystemRoots" must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

 pixelLabelDatastore

2-319



ReadFcn — Function that reads pixel labeled image data
@readDatastoreImage (default) | function handle

Function that reads pixel labeled image data, specified as a function handle. The custom read
function must take an image file name as input, and then output the corresponding pixel labeled data
as a categorical matrix, logical matrix, or numeric matrix of data type uint8. For example, if
customreader is the specified function to read the image data, then it must have a signature similar
to the following:

function C = customreader(filename)
...
end

If the read function has more than one output argument, then only the first one is used. The rest are
ignored.

The ReadFcn property is not supported when you specify ground truth data gTruth.
Example: @customreader

Object Functions
combine Combine data from multiple datastores
countEachLabel Count occurrence of pixel or box labels
hasdata Determine if data is available to read from datastore
numpartitions Number of partitions for a datastore
partition Partition a label datastore
preview Read first row of data in datastore
read Read data from a datastore
readall Read all data in datastore
readimage Read specified pixel label data file
reset Reset datastore to initial state
shuffle Return shuffled version of datastore
transform Transform datastore
subset Create subset of datastore or file-set
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Read and Display Pixel Label Data

Overlay pixel label data on an image.

Set the location of the image and pixel label data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');

Create an image datastore.

imds = imageDatastore(imDir);

Create a pixel label datastore.

2 Objects

2-320



classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);

Read the image and pixel label data. read(pxds) returns a categorical matrix, C. The element C(i,j)
in the matrix is the categorical label assigned to the pixel at the location l(i,j).

I = read(imds);
C = read(pxds);

Display the label categories in C.

categories(C{1})

ans = 4x1 cell
    {'sky'     }
    {'grass'   }
    {'building'}
    {'sidewalk'}

Overlay and display the pixel label data onto the image.

B = labeloverlay(I,C{1});
figure
imshow(B)

 pixelLabelDatastore

2-321



Read and Display 3-D Pixel Label Data

Specify the location of 3-D volume and pixel label data. This data is a labeled 3-D MRI scan of a brain.

dataDir = fullfile(toolboxdir('images'),'imdata');
imDir = fullfile(dataDir,'BrainMRILabeled','images');
pxDir = fullfile(dataDir,'BrainMRILabeled','labels');

Specify a custom ReadFcn. This example specifies a function called samplePXDSMatReader (defined
at the end of the example) that read 3-D image data from .MAT image files.

matReader = @samplePXDSMatReader;

Create an image datastore.

imds = imageDatastore(imDir,'FileExtensions','.mat','ReadFcn',matReader);

Create a pixel label datastore.

2 Objects

2-322



classNames = ["edema","nonEnhancingTumor","enhancingTumour"];
pixelLabelID = [1 2 3];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID,'FileExtensions','.mat','ReadFcn',matReader);

Read volume and pixel label data. L is a categorical matrix, where L(i,j,k) is the categorical label
assigned to V(i,j,k).

V = read(imds);
L = read(pxds);

Display the label categories.

categories(L{1})

ans = 3×1 cell
    {'edema'            }
    {'nonEnhancingTumor'}
    {'enhancingTumour'  }

Visualize result using labelvolshow.

h = labelvolshow(L{1},V);

This example defines a helper function, samplePXDSMatReader, to read the 3-D image data from the
image files. This function loads a .MAT file and returns the first variable saved in that file.

function data = samplePXDSMatReader(filename)
    inp = load(filename);

 pixelLabelDatastore

2-323



    f = fields(inp);
    data = inp.(f{1});
end

Tips
• A pixelLabelDatastore stores files in lexicographical order. For example, if you have twelve
files named 'file1.jpg', 'file2.jpg', … , 'file11.jpg', and 'file12.jpg', then the files
are stored in this order:

'file1.jpg'
'file10.jpg'
'file11.jpg'
'file12.jpg'
'file2.jpg'
'file3.jpg'
...
'file9.jpg'

In contrast, an imageDatastore stores files in the order they are added to the datastore. If you
simultaneously read a ground truth image and pixel label data, then you may encounter a
mismatch between the images and the labels. If this occurs, then rename the pixel label files so
that they have the correct order. For example, rename 'file1.jpg', … , 'file9.jpg' to
'file01.jpg', …, 'file09.jpg'.

• To extract semantic segmentation data from a groundTruth object generated by the Video
Labeler app, use the pixelLabelTrainingData function.

See Also
Apps
Image Labeler | Video Labeler

Functions
evaluateSemanticSegmentation | semanticseg

Objects
ImageDatastore | groundTruth | semanticSegmentationMetrics |
pixelLabelImageDatastore | randomPatchExtractionDatastore

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“3-D Brain Tumor Segmentation Using Deep Learning”
“Getting Started with Semantic Segmentation Using Deep Learning”
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Training Data for Object Detection and Semantic Segmentation”

Introduced in R2017b

2 Objects

2-324



KAZEPoints
Object for storing KAZE interest points

Description
This object provides the ability to pass data between the detectKAZEFeatures and
extractFeatures functions. You can also use this object to manipulate and plot the data returned
by these functions.Use the object to fill points interactively, where you might want to mix a non-KAZE
interest oint detector with a KAZE descriptor.

Creation

Syntax
points = KAZEPoints(location)
points = KAZEPoints(location,Name,Value)

Description

points = KAZEPoints(location) constructs a KAZEPoints object from an M-by-2 array [x y] of
location coordinates.

The scalar KAZEPoints object contains many points. Therefore numel(KAZEPoints) always returns
1. This value can be different than the result of length(KAZEPoints), which returns the true
number of points contained in the object.

points = KAZEPoints(location,Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in quotes. For example, points =
KAZEPoints('Metric',0.0)

Input Arguments

location — Location coordinates
M-by-2 array

Location of points, specified as an M-by-2 array of [x y] coordinates.

Properties
Location — Location of keypoints
[] (default) | M-by-2 matrix

This property is read-only.

Location of keypoints, specified as an M-by-2 matrix. Each row is of the form [x y] and represents the
location of a keypoint. M is the number of keypoints. You cannot set this property, use the location
input argument instead.

 KAZEPoints

2-325



Count — Number of keypoints
0 (default) | nonnegative integer

This property is read-only.

Number of keypoints held by the object, specified as a nonnegative integer.

Scale — Scale
1.6 (default) | scalar | vector

Scale, specified as a scalar. The scale sets the size at which the interest points are detected.

Metric — Strength of response
0.0 (default) | numeric value | vector

Strength of response for the detected points, specified as a numeric value. The KAZE algorithm uses
a determinant of an approximated Hessian.

Orientation — Orientation
0.0 (default) | radians

Orientation of the detected feature, specified as an angle in radians. The angle is measured from the
x-axis with the origin set by the location input. The extractFeatures function sets this property.
Do not set it manually.

Object Functions
isempty Determine if points object is empty
length Number of stored points
plot Plot points
selectStrongest Select points with strongest metrics
size Return size of points object
selectUniform Select uniformly distributed subset of feature points

Examples

Detect KAZE Features

Detect KAZE features and display 10 strongest points.

Read an image.

I = imread('cameraman.tif');

Detect KAZE features in the image.

points = detectKAZEFeatures(I);

Select the 10 strongest points.

strongest = selectStrongest(points,10);

Display the selected points.

2 Objects

2-326



 imshow(I);
 hold on;

Display the location and scale. The size of the circles displayed relate to the scale.

plot(strongest);
hold on;

Display the [x y] coordinates for the strongest points in the MATLAB Command Window.

strongest.Location

ans = 10x2 single matrix

  138.5041   95.8063
  139.9253   95.8802
  111.8975   48.2950
  106.4036  174.1800
   44.3964  106.4899
  122.0368   65.9064
  116.2702  138.2877
  123.6542   64.7193
  104.2719   76.5821
  140.6228   97.9271

Detect KAZE Features and Display Specific Points

Detect KAZE features and display set the specific KAZE points you want to plot.

Read an image.

 KAZEPoints

2-327



I = imread('cameraman.tif');

Detect KAZE features in the image.

points = detectKAZEFeatures(I);

Select and display the last 5 points detected.

imshow(I);
hold on;
plot(points(end-4:end));
hold off;

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for points
object. See visionRecovertformCodeGeneration_kernel.m, which is used in the “Introduction to
Code Generation with Feature Matching and Registration” example.

See Also
detectKAZEFeatures | detectBRISKFeatures | detectMSERFeatures | detectFASTFeatures
| detectMinEigenFeatures | detectHarrisFeatures | extractFeatures | matchFeatures |
detectSURFFeatures | MSERRegions | SURFPoints | cornerPoints | BRISKPoints

2 Objects

2-328



Introduced in R2017b

 KAZEPoints

2-329



binaryFeatures
Object for storing binary feature vectors

Description
This object provides the ability to pass data between the extractFeatures and matchFeatures
functions. It can also be used to manipulate and plot the data returned by extractFeatures.

Creation

Syntax
features= binaryFeatures(featureVectors)

Description

features= binaryFeatures(featureVectors) constructs a binaryFeatures object from the
M-by-N input matrix, featureVectors. This matrix contains M feature vectors stored in N uint8
containers.

Input Arguments

featureVectors — Input feature vectors
M-by-N matrix

Input feature vectors, specified as an M-by-N input matrix. This matrix contains M binary feature
vectors stored in N uint8 containers.

Read-only Properties
Features — Feature vectors
M-by-N matrix

Input feature vectors, saved as an M-by-N input matrix. This matrix contains M binary feature vectors
stored in N uint8 containers.

NumBits — Number of bits per feature
integer

Number of bits per feature, saved as an integer. NumBits equals the number of uint8 feature vector
containers times 8.

NumFeatures — Number of feature vectors
integer

Number of feature vectors contained in the binaryFeatures object, saved as a positive integer.

2 Objects

2-330



Examples

Match Two Sets of Binary Feature Vectors

Input feature vectors.

features1 = binaryFeatures(uint8([1 8 7 2; 8 1 7 2]));
features2 = binaryFeatures(uint8([8 1 7 2; 1 8 7 2]));

Match the vectors using the Hamming distance.

[indexPairs matchMetric] = matchFeatures(features1, features2)   

indexPairs = 2x2 uint32 matrix

   1   2
   2   1

matchMetric = 2x1 single column vector

     0
     0

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
extractFeatures | extractHOGFeatures | matchFeatures

Introduced in R2013a

 binaryFeatures

2-331



cameraIntrinsics
Object for storing intrinsic camera parameters

Description
Store information about a camera’s intrinsic calibration parameters, including the lens distortion
parameters.

Creation

Syntax
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize)
intrinsics = cameraIntrinsics( ___ ,Name,Value)

Description

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize) returns a
camera intrinsics object that contains the focal length specified as [fx,fy], and the camera's principal
point specified as [cx, cy]. See cameraParameters for more details.

intrinsics = cameraIntrinsics( ___ ,Name,Value) uses additional options specified by one
or name-value pairs. Enclose each property name in quotes. For example, intrinsics =
cameraIntrinsics('RadialDistortion',[0,0])

Input Arguments

focalLength — Camera focal length
two-element vector

Camera focal length, specified as a two-element vector, [fx, fy].

fx = F × sx

f y = F × sy

• F is the focal length in world units, typically millimeters
• [sx, sy] are the number of pixels per world unit in the x and y direction respectively
• fx and fy are in pixels

principalPoint — Optical center of camera
two-element vector

Optical center of camera, specified as a two-element vector, [cx,cy], in pixels.

imageSize — Image size produced by the camera
two-element vector

2 Objects

2-332



Image size produced by the camera, specified as a two-element vector, [mrows,ncols].

Properties
RadialDistortion — Radial lens distortion
[0,0] (default) | two-element vector | three-element vector

Radial lens distortion, specified as the comma-separated pair consisting of RadialDistortion and
a two-element vector, [k1,k2], or a three-element vector, [k1,k2,k3]. k1,k2, and k3 are radial
distortion coefficients.

Radial distortion is the displacement of image points along radial lines extending from the principal
point.

• As image points move away from the principal point (positive radial displacement), image
magnification decreases and a pincushion-shaped distortion occurs on the image.

• As image points move toward the principal point (negative radial displacement), image
magnification increases and a barrel-shaped distortion occurs on the image.

The camera parameters object calculates the radial distorted location of a point. You can denote the
distorted points as (xdistorted, ydistorted), as follows:

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6) (2-1)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6) (2-2)

x, y = undistorted pixel locations
k1, k2, and k3 = radial distortion coefficients of the lens
r2 = x2 + y2

Typically, two coefficients are sufficient. For severe distortion, you can include k3. The undistorted
pixel locations appear in normalized image coordinates, with the origin at the optical center. The
coordinates are expressed in world units.

TangentialDistortion — Tangential distortion coefficients
[0,0] (default) | two-element vector

Tangential distortion coefficients, specified as the comma-separated pair consisting of
'TangentialDistortion' and a 2-element vector, [p1,p2]. Tangential distortion occurs when the lens
and the image plane are not parallel.

 cameraIntrinsics

2-333



The camera parameters object calculates the tangential distorted location of a point. You can denote
the distorted points as (xdistorted, ydistorted), as follows:

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)] (2-3)

ydistorted = y + [p1 * (r2 + 2*y2) + 2 * p2 * x * y] (2-4)

x, y = undistorted pixel locations
p1 and p2 = tangential distortion coefficients of the lens
r2 = x2 + y2

The undistorted pixel locations appear in normalized image coordinates, with the origin at the optical
center. The coordinates are expressed in world units.

Skew — Camera axes skew
0 (default) | angle

Camera axes skew, specified as the comma-separated pair consisting of 'skew' and an angle. If the x
and the y axes are exactly perpendicular, then the skew must be 0.

FocalLength — Focal length
2-element vector

This property is read-only.

Focal length in x and y, stored as a 2-element vector [fx, fy] in pixels.
fx = F * sx
fy = F * sy
F is the focal length in world units, typically in millimeters, and [sx, sy] are the number of pixels per
world unit in the x and y direction respectively. Thus, fx and fy are in pixels.

The focal length F influences the angle of view and thus affects the area of the scene that appears
focused in an image. For a fixed subject distance:

• A short focal length offers a wide angle of view allowing to capture large area of the scene under
focus. It emphasizes both the subject and the scene background.

• A long focal length offers a narrow angle of view, thus reducing the area of the scene under focus.
It emphasizes more on the subject and restricts the amount of background from being captured.

2 Objects

2-334



PrincipalPoint — Optical center of camera
two-element vector

This property is read-only.

Optical center of camera, stored as a two-element vector [cx,cy] in pixels. The vector contains the
coordinates of the optical center of the camera.

ImageSize — Image size produced by the camera
two-element vector

This property is read-only.

Image size produced by the camera, stored as a two-element vector, [mrows,ncols].

IntrinsicMatrix — Projection matrix
3-by-3 identity matrix (default) | 3-by-3 intrinsic matrix

This property is read-only.

Projection matrix, stored as the comma-separated pair consisting of 'IntrinsicMatrix' and a 3-by-3
matrix. For the matrix format, the object uses the following format:

fx 0 0
s f y 0
cx cy 1

The coordinates [cx cy] represent the optical center (the principal point), in pixels. When the x and y
axis are exactly perpendicular, the skew parameter, s, equals 0.
fx = F*sx
fy = F*sy
F, is the focal length in world units, typically expressed in millimeters.
[sx, sy] are the number of pixels per world unit in the x and y direction respectively.
fx and fy are expressed in pixels.

Examples

Create an Object Containing Fundamental Camera Parameters

Define camera parameters without lens distortion or skew.

Specify the focal length and principal point in pixels.

    focalLength    = [800, 800]; 
    principalPoint = [320, 240];
    imageSize      = [480, 640];

Create a camera intrinsics object.

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize)

intrinsics = 
  cameraIntrinsics with properties:

 cameraIntrinsics

2-335



             FocalLength: [800 800]
          PrincipalPoint: [320 240]
               ImageSize: [480 640]
        RadialDistortion: [0 0]
    TangentialDistortion: [0 0]
                    Skew: 0
         IntrinsicMatrix: [3x3 double]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Objects
cameraParameters

Functions
undistortImage

Topics
“Using the Single Camera Calibrator App”
“Import Camera Intrinsic Parameters from ROS”

Introduced in R2017a

2 Objects

2-336



pcplayer
Visualize streaming 3-D point cloud data

Description
Visualize 3-D point cloud data streams from devices such as Microsoft Kinect®.

To improve performance, pcplayer automatically downsamples the rendered point cloud during
interaction with the figure. The downsampling occurs only for rendering the point cloud and does not
affect the saved points.

You can set the default center of rotation for the point cloud viewer to rotate around the axes center
or around a point. Set the default behavior from the “Computer Vision Toolbox Preferences”.

Creation

Syntax
player = pcplayer(xlimits,ylimits,zlimits)
player = pcplayer(xlimits,ylimits,zlimits,Name,Value)

Description

player = pcplayer(xlimits,ylimits,zlimits) returns a player with xlimits,ylimits, and
zlimits set for the axes limits.

player = pcplayer(xlimits,ylimits,zlimits,Name,Value) returns a player with additional
properties specified by one or more Name,Value pair arguments.

Input Arguments

xlimits — Range of x-axis coordinates
1-by-2 vector

Range of x-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not
display data outside these limits.

ylimits — Range of y-axis coordinates
1-by-2 vector

Range of y-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not
display data outside these limits.

zlimits — Range of z-axis coordinates
1-by-2 vector

Range of z-axis coordinates, specified as a 1-by-2 vector in the format [min max].pcplayer does not
display data outside these limits.

 pcplayer

2-337



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VerticalAxisDir', 'Up'.

MarkerSize — Diameter of marker
6 (default) | positive scalar

Diameter of marker, specified as a positive scalar. The value specifies the approximate diameter of the
point marker. MATLAB graphics defines the unit as points. A marker size larger than six can reduce
the rendering performance.

BackgroundColor — Background color
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | character vector

Background color, specified as an RGB triplet, hexadecimal color code, or a character vector that
specifies a long or short color name.

VerticalAxis — Vertical axis
'Z' (default) | 'X' | 'Y'

Vertical axis, specified as 'X', 'Y', or 'Z'. When you reload a saved figure, any action on the figure
resets the vertical axis to the z-axis.

VerticalAxisDir — Vertical axis direction
'Up' (default) | 'Down'

Vertical axis direction, specified as 'Up' or 'Down'. When you reload a saved figure, any action on
the figure resets the direction to the up direction.

Parent — Axes on which to display the visualization
axes graphics object

Axes on which to display the visualization, specified as an Axes object. To create an Axes object, use
the axes function. To display the visualization in a new figure, leave 'Parent' unspecified.

Properties
Axes — Player axes handle
axes graphics object

Player axes handle, specified as an axes graphics object.

Usage
Color and Data Point Values in Figure

To view point data or modify color display values, hover over the axes toolbar and select one of the
following options.

2 Objects

2-338



Feature Description
Datatip Click Data Tips to view the data point values for any point in the point

cloud figure. For a normal point cloud, the Data Tips displays the x,y,z
values. Additional data properties for the depth image and lidar are:

Point Cloud Data Data Value Properties
Depth image (RGB-D sensor) Color, row, column
Lidar Intensity, range, azimuth angle,

elevation angle, row, column

Background color Click Rotate and then right-click in the figure for background options.

 pcplayer

2-339



Feature Description
Colormap value Click Rotate and then right-click in the figure for colormap options.

You can modify colormap values for the coordinate and range values
available, depending on the type of point cloud displayed.

View Click Rotate to change the viewing angle of the point cloud figure to
the XZ, ZX,YZ, ZY, XY, or the YX plane. Click Restore View to reset
the viewing angle.

OpenGL Option

pcplayer supports the 'opengl' option for the Renderer figure property only.

Object Functions
hide Hide player figure
isOpen Visible or hidden status for player
show Show player
view Display point cloud

Examples

Terminate a Point Cloud Processing Loop

Create the player and add data.

player = pcplayer([0 1],[0 1],[0 1]);

2 Objects

2-340



Display continuous player figure. Use the isOpen function to check if player figure window is open.

while isOpen(player) 
     ptCloud = pointCloud(rand(1000,3,'single'));
     view(player,ptCloud);           
end 

Terminate while-loop by closing pcplayer figure window.

See Also
showShape | pcshow | pcshowpair | pcwrite | pcread | pcmerge | plot3 | pcdownsample |
pcfitplane | planeModel | pcdenoise | pcregistericp | scatter3 | pointCloud

Topics
“Choose Function to Visualize Detected Objects”

Introduced in R2015b

 pcplayer

2-341



view
Display point cloud

Syntax
view(player,ptCloud)
view(player,xyzPoints)
view(player,xyzPoints,color)
view(player,xyzPoints,colorMap)

Description
view(player,ptCloud) displays a point cloud in the pcplayer figure window, player. The
points, locations, and colors are stored in the ptCloud object.

view(player,xyzPoints) displays the points of a point cloud at the locations specified by the
xyzPoints matrix. The color of each point is determined by the z value.

view(player,xyzPoints,color) displays a point cloud with colors specified by color.

view(player,xyzPoints,colorMap) displays a point cloud with colors specified by colorMap.

Examples

View Rotating 3-D Point Cloud

Load point cloud.

ptCloud = pcread('teapot.ply');

Define a rotation matrix and 3-D transform.

x = pi/180; 
R = [ cos(x) sin(x) 0 0
     -sin(x) cos(x) 0 0
      0         0   1 0
      0         0   0 1];

tform = affine3d(R);

Compute x-_y_ limits that ensure that the rotated teapot is not clipped.

lower = min([ptCloud.XLimits ptCloud.YLimits]);
upper = max([ptCloud.XLimits ptCloud.YLimits]);
  
xlimits = [lower upper];
ylimits = [lower upper];
zlimits = ptCloud.ZLimits;

Create the player and customize player axis labels.

2 Objects

2-342



player = pcplayer(xlimits,ylimits,zlimits);

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

Rotate the teapot around the z-axis.

for i = 1:360      
    ptCloud = pctransform(ptCloud,tform);     
    view(player,ptCloud);     
end

 view

2-343



Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The object contains the locations, intensities, and RGB
colors to render the point cloud.

Point Cloud Property Color Rendering Result
Location only Maps the z-value to a color value in the current

color map.
Location and Intensity Maps the intensity to a color value in the current

color map.
Location and Color Use provided color.
Location, Intensity, and Color Use provided color.

2 Objects

2-344



player — Player
pcplayer object

Player for visualizing 3-D point cloud data streams, specified as a pcplayer object.

xyzPoints — Point cloud x, y, and z locations
M-by-3 numeric matrix | M-by-N-by-3 numeric matrix

Point cloud x, y, and z locations, specified as either an M-by-3 or an M-by-N-by-3 numeric matrix. The
M-by-N-by-3 numeric matrix is commonly referred to as an organized point cloud. The xyzPoints
numeric matrix contains M or M-by-N [x,y,z] points. The z values in the numeric matrix, which
generally correspond to depth or elevation, determine the color of each point.

color — Color for points in the point cloud
1-by-3 RGB vector | short name of color | long name of color | M-by-3 matrix | M-by-N-by-3 matrix

Color for points in the point cloud, specified as a 1-by-3-RGB vector, an M-by-3 matrix, an M-by-N-
by-3 matrix, a short color name, or a long color name. For details on color names, see the Color Value
on page 2-346 table.

You can specify the same color for all points or a different color for each point. When you set color
to single or double, the RGB values range between [0, 1]. When you set color to uint8, the
values range between [0, 255].

Points Input Color
Selection

Valid Values of C

xyzPoints Same color
for all points

1-by-3 RGB vector, or a color name or short name,
listed in the Color Value on page 2-346 table.

Different
color for
each point

M-by-3 matrix or M-by-N-by-3 matrix containing
RGB values for each point.

colorMap — Point cloud color map for points
M-by-1 vector | M-by-N matrix

Point cloud color map for points, specified as one of:

• M-by-1 vector

 view

2-345



• M-by-N matrix

Points Input Color
Selection

Valid Values of C

xyzPoints Different
color for
each point

Vector or M-by-N matrix. The matrix must contain
values that are linearly mapped to a color listed in
the current colormap.

More About
Color Value

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Introduced in R2015b

2 Objects

2-346



pointTrack
Object for storing matching points from multiple views

Description
Use this object to store 2-D points in an image that match across multiple views of the same image.

Creation
track = pointTrack(viewIDs,points)

Description

track = pointTrack(viewIDs,points) returns an object that stores matching 2-D points from
multiple views. You can also create this point track object using the findTracks object function of
the imageviewset object.

Input Arguments

viewIDs — View IDs of image poses
M-element vector

View IDs of image poses, specified as an M-element vector of scalar integers.

points — 2-D points that match across multiple image views
M-by-2 matrix

2-D points that match across multiple image views, specified as an M-by-2 matrix of (x,y) point
coordinates. You can use the matchFeatures function to find these points, and then save them using
this object.

Output Arguments

track — Point track object
pointTrack object

Point track object, returned as a pointTrack object. You can use this object to store matching 2-D
points from multiple views. You can also create this point track object using the findTracks object
function of the imageviewset object.

Examples

Create a Point Track Object

Save ( x , y ) points and view IDs.

points = [10,20;11,21;12,22];
viewIDs = [1 2 3];

 pointTrack

2-347



Create a pointTrack object to save points and IDs. The matched 2-D image points correspond to the
same 3-D world point. Separate pointTrack objects are needed to track different 3-D world points
across views.

track = pointTrack(viewIDs,points);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
triangulateMultiview | matchFeatures | bundleAdjustment | findTracks

Objects
imageviewset | vision.PointTracker

Topics
“3-D Point Cloud Registration and Stitching”
“Coordinate Systems”

Introduced in R2016a

2 Objects

2-348



vision.PointTracker
Package: vision

Track points in video using Kanade-Lucas-Tomasi (KLT) algorithm

Description
The point tracker object tracks a set of points using the Kanade-Lucas-Tomasi (KLT), feature-tracking
algorithm. You can use the point tracker for video stabilization, camera motion estimation, and object
tracking. It works particularly well for tracking objects that do not change shape and for those that
exhibit visual texture. The point tracker is often used for short-term tracking as part of a larger
tracking framework.

As the point tracker algorithm progresses over time, points can be lost due to lighting variation, out
of plane rotation, or articulated motion. To track an object over a long period of time, you may need
to reacquire points periodically.

To track a set of points:

1 Create the vision.PointTracker object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
pointTracker = vision.PointTracker
pointTracker = vision.PointTracker(Name,Value)

Description

pointTracker = vision.PointTracker returns a point tracker object that tracks a set of points
in a video.

pointTracker = vision.PointTracker(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, pointTracker =
vision.PointTracker('NumPyramidLevels',3)

Initialize Tracking Process:

To initialize the tracking process, you must use initialize to specify the initial locations of the
points and the initial video frame.

initialize(pointTracker,points,I) initializes points to track and sets the initial video frame.
The initial locations points, must be an M-by-2 array of [x y] coordinates. The initial video frame, I,
must be a 2-D grayscale or RGB image and must be the same size and data type as the video frames
passed to the step method.

 vision.PointTracker

2-349



The detectFASTFeatures, detectSURFFeatures, detectHarrisFeatures, and
detectMinEigenFeatures functions are few of the many ways to obtain the initial points for
tracking.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumPyramidLevels — Number of pyramid levels
integer (default) | 3

Number of pyramid levels, specified as integer. The point tracker implementation of the KLT
algorithm uses image pyramids. The tracker generates an image pyramid, where each level is
reduced in resolution by a factor of two compared to the previous level. Selecting a pyramid level
greater than 1, enables the algorithm to track the points at multiple levels of resolution, starting at
the lowest level. Increasing the number of pyramid levels allows the algorithm to handle larger
displacements of points between frames. However, computation cost also increases. Recommended
values are between 1 and 4.

Each pyramid level is formed by down-sampling the previous level by a factor of two in width and
height. The point tracker begins tracking each point in the lowest resolution level, and continues
tracking until convergence. The object propagates the result of that level to the next level as the
initial guess of the point locations. In this way, the tracking is refined with each level, up to the
original image. Using the pyramid levels allows the point tracker to handle large pixel motions, which
can comprise distances greater than the neighborhood size.

MaxBidirectionalError — Forward-backward error threshold
inf (default) | scalar

Forward-backward error threshold, specified as a scalar. If you set the value to less than inf, the
tracker tracks each point from the previous to the current frame. It then tracks the same points back

2 Objects

2-350



to the previous frame. The object calculates the bidirectional error. This value is the distance in pixels
from the original location of the points to the final location after the backward tracking. The
corresponding points are considered invalid when the error is greater than the value set for this
property. Recommended values are between 0 and 3 pixels.

Using the bidirectional error is an effective way to eliminate points that could not be reliably tracked.
However, the bidirectional error requires additional computation. When you set the
MaxBidirectionalError property to inf, the object does not compute the bidirectional error.

BlockSize — Size of neighborhood
[31 31] (default) | two-element vector

Size of neighborhood around each point being tracked, specified as a two-element vector, [height,
width]. The height and width must be odd integers. This neighborhood defines the area for the spatial
gradient matrix computation. The minimum value for BlockSize is [5 5]. Increasing the size of the
neighborhood, increases the computation time.

MaxIterations — Maximum number of search iterations
30 (default) | integer

Maximum number of search iterations for each point, specified as an integer. The KLT algorithm
performs an iterative search for the new location of each point until convergence. Typically, the
algorithm converges within 10 iterations. This property sets the limit on the number of search
iterations. Recommended values are between 10 and 50.

Usage

Syntax
[points,point_validity] = pointTracker(I)
[points,point_validity,scores] = pointTracker(I)
setPoints(pointTracker,points)
setPoints(pointTracker,points,point_validity)

Description

[points,point_validity] = pointTracker(I) tracks the points in the input frame, I.

[points,point_validity,scores] = pointTracker(I) additionally returns the confidence
score for each point.

setPoints(pointTracker,points) sets the points for tracking. The function sets the M-by-2
points array of [x y] coordinates with the points to track. You can use this function if the points need
to be redetected because too many of them have been lost during tracking.

 vision.PointTracker

2-351



setPoints(pointTracker,points,point_validity) additionally lets you mark points as either
valid or invalid. The input logical vector point_validity of length M, contains the true or false
value corresponding to the validity of the point to be tracked. The length M corresponds to the
number of points. A false value indicates an invalid point that should not be tracked. For example, you
can use this function with the estimateGeometricTransform function to determine the
transformation between the point locations in the previous and current frames. You can mark the
outliers as invalid.

Input Arguments

I — Video frame
grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

Output Arguments

points — Tracked points
M-by-2 array

Tracked points, returned as an M-by-2 array of [x, y] coordinates that correspond to the new locations
of the points in the input frame, I.

point_validity — Reliability of track
M-by-1 logical array

Reliability of track for each point, returned as an M-by-1 logical array. A point can be invalid for
several reasons. The point can become invalid if it falls outside of the image. Also, it can become
invalid if the spatial gradient matrix computed in its neighborhood is singular. If the bidirectional
error is greater than the MaxBidirectionalError threshold, this condition can also make the point
invalid.

score — Confidence score
M-by-1 array

Confidence score between 0 and 1, returned as an M-by-1 array. The values correspond to the degree
of similarity between the neighborhood around the previous location and new location of each point.
These values are computed as a function of the sum of squared differences between the previous and
new neighborhoods. The greatest tracking confidence corresponds to a perfect match score of 1.

Object Functions
To use an object function, specify the System object™ as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.PointTracker
initialize Initialize video frame and points to track

Common to All System Objects
step Run System object algorithm

2 Objects

2-352



release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Track a Face in Scene

Create System objects for reading and displaying video and for drawing a bounding box of the object.

videoReader = VideoReader('visionface.avi');
videoPlayer = vision.VideoPlayer('Position',[100,100,680,520]);

Read the first video frame, which contains the object, define the region.

objectFrame = readFrame(videoReader);
objectRegion = [264,122,93,93];

As an alternative, you can use the following commands to select the object region using a mouse. The
object must occupy the majority of the region:

figure; imshow(objectFrame);

objectRegion=round(getPosition(imrect))

Show initial frame with a red bounding box.

objectImage = insertShape(objectFrame,'Rectangle',objectRegion,'Color','red');
figure;
imshow(objectImage);
title('Red box shows object region');

 vision.PointTracker

2-353



Detect interest points in the object region.

points = detectMinEigenFeatures(im2gray(objectFrame),'ROI',objectRegion);

Display the detected points.

pointImage = insertMarker(objectFrame,points.Location,'+','Color','white');
figure;
imshow(pointImage);
title('Detected interest points');

2 Objects

2-354



Create a tracker object.

tracker = vision.PointTracker('MaxBidirectionalError',1);

Initialize the tracker.

initialize(tracker,points.Location,objectFrame);

Read, track, display points, and results in each video frame.

while hasFrame(videoReader)
      frame = readFrame(videoReader);
      [points,validity] = tracker(frame);
      out = insertMarker(frame,points(validity, :),'+');
      videoPlayer(out);
end

 vision.PointTracker

2-355



Release the video player.

release(videoPlayer);

2 Objects

2-356



References
[1] Lucas, Bruce D. and Takeo Kanade. “An Iterative Image Registration Technique with an

Application to Stereo Vision,”Proceedings of the 7th International Joint Conference on
Artificial Intelligence, April, 1981, pp. 674–679.

[2] Tomasi, Carlo and Takeo Kanade. Detection and Tracking of Point Features, Computer Science
Department, Carnegie Mellon University, April, 1991.

[3] Shi, Jianbo and Carlo Tomasi. “Good Features to Track,” IEEE Conference on Computer Vision and
Pattern Recognition, 1994, pp. 593–600.

 vision.PointTracker

2-357



[4] Kalal, Zdenek, Krystian Mikolajczyk, and Jiri Matas. “Forward-Backward Error: Automatic
Detection of Tracking Failures,” Proceedings of the 20th International Conference on Pattern
Recognition, 2010, pages 2756–2759, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
insertMarker | vision.HistogramBasedTracker | detectSURFFeatures |
detectHarrisFeatures | detectMinEigenFeatures | estimateGeometricTransform |
imrect

Topics
“Face Detection and Tracking Using CAMShift”
“Face Detection and Tracking Using the KLT Algorithm”
“Face Detection and Tracking Using Live Video Acquisition”
“Detect and Track Face”

External Websites
Object Recognition and Tracking for Augmented Reality
Detect and Track Multiple Faces in a Live Video Stream

Introduced in R2012b

2 Objects

2-358

https://www.mathworks.com/videos/object-recognition-and-tracking-for-augmented-reality-90546.html
https://www.mathworks.com/matlabcentral/fileexchange/47105-detect-and-track-multiple-faces


viewSet
(To be removed) Object for managing data for structure-from-motion and visual odometry

Note The viewSet object will be removed in a future release. Use the imageviewset object
instead. For more information, see “Compatibility Considerations”.

Description
A viewSet object stores views and connections between views. A view includes feature points and an
absolute camera pose. A connection between two views includes point correspondences and the
relative camera pose between them. Once you populate a viewSet object, you can use it to find point
tracks across multiple views and retrieve the camera poses to be used by the
triangulateMultiview and bundleAdjustment functions.

Creation

Syntax
vSet = viewSet

Description

vSet = viewSet creates an empty viewSet object. You can add views and connections using the
addView and addConnection object functions.

Properties
NumViews — Number of views
integer

This property is read-only.

Number of views, stored as an integer.

Views — View attributes
four-column table

This property is read-only.

View attributes, stored as a four-column table. The table contains columns for ViewID, Points,
Orientation, and Location. Use the poses method to obtain the IDs, orientation, and location for
the points.

 viewSet

2-359



Connections — Pairwise connections between views
five-column table

This property is read-only.

Pairwise connections between views, stored as a five-column table. The columns are ViewID1,
ViewID2, Matches, RelativeOrientation, and RelativeLocation. The number of entries in
the table represent the number of connections. Each index in the Matches column represents a
connection between the two views indicated by the view IDs.

Object Functions
addConnection (To be removed) Add connection between two views
addView (To be removed) Add new view to view set object
deleteConnection (To be removed) Delete connection between two views from view set object
deleteView (To be removed) Delete existing view from view set object
findTracks (To be removed) Find matched points across multiple views
hasConnection (To be removed) Check if connection exists between two views

2 Objects

2-360



hasView (To be removed) Check if view exists
poses (To be removed) Returns camera poses associated to views
updateConnection (To be removed) Modify connection between two views in view set object
updateView (To be removed) Modify existing view in view set object

Examples

Find Point Tracks Across Sequence of Images

Load images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageSet(imageDir);

Compute features for the first image.

I = rgb2gray(read(images, 1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Create a viewSet object.

vSet = viewSet;
vSet = addView(vSet,1,'Points',pointsPrev);

Compute features and matches for the rest of the images.

for i = 2:images.Count
 I = rgb2gray(read(images,i));
 points = detectSURFFeatures(I);
 [features, points] = extractFeatures(I,points);
 vSet = addView(vSet,i,'Points',points);
 pairsIdx = matchFeatures(featuresPrev,features);
 vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
 featuresPrev = features;
end

Find point tracks.

tracks = findTracks(vSet);

Compatibility Considerations
viewSet object will be removed
Not recommended starting in R2020a

The viewSet object will be removed in a future release. Manage views and pairwise connections
between views of data using the imageviewset object instead. The imageviewset object adds
additional support for simultaneous localization and mapping (SLAM) data,

data used in structure-from-motion, visual odometry, and simultaneous localization and mapping
(SLAM) data. View attributes can be feature descriptors, feature points, or absolute camera poses.
Pairwise connections between views can be point matches, relative camera poses, or an information
matrix.

 viewSet

2-361



See Also
detectSURFFeatures | detectHarrisFeatures | detectMinEigenFeatures |
detectFASTFeatures | detectBRISKFeatures | detectMSERFeatures | matchFeatures |
bundleAdjustment | triangulateMultiview | table | pointTrack

Topics
“Structure From Motion From Multiple Views”
“Structure From Motion From Two Views”
“Code Generation for Depth Estimation From Stereo Video”
“Using the Single Camera Calibrator App”
“Structure from Motion Overview”

Introduced in R2016a

2 Objects

2-362



addView
(To be removed) Add new view to view set object

Note The viewSet object and its addView function will be removed in a future release. Use the
imageviewset object and its addView function instead. For more information, see “Compatibility
Considerations”.

Syntax
vSet = addView(vSet,viewId)
vSet = addView(vSet,viewId,Name,Value)

Description
vSet = addView(vSet,viewId) adds the view specified by viewID to the specified viewSet
object.

vSet = addView(vSet,viewId,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Add View to View Set Object

Create an empty viewSet object.

vSet = viewSet;

Detect interest points in the image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(im2gray(I));

Add the points to the object.

vSet = addView(vSet,1,'Points',points,'Orientation',eye(3),'Location',[0,0,0]);

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId — Camera pose view ID
integer

 addView

2-363



Camera pose view ID in the viewSet object, specified as an integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Location','[0,0,0]'

Points — Image points
M-by-2 matrix | points object

Image points, specified as the comma-separated pair consisting of 'Points' and an M-by-2 matrix of
[x,y] coordinates or any points object.

Orientation — Absolute orientation of the camera
3-by-3 matrix

Absolute orientation of the camera, specified as the comma-separated pair consisting of
'Orientation' and a 3-by-3 matrix.

Location — Absolute location of the camera
three-element vector

Absolute location of the camera, specified as the comma-separated pair consisting of 'Location' and
a three-element vector.

Output Arguments
vSet — View set object
viewSet object

viewSet object containing the added view specified by viewId.

Compatibility Considerations
addView function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its addView function will be removed in a future release. Instead, manage
views and pairwise connections between views of data using use the imageviewset object. Add
views to the imageviewset object using its addView function.

See Also
addView | imageviewset

Introduced in R2016a

2 Objects

2-364



updateView
(To be removed) Modify existing view in view set object

Note The viewSet object and its updateView function will be removed in a future release. Use the
imageviewset object and its updateView function instead. For more information, see
“Compatibility Considerations”.

Syntax
vSet = updateView(vSet,viewId)
vSet = updateView(vSet,viewId,Name,Value)
vSet = updateView(vSet,views)

Description
vSet = updateView(vSet,viewId) modifies the view specified by viewId in the specified
viewSet object, vSet.

vSet = updateView(vSet,viewId,Name,Value) specifies additional options using one or more
name-value pair arguments.

vSet = updateView(vSet,views) modifies a view or a set of views specified by the view table.

Examples

Update View in View Set Object

Create an empty viewSet object.

vSet = viewSet;

Detect interest points in the image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));

Add the points to the object.

vSet = addView(vSet,1,'Points',points);

Update the view to specify the camera pose.

vSet = updateView(vSet, 1,'Orientation',eye(3),'Location',[0,0,0]);

 updateView

2-365



Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId — Camera pose view ID
integer

Camera pose view ID in the viewSet object, specified as an integer.

views — Camera views
table

Camera views, specified as a table. The table must contain a column named ViewID, and one or more
columns named Points, Orientation, or Location.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Location, '[0,0,0]'

Points — Image points
M-by-2 matrix | points object

Image points, specified as the comma-separated pair consisting of 'Points' and an M-by-2 matrix of
[x,y] coordinates or any points object.

Orientation — Orientation of the second camera relative to the first camera
3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the comma-separated pair
consisting of 'Orientation' and a 3-by-3 matrix that represents the [x,y,z] orientation of the second
camera.

Location — Location of the second camera relative to the first camera
three-element vector

Location of the second camera relative to the first camera, specified as the comma-separated pair
consisting of 'Location' and a three-element vector that represents the [x,y,z] location of the second
camera in the first camera’s coordinate system.

Output Arguments
vSet — View set object
viewSet object

viewSet object containing the modified view specified by viewId.

2 Objects

2-366



Compatibility Considerations
updateView function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its updateView function will be removed in a future release. Instead,
manage views and pairwise connections between views of data using use the imageviewset object.
Update connections between views of the imageviewset object using its updateView function.

See Also
imageviewset | updateView

Introduced in R2016a

 updateView

2-367



deleteView
(To be removed) Delete existing view from view set object

Note The viewSet object and its deleteView function will be removed in a future release. Use the
imageviewset object and its deleteView function instead. For more information, see
“Compatibility Considerations”.

Syntax
vSet = deleteView(vSet,viewId)

Description
vSet = deleteView(vSet,viewId) deletes an existing view or a set of views from the specified
viewSet object,vSet.

Examples

Delete a View from View Set Object

Create an empty viewSet object.

vSet = viewSet;

Detect interest points in the image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(im2gray(I));

Add a view.

vSet = addView(vSet,1,'Points',points);

Delete the view.

vSet = deleteView(vSet,1);

Input Arguments
vSet — View set object
viewSet object

A viewSet object.

viewId — View IDs
integer scalar | vector

2 Objects

2-368



View IDs, specified as an integer scalar for a single view, or as a vector of integers for a set of views.

Output Arguments
vSet — View set object
viewSet object

viewSet object.

Compatibility Considerations
deleteView function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its deleteView function will be removed in a future release. Instead,
manage views and pairwise connections between views of data using use the imageviewset object.
Delete views from the imageviewset object using its deleteView function.

See Also
imageviewset | deleteView

Introduced in R2016a

 deleteView

2-369



hasView
(To be removed) Check if view exists

Note The viewSet object and its hasView function will be removed in a future release. Use the
imageviewset object and its hasView function instead. For more information, see “Compatibility
Considerations”.

Syntax
tf = hasView(vSet,viewId)

Description
tf = hasView(vSet,viewId) returns 1 if the view specified by viewID exists and 0 if it does not
exist.

Examples

Check If View Exists

Create an empty viewSet object.

vSet = viewSet;

Detect interest points in the image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(im2gray(I));

Add a new view.

vSet = addView(vSet, 1,'Points',points);

Confirm that the view with ID 1 exists.

tf = hasView(vSet,1);

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId — View ID
integer

2 Objects

2-370



View ID in the viewSet object, specified as an integer.

Output Arguments
tf — Validity of view connection
logical

Validity of view connection, returned as a logical 1 or 0.

Compatibility Considerations
hasView function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its hasView function will be removed in a future release. Instead, manage
views and pairwise connections between views of data using use the imageviewset object. Check if
a view exists in the imageviewset object using its hasView function.

See Also
imageviewset | hasView

Introduced in R2016a

 hasView

2-371



addConnection
(To be removed) Add connection between two views

Note The viewSet object and its addConnection function will be removed in a future release. Use
the imageviewset object and its addConnection function instead. For more information, see
“Compatibility Considerations”.

Syntax
vSet = addConnection(vSet,viewId1,viewId2)
vSet = addConnection(vSet,viewId1,viewId2,Name,Value)

Description
vSet = addConnection(vSet,viewId1,viewId2) adds a connection between two views in the
specified viewSet object, vSet.

vSet = addConnection(vSet,viewId1,viewId2,Name,Value) specifies additional options
using one or more name-value pair arguments.

Examples

Add Connection Between Two Views

Create an empty viewSet object.

vSet = viewSet;

Read a pair of images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = im2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = im2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in the two images.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Add the points to the viewSet object.

vSet = addView(vSet,1,'Points',points1);
vSet = addView(vSet,2,'Points',points2);

Extract feature descriptors from both images.

features1 = extractFeatures(I1,points1);
features2 = extractFeatures(I2,points2);

Match features and store the matches.

2 Objects

2-372



indexPairs = matchFeatures(features1,features2);

Add the connection between the two views.

vSet = addConnection(vSet,1,2,'Matches',indexPairs);

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID 1
integer

View ID 1 in the viewSet object, specified as an integer.

viewId2 — View ID 2
integer

View ID 2 in the viewSet object, specified as an integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Location','[0,0,0]'

Matches — Indices of matched points between two views
M-by-2 matrix

Indices of matched points between two views, specified as the comma-separated pair consisting of
'Matches' and an M-by-2 matrix.

Orientation — Orientation of the second camera relative to the first camera
3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the comma-separated pair
consisting of 'Orientation' and a 3-by-3 matrix that represents the [x,y,z] orientation of the second
camera.

Location — Location of the second camera relative to the first camera
three-element vector

Location of the second camera relative to the first camera, specified as the comma-separated pair
consisting of 'Location' and a three-element vector that represents the [x,y,z] location of the second
camera in the first camera’s coordinate system.

 addConnection

2-373



Output Arguments
vSet — View set object
viewSet object

viewSet object.

Compatibility Considerations
addConnection function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its addConnection function will be removed in a future release. Instead,
manage views and pairwise connections between views of data using use the imageviewset object.
Add connections to the imageviewset object using its addConnection function.

See Also
addConnection | imageviewset

Introduced in R2016a

2 Objects

2-374



updateConnection
(To be removed) Modify connection between two views in view set object

Note The viewSet object and its updateConnection function will be removed in a future release.
Use the imageviewset object and its updateConnection function instead. For more information,
see “Compatibility Considerations”.

Syntax
vSet = updateConnection(vSet,viewId1,viewId2)
vSet = updateConnection(vSet,viewId1,viewId2,Name,Value)

Description
vSet = updateConnection(vSet,viewId1,viewId2) modifies a connection between two views
in the specified view set object, vSet.

vSet = updateConnection(vSet,viewId1,viewId2,Name,Value) specifies additional options
using one or more name-value pair arguments. Unspecified arguments have default values.

Examples

Update Connection Between Two Views in View Set Object

Create an empty viewSet object.

vSet = viewSet;

Read a pair of images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = rgb2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = rgb2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in the two images.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Add the points to the viewSet object.

vSet = addView(vSet, 1,'Points',points1);
vSet = addView(vSet, 2,'Points',points2);

Extract feature descriptors.

features1 = extractFeatures(I1,points1);
features2 = extractFeatures(I2,points2);

Match features and store the matches.

 updateConnection

2-375



indexPairs = matchFeatures(features1, features2);
vSet = addConnection(vSet,1,2,'Matches',indexPairs);

Update the connection to store a relative pose between the views.

vSet = updateConnection(vSet,1,2,'Orientation', eye(3),'Location',[1 0 0]);

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID 1
integer

View ID 1 in the viewSet object, specified as an integer.

viewId2 — View ID 2
integer

View ID 2 in the viewSet object, specified as an integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Location', '[0,0,0]'

Matches — Indices of matched points between two views
M-by-2 matrix

Indices of matched points between two views, specified as the comma-separated pair consisting of
'Matches' and an M-by-2 matrix.

Orientation — Orientation of the second camera relative to the first camera
3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the comma-separated pair
consisting of 'Orientation' and a 3-by-3 matrix that represents the [x,y,z] orientation of the second
camera.

Location — Location of the second camera relative to the first camera
three-element vector

Location of the second camera relative to the first camera, specified as the comma-separated pair
consisting of 'Location' and a three-element vector that represents the [x,y,z] location of the second
camera in the first camera’s coordinate system.

2 Objects

2-376



Output Arguments
vSet — View set object
viewSet object

viewSet object containing the modified connection.

Compatibility Considerations
updateConnection function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its updateConnection function will be removed in a future release.
Instead, manage views and pairwise connections between views of data using use the imageviewset
object. Update connections between views of the imageviewset object using its
updateConnection function.

See Also
imageviewset | updateConnection

Introduced in R2016a

 updateConnection

2-377



deleteConnection
(To be removed) Delete connection between two views from view set object

Note The viewSet object and its deleteConnection function will be removed in a future release.
Use the imageviewset object and its deleteConnection function instead. For more information,
see “Compatibility Considerations”.

Syntax
vSet = deleteConnection(vSet,viewId1,viewId2)

Description
vSet = deleteConnection(vSet,viewId1,viewId2) deletes a connection between two views
in the specified viewSet object, vSet.

Examples

Delete a Connection Between Two Views In View Set Object

Create an empty viewSet object.

vSet = viewSet;

Read a pair of images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = im2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = im2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in the two images.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Add the points to the viewSet object.

vSet = addView(vSet,1,'Points',points1);
vSet = addView(vSet,2,'Points',points2);

Extract feature descriptors.

features1 = extractFeatures(I1,points1);
features2 = extractFeatures(I2,points2);

Match features and store the matches.

indexPairs = matchFeatures(features1, features2);
vSet = addConnection(vSet,1,2,'Matches',indexPairs);

2 Objects

2-378



Delete the connection between the views.

vSet = deleteConnection(vSet,1,2);

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID 1
integer

View ID 1 in the viewSet object, specified as an integer.

viewId2 — View ID 2
integer

View ID 2 in the viewSet object, specified as an integer.

Output Arguments
vSet — View set object
viewSet object

viewSet object.

Compatibility Considerations
deleteConnection function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its deleteConnection function will be removed in a future release.
Instead, manage views and pairwise connections between views of data using use the imageviewset
object. Delete connections from the imageviewset object using its deleteConnection function.

See Also
imageviewset | deleteConnection

Introduced in R2016a

 deleteConnection

2-379



hasConnection
(To be removed) Check if connection exists between two views

Note The viewSet object and its hasConnection function will be removed in a future release. Use
the imageviewset object and its hasConnection function instead. For more information, see
“Compatibility Considerations”.

Syntax
tf = hasConnection(vSet,viewId1,viewId2)

Description
tf = hasConnection(vSet,viewId1,viewId2) returns true if both views exist and have a
connection.

Examples

Check Whether a Connection Exists Between Two Views

Create an empty viewSet object.

vSet = viewSet;

Add a pair of views.

vSet = addView(vSet,1);
vSet = addView(vSet,2);

Add a connection.

vSet = addConnection(vSet,1,2);

Confirm that the connection exists.

tf = hasConnection(vSet,1,2);

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID 1
integer

View ID 1 in the viewSet object, specified as an integer.

2 Objects

2-380



viewId2 — View ID 2
integer

View ID 2 in the viewSet object, specified as an integer.

Output Arguments
tf — Validity of view connection
logical

Validity of view connection, returned as a logical 1 or 0.

Compatibility Considerations
hasConnection function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its hasConnection function will be removed in a future release. Instead,
manage views and pairwise connections between views of data using use the imageviewset object.
Check if a connection between views exists in the imageviewset object using its hasConnection
function.

See Also
imageviewset | hasConnection

Introduced in R2016a

 hasConnection

2-381



findTracks
(To be removed) Find matched points across multiple views

Note The viewSet object and its findTracks function will be removed in a future release. Use the
imageviewset object and its findTracks function instead. For more information, see
“Compatibility Considerations”.

Syntax
tracks = findTracks(vSet)
tracks = findTracks(vSet,viewIds)

Description
tracks = findTracks(vSet) finds point tracks across multiple views.

tracks = findTracks(vSet,viewIds) finds point tracks across a subset of views.

Examples

Find Point Tracks Across Sequence of Images

Load images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageSet(imageDir);

Compute features for the first image.

I = rgb2gray(read(images, 1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Create a viewSet object.

vSet = viewSet;
vSet = addView(vSet,1,'Points',pointsPrev);

Compute features and matches for the rest of the images.

for i = 2:images.Count
 I = rgb2gray(read(images,i));
 points = detectSURFFeatures(I);
 [features, points] = extractFeatures(I,points);
 vSet = addView(vSet,i,'Points',points);
 pairsIdx = matchFeatures(featuresPrev,features);
 vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
 featuresPrev = features;
end

2 Objects

2-382



Find point tracks.

tracks = findTracks(vSet);

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewIds — Subset of views
vector of integers

Subset of views in the viewSet object, specified as a vector of integers.

Output Arguments
tracks — Point track objects
array of pointTrack objects

Point track objects, returned as an array of pointTrack objects. Each track contains 2-D projections
of the same 3-D world point.

Compatibility Considerations
findTracks function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its findTracks function will be removed in a future release. Instead,
manage views and pairwise connections between views of data using use the imageviewset object.
Finds point track across views of the imageviewset object using its findTracks function.

See Also
imageviewset | findTracks

Introduced in R2016a

 findTracks

2-383



poses
(To be removed) Returns camera poses associated to views

Note The viewSet object and its poses function will be removed in a future release. Use the
imageviewset object and its poses function instead. For more information, see “Compatibility
Considerations”.

Syntax
cameraPoses = poses(vSet)
cameraPoses = poses(vSet,viewIds)

Description
cameraPoses = poses(vSet) returns the camera poses that correspond to the views contained in
the input viewSet object, vSet.

cameraPoses = poses(vSet,viewIds) returns the camera poses that correspond to a subset of
views specified by the vector viewIds.

Examples

Retrieve Camera Poses from View Set Object

Create an empty viewSet object.

vSet = viewSet;

Add views to the object.

vSet = addView(vSet,1,'Orientation',eye(3),'Location',[0,0,0]);
vSet = addView(vSet,2,'Orientation',eye(3),'Location',[1,0,0]);

Retrieve the absolute camera poses.

camPoses = poses(vSet);

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewIds — View IDs
integer scalar | vector

View IDs, specified as an integer scalar for a single view, or as a vector of integers for a set of views.

2 Objects

2-384



Output Arguments
cameraPoses — Camera pose information
three-column table

Camera pose information, returned as a three-column table. The table contains columns for ViewId,
Orientation, and Location. The view IDs correspond to the IDs in the viewSet object. The
orientations are specified as 3-by-3 rotation matrices and locations are specified as three-element
vectors. You can pass the cameraPoses table to the triangulateMultiview and the
bundleAdjustment functions.

Compatibility Considerations
poses function of viewSet object will be removed
Not recommended starting in R2020a

The viewSet object and its poses function will be removed in a future release. Instead, manage
views and pairwise connections between views of data using use the imageviewset object. Return
camera poses associated with views of the imageviewset object using its poses function.

See Also
triangulateMultiview | bundleAdjustment | imageviewset | poses

Introduced in R2016a

 poses

2-385



acfObjectDetector
Detect objects using aggregate channel features

Description
The acfObjectDetector object detects objects from an image using the aggregate channel features
(ACF) object detector. To use the ACF detector on an image, pass the trained detector to the detect
function.

The ACF object detector recognizes specific objects in images, based on the training images and the
object ground truth locations used with the trainACFObjectDetector function.

Creation
Create an acfObjectDetector object by calling the trainACFObjectDetector function with
training data.

detector = trainACFObjectDetector(trainingData,...)

Syntax
[detector = acfObjectDetector(classifier,trainingOptions)

Description

[detector = acfObjectDetector(classifier,trainingOptions) creates an ACF object
detector based on the specified pretrained classifier and trainingOptions. You can use this
syntax to recreate an ACF object detector for code generation.

Input Arguments

classifier — Pretrained acfObjectDetector object classifier
structure field

Pretrained acfObjectDetector object classifier, specified as a structure field. You can obtain the
classifier structure field by converting a pretrained ACF classifier object to a structure by using the
toStruct function.

trainingOptions — Pretrained acfObjectDetector object training options
structure field

Pretrained acfObjectDetector object training options, specified as a structure field. You can
obtain the training option structure field by converting a pretrained ACF classifier object to a
structure by using the toStruct function.

2 Objects

2-386



Properties
ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainACFObjectDetector function. You can modify this name after creating your
acfObjectDetector object.
Example: 'stopSign'

ObjectTrainingSize — Size of training images
[height width] vector

This property is read-only.

Size of training images, specified as a [height width] vector.
Example: [100 100]

NumWeakLearners — Number of weak learners
integer

This property is read-only.

Number of weak learners used in the detector, specified as an integer. NumWeakLearners is less
than or equal to the maximum number of weak learners for the last training stage. To restrict this
maximum, you can use the 'MaxWeakLearners' name-value pair in the
trainACFObjectDetector function.

Object Functions
detect Detect objects using ACF object detector
toStruct Convert a trained aggregate channel features (ACF) object detector into structure

Examples

Train Stop Sign Detector Using ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object detector that can
detect stop signs. Test the detector with a separate image.

Load the training data.

load('stopSignsAndCars.mat')

Prefix the full path to the stop sign images.

stopSigns = fullfile(toolboxdir('vision'),'visiondata',stopSignsAndCars{:,1});

Create datastores to load the ground truth data for stop signs.

imds = imageDatastore(stopSigns);
blds = boxLabelDatastore(stopSignsAndCars(:,2));

 acfObjectDetector

2-387



Combine the image and box label datastores.

ds = combine(imds,blds);

Train the ACF detector. Set the number of negative samples to use at each stage to 2. You can turn off
the training progress output by specifying Verbose=false,as a Name-Value argument.

acfDetector = trainACFObjectDetector(ds,NegativeSamplesFactor=2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--------------------------------------------
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--------------------------------------------
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--------------------------------------------
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--------------------------------------------
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--------------------------------------------
ACF object detector training is completed. Elapsed time is 23.3915 seconds.

Test the ACF detector on a test image.

img = imread('stopSignTest.jpg');
[bboxes,scores] = detect(acfDetector,img);

Display the detection results and insert the bounding boxes for objects into the image.

for i = 1:length(scores)
   annotation = sprintf('Confidence = %.1f',scores(i));
   img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
end

figure
imshow(img)

2 Objects

2-388



Recreate ACF Object Detector for Code Generation

Load the ACF stop sign detector from the stopSignDetector.mat file, which is present in the
current working folder as a supporting file.

stopSignDetector = load('stopSignDetectorACF.mat');
detector = stopSignDetector.detector

detector = 

  acfObjectDetector with properties:

             ModelName: 'stopSign'
    ObjectTrainingSize: [34 31]
       NumWeakLearners: 61

Convert the detector into a structure by using the toStruct function.

detectorStruct = toStruct(detector);

To generate code, pass the structure to a MATLAB function. Then inside the MATLAB function, create
an identical ACF stop sign detector using the existing detector properties.

detector1 = acfObjectDetector(detectorStruct.Classifier,detectorStruct.TrainingOptions)

detector1 = 

 acfObjectDetector

2-389



  acfObjectDetector with properties:

             ModelName: 'stopSign'
    ObjectTrainingSize: [34 31]
       NumWeakLearners: 61

You can pass detector1 to the detect function as an input to detect stop signs from images.

References
[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast Feature Pyramids for Object Detection."

Pattern Analysis and Machine Intelligence, IEEE Transactions. Vol. 36, Issue 8, 2014, pp.
1532–1545.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use the toStruct function to pass the acfObjectDetector object into generated code. For
more information, see “Generate Code for Detecting Objects in Images by Using ACF Object
Detector”.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainACFObjectDetector | detectPeopleACF | trainCascadeObjectDetector |
groundTruth

Introduced in R2017a

2 Objects

2-390



rcnnObjectDetector
Detect objects using R-CNN deep learning detector

Description
The rcnnObjectDetector object detects objects from an image, using a R-CNN (regions with
convolution neural networks) object detector. To detect objects in an image, pass the trained detector
to the detect function. To classify image regions, pass the detector to the classifyRegions
function.

Use of the rcnnObjectDetector requires Statistics and Machine Learning Toolbox™ and Deep
Learning Toolbox.

When using the detect or classifyRegions functions with rcnnObjectDetector, use of a CUDA
enabled NVIDIA GPU is highly recommended. The GPU reduces computation time significantly. Usage
of the GPU requires Parallel Computing Toolbox. For information about the supported compute
capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

Creation
Create a rcnnObjectDetector object by calling the trainRCNNObjectDetector function with
training data (requires Deep Learning Toolbox).

detector = trainRCNNObjectDetector(trainingData,...)

Properties
Network — Series network object
SeriesNetwork | DAGNetwork

Series network object representing the convolutional neural network (CNN), specified as an
SeriesNetwork or DAGNetwork. The object is used within the R-CNN detector.

RegionProposalFcn — Custom region proposal
function handle

Custom region proposal function handle, specified as a function name. A custom function
proposalFcn must have the following functional form:

 [bboxes,scores] = proposalFcn(I)

The input argument I is an image. The function must return rectangular bounding boxes in an M-by-4
array. Each row of bboxes contains a four-element vector, [x,y,width,height], that specifies the
upper–left corner and size of a bounding box in pixels. The function must also return a score for each
bounding box in an M-by-1 vector. Higher scores indicate that the bounding box is more likely to
contain an object.

ClassNames — Object class names
cell array

 rcnnObjectDetector

2-391



Object class names, specified as a cell array. The array contains the names of the object classes the R-
CNN detector was trained to find.

BoxRegressionLayer — Bounding box regression layer
character vector

This property is read-only.

Bounding box regression layer name, specified as a character vector. This property is set during
training using the BoxRegressionLayer argument of trainRCNNObjectDetector.

Object Functions
detect Detect objects using R-CNN deep learning detector
classifyRegions Classify objects in image regions using R-CNN object detector

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
  'stopSignImages');
addpath(imDir);

Set network training options to use mini-batch size of 32 to reduce GPU memory usage. Lower the
InitialLearningRate to reduce the rate at which network parameters are changed. This is beneficial
when fine-tuning a pre-trained network and prevents the network from changing too rapidly.

options = trainingOptions('sgdm', ...
  'MiniBatchSize', 32, ...
  'InitialLearnRate', 1e-6, ...
  'MaxEpochs', 10);

Train the R-CNN detector. Training can take a few minutes to complete.

rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0 0.3]);

*******************************************************************
Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.

Step 2 of 3: Training a neural network to classify objects in training data...

|=========================================================================================|
|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|
|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |
|=========================================================================================|

2 Objects

2-392



|            3 |           50 |         9.27 |       0.2895 |       96.88% |     0.000001 |
|            5 |          100 |        14.77 |       0.2443 |       93.75% |     0.000001 |
|            8 |          150 |        20.29 |       0.0013 |      100.00% |     0.000001 |
|           10 |          200 |        25.94 |       0.1524 |       96.88% |     0.000001 |
|=========================================================================================|

Network training complete.

Step 3 of 3: Training bounding box regression models for each object class...100.00%...done.

R-CNN training complete.
*******************************************************************

Test the R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);

Display strongest detection result.

[score, idx] = max(score);

bbox = bbox(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);

figure
imshow(detectedImg)

 rcnnObjectDetector

2-393



Remove the image directory from the path.

rmpath(imDir);

Resume Training an R-CNN Object Detector

Resume training an R-CNN object detector using additional data. To illustrate this procedure, half the
ground truth data will be used to initially train the detector. Then, training is resumed using all the
data.

Load training data and initialize training options.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    stopSigns.imageFilename);

options = trainingOptions('sgdm', ...
    'MiniBatchSize', 32, ...
    'InitialLearnRate', 1e-6, ...
    'MaxEpochs', 10, ...
    'Verbose', false);

Train the R-CNN detector with a portion of the ground truth.

rcnn = trainRCNNObjectDetector(stopSigns(1:10,:), layers, options, 'NegativeOverlapRange', [0 0.3]);

Get the trained network layers from the detector. When you pass in an array of network layers to
trainRCNNObjectDetector, they are used as-is to continue training.

network = rcnn.Network;
layers = network.Layers;

Resume training using all the training data.

rcnnFinal = trainRCNNObjectDetector(stopSigns, layers, options);

Create a network for multiclass R-CNN object detection

Create an R-CNN object detector for two object classes: dogs and cats.

objectClasses = {'dogs','cats'};

The network must be able to classify both dogs, cats, and a "background" class in order to be trained
using trainRCNNObjectDetector. In this example, a one is added to include the background.

numClassesPlusBackground = numel(objectClasses) + 1;

The final fully connected layer of a network defines the number of classes that the network can
classify. Set the final fully connected layer to have an output size equal to the number of classes plus
a background class.

layers = [ ...
    imageInputLayer([28 28 1])

2 Objects

2-394



    convolution2dLayer(5,20)        
    fullyConnectedLayer(numClassesPlusBackground);
    softmaxLayer()
    classificationLayer()];

These network layers can now be used to train an R-CNN two-class object detector.

Use A Saved Network In R-CNN Object Detector

Create an R-CNN object detector and set it up to use a saved network checkpoint. A network
checkpoint is saved every epoch during network training when the trainingOptions
'CheckpointPath' parameter is set. Network checkpoints are useful in case your training session
terminates unexpectedly.

Load the stop sign training data.

load('rcnnStopSigns.mat','stopSigns','layers')

Add full path to image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
      stopSigns.imageFilename);

Set the 'CheckpointPath' using the trainingOptions function.

checkpointLocation = tempdir;
options = trainingOptions('sgdm','Verbose',false, ...
    'CheckpointPath',checkpointLocation);

Train the R-CNN object detector with a few images.

rcnn = trainRCNNObjectDetector(stopSigns(1:3,:),layers,options);

Load a saved network checkpoint.

wildcardFilePath = fullfile(checkpointLocation,'convnet_checkpoint__*.mat');
contents = dir(wildcardFilePath);

Load one of the checkpoint networks.

filepath = fullfile(contents(1).folder,contents(1).name);
checkpoint = load(filepath);

checkpoint.net

ans = 

  SeriesNetwork with properties:

    Layers: [15×1 nnet.cnn.layer.Layer]

Create a new R-CNN object detector and set it up to use the saved network.

 rcnnObjectDetector

2-395



rcnnCheckPoint = rcnnObjectDetector();
rcnnCheckPoint.RegionProposalFcn = @rcnnObjectDetector.proposeRegions;

Set the Network to the saved network checkpoint.

rcnnCheckPoint.Network = checkpoint.net

rcnnCheckPoint = 

  rcnnObjectDetector with properties:

              Network: [1×1 SeriesNetwork]
           ClassNames: {'stopSign'  'Background'}
    RegionProposalFcn: @rcnnObjectDetector.proposeRegions

See Also
Apps
Image Labeler | Video Labeler

Functions
SeriesNetwork | trainNetwork | trainRCNNObjectDetector | fastRCNNObjectDetector |
fasterRCNNObjectDetector | vision.CascadeObjectDetector |
selectStrongestBboxMulticlass

Topics
“Image Category Classification Using Deep Learning”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”

Introduced in R2016b

2 Objects

2-396



bagOfFeatures
Bag of visual words object

Description
You can construct a bag of visual words for use in image category classification, image retrieval, or
loop closure detection in visual simultaneous localization and mapping (vSLAM).

Creation
Syntax
bag = bagOfFeatures(imds)
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)
bag = bagOfFeatures(imds,Name,Value)

Description

bag = bagOfFeatures(imds) returns a bag of features object. The bag output object is generated
using samples from the imds input. By default, the visual vocabulary is created from SURF features
extracted from images in imds.

bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn) returns a bag of features
that uses a custom feature extractor function to extract features from images in imds.
extractorFcn is a function handle to a custom feature extraction function.

bag = bagOfFeatures(imds,Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, bag = bagOfFeatures('Verbose',true)

This object supports parallel computing using multiple MATLAB workers. Enable parallel computing
from the “Computer Vision Toolbox Preferences” dialog box. To open Computer Vision Toolbox
preferences, on the Home tab, in the Environment section, click Preferences. Then select
Computer Vision Toolbox.

Input Arguments

imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object. The bagOfFeatures extracts an equal number of
strongest features from the images contained in the imds object. The number of strongest features is
defined as:

number of strongest features = min(number of features found in each set) x StrongestFraction

The object obtains the StrongestFraction value from the StrongestFeatures property.

extractorFcn — Custom feature extractor function
function handle

 bagOfFeatures

2-397



Custom feature extractor function, specified as a function handle. This custom function extracts
features to learn the visual vocabulary of the object.

The function, extractorFcn, must be specified as a function handle for a file:

extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)

where exampleBagOfFeaturesExtractor is a MATLAB function. For example:

function [features,featureMetrics,location] = exampleBagOfFeaturesExtractor(img)
...

The function must be on the path or in the current working directory. The arguments are defined as:

Argument Input/Output Description
img Input • Binary, grayscale, or truecolor image.

• The input image is from the image set that was originally passed
into bagOfFeatures.

features Output • A binaryFeatures object.
• An M-by-N numeric matrix of image features, where M is the

number of features and N is the length of each feature vector.
• The feature length, N, must be greater than zero and be the

same for all images processed during the bagOfFeatures
creation process.

• If you cannot extract features from an image, supply an empty
feature matrix and an empty feature metrics vector. Use the
empty matrix and vector if, for example, you did not find any
keypoints for feature extraction.

• Numeric, real, and nonsparse.
featureMetrics Output • An M-by-1 vector of feature metrics indicating the strength of

each feature vector.
• Used to apply the 'SelectStrongest' criteria in

bagOfFeatures framework.
• Numeric, real, and nonsparse.

location Output • An M-by-2 matrix of 1-based [x y] values.
• The [x y] values can be fractional.
• Numeric, real, and nonsparse.

For more details on the custom extractor function and its input and output requirements, see “Create
a Custom Feature Extractor”.

You can open an example function file, and use it as a template by typing the following command at
the MATLAB command-line:

edit('exampleBagOfFeaturesExtractor.m')

2 Objects

2-398



Properties
CustomExtractor — Custom extraction function
function handle

Custom feature extractor function, specified as a handle to a function. The custom feature extractor
function extracts features used to learn the visual vocabulary for bagOfFeatures. You must specify
'CustomExtractor' and the function handle, extractorFcn, to a custom feature extraction
function.

The function, extractorFcn, must be specified as a function handle for a file:

extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)

where exampleBagOfFeaturesExtractor is a MATLAB function such as:

function [features,featureMetrics] = exampleBagOfFeaturesExtractor(img)
...

The function must be on the path or in the current working directory.

For more details on the custom extractor function and it’s input and output requirements, see “Create
a Custom Feature Extractor”. You can open an example function file, and use it as a template by
typing the following command at the MATLAB command-line:

edit('exampleBagOfFeaturesExtractor.m')

TreeProperties — Vocabulary tree properties
[1 500] (default) | two-element vector

Vocabulary tree properties, specified as a two-element vector in the form [numLevels
branchingFactor]. numLevels is an integer that specifies the number of levels in the vocabulary tree.
branchingFactor is an integer that specifies a factor to control the amount the vocabulary can grow at
successive levels in the tree. The maximum number of visual words represented by the vocabulary
tree is branchingFactor^numLevels. Typical values for numLevels is between 1 and 6. Typical values
for branchingFactor is between 10 and 500. Use an empirical analysis to select optimal values.

Increase the branching factor to generate a larger vocabulary. Increasing the vocabulary improves
classification and image retrieval accuracy, but will also increase the time to encode images. You can
use a vocabulary tree with multiple levels to create vocabularies on the order of 10,000 visual words
or more. A multilevel tree reduces the time required to encode images with large vocabularies, but
will take longer to create. You can use a tree with one level for vocabularies that contain only 100 -
1000 visual words.

StrongestFeatures — Fraction of strongest features
0.8 (default) | [0,1]

Fraction of strongest features, specified as the comma-separated pair consisting of
'StrongestFeatures' and a value in the range [0,1]. The value represents the fraction of strongest
features to use from each label in the imds input.

Verbose — Enable progress display to screen
true (default) | false

 bagOfFeatures

2-399



Enable progress display to screen, specified as the comma-separated pair consisting of 'Verbose' and
the logical true or false.

PointSelection — Selection method for picking point locations
'Grid' (default) | 'Detector'

Selection method for picking point locations for SURF feature extraction, specified as the comma-
separated pair consisting of 'PointSelection' and either 'Grid' or 'Detector'. There are two
stages for feature extraction. First, you select a method for picking the point locations, (SURF
'Detector' or 'Grid'), with the PointSelection property. The second stage extracts the
features. The feature extraction uses a SURF extractor for both point selection methods.

When you set PointSelection to 'Detector', the feature points are selected using a speeded up
robust feature (SURF) detector. Otherwise, the points are picked on a predefined grid with spacing
defined by 'GridStep'. This property applies only when you are not specifying a custom extractor
with the CustomExtractor property.

GridStep — Grid step size
[8 8] (default) | 1-by-2 [x y] vector

Grid step size in pixels, specified as the comma-separated pair consisting of 'GridStep' and an 1-by-2
[x y] vector. This property applies only when you set PointSelection to 'Grid' and you are not
specifying a custom extractor with the CustomExtractor property. The steps in the x and y
directions define the spacing of a uniform grid. Intersections of the grid lines define locations for
feature extraction.

BlockWidth — Patch size to extract upright SURF descriptor
[32 64 96 128] (default) | 1-by-N vector

Patch size to extract upright SURF descriptor, specified as the comma-separated pair consisting of
'BlockWidth' and a 1-by-N vector of N block widths. This property applies only when you are not
specifying a custom extractor with the CustomExtractor property. Each element of the vector
corresponds to the size of a square block from which the function extracts upright SURF descriptors.
Use multiple square sizes to extract multiscale features. All the square specified are used for each
extraction points on the grid. This property only applies when you set PointSelection to 'Grid'.
The block width corresponds to the scale of the feature. The minimum BlockWidth is 32 pixels.

Upright — Orientation of SURF feature vector
true (default) | logical scalar

Orientation of SURF feature vector, specified as the comma-separated pair consisting of 'Upright'
and a logical scalar. This property applies only when you are not specifying a custom extractor with
the CustomExtractor property. Set this property to true when you do not need to estimate the

2 Objects

2-400



orientation of the SURF feature vectors. Set it to false when you need the image descriptors to
capture rotation information.

Object Functions
encode Create histogram of visual word occurrences

Examples

Create a Bag of Visual Words

Load two image sets.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imgSets = imageSet(setDir,'recursive');

Pick the first two images from each image set to create training sets.

trainingSets = partition(imgSets,2);

Create the bag of features. This process can take a few minutes.

bag = bagOfFeatures(trainingSets,'Verbose',false);

Compute histogram of visual word occurrences for one of the images. Store the histogram as feature
vector.

img = read(imgSets(1),1);
featureVector = encode(bag,img);

Encoding images using Bag-Of-Features.
--------------------------------------
* Encoding an image...done.

Create a Bag of Features with a Custom Feature Extractor

Load an image set.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
    'foldernames');

Specify a custom feature extractor.

extractor = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractor)

Creating Bag-Of-Features.
-------------------------
* Image category 1: books
* Image category 2: cups
* Extracting features using a custom feature extraction function: exampleBagOfFeaturesExtractor.

* Extracting features from 12 images...done. Extracted 230400 features.

 bagOfFeatures

2-401



* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 184320
* Number of clusters          : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 31/100 iterations (~0.43 seconds/iteration)...converged in 31 iterations.

* Finished creating Bag-Of-Features

bag = 
  bagOfFeatures with properties:

      CustomExtractor: @exampleBagOfFeaturesExtractor
       NumVisualWords: 500
       TreeProperties: [1 500]
    StrongestFeatures: 0.8000

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
imageDatastore | imageCategoryClassifier | trainImageCategoryClassifier

Topics
“Monocular Visual Simultaneous Localization and Mapping”
“Image Category Classification Using Bag of Features”
“Image Classification with Bag of Visual Words”
“Create a Custom Feature Extractor”

Introduced in R2014b

2 Objects

2-402



encode
Create histogram of visual word occurrences

Syntax
featureVector = encode(bag,I)
[featureVector,words] = encode(bag,I)

featureVector= encode(bag,imds)
[featureVector,words] = encode(bag,imds)

[ ___ ] = encode( ___ ,Name,Value)

Description
featureVector = encode(bag,I) returns a feature vector that represents a histogram of visual
word occurrences contained in the input image, I. The input bag contains the bagOfFeatures
object.

[featureVector,words] = encode(bag,I) optionally returns the visual words as a
visualWords object. The visualWords object stores the visual words that occur in I and stores the
locations of those words.

featureVector= encode(bag,imds) returns a feature vector that represents a histogram of
visual word occurrences contained in imds. The input bag contains the bagOfFeatures object.

[featureVector,words] = encode(bag,imds) optionally returns an array of visualWords
occurrences in imds. The visualWords object stores the visual words that occur in I and stores the
locations of those words.

[ ___ ] = encode( ___ ,Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, encode('SparseOutput',false)

This method supports parallel computing using multiple MATLAB workers. Enable parallel computing
from the “Computer Vision Toolbox Preferences” dialog box. To open Computer Vision Toolbox
preferences, on the Home tab, in the Environment section, click Preferences. Then select
Computer Vision Toolbox .

Examples

Encode an Image into a Feature Vector

Load a set of image.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
    'foldernames');

Pick the first two images from each label.

 encode

2-403



trainingSet = splitEachLabel(imds,2);

Create bag of features.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.
-------------------------
* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 61440
* Number of clusters          : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 24/100 iterations (~0.15 seconds/iteration)...converged in 24 iterations.

* Finished creating Bag-Of-Features

Encode one of the images into a feature vector.

img = readimage(trainingSet,1);
featureVector = encode(bag,img);

Encoding images using Bag-Of-Features.
--------------------------------------
* Encoding an image...done.

Input Arguments
bag — Bag of features
bagOfFeatures object

Bag of features, specified as a bagOfFeatures object.

I — Input image
grayscale image | truecolor image

Input image, I, specified as a grayscale or truecolor image.

imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object.

2 Objects

2-404



Name-Value Pair Arguments
Example: 'SparseOutput',false

Normalization — Type of normalization
'L2' (default) | 'none'

Type of normalization applied to the feature vector, specified as the comma-separated pair consisting
of 'Normalization' and either 'L2' or 'none'.

SparseOutput — Output sparsity
false (default) | true

Output sparsity, specified as the comma-separated pair consisting of 'SparseOutput' and as true or
false. Set this property to true to return the visual word histograms in a sparse matrix. Setting this
property to true reduces memory consumption for large visual vocabularies where the visual word
histograms contain many zero elements.

Verbose — Enable progress display to screen
true (default) | false

Enable progress display to screen, specified as the comma-separated pair consisting of 'Verbose' and
the logical true or false.

Output Arguments
featureVector — Histogram of visual word occurrences
1-by-bag.VocabularySize | M-by-bag.VocabularySize

Histogram of visual word occurrences, specified as M-by-bag.VocabularySize vector, where M is
the total number of images in imds, numel(imds.Files).

words — Visual words object
visualWords object

Visual words object, returned as a visual words object or an array of visual words objects. The
visualWords object stores the visual words that occur in the images and stores the locations of
those words.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
bagOfFeatures

 encode

2-405



Introduced in R2014b

2 Objects

2-406



imageCategoryClassifier
Predict image category

Description
The imageCategoryClassifier object contains a linear support vector machine (SVM) classifier
trained to recognize an image category.

You must have a Statistics and Machine Learning Toolbox license to use this classifier. This classifier
supports parallel computing using multiple MATLAB workers. Enable parallel computing using the
“Computer Vision Toolbox Preferences” dialog. To open the Computer Vision Toolbox preferences, on
the Home tab, in the Environment section, click Preferences. Select Computer Vision System
Toolbox.

Creation
Use the trainImageCategoryClassifier function to create the imageCategoryClassifier
object.

bag = bagOfFeatures(trainingSet);
categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Properties
Labels — Category labels
cell array

Category labels, specified as a cell array.

NumCategories — Number of trained categories
integer

Number of trained categories, stored as an integer value.

Object Functions
evaluate Evaluate image classifier on collection of image sets
predict Predict image category

Examples

Train, Evaluate, and Apply Image Category Classifier

Load two image categories.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
    'foldernames');

 imageCategoryClassifier

2-407



Split the data set into a training and test data. Pick 30% of images from each set for the training data
and the remainder 70% for the test data.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Create bag of visual words.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.
-------------------------
* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 61440
* Number of clusters          : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.19 seconds/iteration)...converged in 20 iterations.

* Finished creating Bag-Of-Features

Train a classifier with the training sets.

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Training an image category classifier for 2 categories.
--------------------------------------------------------
* Category 1: books
* Category 2: cups

* Encoding features for 4 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

Evaluate the classifier using test images. Display the confusion matrix.

confMatrix = evaluate(categoryClassifier,testSet)

Evaluating image category classifier for 2 categories.
-------------------------------------------------------

* Category 1: books
* Category 2: cups

* Evaluating 8 images...done.

2 Objects

2-408



* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

             PREDICTED
KNOWN    | books   cups   
--------------------------
books    | 0.75    0.25   
cups     | 0.25    0.75   

* Average Accuracy is 0.75.

confMatrix = 2×2

    0.7500    0.2500
    0.2500    0.7500

Find the average accuracy of the classification.

mean(diag(confMatrix))

ans = 0.7500

Apply the newly trained classifier to categorize new images.

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

Encoding images using Bag-Of-Features.
--------------------------------------
* Encoding an image...done.

Display the classification label.

categoryClassifier.Labels(labelIdx)

ans = 1x1 cell array
    {'cups'}

References
[1] Csurka, G., C. R. Dance, L. Fan, J. Willamowski, and C. Bray Visual Categorization with Bag of

Keypoints, Workshop on Statistical Learning in Computer Vision, ECCV 1 (1-22), 1-2.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

 imageCategoryClassifier

2-409



See Also
imageDatastore | bagOfFeatures | trainImageCategoryClassifier | fitcecoc

Topics
“Image Category Classification Using Bag of Features”
“Image Classification with Bag of Visual Words”

Introduced in R2014b

2 Objects

2-410



predict
Predict image category

Syntax
[labelIdx,score] = predict(categoryClassifier,I)
[labelIdx,score] = predict(categoryClassifier,imds)
[labelIdx,score] = predict( ___ ,'Verbose',true)

Description
[labelIdx,score] = predict(categoryClassifier,I) returns the predicted label index and
score for the input image.

predict supports parallel computing using multiple MATLAB workers. Enable parallel computing
using the “Computer Vision Toolbox Preferences” dialog. To open Computer Vision Toolbox
preferences, on the Home tab, in the Environment section, click Preferences. Select Computer
Vision Toolbox.

[labelIdx,score] = predict(categoryClassifier,imds) returns the predicted label index
and score for the images specified in imds.

[labelIdx,score] = predict( ___ ,'Verbose',true) also enables progress display to the
screen. Set to false to turn it off.

Examples

Predict Category for Image

Load two image category sets.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
    'foldernames');

Separate the two sets into training and test data. Pick 30% of images from each set for the training
data and the remainder 70% for the test data.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Create a bag of visual words.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.
-------------------------
* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.

 predict

2-411



** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 61440
* Number of clusters          : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.27 seconds/iteration)...converged in 20 iterations.

* Finished creating Bag-Of-Features

Train a classifier.

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Training an image category classifier for 2 categories.
--------------------------------------------------------
* Category 1: books
* Category 2: cups

* Encoding features for 4 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

Predict category label for one of the images in test set.

img = readimage(testSet,1);
[labelIdx, score] = predict(categoryClassifier,img);

Encoding images using Bag-Of-Features.
--------------------------------------
* Encoding an image...done.

categoryClassifier.Labels(labelIdx)

ans = 1x1 cell array
    {'books'}

Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified as either an M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale image.

categoryClassifier — Image category classifier
imageCategoryClassifier object

2 Objects

2-412



Image category classifier, specified as an imageCategoryClassifier object.

imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object.

Output Arguments
labelIdx — Predicted label index
M-by-1 vector | scalar

Predicted label index, returned as either an M-by-1 vector for M images or a scalar value for a single
image. The labelIdx output value corresponds to the index of an image set used to train the bag of
features. The prediction index corresponds to the class with the lowest average binary loss of the
ECOC SVM classifier.

score — Prediction score
1-by-N vector | M-by-N matrix

Prediction score, specified as a 1-by-N vector or an M-by-N matrix. N represents the number of
classes. M represents the number of images in the imageSet input object, imgSet. The score
provides a negated average binary loss per class. Each class is a support vector machine (SVM)
multiclass classifier that uses the error-correcting output codes (ECOC) approach.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
imageCategoryClassifier | evaluate

Introduced in R2014b

 predict

2-413



evaluate
Evaluate image classifier on collection of image sets

Syntax
confMat = evaluate(categoryClassifier,imds)
[confMat,knownLabelIdx,predictedLabelIdx,score] = evaluate(
categoryClassifier,imds)

Description
confMat = evaluate(categoryClassifier,imds) returns a normalized confusion matrix,
confMat.

[confMat,knownLabelIdx,predictedLabelIdx,score] = evaluate(
categoryClassifier,imds) additionally returns the corresponding label indexes and score.

Examples

Train, Evaluate, and Apply Image Category Classifier

Load two image categories.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
    'foldernames');

Split the data set into a training and test data. Pick 30% of images from each set for the training data
and the remainder 70% for the test data.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Create bag of visual words.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.
-------------------------
* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500

2 Objects

2-414



* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 61440
* Number of clusters          : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.19 seconds/iteration)...converged in 20 iterations.

* Finished creating Bag-Of-Features

Train a classifier with the training sets.

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Training an image category classifier for 2 categories.
--------------------------------------------------------
* Category 1: books
* Category 2: cups

* Encoding features for 4 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

Evaluate the classifier using test images. Display the confusion matrix.

confMatrix = evaluate(categoryClassifier,testSet)

Evaluating image category classifier for 2 categories.
-------------------------------------------------------

* Category 1: books
* Category 2: cups

* Evaluating 8 images...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

             PREDICTED
KNOWN    | books   cups   
--------------------------
books    | 0.75    0.25   
cups     | 0.25    0.75   

* Average Accuracy is 0.75.

confMatrix = 2×2

    0.7500    0.2500
    0.2500    0.7500

Find the average accuracy of the classification.

mean(diag(confMatrix))

ans = 0.7500

 evaluate

2-415



Apply the newly trained classifier to categorize new images.

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

Encoding images using Bag-Of-Features.
--------------------------------------
* Encoding an image...done.

Display the classification label.

categoryClassifier.Labels(labelIdx)

ans = 1x1 cell array
    {'cups'}

Input Arguments
imds — Data store object of images
ImageDatastore object

Images, specified in an ImageDatastore object.

categoryClassifier — Image category classifier
imageCategoryClassifier object

Image category classifier, specified as an imageCategoryClassifier object.

Output Arguments
confMat — Confusion matrix
matrix

Confusion matrix, returned as a matrix. The row indices correspond to known labels and the columns
correspond to the predicted labels.

knownLabelIdx — Label index for image set
M-by-1 vector | scalar

Label index for image set, returned as an M-by-1 vector for M images. The knownLabelIdx output
value corresponds to the index of an image set used to train the bag of features.

predictedLabelIdx — Predicted label index
M-by-1 vector

Predicted label index, returned as an M-by-1 vector for M images. The predictedLabelIdx output
value corresponds to the index of an image set used to train the bag of features. The predicted index
corresponds to the class with the largest value in the score output.

score — Prediction score
M-by-N matrix

Prediction score, specified as an M-by-N matrix. N represents the number of classes. M represents
the number of images in the imageSet input object, imgSet. The score provides a negated average

2 Objects

2-416



binary loss per class. Each class is a support vector machine (SVM) multiclass classifier that uses the
error-correcting output codes (ECOC) approach.

See Also
imageCategoryClassifier | predict

Introduced in R2014b

 evaluate

2-417



intrinsicsEstimationErrors
Object for storing standard errors of estimated camera intrinsics and distortion coefficients

Description
The intrinsicsEstimationErrors object contains the standard errors of estimated camera
intrinsics and distortion coefficients. You can access the intrinsics and distortion standard errors
using the object properties. You can display the standard errors using the displayErrors object
function.

Creation

Syntax
[params,imgsUsed,Errors] = estimateCameraParameters(imagePoints,worldPoints)

Description

[params,imgsUsed,Errors] = estimateCameraParameters(imagePoints,worldPoints)
creates an intrinsicsEstimationErrors object by calling the estimateCameraParameters
function with image points and world points. The function returns a stereoCalibrationErrors or
cameraCalibrationErrors object as the third output argument, which contains the
intrinsicsEstimationErrors as a read-only property.

Properties
SkewError — Standard error of camera axes skew estimate
scalar

This property is read-only.

Standard error of the camera axes skew estimate, specified as a scalar.

FocalLengthError — Standard error of focal length estimate
scalar

Standard error of the focal length estimate, specified as a scalar.

PrincipalPointError — Standard error of principal point estimate
scalar

This property is read-only.

Standard error of the principal point estimate, specified as a scalar.

RadialDistortionError — Standard error of radial distortion estimate
scalar

2 Objects

2-418



This property is read-only.

Standard error of the radial distortion estimate, specified as a scalar.

TangentialDistortionError — Standard error of tangential distortion estimate
scalar

This property is read-only.

Standard error of the tangential distortion estimate, specified as a scalar.

Examples

Display Intrinsics Errors

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir("vision"),"visiondata", ...
 "calibration","mono"));

Detect the calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the corners of the squares. The units of the square are in
millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I,1) size(I,2)];
[params,~,errors] = estimateCameraParameters(imagePoints,worldPoints, ...
                                  ImageSize=imageSize);

Display the standard intrinsics errors.

displayErrors(errors.IntrinsicsErrors,params);

Focal length (pixels):   [  714.1886 +/- 3.3219      710.3785 +/- 4.0579  ]
Principal point (pixels):[  563.6481 +/- 5.3967      355.7252 +/- 3.3036  ]
Radial distortion:       [   -0.3536 +/- 0.0091        0.1730 +/- 0.0488  ]

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Objects
cameraCalibrationErrors | stereoCalibrationErrors | extrinsicsEstimationErrors

Topics
“Using the Single Camera Calibrator App”

 intrinsicsEstimationErrors

2-419



“Using the Stereo Camera Calibrator App”
“Evaluating the Accuracy of Single Camera Calibration”

Introduced in R2013b

2 Objects

2-420



extrinsicsEstimationErrors
Object for storing standard errors of estimated camera intrinsics and distortion coefficients

Description
The extrinsicsEstimationErrors object contains the standard errors of estimated camera
extrinsics. You can access the extrinsics standard errors using the object properties. You can display
the standard errors using the displayErrors object function.

Creation
Syntax
[params,imgsUsed,Errors] = estimateCameraParameters(imagePoints,worldPoints)

Description

[params,imgsUsed,Errors] = estimateCameraParameters(imagePoints,worldPoints)
creates an extrinsicsEstimationErrors object by calling the estimateCameraParameters
function with image points and world points. The function returns a stereoCalibrationErrors or
cameraCalibrationErrors object as the third argument, which contains the
extrinsicsEstimationErrors as a read-only property.

Properties
RotationVectorsError — Standard error of the camera rotations estimate
scalar

This property is read-only.

Standard error of the camera rotations estimate, specified as a scalar.

TranslationVectorsError — Standard error of the camera translations estimate
scalar

Standard error of the camera translations estimate, specified as a scalar.

Examples

Display Extrinsics Errors

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir("vision"),"visiondata", ...
 "calibration","mono"));

Detect the calibration pattern.

 extrinsicsEstimationErrors

2-421



[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the corners of the squares. The units of the square are in
millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I,1),size(I,2)];
[params,~,errors] = estimateCameraParameters(imagePoints,worldPoints, ...
                                  ImageSize=imageSize);

Display the standard extrinsics errors.

displayErrors(errors.ExtrinsicsErrors,params);

Rotation vectors:
                         [   -0.6096 +/- 0.0054       -0.1789 +/- 0.0073       -0.3835 +/- 0.0024  ]
                         [   -0.7283 +/- 0.0050       -0.0996 +/- 0.0072        0.1964 +/- 0.0027  ]
                         [   -0.6722 +/- 0.0051       -0.1444 +/- 0.0074       -0.1329 +/- 0.0026  ]
                         [   -0.5836 +/- 0.0056       -0.2901 +/- 0.0074       -0.5622 +/- 0.0025  ]
                         [   -0.3157 +/- 0.0065       -0.1441 +/- 0.0075       -0.1067 +/- 0.0011  ]
                         [   -0.7581 +/- 0.0052        0.1947 +/- 0.0072        0.4324 +/- 0.0030  ]
                         [   -0.7515 +/- 0.0051        0.0767 +/- 0.0072        0.2070 +/- 0.0029  ]
                         [   -0.6223 +/- 0.0053        0.0231 +/- 0.0073        0.3663 +/- 0.0024  ]
                         [    0.3443 +/- 0.0063       -0.2226 +/- 0.0073       -0.0437 +/- 0.0014  ]

Translation vectors (mm):
                         [ -146.0517 +/- 6.0391      -26.8685 +/- 3.7318      797.9026 +/- 3.9002  ]
                         [ -209.4358 +/- 6.9637      -59.4565 +/- 4.3578      921.8198 +/- 4.6295  ]
                         [ -129.3825 +/- 7.0907      -44.1030 +/- 4.3751      937.6831 +/- 4.4913  ]
                         [ -151.0049 +/- 6.6905      -27.3253 +/- 4.1339      884.2788 +/- 4.3925  ]
                         [ -174.9500 +/- 6.7056      -24.3499 +/- 4.1606      886.4961 +/- 4.6686  ]
                         [ -134.3097 +/- 7.8887     -103.4981 +/- 4.8925     1042.4553 +/- 4.8184  ]
                         [ -173.9846 +/- 7.6891      -73.1691 +/- 4.7812     1017.2385 +/- 4.8126  ]
                         [ -202.9448 +/- 7.4327      -87.9091 +/- 4.6482      983.6957 +/- 4.9072  ]
                         [ -319.8862 +/- 6.3213     -119.8898 +/- 4.0922      829.4581 +/- 4.9591  ]

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Objects
cameraCalibrationErrors | stereoCalibrationErrors | intrinsicsEstimationErrors

Functions
estimateCameraParameters

Topics
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”
“Evaluating the Accuracy of Single Camera Calibration”

2 Objects

2-422



Introduced in R2013b

 extrinsicsEstimationErrors

2-423



BRISKPoints
Object for storing BRISK interest points

Description
This object provides the ability to pass data between the detectBRISKFeatures and
extractFeatures functions. You can also use it to manipulate and plot the data returned by these
functions. You can use the object to fill the points interactively in situations where you might want to
mix a non-BRISK interest point detector with a BRISK descriptor.

Creation

Syntax
points = BRISKPoints(Location)
points = BRISKPoints(Location,Name,Value)

Description

points = BRISKPoints(Location) constructs a BRISKPoints object from an M-by-2 array of [x
y] point coordinates, Location.

points = BRISKPoints(Location,Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in quotes. For example, points =
BRISKPoints('Metric',0.0)

Input Arguments

Location — Point locations
M-by-2 array (default)

Point locations, specified as an M-by-2 array of [x y] point coordinates.

Properties
Count — Number of points
0 (default) | integer

Number of points held by the BRISK object, specified as a numeric value.

Location — Point locations
M-by-2 array (default)

Point locations, specified as an M-by-2 array of [x y] point coordinates.

Scale — Scale
12.0 (default) | scalar

2 Objects

2-424



Scale at which the feature is detected, specified as a value greater than or equal to 1.6.

Metric — Strength of detected feature
0.0 (default) | numeric scalar

Strength of detected feature, specified as a numeric value. The BRISK algorithm uses a determinant
of an approximated Hessian.

Orientation — Orientation
0.0 (default) | angle in radians

Orientation of the detected feature, specified as an angle, in radians. The angle is measured
counterclockwise from the X-axis with the origin specified by the Location property. Do not set this
property manually. Use the call to extractFeatures to fill in this value. The extractFeatures
function modifies the default value of 0.0. Using BRISK interest points to extract a non-BRISK
descriptor, (e.g. SURF, FREAK, MSER, etc.), can alter Orientation values. The Orientation is
mainly useful for visualization purposes.

Object Functions
plot Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics
size Return size of points object
selectUniform Select uniformly distributed subset of feature points

Examples

Detect BRISK Features in an Image

Read an image and detect the BRISK interest points.

I = imread('cameraman.tif');
points = detectBRISKFeatures(I);
location = [100:228;100:228]';
points = BRISKPoints(location);

Select and plot the 10 strongest interest points.

  strongest = points.selectStrongest(10);
  imshow(I); hold on;
  plot(strongest);

 BRISKPoints

2-425



  

Display the [x y] coordinates.

  strongest.Location

ans = 10x2 single matrix

   100   100
   101   101
   102   102
   103   103
   104   104
   105   105
   106   106
   107   107
   108   108
   109   109

Tips
Although BRISKPoints can hold many points, it is a scalar object. Therefore, numel(BRISKPoints)
always returns 1. This value can differ from length(BRISKPoints), which returns the true number
of points held by the object.

References
[1] Leutenegger, S., M. Chli, and R. Siegwart. BRISK: Binary Robust Invariant Scalable Keypoints,

Proceedings of the IEEE International Conference on Computer Vision (ICCV) 2011.

2 Objects

2-426



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for points
object. See visionRecovertformCodeGeneration_kernel.m, which is used in the “Introduction to
Code Generation with Feature Matching and Registration” example.

See Also
detectBRISKFeatures | detectMSERFeatures | detectFASTFeatures |
detectMinEigenFeatures | detectHarrisFeatures | extractFeatures | matchFeatures |
detectSURFFeatures | MSERRegions | SURFPoints | cornerPoints | KAZEPoints |
detectORBFeatures | ORBPoints

Introduced in R2014a

 BRISKPoints

2-427



imageSet
(Not recommended) Define collection of images

Note The imageSet object is not recommended. Instead, manage collections of image data using an
imageDatastore object. For more information, see “Compatibility Considerations”.

Description
An imageSet object stores information about an image data set or a collection of image data sets.
You can use this object to manage your image data. The object contains image descriptions, locations
of images, and the number of images in your collection.

Creation

Syntax
imgSet = imageSet(imageLocation)
imgSetVector = imageSet(imgFolder,'recursive')

Description

imgSet = imageSet(imageLocation) creates an imageSet object.

imgSetVector = imageSet(imgFolder,'recursive') returns a vector of image sets found
through a recursive search starting from imgFolder. The imgSetVector output is a 1-by-
NumFolders vector of imageSet objects, where NumFolders is the number of folders that contain at
least one image.

Input Arguments

imageLocation — Image file location
character vector | cell array

Image file location, specified as a character vector or a cell array. The vector must specify the folder
name that contains the images. The image files name extensions must be supported by imread. The
cell array must contain image locations.
Example: {'imagePath1','imagePath2', ..., 'imagePathX'}, where each imagePath represents the path
to an image.

imgFolder — Start recursive image search folder
character vector

Start recursive image search folder, specified as a character vector. The function searches the folder
structure recursively, starting from imgFolder.

2 Objects

2-428



Properties
Description — Information about image set
character vector

Information about the image set, specified as a character vector. When you create an image set by
recursively searching folders or by specifying a single folder location, the Description property is
set to the folder name. When you specify individual image files, the Description property is not set.
You can set the property manually.
Data Types: char

Count — Number of images in image set
positive integer

Number of images in the image set, specified as a positive integer.
Data Types: double | single

ImageLocation — Image locations
cell array of character vectors

Image locations, specified as a cell array of character vectors.
Data Types: cell

Object Functions
partition (Not recommended) Divide image set into subsets
read (Not recommended) Read image at specified index
select (Not recommended) Select subset of images from image set

Examples

Create an Image Set From a Folder of Images

Read the folder of images.

imgFolder = fullfile(toolboxdir('vision'),'visiondata','stopSignImages');
imgSet = imageSet(imgFolder);

Display the first image in the image set collection.

imshow(read(imgSet,1));

 imageSet

2-429



Create an Array of Image Sets from Multiple Folders

Identify the path to the image sets.

imgFolder = fullfile(matlabroot, 'toolbox','vision',...
    'visiondata','imageSets');

Recursively scan the entire image set folder.

imgSets = imageSet(imgFolder,'recursive')

imgSets=1×2 object
  1x2 imageSet array with properties:

    Description
    ImageLocation
    Count

Display the names of the scanned folders.

{imgSets.Description}

ans = 1x2 cell
    {'books'}    {'cups'}

Display 2nd image from the 'cups' folder.

2 Objects

2-430



imshow(read(imgSets(2),2));

 imageSet

2-431



Create an Image Set by Specifying Individual Images

Specify individual images.

As an alternative to the method below, you can pick the files manually using imgetfile: imgFiles =
imgetfile('MultiSelect',true);

imgFiles = { fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages','image001.jpg'),...
             fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages','image002.jpg') };

Create image set.

imgSet   = imageSet(imgFiles);

Compatibility Considerations
imageSet is not recommended
Not recommended starting in R2016b

imageSet is not recommended. Use imageDatastore instead, which offers more functionality.
There are no plans to remove imageSet.

See Also
imgetfile | imageCategoryClassifier | bagOfFeatures | trainImageCategoryClassifier

Topics
“Image Category Classification Using Bag of Features”

Introduced in R2014b

2 Objects

2-432



partition
(Not recommended) Divide image set into subsets

Note The partition function of the imageSet object is not recommended. Instead, use the
imageDatastore object and its partition function. For more information, see “Compatibility
Considerations”.

Syntax
[set1,set2,...,setN] = partition(imgSet,groupSizes)
[set1,set2,...,setN] = partition(imgSet,groupPercentages)
[set1,set2,...,setN] = partition( ___ ,method)

Description
[set1,set2,...,setN] = partition(imgSet,groupSizes) partitions the input image set,
imgSet, into subsets of size groupSizes.

[set1,set2,...,setN] = partition(imgSet,groupPercentages) partitions the input image
set, imgSet, in terms of percentages.

[set1,set2,...,setN] = partition( ___ ,method) additionally specifies a method,
'sequential' or 'randomized'.

Examples

Partition Image Set

Create an image set.
imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
imgSet  = imageSet(imgFolder);

Divide the set into two groups: one with five images and the other with the remainder of
the images from imgSet.
[setA1, setA2] = partition(imgSet,5);

Randomly partition the set into three groups: one with 20% of the images, the second
group with 30%, and the third group with 50%.
[setB1, setB2, setB3] = partition(imgSet, [0.2, 0.3],'randomized');

Input Arguments
imgSet — Image set
scalar imageSet object | array of imageSet objects

Image set, specified as a scalar imageSet object or an array of imageSet objects.

 partition

2-433



groupSizes — Group size
positive integer | vector of positive integers

Group size of images, specified as a positive integer or vector of positive integers. The number of
output arguments must be between 1 and length(groupSizes) + 1.
Example: [20 60] returns 20 images in set1, 60 images in set2, and any remaining images in
set3.

groupPercentages — Group size percentage
scalar

Group size of images by percentage.
Example: [0.1 0.5] returns 10% of images in set1, 50% in set2, and the remainder in set3.

method — Image selection method
'sequential' (default) | 'randomized'

Image selection method, specified as either method or 'randomized'. When you set method to
'randomized' the images are randomly selected to form the new sets. When you set method to
'sequential' the images are selected sequentially.

Output Arguments
set1,set2,...,setN — Partitioned image sets
array of imageSet objects

Partitioned image sets, returned as an array of imageSet objects.

Compatibility Considerations
partition is not recommended
Not recommended starting in R2016b

The imageSet object and its partition function are not recommended. Instead, manage collections
of image data using an imageDatastore object, and partition data in the image datastore using the
partition function. There are no plans to remove the partition function of the imageSet object.

See Also
imageDatastore | partition

Introduced in R2014b

2 Objects

2-434



read
(Not recommended) Read image at specified index

Note The read function of the imageSet object is not recommended. Instead, use an
imageDatastore object and its read and readimage functions. For more information, see
“Compatibility Considerations”.

Syntax
im = read(imgSet,idx)

Description
im = read(imgSet,idx) returns an image from the image set, imgSet, located at the index idx.

Examples

Display Image from an Image Set

Create an image set.

imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
imgSet  = imageSet(imgFolder);

Display the fourth image from the set.

imshow(read(imgSet, 4));

 read

2-435



Input Arguments
imgSet — Image set
imageSet object

Image set, specified as an imageSet object.

idx — Image location index
positive integer

Image location index, specified as a positive integer.

Output Arguments
im — Image
numeric array

Image, returned as a numeric array.

Compatibility Considerations
read is not recommended
Not recommended starting in R2016b

The imageSet object and its read function are not recommended. Instead, manage collections of
image data using an imageDatastore object, and read images from the image datastore using the

2 Objects

2-436



read and readimage functions. There are no plans to remove the read function of the imageSet
object.

See Also
imageDatastore | read | readimage

Introduced in R2014b

 read

2-437



select
(Not recommended) Select subset of images from image set

Note The select function of the imageSet object is not recommended. Instead, use an
imageDatastore object and its subset function. For more information, see “Compatibility
Considerations”.

Syntax
imgSetOut = select(imgSet,idx)

Description
imgSetOut = select(imgSet,idx) returns a subset of image set, imgSet, using the selection of
images specified by the index idx.

Examples

Select Images Specified by an Index

Read images from a folder.

imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
imgSet  = imageSet(imgFolder);

Select images 2 and 4 from the image set.

imgSetOut = select(imgSet, [2, 4]);

Select every other image from the image set.

imgSetOut2 = select(imgSet, 1:2:imgSet.Count);

Input Arguments
imgSet — Image set
imageSet object

Image set, specified as an imageSet object.

idx — Image location index
scalar | vector of linear indices | vector of logical indices

Image location index, specified as a scalar, vector of linear indices, or a vector of logical indices. The
function uses the idx index to select the subset of images.

2 Objects

2-438



Output Arguments
imgSetOut — Subset of input image set
imageSet object

Subset of the input image set, returned as an imageSet object.

Compatibility Considerations
select is not recommended
Not recommended starting in R2016b

The imageSet object and its select function are not recommended. Instead, manage collections of
image data using an imageDatastore object, and select subsets of images from the image datastore
using the subset function. There are no plans to remove the select function of the imageSet
object.

See Also
imageDatastore | subset

Introduced in R2014b

 select

2-439



invertedImageIndex
Search index that maps visual words to images

Description
An invertedImageIndex object is a search index that stores a visual word-to-image mapping. You
can use this object with the retrieveImages function to search for an image.

Creation
Syntax
imageIndex = invertedImageIndex(bag)
imageIndex = invertedImageIndex(bag,'SaveFeatureLocations',tf)

Description

imageIndex = invertedImageIndex(bag) returns a search index object that stores the visual
word-to-image mapping based on the input bag of visual words, bag. The bag argument sets the
bagOfFeatures property.

imageIndex = invertedImageIndex(bag,'SaveFeatureLocations',tf) specifies whether
or not to save the feature location data in imageIndex. To save image feature locations in the
imageIndex object, specify the logical value tf as true. You can use location data to verify the
spatial or geometric image search results. If you do not require feature locations, you can reduce
memory consumption by specifying tf as false.

Properties
ImageLocation — Indexed image locations
cell array

Indexed image locations, specified as a cell array that contains the path and folder locations of
images.

ImageWords — Visual words
M-element vector of visualWords objects

Visual words, specified as a M-element vector of visualWords objects. M is the number of indexed
images in the invertedImageIndex object. Each visualWords object contains the WordIndex,
Location, VocabularySize, and Count properties for the corresponding indexed image.

WordFrequency — Word occurrence
N-element column

Word occurrence, specified as an N-element column. The column contains the percentage of images
in which each visual word occurs. These percentages are analogous to document frequency in text
retrieval applications.

2 Objects

2-440



To reduce the search set, when looking for the most relevant images, you can suppress the most
common words. You can also suppress rare words that you suspect come from outliers in the image
set.

You can control how much the top and bottom end of the visual word distribution affects the search
results by tuning the WordFrequencyRange property.

BagOfFeatures — Bag of visual words
bagOfFeatures object

Bag of visual words, specified as the bagOfFeatures object used to create the index.

MatchThreshold — Required similarity percentage for potential image match
0.01 (default) | numeric value in range [0,1]

Required similarity percentage for potential image match, specified as a numeric value in the range
[0,1]. To obtain more search results, lower this threshold.

WordFrequencyRange — Word frequency range
[0.01 0.9] (default) | two-element vector

Word frequency range, specified as a two-element vector of a lower and an upper percentage, [lower
upper]. Percentages must be in the range [0, 1], and the value of lower must be less than the value of
upper. Use the word frequency range to ignore common words (the upper percentage range) or rare
words (the lower percentage range) within the image index. These words often occur as repeated
patterns or outliers, respectively, and can reduce search accuracy. To find potential values for this
property, before you set this value, plot the sorted WordFrequency values.

ImageID — Indexed image identifiers
vector of integers

Indexed image identifiers, specified as a vector of integers that uniquely identify indexed images. For
visual SLAM workflows, you can set the value of ImageID equal to the value of the ViewID of the
imageviewset when adding images. Using the same identifier for invertedImageIndex and
imageviewset eliminates the need to index the same image differently in each object.

Object Functions
addImages Add new images to image index
removeImages Remove images from image index
addImageFeatures Add features of image to image index

Examples

Search ROI for Object

Define a set of images to search.

imageFiles = ...
  {'elephant.jpg', 'cameraman.tif', ...
   'peppers.png',  'saturn.png', ...
   'pears.png',    'stapleRemover.jpg', ...
   'football.jpg', 'mandi.tif', ...
   'kids.tif',     'liftingbody.png', ...

 invertedImageIndex

2-441



   'office_5.jpg', 'gantrycrane.png', ...
   'moon.tif',     'circuit.tif', ...
   'tape.png',     'coins.png'};

imgSet = imageSet(imageFiles);

Learn the visual vocabulary of the image view set.

numLevels = 1;
branchingFactor = 1000;
bag = bagOfFeatures(imgSet,'PointSelection','Detector', ...
  'TreeProperties',[numLevels,branchingFactor]);

Creating Bag-Of-Features.
-------------------------
* Image category 1: <undefined>
* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 16 images in image set 1...done. Extracted 3680 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 2944.
** Using the strongest 2944 features from each of the other image categories.

* Creating a 1000 word visual vocabulary.
* Number of levels: 1
* Branching factor: 1000
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 2944
* Number of clusters          : 1000
* Initializing cluster centers...100.00%.
* Clustering...completed 24/100 iterations (~0.06 seconds/iteration)...converged in 24 iterations.

* Finished creating Bag-Of-Features

Create an image search index and add the image view set images.

imageIndex = invertedImageIndex(bag);

addImages(imageIndex,imgSet);

Encoding images using Bag-Of-Features.
--------------------------------------
* Image category 1: <undefined>
* Encoding 16 images from image set 1...done.

* Finished encoding images.

Specify a query image and an ROI in which to search for the target object, an elephant. You can also
use the imrect function to select an ROI interactively. For example, queryROI =
getPosition(imrect).

2 Objects

2-442



queryImage = imread('clutteredDesk.jpg');
queryROI = [130 175 330 365]; 

figure
imshow(queryImage)
rectangle('Position',queryROI,'EdgeColor','yellow')

Find images that contain the object.

imageIDs = retrieveImages(queryImage,imageIndex,'ROI',queryROI)

imageIDs = 15x1 uint32 column vector

    1
   11
    2
    6
    8
   12
    3
   14
   13
   16

 invertedImageIndex

2-443



      ⋮

bestMatch = imageIDs(1);

figure
imshow(imageIndex.ImageLocation{bestMatch})

References
[1] Sivic, J. and A. Zisserman. Video Google: A text retrieval approach to object matching in videos.

ICCV (2003) pg 1470-1477.

[2] Philbin, J., O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching. CVPR (2007).

See Also
imageSet | bagOfFeatures | retrieveImages | evaluateImageRetrieval | indexImages

Topics
“Image Retrieval Using Customized Bag of Features”

2 Objects

2-444



“Image Retrieval with Bag of Visual Words”

Introduced in R2015a

 invertedImageIndex

2-445



addImages
Add new images to image index

Syntax
addImages(imageIndex,imds)
addImages(imageIndex,I,imageId)
addImages( ___ ,Verbose=tf)

Description
addImages(imageIndex,imds) adds the images in imds to imageIndex.

addImages(imageIndex,I,imageId) adds an image, I, to imageIndex, specified by the image
identifier imageId .

addImages( ___ ,Verbose=tf) specifies whether or not to display progress information, in
addition to any combination of input arguments from previous syntaxes. By default, the addImages
function displays progress information. To hide the display, specify tf as false.

Examples

Add Image to Image Index

Define a set of images to search

imageFiles = ...
  {'elephant.jpg', 'cameraman.tif', ...
   'peppers.png',  'saturn.png',...
   'pears.png',    'stapleRemover.jpg', ...
   'football.jpg', 'mandi.tif', ...
   'kids.tif',     'liftingbody.png', ...
   'office_5.jpg', 'gantrycrane.png', ...
   'moon.tif',     'circuit.tif', ...
   'tape.png',     'coins.png'};

imds = imageDatastore(imageFiles);

Learn the visual vocabulary of the image view set.

numlevels = 1;
branchingFactor = 1000;
bag = bagOfFeatures(imds,'PointSelection','Detector', ...
        'TreeProperties',[numlevels,branchingFactor],'Verbose',false);

Create an image search index.

imageIndex = invertedImageIndex(bag);

Add to the image view set images to the image search index.

2 Objects

2-446



addImages(imageIndex,imds);

Encoding images using Bag-Of-Features.
--------------------------------------

* Encoding 16 images...done.

Input Arguments
imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object.

imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object. imds contains new images to add to an existing
index. The function does not ignore duplicate images.

I — Input image
M-by-N-by-3 array | M-by-N 2-D matrix

Input image, specified as either an M-by-N-by-3 array, representing a truecolor image, or an M-by-N
array, representing a 2-D grayscale image.

imageId — Indexed image identifier
positive integer

Indexed image identifier, specified as an positive integer.

Tips
• The addImages function supports parallel computing using multiple MATLAB workers. Enable

parallel computing from the “Computer Vision Toolbox Preferences” dialog box. To open Computer
Vision Toolbox preferences, on the Home tab, in the Environment section, select Preferences.
Then select Computer Vision Toolbox .

See Also
removeImages | addImageFeatures | invertedImageIndex

Introduced in R2015a

 addImages

2-447



removeImages
Remove images from image index

Syntax
removeImages(imageIndex,imageIds)

Description
removeImages(imageIndex,imageIds) removes the images from the imageIndex object that
correspond to the imageIds input.

Examples

Remove Indexed Image

Create image set.

dataDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(dataDir);

Index the image set.

imageIndex = indexImages(imds)

Creating an inverted image index using Bag-Of-Features.
-------------------------------------------------------

Creating Bag-Of-Features.
-------------------------

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 6 images...done. Extracted 1708 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 1366.
** Using the strongest 1366 features from each of the other image categories.

* Creating a 1366 word visual vocabulary.
* Number of levels: 1
* Branching factor: 1366
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 1366
* Number of clusters          : 1366

2 Objects

2-448



* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.12 seconds/iteration)...converged in 1 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.
--------------------------------------

* Encoding 6 images...done.
Finished creating the image index.

imageIndex = 
  invertedImageIndex with properties:

         ImageLocation: {6x1 cell}
            ImageWords: [6x1 vision.internal.visualWords]
         WordFrequency: [1x1366 double]
         BagOfFeatures: [1x1 bagOfFeatures]
               ImageID: [1 2 3 4 5 6]
        MatchThreshold: 0.0100
    WordFrequencyRange: [0.0100 0.9000]

imageIndex.ImageLocation

ans = 6x1 cell
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\bigMug.jpg'    }
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg'   }
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\handMade.jpg'  }
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\holdingCup.jpg'}
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plaid.jpg'     }
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plainWhite.jpg'}

Remove first and third image.

removeImages(imageIndex,[1 3]);
imageIndex.ImageLocation

ans = 4x1 cell
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg'   }
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\holdingCup.jpg'}
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plaid.jpg'     }
    {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plainWhite.jpg'}

Input Arguments
imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object.

imageIds — Image identifiers
vector of positive integers

 removeImages

2-449



Image identifiers, specified as a vector of positive integers. The image identifiers correspond to the
identifiers in imageIndex.ImageID, where ImageID is a property of the invertedImageIndex
object.

See Also
addImages | addImageFeatures | invertedImageIndex

Introduced in R2015a

2 Objects

2-450



addImageFeatures
Add features of image to image index

Syntax
addImageFeatures(imageIndex,features,imageId)

Description
addImageFeatures(imageIndex,features,imageId) adds the features features of an image
to imageIndex, and assigns the features using the unique image identifier imageId.

Examples

Add Image Features of Image Image Index

Define a set of images.

imageFiles = ... 
   {'elephant.jpg','cameraman.tif', ... 
    'peppers.png','saturn.png', ... 
    'pears.png','stapleRemover.jpg', ... 
    'football.jpg','mandi.tif', ... 
    'kids.tif','liftingbody.png', ... 
    'office_5.jpg','gantrycrane.png', ... 
    'moon.tif','circuit.tif', ... 
    'tape.png'};

Create an image datastore containing the images.

imds = imageDatastore(imageFiles); 

Learn the visual vocabulary of the images.

bag = bagOfFeatures(imds); 

Creating Bag-Of-Features.
-------------------------

* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 15 images...done. Extracted 655092 features.

* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1

 addImageFeatures

2-451



* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 524074
* Number of clusters          : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 19/100 iterations (~1.75 seconds/iteration)...converged in 19 iterations.

* Finished creating Bag-Of-Features

Create an image search index.

imageIndex = invertedImageIndex(bag,'SaveFeatureLocations',false);

Load an image and extract features from it.

I = imread('coins.png'); 

Detect SURF points from the image.

points = detectSURFFeatures(I);

Extract image features from the SURF points.

features = extractFeatures(I,points);

Add the image features into the image index.

imageId = 1; 
addImageFeatures(imageIndex,features,imageId)

Input Arguments
imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object.

features — Feature descriptors
M-by-N matrix | binaryFeatures object

Feature descriptors, specified as an M-by-N matrix or a binaryFeatures object. Each descriptor is
of length N. To add image features to the image index using addImageFeatures, you must set the
SaveFeatureLocations property of the invertedImageIndex object to false.

imageId — Indexed image identifier
postive integer

Indexed image identifier, specified as a positive integer.

See Also
invertedImageIndex | removeImages | addImages

Introduced in R2021b

2 Objects

2-452



cameraCalibrationErrors
Object for storing standard errors of estimated camera parameters

Description
cameraCalibrationErrors contains the standard errors of estimated camera parameters. You can
access the intrinsics and extrinsics standard errors using the object properties. You can display the
standard errors using the object’s displayErrors object function.

Creation

Syntax
Description

Create an cameraCalibrationErrors object by calling the estimateCameraParameters
function with image points and world points.

[params,imgsUsed,Errors] = estimateCameraParameters(imagePoints,worldPoints)

Properties
IntrinsicsErrors — Standard intrinsics error
intrinsicsEstimationErrors object

Standard error of the estimated intrinsics for a camera, specified as a
intrinsicsEstimationErrors object.

ExtrinsicsErrors — Standard extrinsics error
extrinsicsEstimationErrors object

Standard error of the estimate rotations and translations for a camera relative to the calibration
pattern, specified as a extrinsicsEstimationErrors object.

Object Functions
displayErrors Display standard errors of camera parameter estimates

Examples

Estimate and Display Camera Calibration Standard Errors

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','mono'));

 cameraCalibrationErrors

2-453



Detect the calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the corners of the squares. The units of the square are in
millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I,1),size(I,2)];
[params,~,errors] = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Display the standard errors.

displayErrors(errors,params);

            Standard Errors of Estimated Camera Parameters
            ----------------------------------------------

Intrinsics
----------
Focal length (pixels):   [  714.1886 +/- 3.3219      710.3785 +/- 4.0579  ]
Principal point (pixels):[  563.6481 +/- 5.3967      355.7252 +/- 3.3036  ]
Radial distortion:       [   -0.3536 +/- 0.0091        0.1730 +/- 0.0488  ]

Extrinsics
----------
Rotation vectors:
                         [   -0.6096 +/- 0.0054       -0.1789 +/- 0.0073       -0.3835 +/- 0.0024  ]
                         [   -0.7283 +/- 0.0050       -0.0996 +/- 0.0072        0.1964 +/- 0.0027  ]
                         [   -0.6722 +/- 0.0051       -0.1444 +/- 0.0074       -0.1329 +/- 0.0026  ]
                         [   -0.5836 +/- 0.0056       -0.2901 +/- 0.0074       -0.5622 +/- 0.0025  ]
                         [   -0.3157 +/- 0.0065       -0.1441 +/- 0.0075       -0.1067 +/- 0.0011  ]
                         [   -0.7581 +/- 0.0052        0.1947 +/- 0.0072        0.4324 +/- 0.0030  ]
                         [   -0.7515 +/- 0.0051        0.0767 +/- 0.0072        0.2070 +/- 0.0029  ]
                         [   -0.6223 +/- 0.0053        0.0231 +/- 0.0073        0.3663 +/- 0.0024  ]
                         [    0.3443 +/- 0.0063       -0.2226 +/- 0.0073       -0.0437 +/- 0.0014  ]

Translation vectors (mm):
                         [ -146.0517 +/- 6.0391      -26.8685 +/- 3.7318      797.9026 +/- 3.9002  ]
                         [ -209.4358 +/- 6.9637      -59.4565 +/- 4.3578      921.8198 +/- 4.6295  ]
                         [ -129.3825 +/- 7.0907      -44.1030 +/- 4.3751      937.6831 +/- 4.4913  ]
                         [ -151.0049 +/- 6.6905      -27.3253 +/- 4.1339      884.2788 +/- 4.3925  ]
                         [ -174.9500 +/- 6.7056      -24.3499 +/- 4.1606      886.4961 +/- 4.6686  ]
                         [ -134.3097 +/- 7.8887     -103.4981 +/- 4.8925     1042.4553 +/- 4.8184  ]
                         [ -173.9846 +/- 7.6891      -73.1691 +/- 4.7812     1017.2385 +/- 4.8126  ]
                         [ -202.9448 +/- 7.4327      -87.9091 +/- 4.6482      983.6957 +/- 4.9072  ]
                         [ -319.8862 +/- 6.3213     -119.8898 +/- 4.0922      829.4581 +/- 4.9591  ]

2 Objects

2-454



See Also
Apps
Stereo Camera Calibrator | Camera Calibrator

Classes
cameraParameters | stereoParameters | stereoCalibrationErrors |
intrinsicsEstimationErrors | extrinsicsEstimationErrors

Functions
estimateCameraParameters | showReprojectionErrors | showExtrinsics |
undistortImage | undistortPoints | detectCheckerboardPoints |
generateCheckerboardPoints

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Using the Single Camera Calibrator App”

Introduced in R2014b

 cameraCalibrationErrors

2-455



stereoCalibrationErrors
Object for storing standard errors of estimated stereo parameters

Description
The stereoCalibrationErrors object contains the standard errors of the estimated calibration
parameters of a pair of stereo cameras. The object stores the estimated intrinsic parameters for
camera one and camera two, the extrinsic parameters for camera one, and the rotation and
translation of camera two relative to camera one. You can access the standard error values by using
the object properties. To display the standard errors, use the displayErrors object function.

Creation
Create a stereo camera calibration errors object by using the estimateCameraParameters
function to calibrate a pair of stereo cameras. The stereoCalibrationErrors object is the third
output argument of the estimateCameraParameters function. For example:

[params,imgsUsed,Errors] = estimateCameraParameters(imagePoints,worldPoints)

Properties
Camera1IntrinsicsErrors — Standard errors of estimated intrinsic parameters and
distortion coefficients for camera one
intrinsicsEstimationErrors object

Standard errors of estimated intrinsic parameters and distortion coefficients for camera one,
specified as an intrinsicsEstimationErrors object.

Camera1ExtrinsicsErrors — Standard errors of estimated extrinsic parameters and
distortion coefficients for camera one
extrinsicsEstimationErrors object

Standard errors of estimated extrinsic parameters and distortion coefficients for camera one,
specified as an extrinsicsEstimationErrors object.

Camera1IntrinsicsErrors — Standard errors of estimated intrinsic parameters and
distortion coefficients for camera two
intrinsicsEstimationErrors object

Standard errors of estimated intrinsic parameters and distortion coefficients for camera two,
specified as an intrinsicsEstimationErrors object.

RotationOfCamera2Error — Standard errors of rotated vector of camera two relative to
camera one
three-element vector

Standard errors of the rotated vector of camera two relative to camera one, specified as a three-
element vector.

2 Objects

2-456



TranslationOfCamera2Error — Standard errors of translation of camera two relative to
camera one
three-element vector

Standard errors of the translation of camera two relative to camera one, specified as a three-element
vector.

Object Functions
displayErrors Display standard errors of stereo camera parameter estimation

Examples

Estimate and Display Stereo Calibration Standard Errors

Specify two sets of calibration images.

imageDir = fullfile(toolboxdir("vision"),"visiondata", ...
  "calibration","stereo");
leftImages = imageDatastore(fullfile(imageDir,"left"));
rightImages = imageDatastore(fullfile(imageDir,"right"));

Detect the checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints( ...
  leftImages.Files,rightImages.Files);

Generate the world coordinates of the corners of the squares. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Here, both cameras have the same resolution.

I = readimage(leftImages,1); 
imageSize = [size(I,1) size(I,2)];
[params, ~, errors] = estimateCameraParameters(imagePoints,worldPoints, ...
                                  ImageSize=imageSize);

Display standard stereo calibration errors.

displayErrors(errors,params);

            Standard Errors of Estimated Stereo Camera Parameters
            -----------------------------------------------------

Camera 1 Intrinsics
-------------------
Focal length (pixels):   [ 1038.0286 +/- 0.6533     1037.9145 +/- 0.6389  ]
Principal point (pixels):[  656.0841 +/- 0.3408      485.5485 +/- 0.2639  ]
Radial distortion:       [   -0.3617 +/- 0.0008        0.1866 +/- 0.0026  ]

Camera 1 Extrinsics
-------------------
Rotation vectors:
                         [    0.1680 +/- 0.0007       -0.0271 +/- 0.0006        3.1125 +/- 0.0001  ]

 stereoCalibrationErrors

2-457



                         [    0.1995 +/- 0.0006       -0.0523 +/- 0.0005       -3.0991 +/- 0.0000  ]
                         [    0.4187 +/- 0.0005       -0.1061 +/- 0.0004       -3.1113 +/- 0.0001  ]
                         [    0.5239 +/- 0.0005       -0.0604 +/- 0.0004       -3.0552 +/- 0.0001  ]
                         [    0.6807 +/- 0.0006       -0.0306 +/- 0.0005       -3.0331 +/- 0.0001  ]
                         [    0.3513 +/- 0.0007       -0.0993 +/- 0.0006       -3.0334 +/- 0.0001  ]
                         [    0.0212 +/- 0.0007       -0.1179 +/- 0.0007       -3.0833 +/- 0.0000  ]
                         [   -0.2765 +/- 0.0008       -0.0847 +/- 0.0007       -3.0943 +/- 0.0001  ]
                         [   -0.4407 +/- 0.0007       -0.1119 +/- 0.0006       -3.0652 +/- 0.0001  ]
                         [   -0.2537 +/- 0.0008       -0.1334 +/- 0.0007       -3.1039 +/- 0.0001  ]

Translation vectors (mm):
                         [  708.4192 +/- 0.4914      227.0500 +/- 0.4002     1492.8672 +/- 1.0127  ]
                         [  368.4408 +/- 0.5228      191.7200 +/- 0.4094     1589.9146 +/- 0.9987  ]
                         [  226.3710 +/- 0.5173      191.1429 +/- 0.4030     1578.4779 +/- 0.9576  ]
                         [   49.5377 +/- 0.5183      196.7495 +/- 0.4030     1580.5404 +/- 0.9493  ]
                         [ -172.4001 +/- 0.7003      150.9910 +/- 0.5406     2119.3253 +/- 1.2532  ]
                         [   10.7777 +/- 0.6784      176.8785 +/- 0.5276     2066.8343 +/- 1.2907  ]
                         [  295.4840 +/- 0.6616      167.8675 +/- 0.5158     2010.7713 +/- 1.2738  ]
                         [  614.2338 +/- 0.6457      166.2016 +/- 0.5153     1968.1798 +/- 1.2722  ]
                         [  767.0156 +/- 0.6106      165.5372 +/- 0.4991     1868.3334 +/- 1.2395  ]
                         [  953.8133 +/- 0.7336      -14.7981 +/- 0.6039     2255.6170 +/- 1.5107  ]

Camera 2 Intrinsics
-------------------
Focal length (pixels):   [ 1042.4817 +/- 0.6644     1042.2692 +/- 0.6534  ]
Principal point (pixels):[  640.5972 +/- 0.3305      479.0652 +/- 0.2633  ]
Radial distortion:       [   -0.3614 +/- 0.0007        0.1822 +/- 0.0022  ]

Position And Orientation of Camera 2 Relative to Camera 1
---------------------------------------------------------
Rotation of camera 2:         [   -0.0037 +/- 0.0002        0.0050 +/- 0.0004       -0.0002 +/- 0.0000  ]
Translation of camera 2 (mm): [ -119.8720 +/- 0.0401       -0.4005 +/- 0.0414       -0.0258 +/- 0.1750  ]

See Also
Apps
Stereo Camera Calibrator | Camera Calibrator

Classes
cameraParameters | stereoParameters | cameraCalibrationErrors |
intrinsicsEstimationErrors | extrinsicsEstimationErrors

Functions
estimateCameraParameters | showReprojectionErrors | showExtrinsics |
undistortImage | undistortPoints | detectCheckerboardPoints |
generateCheckerboardPoints

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”

Introduced in R2014b

2 Objects

2-458



displayErrors
Display standard errors of stereo camera parameter estimation

Syntax
displayErrors(estimationErrors,stereoParams)

Description
displayErrors(estimationErrors,stereoParams) displays the standard errors of stereo
camera parameter estimation, as well as the estimated parameters, from the calibration of a pair of
stereo cameras.

Examples

Estimate and Display Stereo Calibration Standard Errors

Specify two sets of calibration images.

imageDir = fullfile(toolboxdir("vision"),"visiondata", ...
  "calibration","stereo");
leftImages = imageDatastore(fullfile(imageDir,"left"));
rightImages = imageDatastore(fullfile(imageDir,"right"));

Detect the checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints( ...
  leftImages.Files,rightImages.Files);

Generate the world coordinates of the corners of the squares. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Here, both cameras have the same resolution.

I = readimage(leftImages,1); 
imageSize = [size(I,1) size(I,2)];
[params, ~, errors] = estimateCameraParameters(imagePoints,worldPoints, ...
                                  ImageSize=imageSize);

Display standard stereo calibration errors.

displayErrors(errors,params);

            Standard Errors of Estimated Stereo Camera Parameters
            -----------------------------------------------------

Camera 1 Intrinsics
-------------------
Focal length (pixels):   [ 1038.0286 +/- 0.6533     1037.9145 +/- 0.6389  ]
Principal point (pixels):[  656.0841 +/- 0.3408      485.5485 +/- 0.2639  ]

 displayErrors

2-459



Radial distortion:       [   -0.3617 +/- 0.0008        0.1866 +/- 0.0026  ]

Camera 1 Extrinsics
-------------------
Rotation vectors:
                         [    0.1680 +/- 0.0007       -0.0271 +/- 0.0006        3.1125 +/- 0.0001  ]
                         [    0.1995 +/- 0.0006       -0.0523 +/- 0.0005       -3.0991 +/- 0.0000  ]
                         [    0.4187 +/- 0.0005       -0.1061 +/- 0.0004       -3.1113 +/- 0.0001  ]
                         [    0.5239 +/- 0.0005       -0.0604 +/- 0.0004       -3.0552 +/- 0.0001  ]
                         [    0.6807 +/- 0.0006       -0.0306 +/- 0.0005       -3.0331 +/- 0.0001  ]
                         [    0.3513 +/- 0.0007       -0.0993 +/- 0.0006       -3.0334 +/- 0.0001  ]
                         [    0.0212 +/- 0.0007       -0.1179 +/- 0.0007       -3.0833 +/- 0.0000  ]
                         [   -0.2765 +/- 0.0008       -0.0847 +/- 0.0007       -3.0943 +/- 0.0001  ]
                         [   -0.4407 +/- 0.0007       -0.1119 +/- 0.0006       -3.0652 +/- 0.0001  ]
                         [   -0.2537 +/- 0.0008       -0.1334 +/- 0.0007       -3.1039 +/- 0.0001  ]

Translation vectors (mm):
                         [  708.4192 +/- 0.4914      227.0500 +/- 0.4002     1492.8672 +/- 1.0127  ]
                         [  368.4408 +/- 0.5228      191.7200 +/- 0.4094     1589.9146 +/- 0.9987  ]
                         [  226.3710 +/- 0.5173      191.1429 +/- 0.4030     1578.4779 +/- 0.9576  ]
                         [   49.5377 +/- 0.5183      196.7495 +/- 0.4030     1580.5404 +/- 0.9493  ]
                         [ -172.4001 +/- 0.7003      150.9910 +/- 0.5406     2119.3253 +/- 1.2532  ]
                         [   10.7777 +/- 0.6784      176.8785 +/- 0.5276     2066.8343 +/- 1.2907  ]
                         [  295.4840 +/- 0.6616      167.8675 +/- 0.5158     2010.7713 +/- 1.2738  ]
                         [  614.2338 +/- 0.6457      166.2016 +/- 0.5153     1968.1798 +/- 1.2722  ]
                         [  767.0156 +/- 0.6106      165.5372 +/- 0.4991     1868.3334 +/- 1.2395  ]
                         [  953.8133 +/- 0.7336      -14.7981 +/- 0.6039     2255.6170 +/- 1.5107  ]

Camera 2 Intrinsics
-------------------
Focal length (pixels):   [ 1042.4817 +/- 0.6644     1042.2692 +/- 0.6534  ]
Principal point (pixels):[  640.5972 +/- 0.3305      479.0652 +/- 0.2633  ]
Radial distortion:       [   -0.3614 +/- 0.0007        0.1822 +/- 0.0022  ]

Position And Orientation of Camera 2 Relative to Camera 1
---------------------------------------------------------
Rotation of camera 2:         [   -0.0037 +/- 0.0002        0.0050 +/- 0.0004       -0.0002 +/- 0.0000  ]
Translation of camera 2 (mm): [ -119.8720 +/- 0.0401       -0.4005 +/- 0.0414       -0.0258 +/- 0.1750  ]

Input Arguments
estimationErrors — Estimation errors
stereoCalibrationErrors object

Estimation errors, specified as a stereoCalibrationErrors object.

stereoParams — Stereo parameters
stereoParameters object

Stereo parameters, specified as a stereoParameters object.

See Also
Objects
stereoParameters | stereoCalibrationErrors

2 Objects

2-460



Introduced in R2014b

 displayErrors

2-461



MSERRegions
Object for storing MSER regions

Description
This object describes MSER regions and corresponding ellipses that have the same second moments
as the regions. It passes data between the detectMSERFeatures and extractFeatures functions.
The object can also be used to manipulate and plot the data returned by these functions.

Creation

Syntax
regions = MSERRegions(pixellist)

Description

regions = MSERRegions(pixellist) constructs an MSER regions object, regions regions from
the pixel list,pixellist.

Input Arguments

pixellist — Point coordinates for detected MSER regions
M-by-1 cell array

Point coordinates for detected MSER regions, specified as a M-by-1 cell array. Each cell contains a P-
by-2 array of [x y] coordinates for the detected MSER regions, where P varies based on the number of
pixels in a region.

Properties
Location — Locations of ellipses
M-by-2 array (default)

This property is read-only.

Locations of ellipses, stored as an M-by-2 array of [x y] coordinates. The ellipses that have the same
second moments as the MSER regions.

Axes — Major and minor axis
two-element vector (default)

This property is read-only.

Major and minor axis, stored as a two-element vector, [majorAxis minorAxis]. This vector specifies the
major and minor axis of the ellipse that have the same second moments as the MSER regions.

2 Objects

2-462



Orientation — Ellipse orientation
scalar in the range -pi/2 to +pi/2

This property is read-only.

Ellipse orientation, stored as a value in the range from -pi/2 to +pi/2 radians. This value represents
the orientation of the ellipse as measured from the X-axis to the major axis of the ellipse. You can use
this property for visualization purposes.

Count — Number of stored regions
0 (default) | integer

Number of stored regions, specified as an integer.

Object Functions
isempty Determine if points object is empty
length Number of stored points
size Return size of points object
plot Plot MSER regions

Examples

Detect MSER Features in an Image

Load an image.

I = imread('cameraman.tif');

Detect and store regions.

regions = detectMSERFeatures(I);

Display the centroids and axes of detected regions.

imshow(I); hold on;
plot(regions);

 MSERRegions

2-463



Display MSER Feature Regions from the MSERRegions Object

Detect and display the first 10 regions contained in the MSERRegions object.

Detect MSER features.

I = imread('cameraman.tif');
regions = detectMSERFeatures(I);

Display the first 10 regions in the MSERRegions object.

imshow(I); hold on;
plot(regions(1:10),'showPixelList', true);

2 Objects

2-464



Combine MSER Region Detector with SURF Descriptors

Extract and display SURF descriptors at locations identified by MSER detector.

Read image.

I = imread('cameraman.tif');

Detect MSER features.

regionsObj = detectMSERFeatures(I);

Extract and display SURF descriptors.

[features, validPtsObj] = extractFeatures(I, regionsObj);
imshow(I); hold on;
plot(validPtsObj,'showOrientation',true);

 MSERRegions

2-465



Tips
Although MSERRegions may hold many regions, it is a scalar object. Therefore,
numel(MSERRegions) always returns 1. This value may differ from length(MSERRegions), which
returns the true number of regions held by the object.

References
[1] Nister, D., and H. Stewenius, "Linear Time Maximally Stable Extremal Regions", Lecture Notes in

Computer Science. 10th European Conference on Computer Vision, Marseille, France: 2008,
no. 5303, pp. 183–196.

[2] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide baseline stereo from maximally stable
extremal regions. "Proceedings of British Machine Vision Conference, pages 384-396, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation, you must specify both the pixellist cell array and the length of each
array, as the second input. The object outputs, regions.PixelList as an array. The region sizes
are defined in regions.Lengths.

2 Objects

2-466



See Also
detectMSERFeatures | detectSURFFeatures | edge | extractFeatures | matchFeatures |
SURFPoints | cornerPoints | BRISKPoints | KAZEPoints | ORBPoints

Topics
“Find MSER Regions in an Image” on page 3-422
“Detect SURF Interest Points in a Grayscale Image” on page 3-434
“Automatically Detect and Recognize Text Using MSER and OCR”

Introduced in R2012a

 MSERRegions

2-467



cornerPoints
Object for storing corner points

Description
This object stores information about feature points detected from a 2-D grayscale image.

Creation

Syntax
points = cornerPoints(location)
points = cornerPoints(location,Name,Value)

Description

points = cornerPoints(location) constructs a cornerPoints object from an M-by-2 array [x
y] of location coordinates.

points = cornerPoints(location,Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in quotes. For example, points =
cornerPoints('Metric',0.0)

Input Arguments

location — Location coordinates
M-by-2 array

Location of points, specified as an M-by-2 array of [x y] coordinates.

Properties
Location — Location of keypoints
[] (default) | M-by-2 matrix

This property is read-only.

Location of keypoints, specified as an M-by-2 matrix. Each row is of the form [x y] and represents the
location of a keypoint. M is the number of keypoints. You cannot set this property, use the location
input argument instead.

Count — Number of points
0 (default) | integer

Number of points held by the corner points object, specified as a numeric value.

Metric — Strength of detected feature
0.0 (default) | numeric scalar

2 Objects

2-468



Strength of detected feature, specified as a numeric value. The algorithm uses a determinant of an
approximated Hessian.

Object Functions
plot Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics
size Return size of points object
selectUniform Select uniformly distributed subset of feature points
gather Retrieve cornerPoints from the GPU

Examples

Plot Strongest Features from Detected Feature Points

Read an image.

I = imread('cameraman.tif');

Detect feature points.

points = detectHarrisFeatures(I);

Display the ten strongest points.

strongest = selectStrongest(points,10);
imshow(I)
hold on
plot(strongest)

 cornerPoints

2-469



Display the (x,y) coordinates of the strongest points.

strongest.Location

ans = 10x2 single matrix

  112.4516  208.4412
  108.6510  228.1681
  136.6969  114.7962
  181.4160  205.9876
  135.5823  123.4529
  100.4951  174.3253
  146.7581   94.7393
  135.2899   92.6485
  129.8439  110.0350
  130.5716   91.0424

Create Corner Points Object and Display Points

Create a checkerboard image.

I = checkerboard(50,2,2);

Load the locations of corner points.

location = [51    51    51   100   100   100   151   151   151; ...
            50   100   150    50   101   150    50   100   150]';

Save the points in a cornerPoints object.

points = cornerPoints(location);

Display the points on the checkerboard.

imshow(I)
hold on
plot(points)

2 Objects

2-470



Tips
Although cornerPoints may hold many points, it is a scalar object. Therefore,
numel(cornerPoints) always returns 1. This value may differ from length(cornerPoints), which
returns the true number of points held by the object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for points
object. See visionRecovertformCodeGeneration_kernel.m, which is used in the “Introduction to
Code Generation with Feature Matching and Registration” example.

See Also
binaryFeatures | detectHarrisFeatures | detectFASTFeatures |
detectMinEigenFeatures | detectBRISKFeatures | detectSURFFeatures |
detectMSERFeatures | extractFeatures | extractHOGFeatures | matchFeatures |
MSERRegions | detectORBFeatures | ORBPoints | SURFPoints | BRISKPoints | KAZEPoints

Introduced in R2012a

 cornerPoints

2-471



SURFPoints
Object for storing SURF interest points

Description
This object provides the ability to pass data between the detectSURFFeatures and
extractFeatures functions. It can also be used to manipulate and plot the data returned by these
functions. You can use the object to fill the points interactively. You can use this approach in situations
where you might want to mix a non-SURF interest point detector with a SURF descriptor.

Creation

Syntax
points = SURFPoints(location)
points = SURFPoints(location,Name,Value)

Description

points = SURFPoints(location) constructs a SURFPoints object from an M-by-2 array of [x y]
point coordinates.

points = SURFPoints(location,Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in quotes. For example, points =
SURFPoints('Metric',0.0)

Input Arguments

location — Point coordinates
M-by-2 array of [x y] point coordinates.

Point coordinates, specified as an M-by-2 array of form [x y] coordinates. M denotes the number of
points.

Properties
Count — Number of points
0 (default) | integer

Number of points held by the object, specified as a numeric value.

location — Point locations
M-by-2 array (default)

Point locations, specified as an M-by-2 array of [x y] point coordinates.

Scale — Scale
12.0 (default) | scalar

2 Objects

2-472



Scale at which the feature is detected, specified as a value greater than or equal to 1.6.

Metric — Strength of detected feature
0.0 (default) | numeric scalar

Strength of detected feature, specified as a numeric value.

Orientation — Orientation
0.0 (default) | angle in radians

Orientation of the detected feature, specified as an angle, in radians. The angle is measured counter-
clockwise from the X-axis with the origin specified by the Location property. Do not set this
property manually. Rely instead, on the call to extractFeatures to fill in this value. The
extractFeatures function modifies the default value of 0.0.The Orientation is mainly useful for
visualization purposes.

SignOfLaplacian — Sign of Laplacian
0 (default) | -1 | 1

Sign of the Laplacian determined during the detection process, specified as -1, 0, or 1. You can use
this parameter to accelerate the feature matching process.

Blobs with identical metric values but different signs of Laplacian can differ by their intensity values.
For example, a white blob on a blackground versus a black blob on a white background. You can use
this parameter to quickly eliminate blobs that do not match.

For non-SURF detectors, this property is not relevant. For example, for corner features, you can
simply use the default value of 0.

Object Functions
plot Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics
size Return size of points object
selectUniform Select uniformly distributed subset of feature points

Examples

Detect SURF Features

Read in image.

    I = imread('cameraman.tif');

Detect SURF features.

    points = detectSURFFeatures(I);

Display location and scale for the 10 strongest points.

    strongest = points.selectStrongest(10);
    imshow(I); hold on;
    plot(strongest);

 SURFPoints

2-473



Display [x y] coordinates for the 10 strongest points on command line.
    strongest.Location

ans = 10x2 single matrix

  139.7482   95.9542
  107.4502  232.0347
  116.6112  138.2446
  105.5152  172.1816
  113.6975   48.7220
  104.4210   75.7348
  111.3914  154.4597
  106.2879  175.2709
  131.1298   98.3900
  124.2933   64.4942

Detect SURF Features and Display the Last 5 Points

Read in image.
    I = imread('cameraman.tif');

Detect SURF feature.
    points = detectSURFFeatures(I);

Display the last 5 points.
    imshow(I); hold on;
    plot(points(end-4:end));

2 Objects

2-474



Tips
Although SURFPoints may hold many points, it is a scalar object. Therefore, numel(surfPoints)
always returns 1. This value may differ from length(surfPoints), which returns the true number of
points held by the object.

References
[1] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. “SURF:Speeded Up Robust Features.” Computer

Vision and Image Understanding (CVIU).Vol. 110, No. 3, pp. 346–359, 2008.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for points
object. See visionRecovertformCodeGeneration_kernel.m, which is used in the “Introduction to
Code Generation with Feature Matching and Registration” example.

See Also
Objects
SIFTPoints | MSERRegions | BRISKPoints | cornerPoints | ORBPoints | KAZEPoints

 SURFPoints

2-475



Functions
detectSIFTFeatures | detectBRISKFeatures | detectFASTFeatures | detectKAZEFeatures
| detectORBFeatures | detectMinEigenFeatures | detectHarrisFeatures |
detectMSERFeatures | detectSURFFeatures | extractFeatures | matchFeatures

Topics
“Detect SURF Interest Points in a Grayscale Image” on page 3-434
“Display MSER Feature Regions from the MSERRegions Object” on page 2-464
“Find MSER Regions in an Image” on page 3-422
“Detect MSER Features in an Image” on page 2-463

Introduced in R2011b

2 Objects

2-476



ORBPoints
Object for storing ORB keypoints

Description
An ORBPoints object stores the Oriented FAST and rotated BRIEF (ORB) keypoints in an image. You
can specify the keypoints and store them as an ORBPoints object. You can also use the
detectORBFeatures function to detect the ORB keypoints in an image. The detectORBFeatures
function stores the detected ORB keypoints as an ORBPoints object. Use “Object Functions” on page
2-478 to plot, select, and manipulate the detected ORB keypoints.

Creation

Syntax
points = ORBPoints
points = ORBPoints(location)
points = ORBPoints(location,Name,Value)

Description

points = ORBPoints creates an ORBPoints object with default property values.

points = ORBPoints(location) creates an ORBPoints object from a set of location coordinates
specified by location. The location input sets the Location property.

points = ORBPoints(location,Name,Value) sets properties of the object using one or more
name-value pair arguments. Enclose each property name in quotes. For example,
ORBPoints(location,'Count',15) creates an ORBPoints object with Count property set to 15.

Properties
Location — Location of keypoints
[] (default) | M-by-2 matrix

This property is read-only.

Location of keypoints, specified as an M-by-2 matrix. Each row is of the form [x y] and represents the
location of a keypoint. M is the number of keypoints. You cannot set this property as a name-value
pair. Use the location input argument.

Metric — Strength of keypoints
[] (default) | scalar | M-element vector.

This property is read-only.

Strength of keypoints, specified as one of these values:

 ORBPoints

2-477



• A scalar — Detected keypoints have the same strength. In this case, the object assigns the same
Metric value to all keypoints.

• An M-element vector — Detected keypoints have different strength values. In this case, the object
assigns different Metric value to each keypoint. M is the number of keypoints.

Example: ORBPoints(location,'Metric',0.5)
Data Types: single

Count — Number of keypoints
0 (default) | nonnegative integer

This property is read-only.

Number of keypoints held by the object, specified as a nonnegative integer.

Scale — Scale factor
[] (default) | scalar | M-element vector

This property is read-only.

Scale factor, specified as one of these values:

• A scalar — All keypoints are detected at the same level of decomposition. In this case, the object
assigns the same Scale value to all keypoints.

• An M-element vector — The keypoints are detected at different levels of decomposition. In this
case, the object assigns different Scale value to each keypoint. M is the number of keypoints.

The scale factor specifies the level of decomposition at which a keypoint is detected.
Example: ORBPoints(location,'Scale',1.2)
Data Types: single

Orientation — Angle of keypoints in radians
[] (default) | scalar | M-element vector

This property is read-only.

Angle of keypoints in radians, specified as one of these values:

• A scalar — Detected keypoints are of the same orientation. In this case, the object assigns the
same Orientation value to all keypoints.

• An M-element vector — Detected keypoints are of different orientation. In this case, the object
assigns different Orientation value to each keypoint. M is the number of keypoints.

The angle made by a keypoint is defined with reference to the horizontal axis of the image. The
coordinate of the keypoint is set as the origin of the axis.
Example: ORBPoints(location,'Orientation',0.7854)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
isempty Determine if points object is empty

2 Objects

2-478



length Number of stored points
plot Plot points
selectStrongest Select points with strongest metrics
size Return size of points object
selectUniform Select uniformly distributed subset of feature points

Examples

Create and Modify Properties of ORBPoints

Read an image into the workspace.

I = imread('licensePlates.jpg');

Convert the image into a grayscale image.

I = im2gray(I);

Specify the location of keypoints in the image.

location = [400 398; ...
            485 343; ...
            274 323; ...
            274 367; ...
            241 313; ...
            302 213];  

Create an ORBPoints object and display its properties.

points = ORBPoints(location)

points = 
  6x1 ORBPoints array with properties:

       Location: [6x2 single]
         Metric: [6x1 single]
          Count: 6
          Scale: [6x1 single]
    Orientation: [6x1 single]

Inspect the Scale and Orientation properties of the ORBPoints object.

points.Scale

ans = 6x1 single column vector

     1
     1
     1
     1
     1
     1

points.Orientation

 ORBPoints

2-479



ans = 6x1 single column vector

     0
     0
     0
     0
     0
     0

Specify the scale value for each keypoint.

scale = [2.1 2.5 2.5 4 2.3 3.9];

Specify the angle values for the keypoints as 0.7854 radians.

angle = 0.7854;

Create an ORBPoints object with the keypoints and the updated scale and angle values. The output
is an ORBPoints object containing keypoints with the modified Scale and Orientation properties.

points = ORBPoints(location,'Scale',scale,'Orientation',angle);

Inspect the updated Scale values.

points.Scale

ans = 6x1 single column vector

    2.1000
    2.5000
    2.5000
    4.0000
    2.3000
    3.9000

Inspect the updated Orientation values. Since the Orientation value is a scalar, the object
assigns same value to all keypoints.

points.Orientation

ans = 6x1 single column vector

    0.7854
    0.7854
    0.7854
    0.7854
    0.7854
    0.7854

Display the image and plot the ORB keypoints on the image.

figure
imshow(I)
hold on
plot(points)

2 Objects

2-480



Detect and Store ORB Keypoints

Read an image into the workspace.

I = imread('cameraman.tif');

Use the detectORBFeatures function to detect ORB keypoints in the image. The function returns
the detected ORB keypoints as an ORBPoints object.

points = detectORBFeatures(I);

Use the selectUniform object function to select 10 ORB keypoints. The output of the
selectUniform object function is an ORBPoints object.

newPoints = selectUniform(points,10,size(I))

newPoints = 
  10x1 ORBPoints array with properties:

       Location: [10x2 single]
         Metric: [10x1 single]

 ORBPoints

2-481



          Count: 10
          Scale: [10x1 single]
    Orientation: [10x1 single]

Display the location and scale of the selected keypoints on the image.

figure
imshow(I)
hold on
plot(newPoints)

Display the (x, y) coordinates of the selected keypoints.

x = newPoints.Location(:,1);
y = newPoints.Location(:,2);
[x y]

ans = 10x2 single matrix

   147    62
   111    63
   143    67
   127    89
    47   124
    34   154
   183   205
   113   206
   111   207
   148    66

Display the orientation of the selected keypoints.

2 Objects

2-482



newPoints.Orientation

ans = 10x1 single column vector

    5.4682
    0.7888
    5.3084
    6.2443
    2.8221
    3.8440
    6.1212
    6.0344
    4.8840
    5.5535

Tips
Although ORBPoints can hold many points, it is a scalar object. Therefore, numel(ORBPoints)
always returns 1. This value can differ from length(ORBPoints), which returns the true number of
points held by the object.

References
[1] Rublee, E., V. Rabaud, K. Konolige, and G. Bradski. "ORB: An Efficient Alternative to SIFT or

SURF." In Proceedings of the 2011 International Conference on Computer Vision, pp. 2564–
2571. Barcelona, Spain: IEEE, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

• Use in a MATLAB Function block is not supported.

See Also
extractFeatures | detectORBFeatures | matchFeatures | SURFPoints | KAZEPoints |
BRISKPoints | MSERRegions | cornerPoints | detectHarrisFeatures |
detectFASTFeatures | detectBRISKFeatures | detectMinEigenFeatures

Topics
“Point Feature Types”
“Local Feature Detection and Extraction”

Introduced in R2019a

 ORBPoints

2-483



vision.AlphaBlender
Package: vision

Combine images, overlay images, or highlight selected pixels

Description
The AlphaBlender System object combines two images, overlays one image over another, or
highlights selected pixels.

To combine two images, overlay one image over another, or highlight selected pixels:

1 Create the vision.AlphaBlender object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
alphablend = vision.AlphaBlender
alphablend = vision.AlphaBlender(Name,Value)

Description

alphablend = vision.AlphaBlender creates an alpha blender System object, alphablend,
which combines two images, overlays one image over another, or highlights selected pixels.

alphablend = vision.AlphaBlender(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, alphablend =
vision.AlphaBlender('Operation','Blend')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Operation — Operation
'Blend' | 'Binary mask' | 'Highlight selected pixels'

Operation, specified as 'Blend', 'Binary mask', or 'Highlight selected pixels'.

2 Objects

2-484



Operation Description
'Blend' Linearly combine the pixels of one image with the

another image.
'Binary mask' Overwrite the pixel values of one image with the

pixel values of another image.
'Highlight selected pixels' Uses the mask binary image input to determine

which pixels are set to the maximum value
supported by their data type.

OpacitySource — Source of opacity factor
Property (default) | 'Input port'

Source of opacity factor, specified as 'Property' or 'Input port'. This property applies when you
set the Operation property to Blend.

Opacity — Pixel scale value
0.75 (default) | scalar | matrix

Pixel scale value, specified as a scalar or matrix. The object scales each pixel before combining the
images. This property applies when you set the OpacitySource property to Property.

Tunable: Yes

MaskSource — Binary mask source
'Property' (default) | 'Input port'

Binary mask source, specified as 'Property' or 'Input port'. This property applies when you set
the Operation property to Binary mask

Mask — Overwrite scalar
1 (default) | 0 | binary scalar | matrix of binary scalars

Overwrite scalar, specified as 0 or 1 for every pixel, or a matrix of 0s and 1s. This property applies
when you set the MaskSource property to Property.

Tunable: Yes

LocationSource — Source for upper-left location
'Property' (default) | 'Input port'

Source of location of the upper-left corner of second input image

Source for the upper-left corner location of the second input image, specified as Property or Input
port.

Location — Location
[1 1] | two-element vector

Location of the upper-left corner of the second input image relative to the location of the first input
image, specified as a two-element vector in the format [x y]. This property applies when you set the
LocationSource property to Property.

See “Coordinate Systems” for a discussion on pixel coordinates and spatial coordinates, which are the
two main coordinate systems used in the Computer Vision Toolbox.

 vision.AlphaBlender

2-485



Tunable: Yes

Fixed-Point Properties

RoundingMethod — Rounding method
'Floor' (default) | 'Convergent' | 'Floor' | ...

Rounding method, specified as 'Ceiling','Convergent', 'Floor', 'Nearest', 'Round',
'Simplest', 'Zero', or 'Floor'

OverflowAction — Overflow action
'Wrap' (default) | 'Saturate'

Overflow action for fixed-point operations, specified as 'Wrap' or 'Saturate'.

OpacityDataType — Opacity word and fraction lengths
'Same word length as input' (default) | 'Custom'

Opacity word and fraction lengths for fixed-point operations, specified as 'Same word length as
input' or 'Custom'.

CustomOpacityDataType — Opacity word and fraction lengths
numerictype([],16) (default) | unscaled numerictype object

Opacity word and fraction lengths factor for fixed-point operations, specified as an unscaled
numerictype object with a Signedness of Auto. This property applies when you set the
OpacityDataType property to Custom

ProductDataType — Product word and fraction lengths
'Custom' (default) | 'Same as first input'

Product word and fraction lengths, specified as 'Custom' or 'Same as first input'.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,10) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object with a 'Signedness'
of 'Auto'. This property applies when you set the 'ProductDataType' property to 'Custom'

AccumulatorDataType — Accumulator word and fraction lengths
'Same as product' (default) | 'Custom'

Accumulator word and fraction lengths, specified as 'Same as product', 'Same as first
input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,10) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object with a
'Signedness' of 'Auto'.

OutputDataType — Output word and fraction lengths
'Same as product' (default) | 'Custom'

Output word and fraction lengths, specified as 'Same as first input' or 'Custom'.

2 Objects

2-486



CustomOutputDataType — Output word and fraction lengths
numerictype([],32,10) (default) | scaled numerictype object

Output word and fraction lengths, specified as a scaled numerictype object with a 'Signedness'
of 'Auto'.

Usage

Syntax
ab = alphablend(I1,I2)
ab = alphablend(I1,I2,opacity)
ab = alphablend(I1,I2,mask)
ab = alphablend(I1,mask)
ab = alphablend(I1,I2, ___ ,location)

Description

ab = alphablend(I1,I2) returns a alpha blender object that blends images I1 and I2.

ab = alphablend(I1,I2,opacity) uses the opacity input to combine pixel values of I1 and I2.
To use the opacity input, you must set the Operation property to 'Blend' and the OpacitySource
property to 'Input port'

ab = alphablend(I1,I2,mask) uses the mask input to overlay I1 over I2. To use the mask input
with an overlay, you must set the Operation property to 'Binary mask' and the MaskSource
property to 'Input port'.

ab = alphablend(I1,mask) uses the mask input to determine which pixels in I1 are set to the
maximum value supported by their data type. To use the mask input with an overlay, you must set the
Operation property to 'Highlight selected pixels' and the MaskSource property to 'Input
port'.

ab = alphablend(I1,I2, ___ ,location) additionally sets the upper-left corner location for
I2. To use the location input, you must set the LocationSource property to 'Input port'.

Input Arguments

I1 — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16

I2 — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16

opacity — Scale
scalar | matrix

 vision.AlphaBlender

2-487



Pixel scale value, specified as a scalar or matrix. The object scales each pixel before combining the
images.

mask — Overwrite scalar
binary scalar | matrix of binary scalars

Overwrite scalar, specified as 0 or 1 for every pixel, or a matrix of 0s and 1s.

location — Location
two-element vector

Location of the upper-left corner of the second input image relative to the location of the first input
image, specified as a two-element vector in the format [x y].

Tunable: Yes

Output Arguments

alphablend — Blended output image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Output blended image, returned as a combined image, overlayed image, or an image with selected
pixels highlighted.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Blend Two Images

Display the two images.

I1 = im2single(imread('blobs.png'));
I2 = im2single(imread('circles.png'));
subplot(1,2,1);
imshow(I1);
subplot(1,2,2);
imshow(I2);

2 Objects

2-488



Blend the two images and display the result.

blender = vision.AlphaBlender;
J = blender(I1,I2);
figure;
imshow(J);

 vision.AlphaBlender

2-489



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
insertText

Introduced in R2012a

2 Objects

2-490



vision.BinaryFileReader
Package: vision

Read video data from binary files

Description
The BinaryFileReader object reads video data from binary files.

To read a binary file:

1 Create the vision.BinaryFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
bFileReader = vision.BinaryFileReader
bFileReader = vision.BinaryFileReader(Name,Value)
bFileReader = vision.BinaryFileReader(file,Name,Value)

Description

bFileReader = vision.BinaryFileReader returns a binary file reader object, bFileReader,
that reads binary video data from the specified file in I420 Four Character Code (FOURCC) video
format.

bFileReader = vision.BinaryFileReader(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, bFileReader =
vision.BinaryFileReader('Filename','vipmen.bin')

bFileReader = vision.BinaryFileReader(file,Name,Value) returns a binary file reader
System object, bFileReader, with the Filename property set to file and other specified
properties set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 vision.BinaryFileReader

2-491



Filename — File name
vipmen.bin (default) | character vector

File name, specified as a character vector. The full path for the file needs to be specified only if the
file is not on the MATLAB path.

VideoFormat — Video file format
'Four character codes' (default) | 'Custom'

Video file format, specified as 'Four character codes' or 'Custom'.

FourCharacterCode — Four Character Code video format
binary file format

Four Character Code video format, specified as one of the available video formats. For more
information on four character codes, see https://www.fourcc.org. This property applies when you set
the VideoFormat property to 'Four character codes'.

BitstreamFormat — Format of data
'Planar' (default) | 'Packed'

Format of data, specified as 'Planar' or 'Packed'.This property applies when you set the
VideoFormat property to Custom.

OutputSize — Size of output
M-by-N matrix

Size of output, specified as an M-by-N matrix. This property applies when you set the
BitstreamFormat property to 'Packed'.

VideoComponentCount — Number of video components in video stream
3 (default) | 1 | 2 | 4

Number of video components in video stream, specified as 1, 2, 3 or 4. This number corresponds to
the number of video component outputs. This property applies when you set the VideoFormat
property to 'Custom'.

VideoComponentBits — Bit size of video components
[8 8 8] (default) | vector

Bit size of video components, specified as an integer vector of length N, where N is the value of the
VideoComponentCount property. This property applies when you set the VideoFormat property to
'Custom'.

VideoComponentSizes — Size of video components
[120 160; 60 80; 60 80] (default) | N-by-2 array

Size of video components, specified as an N-by-2 array, where N is the value of the
VideoComponentCount property. Each row of the matrix corresponds to the size of that video
component, with the first element denoting the number of rows and the second element denoting the
number of columns. This property applies when you set the VideoFormat property to 'Custom' and
the BitstreamFormat property to 'Planar'.

VideoComponentOrder — Order of video components
[1 2 3] (default) | 1-by-N vector

2 Objects

2-492

https://www.fourcc.org


Order of video components, specified as a 1-by-N vector. This property must be set to a vector of
length N, where N is set according to how you set the BitstreamFormat property. When you set the
BitStreamFormat property to 'Planar', you must set N equal to the value of the
VideoComponentCount property. Otherwise, you can set N equal to or greater than the value of the
VideoComponentCount property. This property applies when you set the VideoFormat property to
'Custom'.

InterlacedVideo — Interlaced video status
false (default) | true

Interlaced video status, specified as true or false. Set this property to true if the video stream
represents interlaced video data. This property applies when you set the VideoFormat property to
'Custom'.

LineOrder — Fill binary file format
'Top line first' (default) | 'Bottom line first'

Fill binary file format, specified as 'Top line first', or 'Bottom line first'. If you set this
property to 'Top line first', the first row of the video frame gets filled first. If you set this
property to 'Bottom line first', the last row of the video frame gets filled first.

SignedData — Signed data
false (default) | true

Signed data, specified as true or false. Set this property to true for signed input data. This
property applies when you set the VideoFormat property to 'Custom'

ByteOrder — Byte order
'Little endian' (default) | 'Big endian'

Byte order, specified as as 'Little endian' or 'Big endian'. This property applies when you set
the VideoFormat property to 'Custom'.

PlayCount — Play count
1 (default) | positive integer

Play count for the number of times to play the file, specified as a positive integer.

Usage

Syntax
[Y,Cb,Cr] = bFileReader()
Y = bFileReader()
[Y,Cb,Cr,Alpha] = bFileReader()
[ ___ ,EOF] = bFileReader()

Description

[Y,Cb,Cr] = bFileReader() reads the luminance, Y and chrominance, Cb and Cr components of
a video stream from the specified binary file when you set the VideoFormat property to 'Four
character codes'. Alternatively, it reads the values when you set the VideoFormat property to
'Custom' and the VideoComponentCount property to 2.

 vision.BinaryFileReader

2-493



Y = bFileReader() reads the video component Y from the binary file when you set the
VideoFormat property to 'Custom' and the VideoComponentCount property to 1.

[Y,Cb,Cr,Alpha] = bFileReader() additionally reads the Alpha when you set the
VideoFormat property to 'Custom' and the VideoComponentCount property to 4.

[ ___ ,EOF] = bFileReader() also returns the end-of-file indicator, EOF. EOF is set to true when
the output contains the last video frame in the file.

Output Arguments

Y — Luminance value
M-by-N matrix

Luminance value, returned as an M-by-N matrix.

Cb — Chrominance value
M-by-N matrix

Chrominance value, returned as an M-by-N matrix.

Cr — Chrominance value
M-by-N matrix

Chrominance value, returned as an M-by-N matrix.

Alpha — Transparency
scalar

Transparency value, returned as a scalar in the range [0,1].

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.BinaryFileReader
isDone End-of-file status (logical)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Read Binary Video File and Play Back on Screen

Create a binary file reader and video player object.

2 Objects

2-494



hbfr = vision.BinaryFileReader();
hvp = vision.VideoPlayer;

Use the while loop to play the default video.

while ~isDone(hbfr)
y = hbfr();
hvp(y);
end

Close the input file and the video display.

release(hbfr);
release(hvp);

 vision.BinaryFileReader

2-495



See Also
vision.VideoFileReader | vision.BinaryFileWriter

Introduced in R2012a

2 Objects

2-496



vision.BinaryFileWriter
Package: vision

Write binary video data to files

Description
The BinaryFileWriter object writes binary video data to files.

To write binary data to a file:

1 Create the vision.BinaryFileWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
bFileWriter = vision.BinaryFileWriter
bFileWriter = vision.BinaryFileWriter(Name,Value)

Description

bFileWriter = vision.BinaryFileWriter returns a binary writer object that writes binary
video data to an output file, output.bin in the I420 Four Character Code format.

bFileWriter = vision.BinaryFileWriter(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, bFileWriter =
vision.BinaryFileWriter('Filename','output.bin')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — File name
output.bin (default) | character vector

File name, specified as a character vector.

VideoFormat — Video file format
'Four character codes' (default) | 'Custom'

 vision.BinaryFileWriter

2-497



Video file format, specified as 'Four character codes' or 'Custom'.

FourCharacterCode — Four Character Code video format
binary file format

Four Character Code video format, specified as one of the available video formats. For more
information on four character codes, see https://www.fourcc.org. This property applies when you set
the VideoFormat property to 'Four character codes'.

BitstreamFormat — Format of data
'Planar' (default) | 'Packed'

Format of data, specified as 'Planar' or 'Packed'.This property applies when you set the
VideoFormat property to Custom.

VideoComponentCount — Number of video components in video stream
3 (default) | 1 | 2 | 4

Number of video components in video stream, specified as 1, 2, 3 or 4. This number corresponds to
the number of video component outputs. This property applies when you set the VideoFormat
property to 'Custom'.

VideoComponentBitsSource — Size of video components format
'Auto' (default) | Property'

Size of video components format, specified as 'Auto' or 'Property'. If this property is set to
'Auto', each component will have a VideoComponentBits property. This property applies when
you set the VideoFormat property to 'Custom'.

VideoComponentBits — Bit size of video components
[8 8 8] (default) | vector

Bit size of video components, specified as an integer vector of length N, where N is the value of the
VideoComponentCount property. This property applies when you set the VideoFormat property to
'Custom'.

VideoComponentOrder — Order of video components
[1 2 3] (default) | 1-by-N vector

Order of video components, specified as a 1-by-N vector. This property must be set to a vector of
length N, where N is set according to how you set the BitstreamFormat property. When you set the
BitStreamFormat property to 'Planar', you must set N equal to the value of the
VideoComponentCount property. Otherwise, you can set N equal to or greater than the value of the
VideoComponentCount property. This property applies when you set the VideoFormat property to
'Custom'.

InterlacedVideo — Interlaced video status
false (default) | true

Interlaced video status, specified as true or false. Set this property to true if the video stream
represents interlaced video data. This property applies when you set the VideoFormat property to
'Custom'.

LineOrder — Fill binary file format
'Top line first' (default) | 'Bottom line first'

2 Objects

2-498

https://www.fourcc.org


Fill binary file format, specified as 'Top line first', or 'Bottom line first'. If you set this
property to 'Top line first', the first row of the video frame gets filled first. If you set this
property to 'Bottom line first', the last row of the video frame gets filled first.

SignedData — Signed data
false (default) | true

Signed data, specified as true or false. Set this property to true for signed input data. This
property applies when you set the VideoFormat property to 'Custom'

ByteOrder — Byte order
'Little endian' (default) | 'Big endian'

Byte order, specified as as 'Little endian' or 'Big endian'. This property applies when you set
the VideoFormat property to 'Custom'.

Usage

Syntax
bFileWriter(Y,Cb,Cr)
bFileWriter(Y)
bFileWriter(Y,Cb)
bFileWriter(Y,Cb,Cr)
bFileWriter(Y,Cb,Cr,Alpha)

Description

bFileWriter(Y,Cb,Cr) writes one frame of video to the specified output file. Y , Cb, Cr represent
the luma (Y) and chroma (Cb and Cr) components of a video stream. This option applies when you set
the VideoFormat property to 'Four character codes'.

bFileWriter(Y) writes video component Y to the output file when the VideoFormat property is set
to 'Custom' and the VideoComponentCount property is set to 1.

bFileWriter(Y,Cb) writes video components Y and Cb to the output file when the VideoFormat
property is 'Custom' and the VideoComponentCount property is set to 2.

bFileWriter(Y,Cb,Cr) writes video components Y , Cb and Cr to the output file when the
VideoFormat property is set to 'Custom' and the VideoComponentCount property is set to 3.

bFileWriter(Y,Cb,Cr,Alpha) writes video components Y , Cb, Cr and Alpha to the output file
when the VideoFormat property is set to 'Custom', and the VideoComponentCount property is
set to 4.

Input Arguments

Y — Luminance value
M-by-N matrix

Luminance value, returned as an M-by-N matrix.

Cb — Chrominance value
M-by-N matrix

 vision.BinaryFileWriter

2-499



Chrominance value, returned as an M-by-N matrix.

Cr — Chrominance value
M-by-N matrix

Chrominance value, returned as an M-by-N matrix.

Alpha — Transparency
scalar

Transparency value, returned as a scalar in the range [0,1].

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Write Video Data to a Binary File

Set the output file name and create binary file reader and writer objects.

 filename = fullfile(tempdir,'output.bin');
 bFileReader = vision.BinaryFileReader;
 bFileWriter = vision.BinaryFileWriter(filename);

Write to the file.

 while ~isDone(bFileReader)
     [y,cb,cr] = bFileReader();
     bFileWriter(y,cb,cr);
 end

Close the files.

 release(bFileReader);
 release(bFileWriter);

See Also
vision.VideoFileReader | vision.BinaryFileReader

Introduced in R2012a

2 Objects

2-500



vision.BlobAnalysis
Package: vision

Properties of connected regions

Description
To compute statistics for connected regions in a binary image

To track a set of points:

1 Create the vision.BlobAnalysis object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
Hblob = vision.BlobAnalysis
Hblob = vision.BlobAnalysis(Name,Value)

Description

Hblob = vision.BlobAnalysis returns a blob analysis object, H, used to compute statistics for
connected regions in a binary image.

Hblob = vision.BlobAnalysis(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in quotes. For example, Hblob =
vision.BlobAnalysis('AreaOutputPort',true)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

AreaOutputPort — Return blob area
true (default) | false

Return blob area, specified as true or false.

CentroidOutputPort — Return coordinates of blob centroids
true (default) | false

 vision.BlobAnalysis

2-501



Return coordinates of blob centroids, specified as true or false.

BoundingBoxOutputPort — Return coordinates of bounding boxes
true (default) | false

Return coordinates of bounding boxes, specified as true or false.

MajorAxisLengthOutputPort — Return vector whose values represent lengths of ellipses'
major axes
false (default) | true

Return vector whose values represent lengths of ellipses' major axes, specified as true or false. Set
this property to true to output a vector whose values represent the lengths of the major axes of the
ellipses that have the same normalized second central moments as the labeled regions. This property
applies when you set the OutputDataType property to double or single.

MinorAxisLengthOutputPort — Return vector whose values represent lengths of ellipses'
minor axes
false (default) | true

Return vector whose values represent lengths of ellipses' minor axes, specified as true or false. Set
this property to true to output a vector whose values represent the lengths of the minor axes of the
ellipses that have the same normalized second central moments as the labeled regions. This property
is available when the OutputDataType property is double or single.

OrientationOutputPort — Return vector whose values represent angles between ellipses'
major axes and x-axis
false (default) | true

Return vector whose values represent angles between ellipses' major axes and x-axis, specified as
true or false. Set this property to true to output a vector whose values represent the angles
between the major axes of the ellipses and the x-axis. This property applies when you set the
OutputDataType property to double or single.

EccentricityOutputPort — Return vector whose values represent ellipses' eccentricities
false (default) | true

Return vector whose values represent ellipses' eccentricities, specified as true or false. Set this
property to true to output a vector whose values represent the eccentricities of the ellipses that have
the same second moments as the region. This property applies when you set the OutputDataType
property to double or single.

EquivalentDiameterSquaredOutputPort — Return vector whose values represent
equivalent diameters squared
false (default) | true

Return vector whose values represent equivalent diameters squared, specified as true or false. Set
this property to true to output a vector whose values represent the equivalent diameters squared.

ExtentOutputPort — Return vector whose values represent results of dividing blob areas
by bounding box areas
false (default) | true

Return vector whose values represent results of dividing blob areas by bounding box areas, specified
as true or false.

2 Objects

2-502



PerimeterOutputPort — Return vector whose values represent estimates of blob
perimeter lengths
false (default) | true

Return vector whose values represent estimates of blob perimeter lengths, specified as true or
false.

OutputDataType — Output data type of statistics
double (default) | single | Fixed point

Output data type of statistics, specified as double,single, or Fixed point. Area and bounding box
outputs are always an int32 data type. Major axis length, Minor axis length, Orientation
and Eccentricity do not apply when you set this property to Fixed point.

Connectivity — Connected pixels
8 (default) | 4

Connected pixels, specified as 4 or 8.

LabelMatrixOutputPort — Maximum number of labeled regions in each input image
50 (default) | positive scalar integer.

Maximum number of labeled regions in each input image, specified as a positive scalar integer. The
maximum number of blobs the object outputs depends on both the value of this property, and on the
size of the input image. The number of blobs the object outputs may be limited by the input image
size.

MinimumBlobArea — Minimum blob area in pixels
0 (default) | positive scalar integer.

Minimum blob area in pixels, specified as positive scalar integer.

Tunable: Yes

MaximumBlobArea — Maximum blob area in pixels
intmax('uint32') (default) | integer

Maximum blob area in pixels, specified as an integer.

Tunable: Yes

ExcludeBorderBlobs — Exclude blobs that contain at least one image border pixel
false (default) | true

Exclude blobs that contain at least one image border pixel, specified as true or false.

MaximumCount — Maximum number of labeled regions in each input image
50 (default) | positive scalar integer

Maximum number of labeled regions in each input image, specified as a positive scalar integer. The
maximum number of blobs the object outputs depends on both the value of this property, and on the
size of the input image. The number of blobs the object outputs may be limited by the input image
size

 vision.BlobAnalysis

2-503



Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
[area,centroid,bbox] = Hblob(bw)
[ ___ ,majoraxis] = Hblob(bw)
[ ___ ,minoraxis] = Hblob(bw)
[bw ___ ,orientation] = Hblob(bw)
[ ___ ,eccentricity] = Hblob(bw)
[ ___ ,EQDIASQ] = Hblob(bw)
[ ___ ,EXTENT] = Hblob(bw)
[ ___ ,perimeter] = Hblob(bw)
[ ___ ,label] = Hblob(bw)

Description

[area,centroid,bbox] = Hblob(bw)returns the area, centroid, and the bounding box of the
blobs when the AreaOutputPort, CentroidOutputPort and BoundingBoxOutputPort
properties are set to true. These are the only properties that are set to true by default. If you set any

2 Objects

2-504



additional properties to true, the corresponding outputs follow the area,centroid, and bbox
outputs.

[ ___ ,majoraxis] = Hblob(bw) computes the major axis length majoraxis of the blobs found in
input binary image bw when you set the MajorAxisLengthOutputPort property to true.

[ ___ ,minoraxis] = Hblob(bw) computes the minor axis length minoraxis of the blobs found in
input binary image BW when you set the MinorAxisLengthOutputPort property to true.

[bw ___ ,orientation] = Hblob(bw) computes the orientation of the blobs found in input
binary image bw when you set the OrientationOutputPort property to true.

[ ___ ,eccentricity] = Hblob(bw) computes the eccentricity of the blobs found in input
binary image bw when you set the EccentricityOutputPort property to true.

[ ___ ,EQDIASQ] = Hblob(bw) computes the equivalent diameter squared EQDIASQ of the blobs
found in input binary image bw when you set the EquivalentDiameterSquaredOutputPort
property to true.

[ ___ ,EXTENT] = Hblob(bw) computes the EXTENT of the blobs found in input binary image bw
when the ExtentOutputPort property is set to true.

[ ___ ,perimeter] = Hblob(bw) computes the perimeter of the blobs found in input binary
image bw when you set the PerimeterOutputPort property to true.

[ ___ ,label] = Hblob(bw) returns a label matrix label of the blobs found in input binary image
bw when you set the LabelMatrixOutputPort property to true.

Input Arguments

bw — Binary image
vector | matrix

Binary image, specified as a vector or matrix.

Output Arguments

area — Number of pixels in labeled regions
vector

Number of pixels in labeled regions, specified as a vector

centroid — Centroid coordinates
M-by-2 matrix.

Centroid coordinates, specified as an M-by-2 matrix. M is the number of blobs.

bbox — Bounding box coordinates
M-by-4 matrix

M-by-4 matrix in the format [x y width height], where M represents the number of blobs and [x,y]
represents the upper-left corner of the bounding box.

majoraxis — Lengths of major axes of ellipses
vector

 vision.BlobAnalysis

2-505



Lengths of major axes of ellipses, specified as a vector.

minoraxis — Lengths of minor axes of ellipses
vector

Lengths of minor axes of ellipses, specified as a vector.

orientation — Angles between the major axes of the ellipses and the x-axis
vector

Angles between the major axes of the ellipses and the x-axis, specified as a vector.

eccentricity — Eccentricities of the ellipses
vector

Eccentricities of the ellipses, specified as a vector

EQDIASQ — Equivalent diameter squared
vector

Equivalent diameter squared, specified as a vector.

extent — Ratio between area and bounding box
vector

Ratio between area and bounding box, specified as a vector. The vector contains the results of
dividing the areas of the blobs by the area of their bounding boxes

perimeter — Estimate of the perimeter length
vector

Estimate of the perimeter length, specified as a vector. The vector contains an estimate of the
perimeter length, in pixels, for each blob.

label — Label matrix
matrix

Label matrix, specified as a matrix.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

2 Objects

2-506



Find Centroid of Blob

Create the blob analysis object.

hBlob = vision.BlobAnalysis('AreaOutputPort',false,'BoundingBoxOutputPort',false);

Create the blob.

img = logical([0 0 0 0 0 0; ...
         0 1 1 1 1 0; ...
         0 1 1 1 1 0; ...
         0 1 1 1 1 0; ...
         0 0 0 0 0 0]);

Find the coordinates for the centroid.

centroid = hBlob(img);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
graythresh | multithresh

Topics
“Cell Counting”

Introduced in R2012a

 vision.BlobAnalysis

2-507



vision.BlockMatcher
Package: vision

Estimate motion between images or video frames

Description
To estimate motion between images or video frames.

1 Create the vision.BlockMatcher object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
blkMatcher = vision.BlockMatcher
blkMatcher = vision.BlockMatcher(Name,Value)

Description

blkMatcher = vision.BlockMatcher returns an object, blkMatcher, that estimates motion
between two images or two video frames. The object performs this estimation using a block matching
method by moving a block of pixels over a search region.

blkMatcher = vision.BlockMatcher(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, blkMatcher =
vision.BlockMatcher('ReferenceFrameSource','Input port')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ReferenceFrameSource — Reference frame source
'Property' (default) | 'Input port'

Reference frame source, specified as 'Input port' or 'Property'. When you set the
ReferenceFrameSource property to 'Input port', a reference frame input must be specified to
the step method of the block matcher object.

2 Objects

2-508



ReferenceFrameDelay — Number of frames between reference and current frames
1 (default) | scalar integer

Number of frames between reference and current frames, specified as a scalar integer greater than
or equal to zero. This property applies when you set the ReferenceFrameSource property to
'Property'.

SearchMethod — Best match search method
'Exhaustive' (default) | 'Three-step'

Best match search method, specified as 'Exhaustive' or 'Three-step'. Specify how to locate the
block of pixels in frame k+1 that best matches the block of pixels in frame k. If you set this property
to 'Exhaustive', the block matcher object selects the location of the block of pixels in frame k+1.
The block matcher does so by moving the block over the search region one pixel at a time, which is
computationally expensive.

If you set this property to 'Three-step', the block matcher object searches for the block of pixels in
frame k+1 that best matches the block of pixels in frame k using a steadily decreasing step size. The
object begins with a step size approximately equal to half the maximum search range. In each step,
the object compares the central point of the search region to eight search points located on the
boundaries of the region and moves the central point to the search point whose values is the closest
to that of the central point. The object then reduces the step size by half, and begins the process
again. This option is less computationally expensive, though sometimes it does not find the optimal
solution.

BlockSize — Size of block in pixels
[17 17] (default) | two-element vector

Size of block, specified in pixels as a two-element vector.

MaximumDisplacement — Maximum displacement search
[7 7] (default) | two-element vector

Maximum displacement search, specified as a two-element vector. Specify the maximum number of
pixels that any center pixel in a block of pixels can move, from image to image or from frame to
frame. The block matcher object uses this property to determine the size of the search region.

MatchCriteria — Match criteria between blocks
'Mean square error (MSE)' (default) | 'Mean absolute difference (MAD')

Match criteria between blocks, specified as 'Mean square error (MSE)' or 'Mean absolute
difference (MAD').

OutputValue — Motion output form
'Magnitude-squared' (default) | 'Horizontal and vertical components in complex
form'

Motion output form, specified as 'Magnitude-squared' or 'Horizontal and vertical
components in complex form'.

Overlap — Input image subdivision overlap
[0 0] (default) | two-element vector

Input image subdivision overlap, specified in pixels as a two-element vector.

 vision.BlockMatcher

2-509



Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
V = blkMatcher(I)
C = blkMatcher(I)
Y = blkMatcher(I,iref)

Description

V = blkMatcher(I) computes the motion of input image I from one video frame to another, and
returns V as a matrix of velocity magnitudes.

C = blkMatcher(I) computes the motion of input image I from one video frame to another, and
returns C as a complex matrix of horizontal and vertical components, when you set the OutputValue
property to Horizontal and vertical components in complex form.

Y = blkMatcher(I,iref) computes the motion between input image I and reference image iref
when you set the ReferenceFrameSource property to Input port.

2 Objects

2-510



Input Arguments

I — Input data
scalar | vector | matrix

Input data, specified as a scalar, vector, or matrix of intensity values.

iref — Input reference data
scalar | vector | matrix

Input reference data, specified as a scalar, vector, or matrix of intensity values.

Output Arguments

V — Velocity magnitudes
matrix

Velocity magnitudes, returned as a matrix.

C — Horizontal and vertical components
matrix

Horizontal and vertical components, returned as a complex matrix.

Y — Motion between inputs
matrix

Motion between image and reference image, returned as a matrix.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Motion Using BlockMatcher

Read and convert RGB image to grayscale.

img1 = im2double(im2gray(imread('onion.png')));

Create a block matcher and alpha blender object.

hbm = vision.BlockMatcher('ReferenceFrameSource',...
        'Input port','BlockSize',[35 35]);

 vision.BlockMatcher

2-511



hbm.OutputValue = 'Horizontal and vertical components in complex form';
halphablend = vision.AlphaBlender;

Offset the first image by [5 5] pixels to create a second image.

img2 = imtranslate(img1,[5,5]);

Compute motion for the two images.

motion = hbm(img1,img2);

Blend the two images.

img12 = halphablend(img2,img1);

Use a quiver plot to show the direction of motion on the images.

[X,Y] = meshgrid(1:35:size(img1,2),1:35:size(img1,1));         
imshow(img12)
hold on
quiver(X(:),Y(:),real(motion(:)),imag(motion(:)),0)
hold off

See Also
opticalFlow | opticalFlowFarneback | opticalFlowHS | opticalFlowLK |
opticalFlowLKDoG

Introduced in R2012a

2 Objects

2-512



vision.CascadeObjectDetector
Package: vision

Detect objects using the Viola-Jones algorithm

Description
The cascade object detector uses the Viola-Jones algorithm to detect people’s faces, noses, eyes,
mouth, or upper body. You can also use the Image Labeler to train a custom classifier to use with
this System object. For details on how the function works, see “Get Started with Cascade Object
Detector”.

To detect facial features or upper body in an image:

1 Create the vision.CascadeObjectDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
detector = vision.CascadeObjectDetector
detector = vision.CascadeObjectDetector(model)
detector = vision.CascadeObjectDetector(XMLFILE)
detector = vision.CascadeObjectDetector(Name,Value)

Description

detector = vision.CascadeObjectDetector creates a detector to detect objects using the
Viola-Jones algorithm.

detector = vision.CascadeObjectDetector(model) creates a detector configured to detect
objects defined by the input character vector, model.

detector = vision.CascadeObjectDetector(XMLFILE) creates a detector and configures it to
use the custom classification model specified with the XMLFILE input.

detector = vision.CascadeObjectDetector(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, detector =
vision.CascadeObjectDetector('ClassificationModel','UpperBody')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 vision.CascadeObjectDetector

2-513



For more information on changing property values, see System Design in MATLAB Using System
Objects.

ClassificationModel — Trained cascade classification model
'FrontalFaceCART' (default) | character string

Trained cascade classification model, specified as a character vector. The ClassificationModel
property controls the type of object to detect. By default, the detector is configured to detect faces.

You can set this character vector to an XML file containing a custom classification model, or to one of
the valid model character vectors listed below. You can train a custom classification model using the
trainCascadeObjectDetector function. The function can train the model using Haar-like
features, histograms of oriented gradients (HOG), or local binary patterns (LBP). For details on how
to use the function, see “Get Started with Cascade Object Detector”.

Classification Model Image Size Used to
Train Model

Model Description

'FrontalFaceCART'(D
efault)

[20 20] Detects faces that are upright and forward facing.
This model is composed of weak classifiers, based
on the classification and regression tree analysis
(CART). These classifiers use Haar features to
encode facial features. CART-based classifiers
provide the ability to model higher-order
dependencies between facial features. [1]

'FrontalFaceLBP' [24 24] Detects faces that are upright and forward facing.
This model is composed of weak classifiers, based
on a decision stump. These classifiers use local
binary patterns (LBP) to encode facial features.
LBP features can provide robustness against
variation in illumination. [2]

'UpperBody' [18 22] Detects the upper-body region, which is defined as
the head and shoulders area. This model uses Haar
features to encode the details of the head and
shoulder region. Because it uses more features
around the head, this model is more robust against
pose changes, e.g. head rotations/tilts. [3]

'EyePairBig'
'EyePairSmall'

[11 45]
[5 22]

Detects a pair of eyes. The 'EyePairSmall'
model is trained using a smaller image. This
enables the model to detect smaller eyes than the
'EyePairBig' model can detect.[4]

'LeftEye'
'RightEye'

[12 18] Detects the left and right eye separately. These
models are composed of weak classifiers, based on
a decision stump. These classifiers use Haar
features to encode details.[4]

'LeftEyeCART'
'RightEyeCART'

[20 20] Detects the left and right eye separately. The weak
classifiers that make up these models are CART-
trees. Compared to decision stumps, CART-tree-
based classifiers are better able to model higher-
order dependencies. [5]

2 Objects

2-514



Classification Model Image Size Used to
Train Model

Model Description

'ProfileFace' [20 20] Detects upright face profiles. This model is
composed of weak classifiers, based on a decision
stump. These classifiers use Haar features to
encode face details.

'Mouth' [15 25] Detects the mouth. This model is composed of weak
classifiers, based on a decision stump, which use
Haar features to encode mouth details.[4]

'Nose' [15 18] This model is composed of weak classifiers, based
on a decision stump, which use Haar features to
encode nose details.[4]

MinSize — Size of smallest detectable object
[] (default) | two-element vector

Size of smallest detectable object, specified as a two-element vector [height width]. Set this property
in pixels for the minimum size region containing an object. The value must be greater than or equal
to the image size used to train the model. Use this property to reduce computation time when you
know the minimum object size prior to processing the image. When you do not specify a value for this
property, the detector sets it to the size of the image used to train the classification model.

For details explaining the relationship between setting the size of the detectable object and the
ScaleFactor property, see “Algorithms” on page 2-519 section.

Tunable: Yes

MaxSize — Size of largest detectable object
[] (default) | two-element vector

Size of largest detectable object, specified as a two-element vector [height width]. Specify the size in
pixels of the largest object to detect. Use this property to reduce computation time when you know
the maximum object size prior to processing the image. When you do not specify a value for this
property, the detector sets it to size(I).

For details explaining the relationship between setting the size of the detectable object and the
ScaleFactor property, see the “Algorithms” on page 2-519 section.

ScaleFactor — Scaling for multiscale object detection
1.1 (default) | scalar

Scaling for multiscale object detection, specified as a value greater than 1.0001. The scale factor
incrementally scales the detection resolution between MinSize and MaxSize. You can set the scale
factor to an ideal value using:
size(I)/(size(I)-0.5)

The detector scales the search region at increments between MinSize and MaxSize using the
following relationship:

search region = round((Training Size)*(ScaleFactorN))

N is the current increment, an integer greater than zero, and Training Size is the image size used to
train the classification model.

 vision.CascadeObjectDetector

2-515



Tunable: Yes

MergeThreshold — Detection threshold
4 (default) | integer

Detection threshold, specified as an integer. The threshold defines the criteria needed to declare a
final detection in an area where there are multiple detections around an object. Groups of colocated
detections that meet the threshold are merged to produce one bounding box around the target object.
Increasing this threshold may help suppress false detections by requiring that the target object be
detected multiple times during the multiscale detection phase. When you set this property to 0, all
detections are returned without performing thresholding or merging operation. This property is
tunable.

UseROI — Use region of interest
false (default) | true

Use region of interest, specified as false or true. Set this property to true to detect objects within
a rectangular region of interest within the input image.

Usage

Syntax
bbox = detector(I)
bbox = detector(I,roi)
detectionResults = detector(ds)

Description

bbox = detector(I) returns an M-by-4 matrix, bbox, that defines M bounding boxes containing
the detected objects. The detector performs multiscale object detection on the input image, I.

bbox = detector(I,roi) detects objects within the rectangular search region specified by roi.
Set the 'UseROI' property to true to use this syntax.I is a grayscale or truecolor (RGB) image.

detectionResults = detector(ds) detects objects within all the images returned by the read
function of the input datastore.

Input Arguments

I — Input image
grayscale | truecolor (RGB)

Input image, specified as grayscale or truecolor (RGB).

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be
grayscale or RGB. The function processes only the first column of the datastore, which must contain
images and must be cell arrays or tables with multiple columns. Therefore, datastore read function
must return image data in the first column.

2 Objects

2-516



model — Classification model
'FrontalFaceCART' (default) | character string

Classification model, specified as a character vector. The model input describes the type of object to
detect. There are several valid model character vectors, such as 'FrontalFaceCART', 'UpperBody',
and 'ProfileFace'. See the ClassificationModel property description for a full list of available
models.

XMLFILE — Custom classification model
XML file

Custom classification model, specified as an XML file. The XMLFILE can be created using the
trainCascadeObjectDetector function or OpenCV (Open Source Computer Vision) training
functionality. You must specify a full or relative path to the XMLFILE, if it is not on the MATLAB path.

roi — Rectangular region of interest
four-element vector (default)

Rectangular region of interest within image I, specified as a four-element vector, [x y width height].

Output Arguments

bbox — Detections
M-by-4 matrix (default)

Detections, returned as an M-by-4 element matrix. Each row of the output matrix contains a four-
element vector, [x y width height], that specifies in pixels, the upper-left corner and size of a
bounding box.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 vision.CascadeObjectDetector

2-517



Detect Faces in an Image Using the Frontal Face Classification Model

Create a face detector object.

faceDetector = vision.CascadeObjectDetector;

Read the input image.

I = imread('visionteam.jpg');

Detect faces.

bboxes = faceDetector(I);

Annotate detected faces.

IFaces = insertObjectAnnotation(I,'rectangle',bboxes,'Face');   
figure
imshow(IFaces)
title('Detected faces');

Detect Upper Body in Image Using Upper Body Classification Model

Create a body detector object and set properties.

bodyDetector = vision.CascadeObjectDetector('UpperBody'); 
bodyDetector.MinSize = [60 60];
bodyDetector.MergeThreshold = 10;

Read input image and detect upper body.

2 Objects

2-518



I2 = imread('visionteam.jpg');
bboxBody = bodyDetector(I2);

Annotate detected upper bodies.

IBody = insertObjectAnnotation(I2,'rectangle',bboxBody,'Upper Body');
figure
imshow(IBody)
title('Detected upper bodies');

Algorithms
Classification Model Training

Each model is trained to detect a specific type of object. The classification models are trained by
extracting features from a set of known images. These extracted features are then fed into a learning
algorithm to train the classification model. Computer Vision Toolbox software uses the Viola-Jones
cascade object detector. This detector uses HOG[7], LBP[8], and Haar-like [6] features and a cascade
of classifiers trained using boosting.

The image size used to train the classifiers defines the smallest region containing the object. Training
image sizes vary according to the application, type of target object, and available positive images. You
must set the MinSize property to a value greater than or equal to the image size used to train the
model.

Cascade of Classifiers

This object uses a cascade of classifiers to efficiently process image regions for the presence of a
target object. Each stage in the cascade applies increasingly more complex binary classifiers, which

 vision.CascadeObjectDetector

2-519



allows the algorithm to rapidly reject regions that do not contain the target. If the desired object is
not found at any stage in the cascade, the detector immediately rejects the region and processing is
terminated. By terminating, the object avoids invoking computation-intensive classifiers further down
the cascade.

Multiscale Object Detection

The detector incrementally scales the input image to locate target objects. At each scale increment, a
sliding window, whose size is the same as the training image size, scans the scaled image to locate
objects. The ScaleFactor property determines the amount of scaling between successive
increments.

The search region size is related to the ScaleFactor in the following way:

search region = round((ObjectTrainingSize)*(ScaleFactorN))

N is the current increment, an integer greater than zero, and ObjectTrainingSize is the image size
used to train the classification model.

The search window traverses the image for each scaled increment.

Relationship Between MinSize, MaxSize, and ScaleFactor

Understanding the relationship between the size of the object to detect and the scale factor will help
you set the properties accordingly. The MinSize and MaxSize properties limit the size range of the

2 Objects

2-520



object to detect. Ideally, these properties are modified to reduce computation time when you know
the approximate object size prior to processing the image. They are not designed to provide precise
filtering of results, based on object size. The behavior of these properties is affected by the
ScaleFactor. The scale factor determines the quantization of the search window sizes.

search region = round((Training Size)*(ScaleFactorN))

The actual range of returned object sizes may not be exactly what you select for the MinSize and
MaxSize properties. For example,
For a ScaleFactor value of 1.1 with a 24x24 training size, for 5 increments, the search region
calculation would be:

>> search region = round(24*1.1.^(1:5))

>> 26 29 32 35 39

If you were to set MaxSize to 34, due to the search region quantization, the actual maximum object
size used by the algorithm would be 32.

Merge Detection Threshold

For each increment in scale, the search window traverses over the image producing multiple
detections around the target object. The multiple detections are merged into one bounding box per
target object. You can use the MergeThreshold property to control the number of detections
required before combining or rejecting the detections. The size of the final bounding box is an
average of the sizes of the bounding boxes for the individual detections and lies between MinSize
and MaxSize.

 vision.CascadeObjectDetector

2-521



References
[1] Lienhart R., Kuranov A., and V. Pisarevsky "Empirical Analysis of Detection Cascades of Boosted

Classifiers for Rapid Object Detection." Proceedings of the 25th DAGM Symposium on Pattern
Recognition. Magdeburg, Germany, 2003.

[2] Ojala Timo, Pietikäinen Matti, and Mäenpää Topi, "Multiresolution Gray-Scale and Rotation
Invariant Texture Classification with Local Binary Patterns" . In IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002. Volume 24, Issue 7, pp. 971-987.

2 Objects

2-522



[3] Kruppa H., Castrillon-Santana M., and B. Schiele. "Fast and Robust Face Finding via Local
Context" . Proceedings of the Joint IEEE International Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance, 2003, pp. 157–164.

[4] Castrillón Marco, Déniz Oscar, Guerra Cayetano, and Hernández Mario, " ENCARA2: Real-time
detection of multiple faces at different resolutions in video streams" . In Journal of Visual
Communication and Image Representation, 2007 (18) 2: pp. 130-140.

[5] Yu Shiqi " Eye Detection." Shiqi Yu’s Homepage. http://yushiqi.cn/research/eyedetection.

[6] Viola, Paul and Michael J. Jones, " Rapid Object Detection using a Boosted Cascade of Simple
Features" , Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2001. Volume: 1, pp.511–518.

[7] Dalal, N., and B. Triggs, " Histograms of Oriented Gradients for Human Detection" . IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. Volume 1, (2005),
pp. 886–893.

[8] Ojala, T., M. Pietikainen, and T. Maenpaa, " Multiresolution Gray-scale and Rotation Invariant
Texture Classification With Local Binary Patterns" . IEEE Transactions on Pattern Analysis
and Machine Intelligence. Volume 24, No. 7 July 2002, pp. 971–987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• XMLFILE must be a compile-time constant.

See Also
Image Labeler | trainCascadeObjectDetector | insertShape | vision.PeopleDetector |
integralImage

Topics
“Face Detection and Tracking Using CAMShift”
“Face Detection and Tracking Using the KLT Algorithm”
“Face Detection and Tracking Using Live Video Acquisition”
“Detect and Track Face”
“Get Started with the Image Labeler”
“Get Started with Cascade Object Detector”
“Multiple Object Tracking”

External Websites
Detect and Track Multiple Faces in a Live Video Stream

Introduced in R2012a

 vision.CascadeObjectDetector

2-523

https://www.mathworks.com/matlabcentral/fileexchange/47105-detect-and-track-multiple-faces


vision.Deinterlacer
Package: vision

Remove motion artifacts by deinterlacing input video signal

Description
To remove motion artifacts by deinterlacing input video signal.

To track a set of points:

1 Create the vision.Deinterlacer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
Hdeinterlacer = vision.Deinterlacer
Hdeinterlacer = vision.Deinterlacer(Name,Value)

Description

Hdeinterlacer = vision.Deinterlacer returns a deinterlacing System object,
Hdeinterlacer, that removes motion artifacts from images composed of weaved top and bottom
fields of an interlaced signal.

Hdeinterlacer = vision.Deinterlacer(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, varObj =
vision.Deinterlacer('Method','Line repetition')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Method used to deinterlace input video
'Line repetition' (default) | 'Linear interpolation' | 'Vertical temporal median
filtering'

Method used to deinterlace input video, specified as 'Line repetition', 'Linear
interpolation' , 'Vertical temporal median filtering'.

2 Objects

2-524



TransposedInput — Indicate if input data is in row-major order
false (default) | true

Indicate if input data is in row-major order, specified as true or false. Set this property to true if
the input buffer contains data elements from the first row first, then the second row second, and so
on.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
value = Hdeinterlacer(input)

Description

value = Hdeinterlacer(input)deinterlaces the input according to the algorithm set in the
Method property

 vision.Deinterlacer

2-525



Input Arguments

input — Input data
top and bottom fields of interlaced video

Input data, specified as a combination of top and bottom fields of interlaced video.

Output Arguments

value — Frames of deinterlaced video
top and bottom fields of interlaced video

Frames of deinterlaced video, returned as the same data type as the input

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Remove Motion Artifacts From Image

Create a deinterlacer object.

hdinterlacer = vision.Deinterlacer;

Read an image with motion artifacts.

I = imread('vipinterlace.png');

Apply the deinterlacer to the image.

clearimage = hdinterlacer(I);

Display the results.

imshow(I); 
title('Original Image');

2 Objects

2-526



figure, imshow(clearimage); 
title('Image after deinterlacing');

 vision.Deinterlacer

2-527



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Deinterlacing

Introduced in R2012a

2 Objects

2-528



vision.ForegroundDetector
Package: vision

Foreground detection using Gaussian mixture models

Description
The ForegroundDetector compares a color or grayscale video frame to a background model to
determine whether individual pixels are part of the background or the foreground. It then computes a
foreground mask. By using background subtraction, you can detect foreground objects in an image
taken from a stationary camera.

To detect foreground in an image :

1 Create the vision.ForegroundDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
detector = vision.ForegroundDetector
detector = vision.ForegroundDetector(Name,Value)

Description

detector = vision.ForegroundDetector computes and returns a foreground mask using the
Gaussian mixture model (GMM).

detector = vision.ForegroundDetector(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, detector =
vision.ForegroundDetector('LearningRate',0.005)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

AdaptLearningRate — Adapt learning rate
'true' (default) | 'false'

 vision.ForegroundDetector

2-529



Adapt learning rate, specified as 'true' or 'false'. This property enables the object to adapt the
learning rate during the period specified by the NumTrainingFrames property. When you set this
property to true, the object sets the LearningRate property to 1/(current frame number). When
you set this property to false, the LearningRate property must be set at each time step.

NumTrainingFrames — Number of initial video frames for training background model
150 (default) | integer

Number of initial video frames for training background model, specified as an integer. When you set
the AdaptLearningRate to false, this property will not be available.

LearningRate — Learning rate for parameter updates
0.005 (default) | numeric scalar

Learning rate for parameter updates, specified as a numeric scalar. Specify the learning rate to adapt
model parameters. This property controls how quickly the model adapts to changing conditions. Set
this property appropriately to ensure algorithm stability.

The learning rate specified by this property can only be implemented when you set the
AdaptLearningRate to true and after the training period specified by NumTrainingFrames is
over.

Tunable: Yes

MinimumBackgroundRatio — Threshold to determine background model
0.7 (default) | numeric scalar

Threshold to determine background model, specified as a numeric scalar. Set this property to
represent the minimum possibility for pixels to be considered background values. Multimodal
backgrounds cannot be handled if this value is too small.

NumGaussians — Number of Gaussian modes in the mixture model
5 (default) | positive integer

Number of Gaussian modes in the mixture model, specified as a positive integer. Typically, you would
set this value to 3, 4 or 5. Set the value to 3 or greater to be able to model multiple background
modes.

InitialVariance — Initial mixture model variance
'Auto' (default) | numeric scalar

Initial mixture model variance, specified as a numeric scalar or the 'Auto' character vector.

Image Data Type Initial Variance
double/single (30/255)^2
uint8 30^2

This property applies to all color channels for color inputs.

2 Objects

2-530



Usage

Syntax
foregroundMask = detector(I)
foregroundMask = detector(I,learningRate)

Description

foregroundMask = detector(I) computes the foreground mask for input image I, and returns a
logical mask. Values of 1 in the mask correspond to foreground pixels.

foregroundMask = detector(I,learningRate) computes the foreground mask using the
LearningRate.

Input Arguments

I — Input image
grayscale | truecolor (RGB)

Input image, specified as grayscale or truecolor (RGB).

learningRate — Learning rate for parameter updates
0.005 (default) | numeric scalar

Learning rate for parameter updates, specified as a numeric scalar. Specify the learning rate to adapt
model parameters. This property controls how quickly the model adapts to changing conditions. Set
this property appropriately to ensure algorithm stability.

The learning rate specified by this property can only be implemented when you set the
AdaptLearningRate to true and after the training period specified by NumTrainingFrames is
over.

Tunable: Yes

Output Arguments

foregroundMask — Foreground mask
binary mask

Foreground mask computed using a Gaussian mixture model, returned as a binary mask.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

 vision.ForegroundDetector

2-531



release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Detect Moving Cars In Video

Create a video source object to read file.

videoSource = VideoReader('viptraffic.avi');

Create a detector object and set the number of training frames to 5 (because it is a short video.) Set
initial standard deviation.

detector = vision.ForegroundDetector(...
       'NumTrainingFrames', 5, ...
       'InitialVariance', 30*30);

Perform blob analysis.

blob = vision.BlobAnalysis(...
       'CentroidOutputPort', false, 'AreaOutputPort', false, ...
       'BoundingBoxOutputPort', true, ...
       'MinimumBlobAreaSource', 'Property', 'MinimumBlobArea', 250);

Insert a border.

shapeInserter = vision.ShapeInserter('BorderColor','White');

Play results. Draw bounding boxes around cars.

videoPlayer = vision.VideoPlayer();
while hasFrame(videoSource)
     frame  = readFrame(videoSource);
     fgMask = detector(frame);
     bbox   = blob(fgMask);
     out    = shapeInserter(frame,bbox);
     videoPlayer(out);
     pause(0.1);
end

2 Objects

2-532



Release objects.

release(videoPlayer);

 vision.ForegroundDetector

2-533



References
[1] Kaewtrakulpong, P. and R. Bowden. An Improved Adaptive Background Mixture Model for

Realtime Tracking with Shadow Detection. In Proc. 2nd European Workshop on Advanced
Video Based Surveillance Systems, AVBS01, VIDEO BASED SURVEILLANCE SYSTEMS:
Computer Vision and Distributed Processing (September 2001)

[2] Stauffer, C. and W.E.L. Grimson. Adaptive Background Mixture Models for Real-Time Tracking,
Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, Vol. 2 (06
August 1999), pp. 2246-252 Vol. 2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates platform-dependent library for MATLAB host target.
• Generates portable C code for non MATLAB host target.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

2 Objects

2-534



See Also
Topics
“Multiple Object Tracking”

Introduced in R2011a

 vision.ForegroundDetector

2-535



vision.GammaCorrector
Package: vision

Apply or remove gamma correction from images or video streams

Description
To apply gamma correction to input images or a video stream:

1 Create the vision.GammaCorrector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gammaCorr = vision.GammaCorrector
gammaCorr = vision.GammaCorrector(Name,Value)
gammaCorr = vision.GammaCorrector(gamma,Name,Value)

Description

gammaCorr = vision.GammaCorrector returns a gamma corrector object, gammaCorr. You can
use the gamma corrector to apply or remove gamma correction from images or video streams.

gammaCorr = vision.GammaCorrector(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, gammaCorr =
vision.GammaCorrector('Correction','Gamma')

gammaCorr = vision.GammaCorrector(gamma,Name,Value) additionally sets the Gamma
property.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Correction — Specify gamma correction or linearization
'Gamma' (default) | 'De-gamma'

Specify gamma correction or linearization, specified as 'Gamma' or 'De-gamma'.

2 Objects

2-536



Gamma — Gamma value of output or input
2.2 (default) | numeric scalar

Gamma value of output or input, specified as numeric scalar greater than or equal to 1. When you set
the Correction property to Gamma, this property gives the desired gamma value of the output video
stream. When you set the Correction property to De-gamma, this property indicates the gamma
value of the input video stream.

LinearSegment — Enable gamma curve to have linear portion near origin
true (default) | false

Enable gamma curve to have linear portion near origin, specified as true or false.

BreakPoint — I-axis value of the end of gamma correction linear segment
0.018 (default) | numeric scalar

I-axis value of the end of gamma correction linear segment, specified as a numeric scalar value in the
range (0,1). This property applies when you set the LinearSegment property to true.

Usage

Syntax
y = gammaCorr(input)

Description

y = gammaCorr(input) applies or removes gamma correction from input I, and returns the
gamma corrected or linearized output y.

Input Arguments

input — Input
M-by-N matrix of intensity values | M-by-N-P color video

Input, specified as an M-by-N matrix of intensity values or M-by-N-P color video, where P is the
number of color planes.

Output Arguments

y — Corrected input
same as input (default)

Output, returned as an M-by-N matrix of intensity values or M-by-N-P color video, where P is the
number of color planes.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 vision.GammaCorrector

2-537



Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Improve Image Contrast Using Gamma Correction

Create a gamma corrector object with the gamma property set to 2.0.

hgamma = vision.GammaCorrector(2.0,'Correction','De-gamma');

Read an image.

img = imread('pears.png');

Apply gamma correction.

imgCor = hgamma(img);

Show the original and corrected images.

imshow(img); title('Original Image');

2 Objects

2-538



figure,
imshow(imgCor);
title('Enhanced Image after De-gamma Correction');

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
gamma

Introduced in R2012a

 vision.GammaCorrector

2-539



vision.HistogramBasedTracker
Package: vision

Histogram-based object tracking

Description
The histogram-based tracker incorporates the continuously adaptive mean shift (CAMShift) algorithm
for object tracking. It uses the histogram of pixel values to identify the tracked object.

To track an object:

1 Create the vision.HistogramBasedTracker object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
hbtracker = vision.HistogramBasedTracker
hbtracker = vision.HistogramBasedTracker(Name,Value)

Description

hbtracker = vision.HistogramBasedTracker returns a tracker that tracks an object by using
the CAMShift algorithm. It uses the histogram of pixel values to identify the tracked object. To
initialize the tracking process, you must use the initializeObject function to specify an exemplar
image of the object.

hbtracker = vision.HistogramBasedTracker(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example, hbtracker =
vision.HistogramBasedTracker('ObjectHistogram',[])

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ObjectHistogram — Normalized pixel value histogram
[] (default) | N-element vector.

2 Objects

2-540



Normalized pixel value histogram, specified as an N-element vector. This vector specifies the
normalized histogram of the object's pixel values. Histogram values must be normalized to a value
between 0 and 1. You can use the initializeObject method to set the property.

Tunable: Yes

Usage

Syntax
bbox = hbtracker(I)
[bbox,orientation] = hbtracker(I)
[bbox,orientation,score] = hbtracker(I)

Description

bbox = hbtracker(I) returns a bounding box, of the tracked object. Before using the tracker, you
must identify the object to track, and set the initial search window. Use the initializeObject
function to do this.

[bbox,orientation] = hbtracker(I) additionally returns the angle between the x-axis and the
major axis of the ellipse that has the same second-order moments as the object. The returned angle is
between –pi/2 and pi/2.

[bbox,orientation,score] = hbtracker(I) additionally returns the confidence score for the
returned bounding box that contains the tracked object.

Input Arguments

I — Video frame
grayscale | 2-D feature map

Video frame, specified as grayscale or any 2-D feature map that distinguishes the object from the
background. For example, I can be a hue channel of the HSV color space.

Output Arguments

bbox — Bounding box
[x y width height]

Bounding box, returned as a four-element vector in the format, [x y width height].

orientation — Orientation
angle

Orientation, returned as an angle between –pi/2 and pi/2. The angle is measured from the x-axis and
the major axis of the ellipse that has the same second-order moments as the object.

score — Score
scalar

Score, returned as a scalar in the range [0 1]. A value of 1 corresponds to the maximum confidence.
1.

 vision.HistogramBasedTracker

2-541



Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.HistogramBasedTracker
initializeObject Set object to track
initializeSearchWindow Set initial search window

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Track a Face

Track and display a face in each frame of an input video.

Create System objects for reading and displaying video and for drawing a bounding box of the object.

videoReader = VideoReader('vipcolorsegmentation.avi');
videoPlayer = vision.VideoPlayer();
shapeInserter = vision.ShapeInserter('BorderColor','Custom', ...
    'CustomBorderColor',[1 0 0]);

Read the first video frame, which contains the object. Convert the image to HSV color space. Then
define and display the object region.

objectFrame = im2single(readFrame(videoReader));
objectHSV = rgb2hsv(objectFrame);
objectRegion = [40, 45, 25, 25];
objectImage = shapeInserter(objectFrame, objectRegion);

figure
imshow(objectImage)
title('Red box shows object region')

2 Objects

2-542



(Optionally, you can select the object region using your mouse. The object must occupy the majority
of the region. Use the following command.)

figure; imshow(objectFrame); objectRegion=round(getPosition(imrect))

Set the object, based on the hue channel of the first video frame.

tracker = vision.HistogramBasedTracker;
initializeObject(tracker, objectHSV(:,:,1) , objectRegion);

Track and display the object in each video frame. The while loop reads each image frame, converts
the image to HSV color space, then tracks the object in the hue channel where it is distinct from the
background. Finally, the example draws a box around the object and displays the results.

while hasFrame(videoReader)
  frame = im2single(readFrame(videoReader));
  hsv = rgb2hsv(frame);
  bbox = tracker(hsv(:,:,1));

  out = shapeInserter(frame,bbox);
  videoPlayer(out);
end

 vision.HistogramBasedTracker

2-543



Release the video player.

release(videoPlayer);

2 Objects

2-544



References
[1] Bradsky, G.R. "Computer Vision Face Tracking For Use in a Perceptual User Interface." Intel

Technology Journal. January 1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
size | imrect | rgb2hsv

Introduced in R2012a

 vision.HistogramBasedTracker

2-545



integralKernel
Define filter for use with integral images

Description
An integralKernel object describes box filters for use with integral images.

Creation

Syntax
intKernel = integralKernel(bbox,weights)
intKernel = integralKernel(bbox,weights,orientation)

Description

intKernel = integralKernel(bbox,weights) creates an upright box filter from bounding
boxes, bbox, and their corresponding weights, weights. The bounding boxes set the
“BoundingBoxes” on page 2-0  property and the weights set the “Weights” on page 2-0
property.

For example, a conventional filter with the coefficients:

and two regions:
region 1: x=1, y=1, width = 4, height = 2
region 2: x=1, y=3, width = 4, height = 2
can be specified as

boxH = integralKernel([1 1 4 2; 1 3 4 2],[1, -1])

intKernel = integralKernel(bbox,weights,orientation) creates a box filter with an
upright or rotated orientation. The specified orientation sets the “Orientation” on page 2-0
property.

Properties
BoundingBoxes — Bounding boxes
4-element vector | M-by-4 matrix

Bounding boxes, specified as a 4-element vector of the form [x,y,width, height] representing a single
bounding box or an M-by-4 matrix representing M bounding boxes. The bounding boxes define the

2 Objects

2-546



filter. The (x,y) coordinates represent the top-most corner of the kernel. The (width, height) elements
represent the width and height accordingly. Specifying the bounding boxes as an M-by-4 matrix is
particularly useful for constructing Haar-like features composed of multiple rectangles.

Sums are computed over regions defined by BoundingBoxes. The bounding boxes can overlap. See
“Define an 11-by-11 Average Filter” on page 2-549 for an example of how to specify a box filter.

Weights — Weights
numeric vector

Weights, specified as an M-element numeric vector containing a weight for each bounding box. The
weights are used to define the coefficients of the filter.

Coefficients — Filter coefficients
numeric

Filter coefficients, specified as a numeric value.

Center — Filter center
[x,y] coordinates

Filter center, specified as [x,y] coordinates. The filter center represents the center of the bounding
rectangle. It is calculated by halving the dimensions of the rectangle. For even dimensional
rectangles, the center is placed at subpixel locations. Hence, it is rounded up to the next integer.

For example, for this filter, the center is at [3,3].

These coordinates are in the kernel space, where the top-left corner is (1,1). To place the center in a
different location, provide the appropriate bounding box specification. For this filter, the best
workflow would be to construct the upright kernel and then call the rot45 method to provide the
rotated version.

Size — Filter size
2-element vector

 integralKernel

2-547



Filter size, specified as a 2-element vector. The size of the kernel is computed to be the dimensions of
the rectangle that bounds the kernel. For a single bounding box vector [x,y,width, height], the kernel
is bounded within a rectangle of dimensions [(width+height) (width+height)-1].

For cascaded rectangles, the lowest corner of the bottom-most rectangle defines the size. For
example, a filter with a bounding box specification of [3 1 3 3], with weights set to 1, produces a 6-
by-5 filter with this kernel:

Orientation — Filter orientation
'upright' (default) | 'rotated'

Filter orientation, specified as 'upright' or 'rotated'. When you specify the orientation as
'rotated', the (x,y) components refer to the location of the top-left corner of the bounding box.
Also, the (width,height) components refer to a 45-degree line from the top-left corner of the bounding
box.

More About
Computing an Integral Image and Using it for Filtering with Box Filters

The integralImage function together with the integralKernel object and integralFilter
function complete the workflow for box filtering based on integral images. You can use this workflow
for filtering with box filters.

• Use the integralImage function to compute the integral images
• Use the integralFilter function for filtering
• Use the integralKernel object to define box filters

The integralKernel object allows you to transpose the filter. You can use this to aim a directional
filter. For example, you can turn a horizontal edge detector into vertical edge detector.

2 Objects

2-548



Object Functions
rot45 Rotate upright kernel clockwise by 45 degrees
transpose Transpose integral kernel

Examples

Define an 11-by-11 Average Filter

 avgH = integralKernel([1 1 11 11], 1/11^2);

Define a Filter to Approximate a Gaussian Second Order Partial Derivative in Y Direction

ydH = integralKernel([1,1,5,9;1,4,5,3], [1, -3]);

You can also define this filter as integralKernel([1,1,5,3;1,4,5,3;1,7,5,3], [1, -2, 1]);|. This filter
definition is less efficient because it requires three bounding boxes.

Visualize the filter.

ydH.Coefficients

ans = 9×5

     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
    -2    -2    -2    -2    -2
    -2    -2    -2    -2    -2
    -2    -2    -2    -2    -2
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1

Create a Haar-like Wavelet to Detect 45-Degree Edges

Create the filter.

K = integralKernel([3,1,3,3;6 4 3 3], [1 -1], 'rotated');

Visualize the filter and mark the center.

    imshow(K.Coefficients, [], 'InitialMagnification', 'fit');
    hold on;
    plot(K.Center(2),K.Center(1), 'r*');
    impixelregion;

 integralKernel

2-549



2 Objects

2-550



Blur an Image Using an Average Filter

Read and display the input image.

   I = imread('pout.tif');
   imshow(I);

Compute the integral image.

   intImage = integralImage(I);

Apply a 7-by-7 average filter.

   avgH = integralKernel([1 1 7 7], 1/49);
   J = integralFilter(intImage, avgH);

Cast the result back to the same class as the input image.

   J = uint8(J);
   figure
   imshow(J);

 integralKernel

2-551



References
[1] Viola, Paul, and Michael J. Jones. “Rapid Object Detection using a Boosted Cascade of Simple

Features”. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Vol. 1, 2001, pp. 511–518.

See Also
detectMSERFeatures | integralImage | integralFilter | detectSURFFeatures |
SURFPoints

Introduced in R2012a

2 Objects

2-552



transpose
Transpose integral kernel

Syntax
transposedKernel = transpose(intKernel)

Description
transposedKernel = transpose(intKernel) transposes the integral kernel. You can use this
operation to change the direction of an oriented filter.

Examples

Construct Haar-like Wavelet Filters

Horizontal filter

horiH = integralKernel([1 1 4 3; 1 4 4 3], [-1, 1]);

Using the dot and apostrophe create a vertical filter.

vertH = horiH.';

Using the transpose method.

verticalH = transpose(horiH);

Input Arguments
intKernel — Integral kernel
integralKernel object

Integral kernel, specified as an integralKernel object.

Output Arguments
transposedKernel — Transposed integral kernel
integralKernel object

Transposed integral kernel, returned as an integralKernel object.

See Also
rot45

Introduced in R2012a

 transpose

2-553



rot45
Rotate upright kernel clockwise by 45 degrees

Syntax
rotKernel = rot45(intKernel)

Description
rotKernel = rot45(intKernel) rotates upright kernel intKernel clockwise by 45 degrees.

Examples

Construct and Rotate a Haar-like Wavelet Filter

Create a horizontal filter.

H = integralKernel([1 1 4 3; 1 4 4 3], [-1, 1]);

Rotate the filter 45 degrees.

rotH = rot45(H);

Input Arguments
intKernel — Integral kernel
integralKernel object

Integral kernel, specified as an integralKernel object.

Output Arguments
rotKernel — Rotated integral kernel
integralKernel object

Rotated integral kernel, returned as an integralKernel object.

See Also
transpose

Introduced in R2012a

2 Objects

2-554



vision.KalmanFilter
Correction of measurement, state, and state estimation error covariance

Description
The Kalman filter object is designed for tracking. You can use it to predict a physical object's future
location, to reduce noise in the detected location, or to help associate multiple physical objects with
their corresponding tracks. A Kalman filter object can be configured for each physical object for
multiple object tracking. To use the Kalman filter, the object must be moving at constant velocity or
constant acceleration.

Creation
The Kalman filter algorithm involves two steps, prediction and correction (also known as the update
step). The first step uses previous states to predict the current state. The second step uses the
current measurement, such as object location, to correct the state. The Kalman filter implements a
discrete time, linear State-Space System.

Note To make configuring a Kalman filter easier, you can use the configureKalmanFilter object
to configure a Kalman filter. It sets up the filter for tracking a physical object in a Cartesian
coordinate system, moving with constant velocity or constant acceleration. The statistics are the
same along all dimensions. If you need to configure a Kalman filter with different assumptions, do not
use the function, use this object directly.

In the state space system, the state transition model, A, and the measurement model, H, are set as
follows:

Variable Value
A [1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1]
H [1 0 0 0; 0 0 1 0]

Syntax
kalmanFilter = vision.KalmanFilter
kalmanFilter = vision.KalmanFilter(StateTransitionModel,MeasurementModel)
kalmanFilter = vision.KalmanFilter(StateTransitionModel,MeasurementModel,
ControlModel,Name,Value)

Description

kalmanFilter = vision.KalmanFilter returns a kalman filter for a discrete time, constant
velocity system.

kalmanFilter = vision.KalmanFilter(StateTransitionModel,MeasurementModel)
additionally configures the control model, B.

 vision.KalmanFilter

2-555



kalmanFilter = vision.KalmanFilter(StateTransitionModel,MeasurementModel,
ControlModel,Name,Value) configures the Kalman filter object properties, specified as one or
more Name,Value pair arguments. Unspecified properties have default values.

Properties
StateTransitionModel — Model describing state transition between time steps (A)
[1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1] (default) | M-by-M matrix

Model describing state transition between time steps (A), specified as an M-by-M matrix. After the
object is constructed, this property cannot be changed. This property relates to the A variable in the
state-space model.

MeasurementModel — Model describing state to measurement transformation (H)
[1 0 0 0; 0 0 1 0] (default) | N-by-M matrix

Model describing state to measurement transformation (H) , specified as an N-by-M matrix. After the
object is constructed, this property cannot be changed. This property relates to the H variable in the
state-space model.

ControlModel — Model describing control input to state transformation (B)
[] (default) | M-by-L matrix

Model describing control input to state transformation (B) , specified as an M-by-L matrix. After the
object is constructed, this property cannot be changed. This property relates to the B variable in
thestate-space model.

State — State (x)
[0] (default) | scalar | M-element vector.

State (x), specified as a scalar or an M-element vector. If you specify State as a scalar, it will be
extended to an M-element vector. This property relates to the x variable in the state-space model.

StateCovariance — State estimation error covariance (P)
[1] (default) | scalar | M-by-M matrix

State estimation error covariance (P), specified as a scalar or an M-by-M matrix. If you specify
StateCovariance as a scalar it will be extended to an M-by-M diagonal matrix. This property
relates to the P variable in the state-space system.

ProcessNoise — Process noise covariance (Q)
[1] (default) | scalar | M-by-M matrix

Process noise covariance (Q) , specified as a scalar or an M-by-M matrix. If you specify
ProcessNoise as a scalar it will be extended to an M-by-M diagonal matrix. This property relates to
the Q variable in the state-space model.

MeasurementNoise — Measurement noise covariance (R)
[1] (default) | scalar | N-by-N matrix

Measurement noise covariance (R) , specified as a scalar or an N-by-N matrix. If you specify
MeasurementNoise as a scalar it will be extended to an N-by-N diagonal matrix. This property
relates to the R variable in the state-space model.

2 Objects

2-556



Object Functions
Use the predict and correct functions based on detection results. Use the distance function to
find the best matches.

• When the tracked object is detected, use the predict and correct functions with the Kalman
filter object and the detection measurement. Call the functions in the following order:

[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);

• When the tracked object is not detected, call the predict function, but not the correct function.
When the tracked object is missing or occluded, no measurement is available. Set the functions up
with the following logic:

[...] = predict(kalmanFilter);
If measurement exists
    [...] = correct(kalmanFilter,measurement);
end

• If the tracked object becomes available after missing for the past t-1 contiguous time steps, you
can call the predict function t times. This syntax is particularly useful to process asynchronous
video.. For example,

for i = 1:k
  [...] = predict(kalmanFilter);
end
[...] = correct(kalmanFilter,measurement) 

correct Correction of measurement, state, and state estimation error covariance
predict Prediction of measurement
distance Confidence value of measurement

Examples

Track Location of An Object

Track the location of a physical object moving in one direction.

Generate synthetic data which mimics the 1-D location of a physical object moving at a constant
speed.

detectedLocations = num2cell(2*randn(1,40) + (1:40));

Simulate missing detections by setting some elements to empty.

detectedLocations{1} = [];
  for idx = 16: 25 
      detectedLocations{idx} = []; 
  end

Create a figure to show the location of detections and the results of using the Kalman filter for
tracking.

figure;
hold on;

 vision.KalmanFilter

2-557



ylabel('Location');
ylim([0,50]); 
xlabel('Time');
xlim([0,length(detectedLocations)]);

Create a 1-D, constant speed Kalman filter when the physical object is first detected. Predict the
location of the object based on previous states. If the object is detected at the current time step, use
its location to correct the states.

kalman = []; 
for idx = 1: length(detectedLocations) 
   location = detectedLocations{idx}; 
   if isempty(kalman)
     if ~isempty(location) 
       
       stateModel = [1 1;0 1]; 
       measurementModel = [1 0]; 
       kalman = vision.KalmanFilter(stateModel,measurementModel,'ProcessNoise',1e-4,'MeasurementNoise',4);
      kalman.State = [location, 0]; 
     end 
   else
     trackedLocation = predict(kalman);
     if ~isempty(location) 
       plot(idx, location,'k+');
      d = distance(kalman,location); 
       title(sprintf('Distance:%f', d));
       trackedLocation = correct(kalman,location); 

2 Objects

2-558



     else 
       title('Missing detection'); 
     end 
     pause(0.2);
     plot(idx,trackedLocation,'ro'); 
   end 
 end 
legend('Detected locations','Predicted/corrected locations');

Remove Noise From a Signal

Use Kalman filter to remove noise from a random signal corrupted by a zero-mean Gaussian noise.

Synthesize a random signal that has value of 1 and is corrupted by a zero-mean Gaussian noise with
standard deviation of 0.1.

x = 1;
len = 100;
z = x + 0.1 * randn(1,len);

Remove noise from the signal by using a Kalman filter. The state is expected to be constant, and the
measurement is the same as state.

stateTransitionModel = 1;
measurementModel = 1;

 vision.KalmanFilter

2-559



obj = vision.KalmanFilter(stateTransitionModel,measurementModel,'StateCovariance',1,'ProcessNoise',1e-5,'MeasurementNoise',1e-2);

z_corr = zeros(1,len);
for idx = 1: len
 predict(obj);
 z_corr(idx) = correct(obj,z(idx));
end

Plot results.

figure, plot(x * ones(1,len),'g-'); 
hold on;
plot(1:len,z,'b+',1:len,z_corr,'r-');
legend('Original signal','Noisy signal','Filtered signal');

Algorithms
State Space Model

This object implements a discrete time, linear state-space system, described by the following
equations.

State equation: x(k) = Ax(k− 1) + Bu(k− 1) + w(k− 1)
Measurement equation: z(k) = Hx(k) + v(k)

2 Objects

2-560



Variable Definition

Variable Description Dimension
k Time. Scalar
x State. Gaussian vector with covariance P. [x N(x, P)] M-element vector
P State estimation error covariance. M-by-M matrix
A State transition model. M-by-M matrix
B Control model. M-by-L matrix
u Control input. L-element vector
w Process noise; Gaussian vector with zero mean and

covariance Q. [w N(0, Q)]
M-element vector

Q Process noise covariance. M-by-M matrix
z Measurement. For example, location of detected object. N-element vector
H Measurement model. N-by-M matrix
v Measurement noise; Gaussian vector with zero mean and

covariance R. [v N(0, R)]
N-element vector

R Measurement noise covariance. N-by-N matrix

References
[1] Welch, Greg, and Gary Bishop, An Introduction to the Kalman Filter, TR 95–041. University of

North Carolina at Chapel Hill, Department of Computer Science.

[2] Blackman, S. Multiple-Target Tracking with Radar Applications. Artech House, Inc., pp. 93, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
configureKalmanFilter | assignDetectionsToTracks

Introduced in R2012b

 vision.KalmanFilter

2-561



vision.LocalMaximaFinder
Package: vision

Find local maxima in matrices

Description
To find local maxima in matrices.

1 Create the vision.LocalMaximaFinder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
LMaxFinder = vision.LocalMaximaFinder
LMaxFinder = vision.LocalMaximaFinder(maxnum,neighborsize)
LMaxFinder = vision.LocalMaximaFinder(Name,Value)

Description

LMaxFinder = vision.LocalMaximaFinder returns a local maxima finder System object, H, that
finds local maxima in input matrices.

LMaxFinder = vision.LocalMaximaFinder(maxnum,neighborsize) returns a local maxima
finder object with the MaximumNumLocalMaxima property set to maxnum, NeighborhoodSize
property set to neighborsize, and other specified properties set to the specified values.

LMaxFinder = vision.LocalMaximaFinder(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, LMaxFinder =
vision.LocalMaximaFinder('ThresholdSource','Property')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MaximumNumLocalMaxima — Maximum number of maxima
2 (default) | positive scalar integer

Maximum number of maxima to find, specified as a positive scalar integer.

2 Objects

2-562



NeighborhoodSize — Neighborhood size for zero-ing out values
[5 7] (default) | two-element vector

Neighborhood size for zero-ing out values, specified as a two-element vector

ThresholdSource — Source of threshold
'Property' (default) | 'Input port'

Source of threshold, specified as 'Property' or 'Input port'.

Threshold — Value that all maxima should match or exceed
10 (default) | build-in numeric data type

Value that all maxima should match or exceed, specified as a scalar of MATLAB built-in numeric data
type. This property applies when you set the ThresholdSource property to 'Property'.

Tunable: Yes

HoughMatrixInput — Indicator of Hough transform matrix input
false (default) | true

Indicator of Hough transform matrix input, specified as true or false. The block applies additional
processing, specific to Hough transform on the right and left boundaries of the input matrix. Set this
property to true if the input is antisymmetric about the rho axis and the theta value ranges from −π

2
to π2  radians, which correspond to a Hough matrix.

IndexDataType — Data type of index values
uint32 (default) | double | single | uint8 | uint16

Data type of index values, specified as double, single , uint8, uint16, or uint32.

Usage

Syntax
idx = LMaxFinder(I)
idx = LMaxFinder(I,threshold)

Description

idx = LMaxFinder(I) returns [x y] coordinates of the local maxima in an M-by-2 matrix, idx. M
represents the number of local maximas found. The maximum value of M may not exceed the value
set in the MaximumNumLocalMaxima property.

idx = LMaxFinder(I,threshold) finds the local maxima in the input image I, using the
threshold value threshold, when you set the ThresholdSource property to 'Input port'.

Input Arguments

I — Video frame
grayscale | truecolor (RGB)

 vision.LocalMaximaFinder

2-563



Video frame, specified as grayscale or truecolor (RGB).

threshold — Threshold
scalar

Value that all maxima should match or exceed, specified as a scalar of MATLAB built-in numeric data
type.

Output Arguments

idx — Local maxima
M-by-2 matrix

Local maxima, returned as an M-by-2 matrix of one-based [x y] coordinates, where M represents the
number of local maximas found.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.LocalMaximaFinder
initialize Initialize video frame and points to track

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Find Local Maxima of an Input

Create an example input.

I = [0 0 0 0 0 0 0 0 0 0 0 0; ...
     0 0 0 1 1 2 3 2 1 1 0 0; ...
     0 0 0 1 2 3 4 3 2 1 0 0; ...
     0 0 0 1 3 5 7 5 3 1 0 0; ... 
     0 0 0 1 2 3 4 3 2 1 0 0; ...
     0 0 0 1 1 2 3 2 1 1 0 0; ...
     0 0 0 0 0 0 0 0 0 0 0 0];
 

Create a local maxima finder object.

 hLocalMax = vision.LocalMaximaFinder('MaximumNumLocalMaxima',1, ...
                                      'NeighborhoodSize',[3,3], ...
                                      'Threshold',1); 

2 Objects

2-564



Find local maxima.

location = hLocalMax(I)                     

location = 1x2 uint32 row vector

   7   4

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
hough | vision.Maximum

Introduced in R2012b

 vision.LocalMaximaFinder

2-565



vision.Maximum
Package: vision

Find maximum values in input or sequence of inputs

Description
Find maximum values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Maximum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
maxObj = vision.Maximum
maxObj = vision.Maximum(Name,Value)

Description

maxObj = vision.Maximum returns an object, maxObj, that computes the value and index of the
maximum elements in an input or a sequence of inputs.

maxObj = vision.Maximum(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, maxObj =
vision.Maximum('RunningMaximum',false)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ValueOutputPort — Output maximum value
true (default) | false

Output maximum value, specified as true or false. Set this property to true to output the
maximum value of the input. This property applies when you set the RunningMaximum property to
false.

2 Objects

2-566



RunningMaximum — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set this
property to true, the object computes the maximum value over a sequence of inputs. When you set
this property to false, the object computes the maximum value over the current input.

IndexOutputPort — Output the index of the maximum value
true (default) | false

Output the index of the maximum value, specified as true or false. This property applies only when
you set the RunningMaximum property to false.

ResetInputPort — Additional input to enable resetting of running maximum
false (default) | true

Additional input to enable resetting of running maximum, specified as true or false. When you set
this property to true, a reset input must be specified to reset the running maximum. This property
applies only when you set the RunningMaximum property to true.

ResetCondition — Condition that triggers resetting of running maximum
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Condition that triggers resetting of running maximum, specified as as 'Rising edge', 'Falling
edge', 'Either edge', or 'Non-zero'. This property applies only when you set the
ResetInputPort property to true.

IndexBase — Numbering base for index of maximum value
'One' (default) | 'Zero'

Numbering base for index of maximum value, specified as 'One' or 'Zero'. This property applies
only when you set the IndexOutputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This property
applies only when you set the RunningMaximum property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies
when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies when you set
the Dimension property to 'All' and the RunningMaximum property to false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary mask'. This
property applies only when you set the ROIProcessing property to true.

 vision.Maximum

2-567



ROIPortion — ROI or perimeter calculation
'Entire ROI' (default) | 'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This property
applies only when you set the ROIForm property to 'Rectangles'.

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for
each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the
'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This applies when you
set the ROIForm property to 'Label matrix'.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

2 Objects

2-568



Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
[value,index] = maxObj(input)
index = maxObj(input)

[ ___ ] = maxObj(I,ROI)
[ ___ ,flag] = maxObj(I,ROI)

[ ___ ] = maxObj(I,label,labelNumbers)
[ ___ ,flag] = maxObj(I,label,labelNumbers)

Description

[value,index] = maxObj(input) returns the maximum value and index of the input.

index = maxObj(input) returns the one-based index of the maximum value when you set the
IndexOutputPort property to true and the ValueOutputPort property to false. The
RunningMaximum property must be set to false.

[ ___ ] = maxObj(I,ROI) returns the maximum value in the input image within the given region of
interest.

[ ___ ,flag] = maxObj(I,ROI)additionally returns a flag to indicate whether the given ROI is
within the bounds of the image.

[ ___ ] = maxObj(I,label,labelNumbers) returns the maximum of the input image for a region
the labels specified in the labelNumbers vector. The regions are defined and labeled in the label
matrix.

[ ___ ,flag] = maxObj(I,label,labelNumbers) additionally returns a flag to indicate whether
the input label numbers are valid.

Input Arguments

input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is available when
you set the the ROIProcessing property to true and the ROIForm property to 'Lines',
'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

 vision.Maximum

2-569



Label numbers, specified as a matrix. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

Output Arguments

value — Maximum value
same as input

Maximum value, returned as the same data type as the input

index — Index to maximum value
one-based index

Index to maximum value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Find Index to Maximum Value in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(im2gray(img));

Find the maximum.

2 Objects

2-570



hMax = vision.Maximum

hMax = 
  vision.Maximum with properties:

    ValueOutputPort: true
     RunningMaximum: false
    IndexOutputPort: true
          Dimension: 'All'
      ROIProcessing: false

  Show all properties

[m,ind] = hMax(img);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Mean | vision.Minimum

Introduced in R2012a

 vision.Maximum

2-571



vision.Mean
Package: vision

Find mean values in input or sequence of inputs

Description
Find the mean values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Mean object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
minObj = vision.Mean
minObj = vision.Mean(Name,Value)

Description

minObj = vision.Mean returns an object, minObj, that computes the value and index of the
maximum elements in an input or a sequence of inputs.

minObj = vision.Mean(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, minObj =
vision.Maximum('RunningMean',false)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RunningMean — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set this
property to true, the object computes the mean value over a sequence of inputs. When you set this
property to false, the object computes the mean value over the current input.

2 Objects

2-572



ResetInputPort — Additional input to enable resetting of running mean
false (default) | true

Additional input to enable resetting of running mean, specified as true or false. When you set this
property to true, a reset input must be specified to reset the running mean. This property applies
only when you set the RunningMean property to true.

ResetCondition — Condition that triggers resetting of running mean
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Condition that triggers resetting of running mean, specified as as 'Rising edge', 'Falling
edge', 'Either edge', or 'Non-zero'. This property applies only when you set the
ResetInputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This property
applies only when you set the RunningMean property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies
when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies when you set
the Dimension property to 'All' and the RunningMean property to false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary mask'. This
property applies only when you set the ROIProcessing property to true.

ROIPortion — ROI or perimeter calculation
'Entire ROI' (default) | 'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This property
applies only when you set the ROIForm property to 'Rectangles'.

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for
each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the
'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

 vision.Mean

2-573



This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This applies when you
set the ROIForm property to 'Label matrix'.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
[value,index] = minObj(input)
index = minObj(input)

[ ___ ] = minObj(I,ROI)
[ ___ ,flag] = minObj(I,ROI)

[ ___ ] = minObj(I,label,labelNumbers)
[ ___ ,flag] = minObj(I,label,labelNumbers)

2 Objects

2-574



Description

[value,index] = minObj(input) returns the mean value and index of the input.

index = minObj(input) returns the one-based index of the mean value when you set the
IndexOutputPort property to true and the ValueOutputPort property to false. The
RunningMean property must be set to false.

[ ___ ] = minObj(I,ROI) returns the mean value in the input image within the given region of
interest.

[ ___ ,flag] = minObj(I,ROI)additionally returns a flag to indicate whether the given ROI is
within the bounds of the image.

[ ___ ] = minObj(I,label,labelNumbers) returns the mean of the input image for a region the
labels specified in the labelNumbers vector. The regions are defined and labeled in the label
matrix.

[ ___ ,flag] = minObj(I,label,labelNumbers) additionally returns a flag to indicate whether
the input label numbers are valid.

Input Arguments

input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is available when
you set the ROIProcessing property to true and the ROIForm property to 'Lines',
'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

Label numbers, specified as a matrix. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

Output Arguments

value — Mean value
same as input

Mean value, returned as the same data type as the input

index — Index to mean value
one-based index

 vision.Mean

2-575



Index to mean value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Determine the Mean in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(im2gray(img));

Find the mean.

hMean = vision.Mean;
mean = hMean(img);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Maximum | vision.Minimum

Introduced in R2012a

2 Objects

2-576



vision.Median
Package: vision

Find median values in input or sequence of inputs

Description
Find the median values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Median object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
medObj = vision.Median
medObj = vision.Median(Name,Value)

Description

medObj = vision.Median returns an object, medObj, that computes the value and index of the
maximum elements in an input or a sequence of inputs.

medObj = vision.Median(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, medObj =
vision.Median('Dimension','Column')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SortMethod — Sort method
'Quick sort' | 'Insertion sort'

Sort method for calculating the median value, specified as 'Quick sort' or 'Insertion sort'.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

 vision.Median

2-577



Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This property
applies only when you set the RunningMean property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies
when you set the Dimension property to 'Custom'.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
[value,index] = medObj(input)

Description

[value,index] = medObj(input) returns the median value and index of the input.

2 Objects

2-578



Input Arguments

input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

Output Arguments

value — Median value
same as input

Median value, returned as the same data type as the input

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Determine Median Value in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(rgb2gray(img));

Find the median.

hmed = vision.Median;
medValue = hmed(img);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 vision.Median

2-579



• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Maximum | vision.Minimum

Introduced in R2012a

2 Objects

2-580



vision.Minimum
Package: vision

Find minimum values in input or sequence of inputs

Description
Find the minimum values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Minimum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
minObj = vision.Minimum
minObj = vision.Minimum(Name,Value)

Description

minObj = vision.Minimum returns an object, minObj, that computes the value and index of the
maximum elements in an input or a sequence of inputs.

minObj = vision.Minimum(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, minObj =
vision.Maximum('RunningMinimum',false)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ValueOutputPort — Output Minimum value
true (default) | false

Output minimum value, specified as true or false. Set this property to true to output the Minimum
value of the input. This property applies when you set the RunningMinimum property to false.

 vision.Minimum

2-581



RunningMinimum — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set this
property to true, the object computes the minimum value over a sequence of inputs. When you set
this property to false, the object computes the minimum value over the current input.

IndexOutputPort — Output the index of the minimum value
true (default) | false

Output the index of the minimum value, specified as true or false. This property applies only when
you set the RunningMinimum property to false.

ResetInputPort — Additional input to enable resetting of running minimum
false (default) | true

Additional input to enable resetting of running minimum, specified as true or false. When you set
this property to true, a reset input must be specified to reset the running minimum. This property
applies only when you set the RunningMinimum property to true.

ResetCondition — Condition that triggers resetting of running minimum
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Condition that triggers resetting of running minimum, specified as as 'Rising edge', 'Falling
edge', 'Either edge', or 'Non-zero'. This property applies only when you set the
ResetInputPort property to true.

IndexBase — Numbering base for index of minimum value
'One' (default) | 'Zero'

Numbering base for index of minimum value, specified as 'One' or 'Zero'. This property applies
only when you set the IndexOutputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This property
applies only when you set the RunningMinimum property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies
when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies when you set
the Dimension property to 'All' and the RunningMinimum property to false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary mask'. This
property applies only when you set the ROIProcessing property to true.

2 Objects

2-582



ROIPortion — ROI or perimeter calculation
'Entire ROI' (default) | 'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This property
applies only when you set the ROIForm property to 'Rectangles'.

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for
each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the
'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This applies when you
set the ROIForm property to 'Label matrix'.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

 vision.Minimum

2-583



Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
[value,index] = minObj(input)
index = minObj(input)

[ ___ ] = minObj(I,ROI)
[ ___ ,flag] = minObj(I,ROI)

[ ___ ] = minObj(I,label,labelNumbers)
[ ___ ,flag] = minObj(I,label,labelNumbers)

Description

[value,index] = minObj(input) returns the minimum value and index of the input.

index = minObj(input) returns the one-based index of the minimum value when you set the
IndexOutputPort property to true and the ValueOutputPort property to false. The
RunningMinimum property must be set to false.

[ ___ ] = minObj(I,ROI) returns the minimum value in the input image within the given region of
interest.

[ ___ ,flag] = minObj(I,ROI)additionally returns a flag to indicate whether the given ROI is
within the bounds of the image.

[ ___ ] = minObj(I,label,labelNumbers) returns the minimum of the input image for a region
the labels specified in the labelNumbers vector. The regions are defined and labeled in the label
matrix.

[ ___ ,flag] = minObj(I,label,labelNumbers) additionally returns a flag to indicate whether
the input label numbers are valid.

Input Arguments

input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is available when
you set the ROIProcessing property to true and the ROIForm property to 'Lines',
'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

2 Objects

2-584



Label numbers, specified as a matrix. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

Output Arguments

value — Minimum value
same as input

Minimum value, returned as the same data type as the input

index — Index to minimum value
one-based index

Index to minimum value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Find Index to Minimum Value in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(im2gray(img));

Find the maximum.

 vision.Minimum

2-585



hMin = vision.Minimum

hMin = 
  vision.Minimum with properties:

    ValueOutputPort: true
     RunningMinimum: false
    IndexOutputPort: true
          Dimension: 'All'
      ROIProcessing: false

  Show all properties

[m, ind] = hMin(img);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Mean | vision.Maximum

Introduced in R2012a

2 Objects

2-586



vision.VideoFileReader
Package: vision

Read video frames and audio samples from video file

Description
The VideoFileReader object reads video frames, images, and audio samples from a video file. The
object can also read image files.

Platforms File Formats
All Platforms AVI, including uncompressed, indexed, grayscale,

and Motion JPEG-encoded video (.avi)
Motion JPEG 2000 (.mj2)

All Windows MPEG-1 (.mpg)
Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft DirectShow®

Windows 7 or later MPEG-4, including H.264 encoded video
(.mp4, .m4v)
Apple QuickTime Movie (.mov)
Any format supported by Microsoft Media
Foundation

Macintosh Most formats supported by QuickTime Player,
including:
MPEG-1 (.mpg)
MPEG-4, including H.264 encoded video
(.mp4, .m4v)
Apple QuickTime Movie (.mov)
3GPP
3GPP2
AVCHD
DV

Note: For OS X Yosemite (Version 10.10) and
later, MPEG-4/H.264 files written using
VideoWriter, play correctly, but display an
inexact frame rate.

Linux Any format supported by your installed plug-ins
for GStreamer 1.0 or higher, as listed on https://
gstreamer.freedesktop.org/documentation/
plugins_doc.html, including Ogg Theora (.ogg).

To read a file:

1 Create the vision.VideoFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

 vision.VideoFileReader

2-587

https://gstreamer.freedesktop.org/documentation/plugins_doc.html
https://gstreamer.freedesktop.org/documentation/plugins_doc.html
https://gstreamer.freedesktop.org/documentation/plugins_doc.html


Creation

Syntax
videoFReader = vision.VideoFileReader(Filename)
videoFReader = vision.VideoFileReader( ___ ,Name,Value)

Description

videoFReader = vision.VideoFileReader(Filename) returns a video file reader System
object, videoFReader, that sequentially reads video frames or audio samples from an input file,
Filename.

videoFReader = vision.VideoFileReader( ___ ,Name,Value)additionally sets properties
using one or more name-value pairs. Enclose each property name in quotes. For example,
videoFReader = vision.VideoFileReader('PlayCount',1)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — File name
vipmen.avi (default) | character vector

File name, specified as a character vector. The full path for the file needs to be specified only if the
file is not on the MATLAB path.

PlayCount — Number of times to play file
1 (default) | positive integer | inf

Number of times to play file, specified as a positive integer.

AudioOutputPort — Output audio data
false (default) | true

Output audio data, specified as true or false. Use this property to control the audio output only
when the input file contains audio and video streams.

ImageColorSpace — Image format
RGB (default) | YCbCr 4:2:2 | intensity video

Image format, specified as RGB, YCbCr 4:2:2, or intensity video frames when the input file contains
video.

VideoOutputDataType — Output video data type
single (default)

2 Objects

2-588



Output video data type, specified as one of the data types listed or 'inherit'. This property applies
when the input file contains video. When you set this property to 'inherit', the object sets the
output data type to the native data type of the input video.
Data Types: double | int8 | int16 | int32 | uint8 | uint16

AudioOutputDataType — Output audio samples data type
int16 (default)

Output audio samples data type, specified as one of the data types listed and inherit. This property
applies when the input file contains audio.
Data Types: double | single | int16 | uint8

Usage

Syntax
I = videoFReader()
[Y,Cb,Cr] = videoFReader()
[ ___ ,audio] = videoFReader()
[ ___ ,EOF] = videoFReader()

Description

I = videoFReader() returns the next video frame.

[Y,Cb,Cr] = videoFReader() returns the next frame of YCbCr 4:2:2 format video in the color
components Y, Cb, and Cr. This syntax requires that you set the 'ImageColorSpace' property to
'YCbCr 4:2:2'

[ ___ ,audio] = videoFReader() also returns one frame of audio samples, audio. This syntax
requires that you set the AudioOutputPort property to true.

[ ___ ,EOF] = videoFReader() also returns the end-of-file indicator, EOF. The object sets EOF to
true each time the output contains the last audio sample and/or video frame.

Output Arguments

I — Video frame
truecolor | 2-D grayscale image

Video frame, returned as a truecolor or 2-D grayscale image.

Y, Cb, Cr — YCbCr color channels
numeric matrices

YCbCr color channels of a YCbCr 4:2:2 format image, returned as numeric matrices.

audio — One frame of audio samples
.wav | .mp3 | .mp3 | .mp4 | .ogg | .flac | .au | .aiff | .aif | .aifc

One frame of audio samples, returned in one of the following formats.

 vision.VideoFileReader

2-589



Platform Supported File Name Extensions
All Platforms AVI (.avi)
Windows Image:

.jpg,.bmp
Video:
MPEG (.mpeg)
MPEG-2 (.mp2)
MPEG-1.mpg
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Motion JPEG 2000 (.mj2)
Windows Media Video (.wmv,.asf, .asx, .asx)
and any format supported by Microsoft DirectShow® 9.0 or higher.
Audio:
WAVE (.wav)
Windows Media Audio File (.wma)
Audio Interchange File Format (.aif, .aiff)
Compressed Audio Interchange File Format(.aifc),
MP3 (.mp3)
Sun Audio (.au)
Apple (.snd)

Macintosh Video:
.avi
Motion JPEG 2000 (.mj2)
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
and any format supported by QuickTime as listed on http://
support.apple.com/kb/HT3775.
Audio:
Uncompressed .avi

Linux Motion JPEG 2000 (.mj2)
Any format supported by your installed plug-ins for GStreamer 0.1 or higher,
as listed on https://gstreamer.freedesktop.org/documentation/
plugins_doc.html?gi-language=c, including Ogg Theora (.ogg).

Windows XP and Windows 7 x64 platform ships with a limited set of 64-bit video and audio codecs. If
a compressed multimedia file fails to play, try saving the multimedia file to a supported file format
listed in the table above.

If you use Windows, use Windows Media player Version 11 or later.

Note MJ2 files with bit depth higher than 8-bits are not supported by vision.VideoFileReader.
Use VideoReader and VideoWriter for higher bit depths.

Reading audio from compressed MP4 files with video and audio is not supported by
vision.VideoFileReader.

EOF — End-of-file
true | false

2 Objects

2-590

https://gstreamer.freedesktop.org/documentation/plugins_doc.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/plugins_doc.html?gi-language=c


End-of-file indicator, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.VideoFileReader
info Information about specified video file
isDone End-of-file status (logical)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Read and Play a Video File

Load the video using a video reader object.

videoFReader = vision.VideoFileReader('ecolicells.avi');

Create a video player object to play the video file.

videoPlayer = vision.VideoPlayer;

Use a while loop to read and play the video frames. Pause for 0.1 seconds after displaying each
frame.

while ~isDone(videoFReader)
  videoFrame = videoFReader();
  videoPlayer(videoFrame);
  pause(0.1)
end

 vision.VideoFileReader

2-591



Release the objects.

release(videoPlayer);
release(videoFReader);

2 Objects

2-592



Tips
• Video Reading Performance on Windows Systems:To achieve better video reader performance on

Windows for MP4 and MOV files, MATLAB uses the system's graphics hardware for decoding.
However, in some cases using the graphics card for decoding can result in poorer performance
depending on the specific graphics hardware on the system. If you notice slower video reader
performance on your system, turn off the hardware acceleration by typing:

 matlab.video.read.UseHardwareAcceleration('off') 

Hardware acceleration can be reenabled by typing:

 matlab.video.read.UseHardwareAcceleration('on')  

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code for this function uses a precompiled platform-specific shared library.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 vision.VideoFileReader

2-593

https://www.mathworks.com/support/requirements/matlab-system-requirements.html


See Also
vision.VideoFileWriter | VideoWriter | VideoReader | vision.VideoPlayer | Video
Viewer

Topics
“Video Display in a Custom User Interface”

Introduced in R2012a

2 Objects

2-594



vision.VideoFileWriter
Package: vision

Write video frames and audio samples to video file

Description
The VideoFileWriter object writes video frames and audio samples to a video file. The video and
audio can be compressed. The available compression types depend on the encoders installed on the
platform.

Note This block supports code generation for platforms that have file I/O available. You cannot use
this block with Simulink Desktop Real-Time software, because that product does not support file I/O.

This object performs best on platforms with Version 11 or later of Windows Media Player software.
This object supports only uncompressed RGB24 AVI files on Linux and Mac platforms.

The generated code for this object relies on prebuilt library files. You can run this code outside the
MATLAB environment, or redeploy it, but be sure to account for these extra library files when doing
so. The packNGo function creates a single zip file containing all of the pieces required to run or
rebuild this code. See packNGo for more information.

To run an executable file that was generated from an object, you may need to add precompiled shared
library files to your system path. See “MATLAB Coder” and “Simulink Shared Library Dependencies”
for details.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Creation
Syntax
videoFWriter = vision.VideoFileWriter
videoFWriter = vision.VideoFileWriter(Filename)
videoFWriter = vision.VideoFileWriter( ___ ,Name,Value)

Description

videoFWriter = vision.VideoFileWriter returns a video file writer System object,
videoFWriter. It writes video frames to an uncompressed 'output.avi' video file. Every call to the
step method writes a video frame.

videoFWriter = vision.VideoFileWriter(Filename) returns a video file writer object,
videoFWriter that writes video to a file, Filename. The file type can be .avi, .mj2, .mp4,
and .m4v specified by the FileFormat property.

 vision.VideoFileWriter

2-595



videoFWriter = vision.VideoFileWriter( ___ ,Name,Value) configures the video file writer
properties, specified as one or more name-value pair arguments. Unspecified properties have default
values.

Name is a property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: videoFWriter = vision.VideoFileWriter('myFile.avi','FrameRate',...
videoFReader.info.VideoFrameRate);

Properties
Filename — Video output file name
output.avi (default) | character vector

Video output file name, specified as a character vector. The file extension you give for Filename
must match the FileFormat.

FileFormat — Output file format
'AVI' (default) | 'MJ2000' | 'MPEG4'

Output file format, specified as one of the supported file formats shown in the table.

File Format Description File Extension Supported Platform
'AVI' Audio-Video Interleave

file
.avi All platforms

'MJ2000' Motion JPEG 2000 file .mj2 All platforms
'MPEG4' MPEG-4/H.264 Video .mp4 , .m4v Windows and Mac

AudioInputPort — Write audio data
false (default) | true

Write audio data, specified as false or true. Use this property to control whether the object writes
audio samples to the video file. Set this value to true to write audio data. To write audio and video to
a file, you must use the .avi format .

FrameRate — Video frame rate
30 (default) | positive numeric scalar

Video frame rate in frames per second, specified as a positive numeric scalar. For videos which also
contain audio data, the rate of the audio data will be determined as the rate of the video multiplied by
the number of audio samples passed in. For example, if you use a frame rate of 30, and pass 1470
audio samples, the object sets the audio sample to 44100, (1470 x 30 = 44100).

AudioCompressor — Audio compression encoder
None (uncompressed) (default) | system compressors

Specify the type of compression algorithm to implement for audio data. This compression reduces the
size of the video file. Choose None (uncompressed) to save uncompressed audio data to the video
file. The other options reflect the available audio compression algorithms installed on your system.
This property applies only when writing AVI files on Windows platforms.

2 Objects

2-596



VideoCompressor — Video compression encoder
None (uncompressed) (default) | system compressors

Specify the type of compression algorithm to use to compress the video data. This compression
reduces the size of the video file. Choose None (uncompressed) to save uncompressed video data
to the video file. The VideoCompressor property can also be set to one of the compressors available
on your system. To obtain a list of available video compressors, you can use tab completion. Follow
these steps:

1 Instantiate the object:

y = vision.VideoFileWriter
2 To launch the tab completion functionality, type the following up to the open quote.

y.VideoCompressor='

A list of compressors available on your system will appear after you press the Tab key. For
example:

This property applies only when writing AVI files on Windows platforms.

AudioDataType — Uncompressed audio data type
WAV (default)

Specify the compressed output audio data type. This property only applies when you write
uncompressed WAV files.

FileColorSpace — Color space for output file
RGB (default) | YCbCr 4:2:2

Color space for output AVI file, specified as RGB or YCbCr 4:2:2. This property applies when you set
the FileFormat property to AVI and only on Windows platforms.

Quality — Control size of output video file
75 (default) | integer

Control size of output video file, specified as an integer in the range [0,100]. Increase this value for
greater video quality. However, doing so increases the file size. Decrease the value to lower video
quality with a smaller file size.

The Quality property only applies when you are writing MPEG4 video files (on Windows or Mac) or
when you are writing MJPEG-AVI video only files on a Mac or Linux.

CompressionFactor — Target ratio between number of bytes in input image and
compressed image
10 (default) | integer

 vision.VideoFileWriter

2-597



Target ratio between number of bytes in input image and compressed image, specified as an integer
greater than 1. The CompressionFactor indicates the target ratio between the number of bytes in
the input image and the compressed image. The data is compressed as much as possible, up to the
specified target. This property applies only when writing Lossy MJ2000 files.

Usage

Syntax
Filename = videoFWriter(videoFrame)
Filename = videoFWriter(videoFrame,audio)
Filename = videoFWriter(videoFrame,Y,Cb,Cr,audio)

Description

Filename = videoFWriter(videoFrame) writes one frame of video, videoFrame, to the output
file. The input video can be an M-by-N-by-3 truecolor RGB video frame, or an M-by-N grayscale video
frame..

Filename = videoFWriter(videoFrame,audio) writes one frame of the input video,
videoFrame, and one frame of audio samples, audio, to the output file. This applies when you set
the AudioInputPort property to true.

Filename = videoFWriter(videoFrame,Y,Cb,Cr,audio) writes one frame of YCbCr 4:2:2
video, and one frame of audio samples, audio, to the output file. This applies when you set the
AudioInputPort to true and the FileColorSpace property to 'YCbCr 4:2:2'. The width of Cb
and Cr color components must be half of the width of Y.

Input Arguments

videoFrame — Video frame
truecolor | 2-D grayscale image

Video frame, returned as a truecolor or 2-D grayscale image.

Y,Cb,Cr — YCbCr color format
'YCbCr 4:2:2'

YCbCr color format, returned in the YCbCr 4:2:2 format.

audio — One frame of audio samples
.wav | .mp3 | .mp3 | .mp4 | .ogg | .flac | .au | .aiff | .aif | .aifc

One frame of audio samples, returned in one of the following formats.

Platform Supported File Name Extensions
All Platforms AVI (.avi)
Windows Image:

.jpg,.bmp

2 Objects

2-598



Platform Supported File Name Extensions
Video:
MPEG (.mpeg)
MPEG-2 (.mp2)
MPEG-1.mpg
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Motion JPEG 2000 (.mj2)
Windows Media Video (.wmv,.asf, .asx, .asx)
and any format supported by Microsoft DirectShow® 9.0 or higher.
Audio:
WAVE (.wav)
Windows Media Audio File (.wma)
Audio Interchange File Format (.aif, .aiff)
Compressed Audio Interchange File Format(.aifc),
MP3 (.mp3)
Sun Audio (.au)
Apple (.snd)

Macintosh Video:
.avi
Motion JPEG 2000 (.mj2)
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
and any format supported by QuickTime as listed on http://
support.apple.com/kb/HT3775.
Audio:
Uncompressed .avi

Linux Motion JPEG 2000 (.mj2)
Any format supported by your installed plug-ins for GStreamer 0.1 or higher,
as listed on http://gstreamer.freedesktop.org/documentation/plugins.html,
including Ogg Theora (.ogg).

Windows XP and Windows 7 x64 platform ships with a limited set of 64-bit video and audio codecs. If
a compressed multimedia file fails to play, try saving the multimedia file to a supported file format
listed in the table above.

If you use Windows, use Windows Media player Version 11 or later.

Note MJ2 files with bit depth higher than 8-bits is not supported by vision.VideoFileReader.
Use VideoReader and VideoWriter for higher bit depths.

Reading audio from compressed MP4 files with video and audio is not supported by
vision.VideoFileReader.

Output Arguments

Filename — Video output file name
'.avi' (default) | '.mj2' | '.mp4' | '.m4v'

Video output file name, specified as '.avi', '.mj2', '.mp4', and '.m4v'. The file extension you
give for Filename must match the FileFormat.

 vision.VideoFileWriter

2-599



Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.VideoFileWriter
info Information about specified video file
isDone End-of-file status (logical)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Write a Video to an AVI File

Load a video file and write the file to a writer object.

videoFReader = vision.VideoFileReader('viplanedeparture.mp4');
videoFWriter = vision.VideoFileWriter('myFile.avi', ...
    'FrameRate',videoFReader.info.VideoFrameRate);

Write the first 50 frames from original file into a newly created myFile.avi file.

for i=1:50
  videoFrame = videoFReader();
  videoFWriter(videoFrame);
end

Close the input and output files.

release(videoFReader);
release(videoFWriter);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code for this function uses a precompiled platform-specific shared library.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.VideoFileReader | VideoWriter | VideoReader | vision.VideoPlayer

2 Objects

2-600

https://www.mathworks.com/support/requirements/matlab-system-requirements.html


Introduced in R2012a

 vision.VideoFileWriter

2-601



ocrText
Object for storing OCR results

Description
ocrText object contains recognized text and metadata collected during optical character recognition
(OCR). You can access the information contained in the object with the ocrText properties. You can
also locate text that matches a specific pattern with the locateText function.

Creation
Create an ocrText object using the ocr function.

Properties
Text — Text recognized by OCR
array of characters

Text recognized by OCR, specified as an array of characters. The text includes white space and new
line characters.

CharacterBoundingBoxes — Bounding box locations
M-by-4 matrix

Bounding box locations, stored as an M-by-4 matrix. Each row of the matrix contains a four-element
vector, [x y width height]. The [x y] elements correspond to the upper-left corner of the bounding box.
The [width height] elements correspond to the size of the rectangular region in pixels. The bounding
boxes enclose text found in an image using the ocr function. Bounding boxes width and height that
correspond to new line characters are set to zero. Character modifiers found in languages, such as
Hindi, Tamil, and Bangalese, are also contained in a zero width and height bounding box.

CharacterConfidences — Character recognition confidence
array

Character recognition confidence, specified as an array. The confidence values are in the range [0, 1].
A confidence value, set by the ocr function, should be interpreted as a probability. The ocr function
sets confidence values for spaces between words and sets new line characters to NaN. Spaces and
new line characters are not explicitly recognized during OCR. You can use the confidence values to
identify the location of misclassified text within the image by eliminating characters with low
confidence.

Words — Recognized words
cell array

Recognized words, specified as a cell array.

WordBoundingBoxes — Bounding box location and size
M-by-4 matrix

2 Objects

2-602



Bounding box location and size, stored as an M-by-4 matrix. Each row of the matrix contains a four-
element vector, [x y width height], that specifies the upper left corner and size of a rectangular region
in pixels.

WordConfidences — Recognition confidence
array

Recognition confidence, specified as an array. The confidence values are in the range [0, 1]. A
confidence value, set by the ocr function, should be interpreted as a probability. The ocr function
sets confidence values for spaces between words and sets new line characters to NaN. Spaces and
new line characters are not explicitly recognized during OCR. You can use the confidence values to
identify the location of misclassified text within the image by eliminating words with low confidence.

Object Functions
locateText Locate text pattern

Examples

Find and Highlight Text in an Image
businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);
Iocr = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(Iocr);

 ocrText

2-603



Find Text Using Regular Expressions

     businessCard = imread('businessCard.png');
     ocrResults   = ocr(businessCard);
     bboxes = locateText(ocrResults, 'www.*com','UseRegexp', true);
     img    = insertShape(businessCard, 'FilledRectangle', bboxes);
     figure; imshow(img);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• The Words property cannot be accessed in code generation. Use the Text property in place of the

Words property to access the OCR results.

See Also
OCR Trainer | ocr | insertShape | regexp | strfind

Introduced in R2014a

2 Objects

2-604



locateText
Locate text pattern

Syntax
bboxes = locateText(ocrText,pattern)
bboxes = locateText(ocrText,pattern,Name,Value)

Description
bboxes = locateText(ocrText,pattern) returns the location and size of bounding boxes
stored in the ocrText object. The locateText function returns only the locations of bounding boxes
which correspond to text within an image that exactly match the input pattern.

bboxes = locateText(ocrText,pattern,Name,Value) uses additional options specified by one
or more name-value pair arguments.

Examples

Find and Highlight Text in an Image

businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);
Iocr = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(Iocr);

 locateText

2-605



Find Text Using Regular Expressions

     businessCard = imread('businessCard.png');
     ocrResults   = ocr(businessCard);
     bboxes = locateText(ocrResults, 'www.*com','UseRegexp', true);
     img    = insertShape(businessCard, 'FilledRectangle', bboxes);
     figure; imshow(img);

2 Objects

2-606



Input Arguments
ocrText — Object containing OCR results
ocrText object

Recognized text and metrics, returned as an ocrText object. The object contains the recognized text,
the location of the recognized text within the input image, and the metrics indicating the confidence
of the results. The confidence values range between 0 and 100 and represent a percent probability.
When you specify an M-by-4 roi, the function returns ocrText as an M-by-1 array of ocrText
objects. Confidence values range between 0 and 1. Interpret the confidence values as probabilities.

pattern — OCR character vector pattern
single character vector | cell array of character vectors | string scalar | string array

OCR character vector pattern, specified as a single character vector, string scalar, cell array of
character vectors, or a string array. The method returns only the locations of bounding boxes which
correspond to text within an image that exactly match the input pattern.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IgnoreCase',true specifies case-insensitive text locations

 locateText

2-607



UseRegexp — Regular expression
false (default) | logical scalar

Regular expression, specified as a logical scalar. When you set this property to true, the method
treats the pattern as a regular expression. For more information about regular expressions, see
regexp.

IgnoreCase — Case sensitivity
false (default) | logical scalar

Case sensitivity, specified as a logical scalar. When you set this property to true, the method
performs case-insensitive text location.

Output Arguments
bboxes — Text bounding boxes
method | M-by-4 matrix

Text bounding boxes, returned as an M-by-4 matrix. Each row of the matrix contains a four-element
vector, [x y width height]. The [x y] elements correspond to the upper-left corner of the bounding box.
The [width height] elements correspond to the size of the rectangular region in pixels. The bounding
boxes enclose text found in an image using the ocr function. The ocr function stores OCR results in
the ocrText object.

See Also

Introduced in R2014a

2 Objects

2-608



pointCloud
Object for storing 3-D point cloud

Description
The pointCloud object creates point cloud data from a set of points in 3-D coordinate system The
points generally represent the x,y, and z geometric coordinates of a samples surface or an
environment. Each point can also be represented with additional information, such as RGB color. The
point cloud data is stored as an object with the properties listed in “Properties” on page 2-610. Use
“Object Functions” on page 2-611 to retrieve, select, and remove desired points from the point cloud
data.

Creation

Syntax
ptCloud = pointCloud(xyzPoints)
ptCloud = pointCloud(xyzPoints,Name=Value)

Description

ptCloud = pointCloud(xyzPoints) returns a point cloud object with coordinates specified by
xyzPoints.

ptCloud = pointCloud(xyzPoints,Name=Value) specifies options using one or more name-
value arguments in addition to any combination of arguments from previous syntaxes. For example,
pointCloud(xyzPoints,Color=[0 0 0]) sets the Color property of the points xyzPoints to
[0 0 0].

Input Arguments

xyzPoints — 3-D coordinate points
M-by-3 list of points | M-by-N-by-3 array for organized point cloud

3-D coordinate points, specified as an M-by-3 list of points or an M-by-N-by-3 array for an organized
point cloud. The 3-D coordinate points specify the x, y, and z positions of a point in the 3-D coordinate
space. The first two dimensions of an organized point cloud correspond to the scanning order from
sensors such as RGBD or lidar. This argument sets the Location property.
Data Types: single | double

Output Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object with the properties listed in “Properties” on page 2-
610.

 pointCloud

2-609



Properties
Location — Position of the points in 3-D coordinate space
M-by-3 array | M-by-N-by-3 array

This property is read-only.

Position of the points in 3-D coordinate space, specified as an M-by-3 or M-by-N-by-3 array. Each
entry specifies the x, y, and z coordinates of a point in the 3-D coordinate space. The xyzPoints
input argument sets this property.

• For unorganized point clouds, Location must be specified as an M-by-3 array, where M is the
total number of points, and the array provides the x,y,z coordinates for each point.

• For organized point clouds, Location must be specified as an M-by-N-by-3 array, where M*N is
the total number of points, and the array provides the x,y,z coordinates for each point. Points
obtained from a projective camera, such as Kinector a lidar sensor, are stored as an organized
point cloud. An organized point cloud is laid out as a 2-D array of points that resemble an image-
like structure.

Data Types: single | double

Color — Point cloud color
[ ] (default) | M-by-3 array | M-by-N-by-3 array

Point cloud color, specified as an M-by-3 or M-by-N-by-3 array. Use this property to set the color of
points in point cloud. Each entry specifies the RGB color of a point in the point cloud data. Therefore,
you can specify the same color for all points or a different color for each point.

• The specified RGB values must lie within the range [0, 1], when you specify the data type for
Color as single or double.

• The specified RGB values must lie within the range [0, 255], when you specify the data type for
Color as uint8.

Coordinates Valid assignment of Color
M-by-3 array M-by-3 array containing RGB

values for each point

M-by-N-by-3 array M-by-N-by-3 array containing
RGB values for each point

Data Types: uint8

Normal — Surface normals
[ ] (default) | M-by-3 array | M-by-N-by-3 array

2 Objects

2-610



Surface normals, specified as a M-by-3 or M-by-N-by-3 array. Use this property to specify the normal
vector with respect to each point in the point cloud. Each entry in the surface normals specifies the x,
y, and z component of a normal vector.

Coordinates Surface Normals
M-by-3 array M-by-3 array, where each row contains a corresponding normal vector.
M-by-N-by-3 array M-by-N-by-3 array containing a 1-by-1-by-3 normal vector for each point.

Data Types: single | double

Intensity — Grayscale intensities
[ ] (default) | M-by-1 vector | M-by-N matrix

Grayscale intensities at each point, specified as a M-by-1 vector or M-by-N matrix. The function maps
each intensity value to a color value in the current colormap.

Coordinates Intensity
M-by-3 array M-by-1 vector, where each row contains a corresponding intensity value.
M-by-N-by-3 array M-by-N matrix containing intensity value for each point.

Data Types: single | double | uint8 | uint16

Count — Number of points
positive integer

This property is read-only.

Number of points in the point cloud, stored as a positive integer.

XLimits — Range of x coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along x-axis, stored as a 1-by-2 vector.

YLimits — Range of y coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along y-axis, stored as a 1-by-2 vector.

ZLimits — Range of z coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along z-axis, stored as a 1-by-2 vector.

Object Functions
findNearestNeighbors Find nearest neighbors of a point in point cloud

 pointCloud

2-611



findNeighborsInRadius Find neighbors within a radius of a point in the point cloud
findPointsInROI Find points within a region of interest in the point cloud
removeInvalidPoints Remove invalid points from point cloud
select Select points in point cloud
copy Copy array of point cloud objects

Examples

Create a Point Cloud Object and Modify its Properties

Read the 3-D coordinate points into the workspace.

load('xyzPoints');

Create a point cloud object from the input point coordinates.

ptCloud = pointCloud(xyzPoints);

Inspect the properties of the point cloud object.

ptCloud

ptCloud = 
  pointCloud with properties:

     Location: [5184x3 single]
        Count: 5184
      XLimits: [-3 3.4338]
      YLimits: [-2 2]
      ZLimits: [0.0016 3.1437]
        Color: []
       Normal: []
    Intensity: []

Display the point cloud by using pcshow.

pcshow(ptCloud)

2 Objects

2-612



Modify Color of Point Cloud Data

Create an RGB color array of size same as the size of the point cloud data. Set the point colors to Red.

cmatrix = ones(size(ptCloud.Location)).*[1 0 0];

Create the point cloud object with the color property set to the RGB color array.

ptCloud = pointCloud(xyzPoints,'Color',cmatrix);
pcshow(ptCloud)

 pointCloud

2-613



Add Surface Normals to Point Cloud Data

Compute surface normals corresponding to the point cloud data using pcnormals.

normals = pcnormals(ptCloud);

Create point cloud object from input point coordinates. Add the computed surface normals to point
cloud object.

ptCloud = pointCloud(xyzPoints,'Normal',normals);

Display the point cloud and plot the surface normals.

pcshow(ptCloud)
x = ptCloud.Location(:,1);
y = ptCloud.Location(:,2);
z = ptCloud.Location(:,3);
u = normals(:,1);
v = normals(:,2);
w = normals(:,3);
hold on
quiver3(x,y,z,u,v,w);
hold off

2 Objects

2-614



Tips
The pointCloud object is a handle object. If you want to create a separate copy of a point cloud,
you can use the MATLAB copy method.
ptCloudB = copy(ptCloudA)

If you want to preserve a single copy of a point cloud, which can be modified by point cloud functions,
use the same point cloud variable name for the input and output.
ptCloud = pcFunction(ptCloud)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation for variable input sizes is not optimized. Consider using constant size inputs
for an optimized code generation.

• GPU code generation supports the 'Color', 'Normal', and 'Intensity' name-value pairs.

 pointCloud

2-615



• GPU code generation supports the findNearestNeighbors, findNeighborsInRadius,
findPointsInROI, removeInvalidPoints, and select methods.

• For very large inputs, the memory requirements of the algorithm may exceed the GPU device
limits. In such cases, consider reducing the input size to proceed with code generation.

See Also
Functions
pccat | pcalign | pcshow | pcwrite | pcread | pcmerge | pcdenoise | pcnormals | pcplayer

Topics
“3-D Point Cloud Registration and Stitching”
“Coordinate Systems”

Introduced in R2015a

2 Objects

2-616



findNearestNeighbors
Find nearest neighbors of a point in point cloud

Syntax
[indices,dists] = findNearestNeighbors(ptCloud,point,K)
[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix)
[indices,dists] = findNearestNeighbors( ___ ,Name,Value)

Description
[indices,dists] = findNearestNeighbors(ptCloud,point,K) returns the indices for the
K-nearest neighbors of a query point in the input point cloud. ptCloud can be an unorganized or
organized point cloud. The K-nearest neighbors of the query point are computed by using the Kd-tree
based search algorithm.

[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix) returns the K-
nearest neighbors of a query point in the input point cloud. The input point cloud is an organized
point cloud generated by a depth camera. The K-nearest neighbors of the query point are determined
using fast approximate K-nearest neighbor search algorithm.

The function uses the camera projection matrix camMatrix to know the relationship between
adjacent points and hence, speeds up the nearest neighbor search. However, the results have lower
accuracy as compared to the Kd-tree based approach.

Note

• This syntax only supports organized point cloud data produced by RGB-D sensors.
• You can use estimateCameraMatrix to estimate camera projection matrix for the given point

cloud data.

[indices,dists] = findNearestNeighbors( ___ ,Name,Value) specifies options using one or
more name-value arguments in addition to the input arguments in the preceding syntaxes.

Examples

Find K-Nearest Neighbors in a Point Cloud

Load a set of 3-D coordinate points into the workspace.

load('xyzPoints.mat');

Create a point cloud object.

ptCloud = pointCloud(xyzPoints);

Specify a query point and the number of nearest neighbors to be identified.

 findNearestNeighbors

2-617



point = [0,0,0];
K = 220;

Get the indices and the distances of K nearest neighboring points.

[indices,dists] = findNearestNeighbors(ptCloud,point,K);

Display the point cloud. Plot the query point and their nearest neighbors.

figure
pcshow(ptCloud)
hold on
plot3(point(1),point(2),point(3),'*r')
plot3(ptCloud.Location(indices,1),ptCloud.Location(indices,2),ptCloud.Location(indices,3),'*')
legend('Point Cloud','Query Point','Nearest Neighbors','Location','southoutside','Color',[1 1 1])
hold off

Find K-Nearest Neighbors in Organized Point Cloud

Find the K-nearest neighbors of a query point in the organized point cloud data by using the camera
projection matrix. Compute the camera projection matrix from sampled point cloud data points and
their corresponding image point coordinates.

Load an organized point cloud data into the workspace. The point cloud is generated by using the
Kinect depth sensor.

2 Objects

2-618



ld = load('object3d.mat');
ptCloud = ld.ptCloud;

Specify the step size for sampling the point cloud data.

stepSize = 100;

Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud object.

indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);

Remove invalid points from the sampled point cloud.

[tempPtCloud,validIndices] = removeInvalidPoints(tempPtCloud);

Define the 3-D world point coordinates of input point cloud.

worldPoints = tempPtCloud.Location;

Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point cloud.

[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];

Estimate camera projection matrix from the image and the world point coordinates.

camMatrix = estimateCameraMatrix(imagePoints,worldPoints);

Specify a query point and the number of nearest neighbors to be identified.

point = [0.4 0.3 0.2];
K = 20;

Find the indices and distances of K nearest neighboring points by using the camera projection matrix.
Use the point cloud method select to get the point cloud data of nearest neighbors.

[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix);
ptCloudB = select(ptCloud,indices);

Display the point cloud and the nearest neighbors of the query point.

figure
pcshow(ptCloud)
hold on
pcshow(ptCloudB.Location,'ob')
legend('Point Cloud','Nearest Neighbors','Location','southoutside','Color',[1 1 1])
hold off

 findNearestNeighbors

2-619



Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Note The function supports organized point cloud data generated only from RGB-D sensors.

point — Query point
three-element vector of form [x,y,z]

Query point, specified as a three-element vector of form [x,y,z].

K — Number of nearest neighbors
positive integer

Number of nearest neighbors, specified as a positive integer.

camMatrix — Camera projection matrix
4-by-3 matrix

2 Objects

2-620



Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D image
points. You can compute the camMatrix by using the estimateCameraMatrix function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findNearestNeighbors(ptCloud,point,k,'Sort',true)

Sort — Sort indices
false (default) | true

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

MaxLeafChecks — Number of leaf nodes to check
Inf (default) | integer

Number of leaf nodes to check, specified as a comma-separated pair consisting of 'MaxLeafChecks'
and an integer. When you set this value to Inf, the entire tree is searched. When the entire tree is
searched, it produces exact search results. Increasing the number of leaf nodes to check increases
accuracy, but reduces efficiency.

Note The name-value argument 'MaxLeafChecks' is valid only with Kd-tree based search method.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains K linear indices of the
nearest neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its nearest neighbors.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

 findNearestNeighbors

2-621



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For GPU code generation, the camMatrix input argument is ignored.
• For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

See Also
pointCloud | estimateCameraMatrix | cameraMatrix

Introduced in R2015a

2 Objects

2-622



findNeighborsInRadius
Find neighbors within a radius of a point in the point cloud

Syntax
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius)
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius,camMatrix)
[indices,dists] = findNeighborsInRadius( ___ ,Name,Value)

Description
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius) returns the indices
of neighbors within a radius of a query point in the input point cloud. ptCloud can be an
unorganized or organized point cloud. The neighbors within a radius of the query point are computed
by using the Kd-tree based search algorithm.

[indices,dists] = findNeighborsInRadius(ptCloud,point,radius,camMatrix) returns
the neighbors within a radius of a query point in the input point cloud. The input point cloud is an
organized point cloud generated by a depth camera. The neighbors within a radius of the query point
are determined using fast approximate neighbor search algorithm.

The function uses the camera projection matrix camMatrix to know the relationship between
adjacent points and hence, speeds up the search. However, the results have lower accuracy as
compared to the Kd-tree based approach.

Note

• This syntax only supports organized point cloud data produced by RGB-D sensors.
• You can use estimateCameraMatrix to estimate camera projection matrix for the given point

cloud data.

[indices,dists] = findNeighborsInRadius( ___ ,Name,Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the preceding syntaxes.

Examples

Find Radial Neighbors in Point Cloud

Load a set of 3-D coordinate points into the workspace.

load('xyzPoints.mat');

Create a point cloud object.

ptCloud = pointCloud(xyzPoints);

Specify a query point and the radius within which the neighbors are to be identified.

 findNeighborsInRadius

2-623



point = [0,0,3];
radius = 0.5;

Get the indices and the distances of points that lie within the specified radius.

[indices,dists] = findNeighborsInRadius(ptCloud,point,radius);

Get the point cloud data of radial neighbors.

ptCloudB = select(ptCloud,indices);

Display the point cloud. Plot the query point and the corresponding radial neighbors.

figure
pcshow(ptCloud)
hold on
plot3(point(1),point(2),point(3),'*')
pcshow(ptCloudB.Location,'r')
legend('Point Cloud','Query Point','Radial Neighbors','Location','southoutside','Color',[1 1 1])
hold off

Find Radial Neighbors in Organized Point Cloud

Find radial neighbors of a query point in the organized point cloud data by using the camera
projection matrix. Compute the camera projection matrix from sampled point cloud data points and
their corresponding image point coordinates.

2 Objects

2-624



Load an organized point cloud data into the workspace. The point cloud is generated by using the
Kinect depth sensor.

ld = load('object3d.mat');
ptCloud = ld.ptCloud;

Specify the step size for sampling the point cloud data.

stepSize = 100;

Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud object.

indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);

Remove invalid points from the sampled point cloud.

[tempPtCloud,validIndices] = removeInvalidPoints(tempPtCloud);

Define the 3-D world point coordinates of input point cloud.

worldPoints = tempPtCloud.Location;

Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point cloud.

[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];

Estimate camera projection matrix from the image and the world point coordinates.

camMatrix = estimateCameraMatrix(imagePoints,worldPoints);

Specify a query point and the radius within which the neighbors are to be identified.

point = [0.4 0.3 0.2];
radius = 0.05;

Get the indices and the distances of radial neighbors. Use the point cloud method select to get the
point cloud data of neighboring points.

[indices,dists] = findNeighborsInRadius(ptCloud,point,radius,camMatrix);
ptCloudB = select(ptCloud,indices);

Display the point cloud and the radial neighbors found around a query point.

figure
pcshow(ptCloud);
hold on;
pcshow(ptCloudB.Location, 'b');
legend('Point Cloud','Radial Neighbors','Location','southoutside','Color',[1 1 1] )
hold off;

 findNeighborsInRadius

2-625



Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x,y,z]

Query point, specified as a three-element vector of form [x,y,z].

radius — Search radius
scalar

Search radius, specified as a scalar. The function finds the neighbors within the specified radius
around a query point in the input point cloud.

camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D image
points. You can find camMatrix by using the estimateCameraMatrix function.

2 Objects

2-626



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findNeighborsInRadius(ptCloud,point,radius,'Sort',true)

Sort — Sort indices
false (default) | true

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

MaxLeafChecks — Number of leaf nodes
Inf (default) | integer

Number of leaf nodes, specified as a comma-separated pair consisting of 'MaxLeafChecks' and an
integer. When you set this value to Inf, the entire tree is searched. When the entire tree is searched,
it produces exact search results. Increasing the number of leaf nodes to check increases accuracy,
but reduces efficiency.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
radial neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its radial neighbors.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 findNeighborsInRadius

2-627



• For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For GPU code generation, the camMatrix input argument is ignored.
• For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

See Also
pointCloud | estimateCameraMatrix | cameraMatrix

Introduced in R2015a

2 Objects

2-628



findPointsInROI
Find points within a region of interest in the point cloud

Syntax
indices = findPointsInROI(ptCloud,roi)
indices = findpointsInROI(ptCloud,roi,camMatrix)

Description
indices = findPointsInROI(ptCloud,roi) returns the points within a region of interest (ROI)
in the input point cloud. The points within the specified ROI are obtained using a Kd-tree based
search algorithm.

indices = findpointsInROI(ptCloud,roi,camMatrix) returns the points within the ROI area
of the input point cloud. The input point cloud is an organized point cloud generated by a depth
camera. The points within the specified ROI are obtained using fast approximate neighbor search
algorithm.

The function uses the camera projection matrix camMatrix to know the relationship between
adjacent points and hence, speeds up the search. However, the results have lower accuracy as
compared to the Kd-tree based approach.

Note

• This syntax only supports organized point cloud data produced by RGB-D sensors.
• You can use estimateCameraMatrix to estimate camera projection matrix for the given point

cloud data.

Examples

Find Points Within a Cuboid ROI in Point Cloud

Read a point cloud data into the workspace.

ptCloud = pcread('teapot.ply');

Define a cuboid ROI within the range of the x, y and z coordinates of the input point cloud.

roi = [-2 2 -2 2 2.4 3.5];

Find the indices of the points that lie within the cuboid ROI.

indices = findPointsInROI(ptCloud,roi);

Select the points that lie within the cuboid ROI and store as a point cloud object.

ptCloudB = select(ptCloud,indices);

 findPointsInROI

2-629



Display the input point cloud and the point cloud within the specified ROI.

figure
pcshow(ptCloud.Location,[0.5 0.5 0.5])
hold on
pcshow(ptCloudB.Location,'r');
legend('Point Cloud','Points within ROI','Location','southoutside','Color',[1 1 1])
hold off

Find Points Within a Cuboid ROI in Organized Point Cloud

Find points within a cuboid ROI in the organized point cloud data by using the camera projection
matrix. Compute the camera projection matrix from sampled point cloud data points and their
corresponding image point coordinates.

Load an organized point cloud data into the workspace. The point cloud is generated by using the
Kinect depth sensor.

ld = load('object3d.mat');
ptCloud = ld.ptCloud;

Specify the step size for sampling the point cloud data.

stepSize = 100;

2 Objects

2-630



Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud object.

indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);

Remove invalid points from the sampled point cloud.

[tempPtCloud,validIndices] = removeInvalidPoints(tempPtCloud);

Get the 3-D world point coordinates from input point cloud.

worldPoints = tempPtCloud.Location;

Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point cloud.

[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];

Estimate camera projection matrix from the image and the world point coordinates.

camMatrix = estimateCameraMatrix(imagePoints,worldPoints);

Specify a cuboid ROI within the range of the x, y and z coordinates of the input point cloud.

roi = [0.3 0.7 0 0.4 0.1 0.3];

Find the indices of the point cloud data that lie within the cuboid ROI.

indices = findPointsInROI(ptCloud,roi,camMatrix);

Use the point cloud method select to get the point cloud data of points within the ROI.

ptCloudB = select(ptCloud,indices);

Display the input point cloud and the points within the cuboid ROI.

figure
pcshow(ptCloud)
hold on
pcshow(ptCloudB.Location,'r');
legend('Point Cloud','Points within the ROI','Location','southoutside','Color',[1 1 1])
hold off

 findPointsInROI

2-631



Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

roi — Region of interest
six-element vector

Region of interest, specified as a six-element vector of form [xmin, xmax, ymin, ymax, zmin, zmax],
where:

• xmin and xmax are the minimum and the maximum limits along the x-axis respectively.
• ymin and ymax are the minimum and the maximum limits along the y-axis respectively.
• zmin and zmax are the minimum and the maximum limits along the z-axis respectively.

camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D image
points. You can find camMatrix by using the estimateCameraMatrix function.

2 Objects

2-632



Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
ROI points stored in the point cloud.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For GPU code generation, the camMatrix input argument is ignored.

See Also
pointCloud | estimateCameraMatrix | cameraMatrix

Introduced in R2015a

 findPointsInROI

2-633



removeInvalidPoints
Remove invalid points from point cloud

Syntax
[ptCloudOut,indices] = removeInvalidPoints(ptCloud)

Description
[ptCloudOut,indices] = removeInvalidPoints(ptCloud) removes points with Inf or NaN
coordinate values from point cloud and returns the indices of valid points.

Note The output is always an unorganized (X-by-3) point cloud. If the input ptCloud is an organized
point cloud (M-by-N-by-3), the function returns the output as an unorganized point cloud.

Examples

Remove Invalid Points from Point Cloud

Create a point cloud object with NaN and Inf values.

xyzpoints = abs(randn(10,3)).*100;
xyzpoints(1:2:4,:) = nan('single');
xyzpoints(6:2:10,:) = inf('single');
ptCloud = pointCloud(xyzpoints);

Inspect the Location property of point cloud data to verify the occurrence of NaN and Inf values.

ptCloud.Location

ans = 10×3

       NaN       NaN       NaN
  183.3885  303.4923  120.7487
       NaN       NaN       NaN
   86.2173    6.3055  163.0235
   31.8765   71.4743   48.8894
       Inf       Inf       Inf
   43.3592   12.4144   72.6885
       Inf       Inf       Inf
  357.8397  140.9034   29.3871
       Inf       Inf       Inf

Remove points with NaN and Inf values from the point cloud.

ptCloudOut = removeInvalidPoints(ptCloud);

Inspect the Location property of point cloud data to verify that the invalid points are removed.

2 Objects

2-634



ptCloudOut.Location

ans = 5×3

  183.3885  303.4923  120.7487
   86.2173    6.3055  163.0235
   31.8765   71.4743   48.8894
   43.3592   12.4144   72.6885
  357.8397  140.9034   29.3871

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Output Arguments
ptCloudOut — Point cloud with points removed
pointCloud object

Point cloud, returned as a pointCloud object with Inf or NaN coordinates removed.

Note The output is always an unorganized (X-by-3) point cloud. If the input ptCloud is an organized
point cloud (M-by-N-by-3), the function returns the output as an unorganized point cloud.

indices — Indices of valid points
vector

Indices of valid points in the point cloud, specified as a vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
pointCloud | pcread

Introduced in R2015a

 removeInvalidPoints

2-635



select
Select points in point cloud

Syntax
ptCloudOut = select(ptCloud,indices)
ptCloudOut = select(ptCloud,row,column)
ptCloudOut = select( ___ ,'OutputSize',outputSize)

Description
ptCloudOut = select(ptCloud,indices) returns a pointCloud object containing only the
points that are selected using linear indices.

ptCloudOut = select(ptCloud,row,column) returns a pointCloud object containing only the
points that are selected using row and column subscripts. This syntax applies only if the input is an
organized point cloud data of size M-by-N-by-3.

ptCloudOut = select( ___ ,'OutputSize',outputSize) returns the selected points as a
pointCloud object of size specified by outputSize.

Examples

Select Points from Point Cloud

Read a point cloud data into the workspace.

ptCloud = pcread('teapot.ply');

Read the number of points in the point cloud data.

Length = ptCloud.Count;

Select indices within the range [1, Length].

stepSize = 10;
indices = 1:stepSize:Length;

Select points specified by the indices from input point cloud. This selection of points downsamples the
input point cloud by a factor of stepSize.

ptCloudB = select(ptCloud,indices);

Display the input and the selected point cloud data.

figure
subplot(1,2,1)
pcshow(ptCloud)
title('Input Point Cloud','Color',[1 1 1]);
subplot(1,2,2)

2 Objects

2-636



pcshow(ptCloudB)
title('Selected Points','Color',[1 1 1]);

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Indices of selected points
vector

Indices of selected points, specified as a vector.

row — Row indices
vector

Row indices, specified as a vector. This argument applies only if the input is an organized point cloud
data of size M-by-N-by-3.

column — Column indices
vector

Column indices, specified as a vector. This argument applies only if the input is an organized point
cloud data of size M-by-N-by-3.

 select

2-637



outputSize — Size of output point cloud
'selected' (default) | 'full'

Size of the output point cloud, ptCloudOut, specified as 'selected' or 'full'.

• If the size is 'selected', then the output contains only the selected points from the input point
cloud, ptCloud.

• If the size is 'full', then the output is same size as the input point cloud ptCloud. Cleared
points are filled with NaN and the color is set to [0 0 0].

Output Arguments
ptCloudOut — Selected point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
pointCloud | pcread

Introduced in R2015a

2 Objects

2-638



copy
Copy array of point cloud objects

Syntax
ptCloudOut = copy(ptCloudIn)

Description
ptCloudOut = copy(ptCloudIn) copies an array of point cloud objects at the input to the new
array ptCloudOut.

Input Arguments
ptCloudIn — Input point cloud data
pointCloud object

Input point cloud data, specified as a pointCloud object or an array of pointCloud objects.

Output Arguments
ptCloudOut — Output point cloud data
pointCloud object

Output point cloud data, returned as a pointCloud object or an array of pointCloud objects. The
output data contains a copy of the input point cloud data.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
findNearestNeighbors | findNeighborsInRadius | findPointsInROI |
removeInvalidPoints | select | pointCloud

Introduced in R2015a

 copy

2-639



cylinderModel
Parametric cylinder model

Description
The cylinderModel object stores a parametric cylinder model.

Creation

Syntax
model = cylinderModel(params)

Description

model = cylinderModel(params) constructs a parametric cylinder model from the specified
params. The params argument is a 1-by-7 numeric vector that determines the value of the
Parameters property.

Properties
Parameters — Cylinder model parameters
1-by-7 numeric vector

This property is read-only.

Cylinder model parameters, stored as a 1-by-7 numeric vector. The vector is of the form [x1 y1 z1 x2
y2 z2 r].

• [x1 y1 z1] and [x2 y2 z2] are the 3-D centers of each end-cap surface of the cylinder.
• r is the radius of the cylinder.

Center — Center of cylinder
1-by-3 numeric vector

This property is read-only.

Center of the cylinder, stored as a 1-by-3 numeric vector representing the x-, y-, and z-coordinates.

Height — Height of cylinder
scalar

This property is read-only.

Height of the cylinder, stored as a scalar.

Radius — Radius of cylinder
scalar

2 Objects

2-640



This property is read-only.

Radius of the cylinder, stored as a scalar.

Object Functions
plot Plot parametric model

Examples

Detect Cylinder in Point Cloud

Load a MAT file containing a point cloud into the workspace.

load("object3d.mat");

Display the point cloud.

figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")
zlabel("Z(m)")
title("Detect a Cylinder in a Point Cloud")

Set the maximum point-to-cylinder distance for cylinder fitting to 5mm.

maxDistance = 0.005;

Specify a region of interest (ROI) to constrain the fitting function.

roi = [0.4 0.6; -inf 0.2; 0.1 inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Set the orientation constraint for the fitting function

referenceVector = [0 0 1];

Detect the cylinder in the specified ROI of the point cloud and extract it.

model = pcfitcylinder(ptCloud,maxDistance,referenceVector, ...
        SampleIndices=sampleIndices);

Plot the model of the detected cylinder.

hold on
plot(model)

 cylinderModel

2-641



See Also
Objects
pointCloud | planeModel | sphereModel | affine3d

Functions
pcfitcylinder | pcfitplane | pcfitsphere | pcshow | pcplayer | pcwrite | pcread |
pcmerge | pctransform | pcdownsample | pcdenoise | pcregistericp

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

2 Objects

2-642



planeModel
Object for storing a parametric plane model

Description
Construct and store a parametric plane model based on parameters that describe a plane.

Creation

Syntax
model = planeModel(Parameters)

Description

model = planeModel(Parameters) constructs a parametric plane model from the 1-by-4
Parameters input vector that describes a plane.

Input Arguments

Parameters — Plane parameters
1-by-4 scalar vector

Plane parameters, specified as a 1-by-4 vector. This input specifies the Parameters property. The
four parameters [a,b,c,d] describe the equation for a plane:

ax + by + cz + d = 0

Properties
These properties are read-only.

Parameters — Plane model parameters
1-by-4 vector

Plane model parameters, stored as a 1-by-4 vector. These parameters are specified by the
Parameters input argument.

Normal — Normal vector of the plane
1-by-3 vector

Normal vector of the plane, stored as a 1-by-3 vector. The [a,b,c] vector specifies the unnormalized
normal vector of the plane.

Object Functions
plot Plot parametric model
normalRotation Compute transform for rotation of a normal to a plane

 planeModel

2-643



Examples

Detect Multiple Planes from Point Cloud

Load the point cloud.

load("object3d.mat")

Display and label the point cloud.

figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")
zlabel("Z(m)")
title("Original Point Cloud")

Set the maximum point-to-plane distance (2cm) for plane fitting.

maxDistance = 0.02;

Set the normal vector of the plane.

referenceVector = [0,0,1];

Set the maximum angular distance to 5 degrees.

2 Objects

2-644



maxAngularDistance = 5;

Detect the first plane, the table, and extract it from the point cloud.

[model1,inlierIndices,outlierIndices] = pcfitplane(ptCloud,...
            maxDistance,referenceVector,maxAngularDistance);
plane1 = select(ptCloud,inlierIndices);
remainPtCloud = select(ptCloud,outlierIndices);

Set the region of interest to constrain the search for the second plane, left wall.

roi = [-inf,inf;0.4,inf;-inf,inf];
sampleIndices = findPointsInROI(remainPtCloud,roi);

Detect the left wall and extract it from the remaining point cloud.

[model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,...
            maxDistance,SampleIndices=sampleIndices);
plane2 = select(remainPtCloud,inlierIndices);
remainPtCloud = select(remainPtCloud,outlierIndices);

Plot the two planes and the remaining points.

figure
pcshow(plane1)
title("First Plane")

figure

 planeModel

2-645



pcshow(plane2)
title("Second Plane")

figure
pcshow(remainPtCloud)
title("Remaining Point Cloud")

2 Objects

2-646



See Also
pointCloud | pcfitplane | pcfitsphere | pcfitcylinder | sphereModel | cylinderModel |
pcshow | pcplayer | pcwrite | pcread | pcmerge | pctransform | pcdownsample | pcdenoise |
affine3d | pcregistericp

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

 planeModel

2-647



sphereModel
Object for storing a parametric sphere model

Description
The sphereModel object stores a parametric sphere model.

Creation

Syntax
model = sphereModel(params)

Description

model = sphereModel(params) constructs a parametric sphere model from the specified
parameters. The params argument is a 1-by-4 numeric vector that determines the value of the
Parameters property.

Properties
Parameters — Sphere model parameters
1-by-4 numeric vector

This property is read-only.

Sphere model parameters, stored as a 1-by-4 numeric vector. The four parameters [a b c d] satisfy
this equation for a sphere:

(x− a)2 + (y − b)2 + (z − c)2 = d2

Center — Center of sphere
1-by-3 vector

This property is read-only.

Center of the sphere, stored as a 1-by-3 vector of form [xc yc zc]. The elements xc,yc,zc specify the x-,
y-, and z-coordinates of the center coordinates of the sphere, respectively.

Radius — Radius of sphere
scalar

This property is read-only.

Radius of the sphere, stored as a scalar value.

2 Objects

2-648



Object Functions
plot Plot parametric model

Examples

Detect Sphere in Point Cloud

Load point cloud.

load("object3d.mat");

Display point cloud.

figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")
zlabel("Z(m)")
title("Detect a sphere in a point cloud")

Set the maximum point-to-sphere distance (1cm), for sphere fitting.

maxDistance = 0.01;

Set the region of interest to constrain the search.

 sphereModel

2-649



roi = [-inf,0.5;0.2,0.4;0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Detect the globe in the point cloud and extract it.

model = pcfitsphere(ptCloud,maxDistance,SampleIndices=sampleIndices);

Plot the sphere.

hold on
plot(model)

See Also
Objects
pointCloud | planeModel | affine3d | cylinderModel

Functions
pcfitcylinder | pcfitplane | pcfitsphere | pcshow | pcplayer | pcwrite | pcread |
pcmerge | pctransform | pcdownsample | pcdenoise | pcregistericp

Topics
“3-D Point Cloud Registration and Stitching”

2 Objects

2-650



Introduced in R2015b

 sphereModel

2-651



opticalFlow
Object for storing optical flow matrices

Description
The opticalFlow object stores the direction and speed of a moving object from one image or video
frame to another. Use the object function plot to plot the optical flow vectors.

Creation
Syntax
flow = opticalFlow
flow = opticalFlow(Vx,Vy)

Description

flow = opticalFlow creates an optical flow object with default property values.

flow = opticalFlow(Vx,Vy) creates an optical flow object from two equal-sized matrices Vx and
Vy. The matrices Vx and Vy are the x and y components of velocity respectively. The input velocity
components set the “Properties” on page 2-652 of optical flow object.

Input Arguments

Vx — x component of velocity
M-by-N matrix

x component of velocity in pixels per frame, specified as an M-by-N matrix.
Data Types: single | double

Vy — y component of velocity
M-by-N matrix

y component of velocity in pixels per frame, specified as an M-by-N matrix.
Data Types: single | double

Note Vx and Vy must be of the same size and data type.

Properties
Vx — x component of velocity
0-by-1 empty matrix (default) | M-by-N matrix

x component of velocity in pixels per frame, specified as an M-by-N matrix. If the input Vx is not
specified, the default value of this property is set to a 0-by-1 empty matrix.

2 Objects

2-652



Data Types: single | double

Vy — y component of velocity
0-by-1 empty matrix (default) | M-by-N matrix

y component of velocity in pixels per frame, specified as an M-by-N matrix. If the input Vy is not
specified, the default value of this property is set to a 0-by-1 empty matrix.
Data Types: single | double

Orientation — Phase angles of optical flow
0-by-1 empty matrix (default) | M-by-N matrix

This property is read-only.

Phase angles of optical flow in radians, specified as an M-by-N matrix of the same size and data type
as the components of velocity. The phase angles of optical flow is calculated from the x and y
components of velocity. If the inputs Vx and Vy are not specified, the default value of this property is
set to 0-by-1 empty matrix.
Data Types: single | double

Magnitude — Magnitude of optical flow
0-by-1 empty matrix (default) | M-by-N matrix

This property is read-only.

Magnitude of optical flow in pixels per frame, specified as an M-by-N matrix of the same size and data
type as the components of velocity. The magnitude of optical flow is calculated from the x and y
components of velocity. If the inputs Vx and Vy are not specified, the default value of this property is
set to 0-by-1 empty matrix.
Data Types: single | double

Object Functions
plot Plot optical flow vectors

Examples

Create Optical Flow Object

Create an optical flow object and view its properties.

flow = opticalFlow

flow = 

  opticalFlow with properties:

             Vx: [0×1 double]
             Vy: [0×1 double]
    Orientation: [0×1 double]
      Magnitude: [0×1 double]

 opticalFlow

2-653



The default values of the properties are returned as an empty matrix of size 0-by-1 and data type
double.

Create an Optical Flow Object and Plot Its Velocity

Create an optical flow object from two equal-sized velocity matrices.

Vx = randn(100,100);
Vy = randn(100,100);
opflow = opticalFlow(Vx,Vy);

Inspect the properties of the optical flow object. The orientation and the magnitude are computed
from the velocity matrices.

opflow

opflow = 
  opticalFlow with properties:

             Vx: [100x100 double]
             Vy: [100x100 double]
    Orientation: [100x100 double]
      Magnitude: [100x100 double]

Plot the velocity of the object as a quiver plot.

plot(opflow,'DecimationFactor',[10 10],'ScaleFactor',10);

2 Objects

2-654



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quiver | opticalFlowHS | opticalFlowLKDoG | opticalFlowLK | opticalFlowFarneback

Introduced in R2015a

 opticalFlow

2-655



plot
Plot optical flow vectors

Syntax
plot(flow)
plot(flow,Name,Value)

Description
plot(flow) plots the optical flow vectors.

plot(flow,Name,Value) specifies options using one or more name-value arguments in addition to
the input argument in the previous syntax.

Examples

Create an Optical Flow Object and Plot Its Velocity

Create an optical flow object from two equal-sized velocity matrices.

Vx = randn(100,100);
Vy = randn(100,100);
opflow = opticalFlow(Vx,Vy);

Inspect the properties of the optical flow object. The orientation and the magnitude are computed
from the velocity matrices.

opflow

opflow = 
  opticalFlow with properties:

             Vx: [100x100 double]
             Vy: [100x100 double]
    Orientation: [100x100 double]
      Magnitude: [100x100 double]

Plot the velocity of the object as a quiver plot.

plot(opflow,'DecimationFactor',[10 10],'ScaleFactor',10);

2 Objects

2-656



Input Arguments
flow — Object containing optical flow matrices
opticalFlow object

Object containing optical flow velocity matrices, specified as an opticalFlow object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plot(flow,'DecimationFactor',[1 1])

DecimationFactor — Decimation factor of velocity vectors
[1 1] (default) | two-element vector

Decimation factor of velocity vectors, specified as the comma-separated pair consisting of
'DecimationFactor' and a two-element vector. The two-element vector is of form [XDecimFactor
YDecimFactor] and specifies the decimation factor for velocity vectors along the x and y directions
respectively. XDecimFactor and YDecimFactor are positive scalar integers. Increase the value of this
property to get a less cluttered quiver plot.

 plot

2-657



ScaleFactor — Scaling factor for velocity vector display
1 (default) | positive integer-valued scalar

Scaling factor for velocity vector display, specified as the comma-separated pair consisting of
'ScaleFactor' and a positive integer-valued scalar. Increase this value to display longer vectors.

Parent — Figure axes
gca handle

Figure axes, specified as the comma-separated pair consisting of 'Parent' and axes object. The
default is set to the current axes handle, gca.

See Also
quiver | opticalFlow

Introduced in R2015a

2 Objects

2-658



opticalFlowHS
Object for estimating optical flow using Horn-Schunck method

Description
Create an optical flow object for estimating the direction and speed of a moving object using the
Horn-Schunck method. Use the object function estimateFlow to estimate the optical flow vectors.
Using the reset object function, you can reset the internal state of the optical flow object.

Creation
Syntax
opticFlow = opticalFlowHS
opticFlow = opticalFlowHS(Name,Value)

Description

opticFlow = opticalFlowHS returns an optical flow object that you can use to estimate the
direction and speed of the moving objects in a video. The optical flow is estimated using the Horn-
Schunck method.

opticFlow = opticalFlowHS(Name,Value) returns an optical flow object with properties
specified as one or more Name,Value pair arguments. Any unspecified properties have default
values. Enclose each property name in quotes.

For example, opticalFlowHS('Smoothness',1.5)

Properties
Smoothness — Expected smoothness
1 (default) | positive scalar

Expected smoothness of optical flow, specified as a positive scalar. Increase this value when there is
increased motion between consecutive frames. A typical value for 'Smoothness' is around 1.

MaxIteration — Maximum number of iterations
10 (default) | positive integer-valued scalar

Maximum number of iterations, specified as a positive integer-valued scalar. Increase this value to
estimate the optical flow of objects with low velocity.

The iterative computation stops when the number of iterations equals the value of 'MaxIteration'
or when the algorithm reaches the value set for 'VelocityDifference'. To stop computation only
by using 'MaxIteration', set the value of 'VelocityDifference' to 0.

VelocityDifference — Minimum absolute velocity difference
0 (default) | positive scalar

 opticalFlowHS

2-659



Minimum absolute velocity difference, specified as a positive scalar. This value depends on the input
data type. Decrease this value to estimate the optical flow of objects that have low velocity.

The iterative computation stops when the algorithm reaches the value set for
'VelocityDifference' or the number of iterations equals 'MaxIteration'. To use only
'VelocityDifference' to stop computation, set 'MaxIteration' to Inf.

Object Functions
estimateFlow Estimate optical flow
reset Reset the internal state of the optical flow estimation object

Examples

Estimate Optical Flow Using Horn-Schunck Method

Create a VideoReader object for the input video file, visiontraffic.avi. Specify the timestamp
of the frame to read as 11.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Specify the optical flow estimation method as opticalFlowHS. The output is an object specifying the
optical flow estimation method and its properties.

opticFlow = opticalFlowHS

opticFlow = 
  opticalFlowHS with properties:

            Smoothness: 1
          MaxIteration: 10
    VelocityDifference: 0

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read image frames from the VideoReader object and convert to grayscale images. Estimate the
optical flow from consecutive image frames. Display the current image frame and plot the optical flow
vectors as quiver plot.

while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = im2gray(frameRGB);  
    flow = estimateFlow(opticFlow,frameGray);
    imshow(frameRGB)
    hold on
    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',60,'Parent',hPlot);
    hold off
    pause(10^-3)
end

2 Objects

2-660



 opticalFlowHS

2-661



Algorithms
To compute the optical flow between two images, you must solve this optical flow constraint equation:

Ixu + Iyv + It = 0

.

• Ix, Iy, and It are the spatiotemporal image brightness derivatives.

• u is the horizontal optical flow.
• v is the vertical optical flow.

Horn-Schunck Method

By assuming that the optical flow is smooth across the entire image, the Horn-Schunck method
estimates a velocity field, [u v]T, that minimizes this equation:

E =∬(Ixu + Iyv + It)2dxdy + α∬ ∂u
∂x

2
+ ∂u
∂y

2
+ ∂v
∂x

2
+ ∂v
∂y

2
dxdy

.

In this equation, ∂u∂x  and ∂u∂y  are the spatial derivatives of the optical velocity component, u, and α
scales the global smoothness term. The Horn-Schunck method minimizes the previous equation to
obtain the velocity field, [u v], for each pixel in the image. This method is given by the following
equations:

ux, y
k + 1 = ux, y

k −
Ix[Ixuk

x, y + Iyvk
x, y + It]

α2 + Ix2 + Iy
2

vx, y
k + 1 = vx, y

k −
Iy[Ixuk

x, y + Iyvk
x, y + It]

α2 + Ix2 + Iy
2

.

In these equations, ux, y
k vx, y

k  is the velocity estimate for the pixel at (x,y), and ux, y
k vx, y

k  is the
neighborhood average of ux, y

k vx, y
k . For k = 0, the initial velocity is 0.

To solve u and v using the Horn-Schunck method:

1 Compute Ix and Iy by using the Sobel convolution kernel, −1 −2 −1; 0 0 0; 1 2 1 , and its
transposed form for each pixel in the first image.

2 Compute It between images 1 and 2 using the −1 1  kernel.
3 Assume the previous velocity to be 0, and compute the average velocity for each pixel using

0 1 0; 1 0 1; 0 1 0  as a convolution kernel.
4 Iteratively solve for u and v.

2 Objects

2-662



References
[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. “ Performance of optical flow

techniques.” In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quiver | opticalFlow | opticalFlowLKDoG | opticalFlowLK | opticalFlowFarneback

Introduced in R2015a

 opticalFlowHS

2-663



opticalFlowLK
Object for estimating optical flow using Lucas-Kanade method

Description
Create an optical flow object for estimating the direction and speed of a moving object using the
Lucas-Kanade method. Use the object function estimateFlow to estimate the optical flow vectors.
Using the reset object function, you can reset the internal state of the optical flow object.

Creation

Syntax
opticFlow = opticalFlowLK
opticFlow = opticalFlowLK('NoiseThreshold',threshold)

Description

opticFlow = opticalFlowLK returns an optical flow object that you can use to estimate the
direction and speed of the moving objects in a video. The optical flow is estimated using the Lucas-
Kanade method.

opticFlow = opticalFlowLK('NoiseThreshold',threshold) returns an optical flow object
with the property 'NoiseThreshold' specified as a Name,Value pair. Enclose the property name in
quotes.

For example, opticalFlowLK('NoiseThreshold',0.05)

Properties
threshold — Threshold for noise reduction
0.0039 (default) | positive scalar

Threshold for noise reduction, specified as a positive scalar. As you increase this number, the
movement of the objects has less impact on optical flow calculation.

Object Functions
estimateFlow Estimate optical flow
reset Reset the internal state of the optical flow estimation object

Examples

Compute Optical Flow Using Lucas-Kanade Algorithm

Read a video file. Specify the timestamp of the frame to be read.

2 Objects

2-664



vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Create an optical flow object for estimating the optical flow using Lucas-Kanade method. Specify the
threshold for noise reduction. The output is an optical flow object specifying the optical flow
estimation method and its properties.

opticFlow = opticalFlowLK('NoiseThreshold',0.009);

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read the image frames and convert to grayscale images. Estimate the optical flow from consecutive
image frames. Display the current image frame and plot the optical flow vectors as quiver plot.

while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = im2gray(frameRGB);
    flow = estimateFlow(opticFlow,frameGray);
    imshow(frameRGB)
    hold on
    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',10,'Parent',hPlot);
    hold off
    pause(10^-3)
end

 opticalFlowLK

2-665



Algorithms
To compute the optical flow between two images, you must solve this optical flow constraint equation:

Ixu + Iyv + It = 0

.

• Ix, Iy, and It are the spatiotemporal image brightness derivatives.

• u is the horizontal optical flow.
• v is the vertical optical flow.

Lucas-Kanade Method

To solve the optical flow constraint equation for u and v, the Lucas-Kanade method divides the
original image into smaller sections and assumes a constant velocity in each section. Then it performs
a weighted, least-square fit of the optical flow constraint equation to a constant model for u v T in
each section Ω. The method achieves this fit by minimizing this equation:

∑
x ∈ Ω

W2[Ixu + Iyv + It]2

W is a window function that emphasizes the constraints at the center of each section. The solution to
the minimization problem is

2 Objects

2-666



∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

u
v

= −
∑W2IxIt

∑W2IyIt

.

The Lucas-Kanade method computes It using a difference filter, [-1 1].

u and v are solved as follows:

1 Compute Ix and Iy using the kernel −1 8 0 −8 1 /12 and its transposed form.
2 Compute It between images 1 and 2 using the −1 1  kernel.
3 Smooth the gradient components, Ix, Iy, and It, using a separable and isotropic 5-by-5 element

kernel whose effective 1-D coefficients are 1 4 6 4 1 /16.
4 Solve the 2-by-2 linear equations for each pixel using the following method:

•
If A =

a b
b c

=
∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

Then the eigenvalues of A are λi = a + c
2 ± 4b2 + (a− c)2

2 ; i = 1, 2

• The eigenvalues are compared to the threshold, τ, that corresponds to the value you enter for
the threshold for noise reduction. The results fall into one of the following cases:

Case 1: λ1 ≥ τ and λ2 ≥ τ

A is nonsingular, the system of equations are solved using Cramer's rule.

Case 2: λ1 ≥ τ and λ2 < τ

A is singular (noninvertible), the gradient flow is normalized to calculate u and v.

Case 3: λ1 < τ and λ2 < τ

The optical flow, u and v, is 0.

References
[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. “ Performance of optical flow

techniques.” In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quiver | opticalFlow | opticalFlowHS | opticalFlowFarneback | opticalFlowLKDoG

 opticalFlowLK

2-667



Introduced in R2015a

2 Objects

2-668



opticalFlowLKDoG
Object for estimating optical flow using Lucas-Kanade derivative of Gaussian method

Description
Create an optical flow object for estimating the direction and speed of moving objects using the
Lucas-Kanade derivative of Gaussian (DoG) method. Use the object function estimateFlow to
estimate the optical flow vectors. Using the reset object function, you can reset the internal state of
the optical flow object.

Creation

Syntax
opticFlow = opticalFlowLKDoG
opticFlow = opticalFlowLKDoG(Name,Value)

Description

opticFlow = opticalFlowLKDoG returns an optical flow object that you can use to estimate the
direction and speed of the moving objects in a video. The optical flow is estimated using the Lucas-
Kanade derivative of Gaussian (DoG) method.

opticFlow = opticalFlowLKDoG(Name,Value) returns an optical flow object with properties
specified as one or more Name,Value pair arguments. Any unspecified properties have default
values. Enclose each property name in quotes.

For example, opticalFlowLKDoG('NumFrames',3)

Properties
NumFrames — Number of buffered frames
3 (default) | positive integer-valued scalar

Number of buffered frames for temporal smoothing, specified as a positive integer-valued scalar. As
you increase this number, the optical flow estimation method becomes less robust to abrupt changes
in the trajectory of the moving objects. The amount of delay in flow estimation depends on the value
of NumFrames. The output flow corresponds to the image at tflow = tcurrent − 0.5(NumFrames-1), where
tcurrent is the time of the current image.

ImageFilterSigma — Standard deviation for image smoothing filter
1.5 | positive scalar

Standard deviation for image smoothing filter, specified as a positive scalar.

GradientFilterSigma — Standard deviation for gradient smoothing filter
1 | positive scalar

 opticalFlowLKDoG

2-669



Standard deviation for gradient smoothing filter, specified as a positive scalar.

NoiseThreshold — Threshold for noise reduction
0.0039 (default) | positive scalar

Threshold for noise reduction, specified as a positive scalar. As you increase this number, the
movement of the objects has less impact on optical flow calculation.

Object Functions
estimateFlow Estimate optical flow
reset Reset the internal state of the optical flow estimation object

Examples

Compute Optical Flow Using Lucas-Kanade DoG Method

Read a video file. Specify the timestamp of the frame to be read.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Create an optical flow object for estimating the optical flow using Lucas-Kanade DoG method. Specify
the threshold for noise reduction. The output is an optical flow object specifying the optical flow
estimation method and its properties.

opticFlow = opticalFlowLKDoG('NoiseThreshold',0.0005)

opticFlow = 
  opticalFlowLKDoG with properties:

              NumFrames: 3
       ImageFilterSigma: 1.5000
    GradientFilterSigma: 1
         NoiseThreshold: 5.0000e-04

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read the image frames and convert to grayscale images. Estimate the optical flow from consecutive
image frames. Display the current image frame and plot the optical flow vectors as quiver plot.

while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = im2gray(frameRGB);
    flow = estimateFlow(opticFlow,frameGray);
    imshow(frameRGB)
    hold on
    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',35,'Parent',hPlot);
    hold off
    pause(10^-3)
end

2 Objects

2-670



 opticalFlowLKDoG

2-671



Algorithms
To compute the optical flow between two images, you must solve this optical flow constraint equation:

Ixu + Iyv + It = 0

.

• Ix, Iy, and It are the spatiotemporal image brightness derivatives.
• u is the horizontal optical flow.
• v is the vertical optical flow.

Lucas-Kanade Derivative of Gaussian Method

The Lucas-Kanade method computes It using a derivative of Gaussian filter.

To solve the optical flow constraint equation for u and v:

1 Compute Ix and Iy using the following steps:

a Use a Gaussian filter to perform temporal filtering. Specify the temporal filter characteristics
such as the standard deviation and number of filter coefficients using the NumFrames
property.

b Use a Gaussian filter and the derivative of a Gaussian filter to smooth the image using spatial
filtering. Specify the standard deviation and length of the image smoothing filter using the
ImageFilterSigma property.

2 Compute It between images 1 and 2 using the following steps:

a Use the derivative of a Gaussian filter to perform temporal filtering. Specify the temporal
filter characteristics such as the standard deviation and number of filter coefficients using
the NumFrames property.

b Use the filter described in step 1b to perform spatial filtering on the output of the temporal
filter.

3 Smooth the gradient components, Ix, Iy, and It, using a gradient smoothing filter. Use the
GradientFilterSigma property to specify the standard deviation and the number of filter
coefficients for the gradient smoothing filter.

4 Solve the 2-by-2 linear equations for each pixel using the following method:

•
If A =

a b
b c

=
∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

Then the eigenvalues of A are λi = a + c
2 ± 4b2 + (a− c)2

2 ; i = 1, 2

• When the algorithm finds the eigenvalues, it compares them to the threshold, τ, that
corresponds to the value you enter for the NoiseThreshold property. The results fall into
one of the following cases:

Case 1: λ1 ≥ τ and λ2 ≥ τ

A is nonsingular, so the algorithm solves the system of equations using Cramer's rule.

2 Objects

2-672



Case 2: λ1 ≥ τ and λ2 < τ

A is singular (noninvertible), so the algorithm normalizes the gradient flow to calculate u and
v.

Case 3: λ1 < τ and λ2 < τ

The optical flow, u and v, is 0.

References
[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. “ Performance of optical flow

techniques.” In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quiver | opticalFlow | opticalFlowHS | opticalFlowLK | opticalFlowFarneback

Introduced in R2015a

 opticalFlowLKDoG

2-673



opticalFlowFarneback
Object for estimating optical flow using Farneback method

Description
Create an optical flow object for estimating the direction and speed of moving objects using the
Farneback method. Use the object function estimateFlow to estimate the optical flow vectors.
Using the reset object function, you can reset the internal state of the optical flow object.

Creation
Syntax
opticFlow = opticalFlowFarneback
opticFlow = opticalFlowFarneback(Name,Value)

Description

opticFlow = opticalFlowFarneback returns an optical flow object that you can use to estimate
the direction and speed of the moving objects in a video. The optical flow is estimated using the
Farneback method.

opticFlow = opticalFlowFarneback(Name,Value) returns an optical flow object with
properties specified as one or more Name,Value pair arguments. Any unspecified properties have
default values. Enclose each property name in quotes.

For example, opticalFlowFarneback('NumPyramidLevels',3)

Properties
NumPyramidLevels — Number of pyramid layers
3 (default) | positive scalar

Number of pyramid layers, specified as a positive scalar. The value includes the initial image as one of
the layers. When you set this value to 1, the function estimates optical flow only from the original
image frame and does not perform pyramid decomposition. The recommended values are between 1
and 4.

PyramidScale — Image scale
0.5 (default) | positive scalar in the range (0,1)

Image scale, specified as a positive scalar in the range (0,1). The value specifies the rate of
downsampling at each pyramid level. A value of 0.5 creates a classical pyramid, where the resolution
of the pyramid reduces by a factor of two at each level. The lowest level in the pyramid has the
highest resolution.

NumIterations — Number of search iterations per pyramid level
3 (default) | positive integer

2 Objects

2-674



Number of search iterations per pyramid level, specified as a positive integer. The Farneback
algorithm performs an iterative search for the key points at each pyramid level, until convergence.

NeighborhoodSize — Size of the pixel neighborhood
5 (default) | positive integer

Size of the pixel neighborhood, specified as a positive integer. Increase the neighborhood size to
increase blurred motion. The blur motion yields a more robust estimation of optical flow. A typical
value for NeighborhoodSize is 5 or 7.

FilterSize — Averaging filter size
15 (default) | positive integer in the range [2, Inf)

Averaging filter size, specified as a positive integer in the range [2, Inf). After the algorithm computes
the displacement (flow), the averaging over neighborhoods is done using a Gaussian filter of size
(FilterSize * FilterSize). Also, the pixels close to the borders are given a reduced weight
because the algorithm assumes that the polynomial expansion coefficients are less reliable there.
Increasing the filter size increases the robustness of the algorithm to image noise. The larger the
filter size, the greater the algorithm handles image noise and fast motion detection, making it more
robust.

Object Functions
estimateFlow Estimate optical flow
reset Reset the internal state of the optical flow estimation object

Examples

Estimate Optical Flow Using Farneback Method

Read a video file. Specify the timestamp of the frame to be read.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Create an optical flow object for estimating the optical flow using Farneback method. The output is an
object specifying the optical flow estimation method and its properties.

opticFlow = opticalFlowFarneback

opticFlow = 
  opticalFlowFarneback with properties:

    NumPyramidLevels: 3
        PyramidScale: 0.5000
       NumIterations: 3
    NeighborhoodSize: 5
          FilterSize: 15

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

 opticalFlowFarneback

2-675



Read the image frames and convert to grayscale images. Estimate the optical flow from consecutive
image frames. Display the current image frame and plot the optical flow vectors as quiver plot.

while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = im2gray(frameRGB);  
    flow = estimateFlow(opticFlow,frameGray);
    
    imshow(frameRGB)
    hold on
    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',2,'Parent',hPlot);
    hold off
    pause(10^-3)
end

2 Objects

2-676



Algorithms
The Farneback algorithm generates an image pyramid, where each level has a lower resolution
compared to the previous level. When you select a pyramid level greater than 1, the algorithm can
track the points at multiple levels of resolution, starting at the lowest level. Increasing the number of
pyramid levels enables the algorithm to handle larger displacements of points between frames.
However, the number of computations also increases. The diagram shows an image pyramid with
three levels.

 opticalFlowFarneback

2-677



The tracking begins in the lowest resolution level, and continues until convergence. The point
locations detected at a level are propagated as keypoints for the succeeding level. In this way, the
algorithm refines the tracking with each level. The pyramid decomposition enables the algorithm to
handle large pixel motions, which can be distances greater than the neighborhood size.

References
[1] Farneback, G. “Two-Frame Motion Estimation Based on Polynomial Expansion.” In Proceedings of

the 13th Scandinavian Conference on Image Analysis, 363 - 370. Halmstad, Sweden: SCIA,
2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

See Also
quiver | opticalFlow | opticalFlowLKDoG | opticalFlowHS | opticalFlowLK

Introduced in R2015b

2 Objects

2-678



estimateFlow
Estimate optical flow

Syntax
flow = estimateFlow(opticFlow,I)

Description
flow = estimateFlow(opticFlow,I) estimates optical flow between two consecutive video
frames.

Examples

Estimate Optical Flow Using Horn-Schunck Method

Create a VideoReader object for the input video file, visiontraffic.avi. Specify the timestamp
of the frame to read as 11.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Specify the optical flow estimation method as opticalFlowHS. The output is an object specifying the
optical flow estimation method and its properties.

opticFlow = opticalFlowHS

opticFlow = 
  opticalFlowHS with properties:

            Smoothness: 1
          MaxIteration: 10
    VelocityDifference: 0

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read image frames from the VideoReader object and convert to grayscale images. Estimate the
optical flow from consecutive image frames. Display the current image frame and plot the optical flow
vectors as quiver plot.

while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = im2gray(frameRGB);  
    flow = estimateFlow(opticFlow,frameGray);
    imshow(frameRGB)
    hold on

 estimateFlow

2-679



    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',60,'Parent',hPlot);
    hold off
    pause(10^-3)
end

2 Objects

2-680



Input Arguments
opticFlow — Object for optical flow estimation
opticalFlowFarneback object | opticalFlowHS | object | opticalFlowLK object |
opticalFlowLKDoG object

Object for optical flow estimation, specified as one of the following:

• opticalFlowFarneback object
• opticalFlowHS object
• opticalFlowLK object
• opticalFlowLKDoG object

The input opticFlow defines the optical flow estimation method and its properties used for
estimating the optical flow velocity matrices.

I — Current video frame
2-D grayscale image

Current video frame, specified as a 2-D grayscale image of size m-by-n. The input image is generated
from the current video frame read using the VideoReader object. The video frames in RGB format
must be converted to 2-D grayscale images for estimating the optical flow.

 estimateFlow

2-681



Output Arguments
flow — Object for storing optical flow velocity matrices
opticalFlow object

Object for storing optical flow velocity matrices, returned as an opticalFlow object.

Algorithms
The function estimates optical flow of the input video using the method specified by the input object
opticFlow. The optical flow is estimated as the motion between two consecutive video frames. The
video frame T at the given instant tcurrent is referred as current frame and the video frame T-1 is
referred as previous frame. The initial value of the previous frame at time tcurrent = 0 is set as a
uniform image of grayscale value 0.

Note If you specify opticFlow as opticalFlowLKDoG object, then the estimation delays by an
amount relative to the number of video frames. The amount of delay depends on the value of
NumFrames defined in opticalFlowLKDoG object. The optic flow estimated for a video frame at
tcurrent corresponds to the video frame at time tf low = (tcurrent− (NumFrames− 1)/2). tcurrent is the
time of the current video frame.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
reset

Introduced in R2015a

2 Objects

2-682



reset
Reset the internal state of the optical flow estimation object

Syntax
reset(opticFlow)

Description
reset(opticFlow) resets the internal state of the optical flow estimation object. The previous
frame is reset to its initial value which is a uniform image of intensity value 0.

Input Arguments
opticFlow — Object for optical flow estimation
opticalFlowFarneback object | opticalFlowHS | object | opticalFlowLK object |
opticalFlowLKDoG object

Object for optical flow estimation, specified as one of the following:

• opticalFlowFarneback object
• opticalFlowHS object
• opticalFlowLK object
• opticalFlowLKDoG object

The input opticFlow defines the optical flow estimation method and its properties used for
estimating the optical flow velocity matrices.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
estimateFlow

Introduced in R2015a

 reset

2-683



vision.PeopleDetector
Package: vision

Detect upright people using HOG features

Description
The people detector object detects people in an input image using the Histogram of Oriented
Gradient (HOG) features and a trained Support Vector Machine (SVM) classifier. The object detects
unoccluded people in an upright position.

To detect people in an image:

1 Create the vision.PeopleDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
peopleDetector = vision.PeopleDetector
peopleDetector = vision.PeopleDetector(model)
peopleDetector = vision.PeopleDetector(Name,Value)

Description

peopleDetector = vision.PeopleDetector returns a people detector object,
peopleDetector, that tracks a set of points in a video.

peopleDetector = vision.PeopleDetector(model) creates a people detector object and sets
the ClassificationModel property to model.

peopleDetector = vision.PeopleDetector(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, peopleDetector =
vision.PeopleDetector('ClassificationModel','UprightPeople_128x64')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

2 Objects

2-684



ClassificationModel — Name of classification model
'UprightPeople_128x64' (default) | 'UprightPeople_96x48'

Name of classification model, specified as 'UprightPeople_128x64' or
'UprightPeople_96x48'. The pixel dimensions indicate the image size used for training.

The images used to train the models include background pixels around the person. Therefore, the
actual size of a detected person is smaller than the training image size.

ClassificationThreshold — People classification threshold
1 (default) | nonnegative scalar value

People classification threshold, specified as a nonnegative scalar value. Use this threshold to control
the classification of individual image subregions during multiscale detection. The threshold controls
whether a subregion gets classified as a person. You can increase this value when there are many
false detections. The higher the threshold value, the more stringent the requirements are for the
classification. Vary the threshold over a range of values to find the optimum value for your data set.
Typical values range from 0 to 4.

Tunable: Yes

MinSize — Smallest region containing a person
[] (default) | two-element vector

Smallest region containing a person, specified in pixels as a two-element vector, [height width]. Set
this property to the minimum size region containing a person. You can reduce computation time when
you set this property. To do so, set this property to a value larger than the image size used to train the
classification model. When you do not specify this property, the detector sets it to the image size used
to train the classification model.

Tunable: Yes

MaxSize — Largest region containing a person
[] (default) | two-element vector

Largest region that contains a person, specified in pixels as a two-element vector, [height width]. Set
this property to the largest region containing a person. You can reduce computation time when you
set this property. To do so, set this property to a value smaller than the size of the input image. When
you do not specify this property, the detector sets it to the input image size. This property is tunable.

ScaleFactor — Multiscale object detection scaling
1.05 (default) | numeric value greater than 1.0001

Multiscale object detection scaling, specified as a value greater than 1.0001. The scale factor
incrementally scales the detection resolution between MinSize and MaxSize. You can set the scale
factor to an ideal value using:
size(I)/(size(I)-0.5)
The object calculates the detection resolution at each increment.

round(TrainingSize*(ScaleFactorN))

In this case, the TrainingSize is [128 64] for the 'UprightPeople_128x64' model and [96 48]
for the 'UprightPeople_96x48' model. N is the increment. Decreasing the scale factor can
increase the detection accuracy. However, doing so increases the computation time. This property is
tunable.

 vision.PeopleDetector

2-685



WindowStride — Detection window stride
[8 8] (default) | scalar | two-element vector

Detection window stride in pixels, specified as a scalar or a two-element vector, [x y]. The detector
uses the window stride to slide the detection window across the image. When you specify this value
as a vector, the first and second elements are the stride size in the x and y directions. When you
specify this value as a scalar, the stride is the same for both x and y. Decreasing the window stride
can increase the detection accuracy. However, doing so increases computation time. Increasing the
window stride beyond [8 8] can lead to a greater number of missed detections. This property is
tunable.

MergeDetections — Merge detection control
true | false

Merge detection control, specified as true or false. This property controls whether similar
detections are merged. Set this property to true to merge bounding boxes using a mean-shift based
algorithm. Set this property to false to output the unmerged bounding boxes.

For more flexibility and control of merging parameters, you can use the selectStrongestBbox
function in place of the MergeDetections algorithm. To do this, set the MergeDetections
property to false. See the “Tracking Pedestrians from a Moving Car” example, which shows the use
of the people detector and the selectStrongestBbox function.

UseROI — Use region of interest
false (default) | true

Use region of interest, specified as true or false. Set this property to true to detect objects within
a rectangular region of interest within the input image.

Usage

Syntax
bboxes = peopleDetector(I)
[bboxes, scores] = peopleDetector(I)
[ ___ ] = peopleDetector(I,roi)

Description

bboxes = peopleDetector(I) performs multiscale object detection on the input image, I and
returns an M-by-4 matrix defining M bounding boxes. M represents the number of detected people.
Each row of the output matrix, BBOXES, contains a four-element vector, [x y width height]. This vector
specifies, in pixels, the upper-left corner and size, of a bounding box. When no people are detected,
the step method returns an empty vector. The input image, I, must be a grayscale or truecolor
(RGB) image.

[bboxes, scores] = peopleDetector(I) additionally returns a confidence value for the
detections.

[ ___ ] = peopleDetector(I,roi)detects people within the rectangular search region, roi.

2 Objects

2-686



Input Arguments

I — Input image
grayscale | truecolor (RGB)

Input image, specified as grayscale or truecolor (RGB).

roi — Rectangular region of interest
four-element vector (default)

Rectangular region of interest within image I, specified as a four-element vector, [x y width height].

model — Classification model
'UprightPeople_128x64' (default) | 'UprightPeople_96x48'

Classification model, specified as 'UprightPeople_128x64' or 'UprightPeople_96x48'.

Output Arguments

peopleDetector — People detector
object (default)

People detector object, returned as an object. The detector detects people in an input image using the
Histogram of Oriented Gradient (HOG) features and a trained SVM classifier. The object detects
unoccluded people in an upright position.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Detect People

Create a people detector and load the input image.

peopleDetector = vision.PeopleDetector;
I = imread('visionteam1.jpg');

Detect people using the people detector object.

[bboxes,scores] = peopleDetector(I);

Annotate detected people.

 vision.PeopleDetector

2-687



I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure, imshow(I)
title('Detected people and detection scores');

References
[1] Dalal, N. and B. Triggs. “Histograms of Oriented Gradients for Human Detection,”Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, June 2005, pp. 886-893.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

2 Objects

2-688



See Also
vision.CascadeObjectDetector | detectPeopleACF | insertObjectAnnotation |
extractHOGFeatures

Topics
“Tracking Pedestrians from a Moving Car”
“Multiple Object Tracking”

Introduced in R2012b

 vision.PeopleDetector

2-689



semanticSegmentationMetrics
Semantic segmentation quality metrics

Description
A semanticSegmentationMetrics object encapsulates semantic segmentation quality metrics for
a set of images.

Creation
Create a semanticSegmentationMetrics object using the evaluateSemanticSegmentation
function.

Properties
ConfusionMatrix — Confusion matrix
table

This property is read-only.

Confusion matrix, specified as a table with C rows and columns, where C is the number of classes in
the semantic segmentation. Each table element (i,j) is the count of pixels known to belong to class i
but predicted to belong to class j.

NormalizedConfusionMatrix — Normalized confusion matrix
table

This property is read-only.

Normalized confusion matrix, specified as a table with C rows and columns, where C is the number of
classes in the semantic segmentation. Each table element (i,j) is the count of pixels known to belong
to class i but predicted to belong to class j, divided by the total number of pixels predicted in class j.
Elements are in the range [0, 1].

DataSetMetrics — Data set metrics
table

This property is read-only.

Semantic segmentation metrics aggregated over the data set, specified as a table with one row.
DataSetMetrics has up to five columns, corresponding to the metrics that were specified by the
'Metrics' name-value pair used with evaluateSemanticSegmentation:

• GlobalAccuracy — Ratio of correctly classified pixels to total pixels, regardless of class.
• MeanAccuracy — Ratio of correctly classified pixels in each class to total pixels, averaged over all

classes. The value is equal to the mean of ClassMetrics.Accuracy.
• MeanIoU — Average intersection over union (IoU) of all classes. The value is equal to the mean of

ClassMetrics.IoU.

2 Objects

2-690



• WeightedIoU — Average IoU of all classes, weighted by the number of pixels in the class.
• MeanBFScore — Average boundary F1 (BF) score of all images. The value is equal to the mean of

ImageMetrics.BFScore. This metric is not available when you create a
semanticSegmentationMetrics object by using a confusion matrix as the input to
evaluateSemanticSegmentation.

Note A value of NaN in the dataset, class, or image metrics, indicates that one or more classes were
missing during the computation of the metrics when using the evaluateSemanticSegmentation
function. In this case, the software was unable to accurately compute the metrics.

The missing classes can be found by looking at the ClassMetrics property, which provides the
metrics for each class. To more accurately evaluate your network, augment your ground truth with
more data that includes the missing classes.

ClassMetrics — Class metrics
table

This property is read-only.

Semantic segmentation metrics for each class, specified as a table with C rows, where C is the
number of classes in the semantic segmentation. ClassMetrics has up to three columns,
corresponding to the metrics that were specified by the 'Metrics' name-value pair used with
evaluateSemanticSegmentation:

• Accuracy — Ratio of correctly classified pixels in each class to the total number of pixels
belonging to that class according to the ground truth. Accuracy can be expressed as:
Accuracy = (TP + TN ) / (TP + TN + FP + FN)

 Positive Negative
Positive TP: True Positive FN: False Negative
Negative FP: False Positive TN: True Negative

TP: True positives and FN is the number of false negatives.
• IoU — Ratio of correctly classified pixels to the total number of pixels that are assigned that class

by the ground truth and the predictor. IoU can be expressed as:
IoU = TP / (TP + FP + FN)

The image describes the true positives (TP), false positives (FP), and false negatives (FN).

 semanticSegmentationMetrics

2-691



• MeanBFScore — Boundary F1 score for each class, averaged over all images. This metric is not
available when you create a semanticSegmentationMetrics object by using a confusion matrix
as the input to evaluateSemanticSegmentation.

ImageMetrics — Image metrics
table

This property is read-only.

Semantic segmentation metrics for each image in the data set, specified as a table with N rows,
where N is the number of images in the data set. ImageMetrics has up to five columns,
corresponding to the metrics that were specified by the 'Metrics' name-value pair used with
evaluateSemanticSegmentation:

• GlobalAccuracy — Ratio of correctly classified pixels to total pixels, regardless of class.
• MeanAccuracy — Ratio of correctly classified pixels to total pixels, averaged over all classes in

the image.
• MeanIoU — Average IoU of all classes in the image.
• WeightedIoU — Average IoU of all classes in the image, weighted by the number of pixels in each

class.
• MeanBFScore — Average BF score of each class in the image. This metric is not available when

you create a semanticSegmentationMetrics object by using a confusion matrix as the input to
evaluateSemanticSegmentation.

Each image metric returns a vector, with one element for each image in the data set. The order of the
rows matches the order of the images defined by the input PixelLabelDatastore objects
representing the data set.

2 Objects

2-692



Examples
Evaluate Semantic Segmentation Results

The triangleImages data set has 100 test images with ground truth labels. Define the location of
the data set.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');

Define the location of the test images.

testImagesDir = fullfile(dataSetDir,'testImages');

Define the location of the ground truth labels.

testLabelsDir = fullfile(dataSetDir,'testLabels');

Create an imageDatastore holding the test images.

imds = imageDatastore(testImagesDir);

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs   = [255 0];

Create a pixelLabelDatastore holding the ground truth pixel labels for the test images.

pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs);

Load a semantic segmentation network that has been trained on the training images of
triangleImages.

net = load('triangleSegmentationNetwork');
net = net.net;

Run the network on the test images. Predicted labels are written to disk in a temporary directory and
returned as a pixelLabelDatastore.

pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 100 images.

Evaluate the prediction results against the ground truth.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

 semanticSegmentationMetrics

2-693



       0.90624          0.95085       0.61588      0.87529        0.40652  

Display the properties of the semanticSegmentationMetrics object.

metrics

metrics = 
  semanticSegmentationMetrics with properties:

              ConfusionMatrix: [2x2 table]
    NormalizedConfusionMatrix: [2x2 table]
               DataSetMetrics: [1x5 table]
                 ClassMetrics: [2x3 table]
                 ImageMetrics: [100x5 table]

Display the classification accuracy, the intersection over union, and the boundary F-1 score for each
class. These values are stored in the ClassMetrics property.

metrics.ClassMetrics

ans=2×3 table
                  Accuracy      IoU      MeanBFScore
                  ________    _______    ___________

    triangle            1     0.33005     0.028664  
    background     0.9017      0.9017      0.78438  

Display the normalized confusion matrix that is stored in the NormalizedConfusionMatrix
property.

metrics.ConfusionMatrix

ans=2×2 table
                  triangle    background
                  ________    __________

    triangle        4730            0   
    background      9601        88069   

See Also
evaluateSemanticSegmentation | plotconfusion | jaccard | bfscore

Topics
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2017b

2 Objects

2-694



vision.StandardDeviation
Package: vision

Find standard deviation values in input or sequence of inputs

Description
Find the standard deviation values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.StandardDeviation object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
stdDev = vision.StandardDeviation
stdDev = vision.StandardDeviation(Name,Value)

Description

stdDev = vision.StandardDeviation returns an object, stdDev, that computes the value and
index of the maximum elements in an input or a sequence of inputs.

stdDev = vision.StandardDeviation(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, stdDev =
vision.Maximum('RunningStandardDeviation',false)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ValueOutputPort — Output Minimum value
true (default) | false

Output standard deviation value, specified as true or false. Set this property to true to output the
Minimum value of the input. This property applies when you set the RunningStandardDeviation
property to false.

 vision.StandardDeviation

2-695



RunningStandardDeviation — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set this
property to true, the object computes the standard deviation value over a sequence of inputs. When
you set this property to false, the object computes the standard deviation value over the current
input.

ResetInputPort — Additional input to enable resetting of running standard deviation
false (default) | true

Additional input to enable resetting of running standard deviation, specified as true or false. When
you set this property to true, a reset input must be specified to reset the running standard deviation.
This property applies only when you set the RunningStandardDeviation property to true.

ResetCondition — Condition that triggers resetting of running standard deviation
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Condition that triggers resetting of running standard deviation, specified as as 'Rising edge',
'Falling edge', 'Either edge', or 'Non-zero'. This property applies only when you set the
ResetInputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This property
applies only when you set the RunningStandardDeviation property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies
when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies when you set
the Dimension property to 'All' and the RunningStandardDeviation property to false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary mask'. This
property applies only when you set the ROIProcessing property to true.

ROIPortion — ROI or perimeter calculation
'Entire ROI' (default) | 'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This property
applies only when you set the ROIForm property to 'Rectangles'.

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for all ROIs'

2 Objects

2-696



Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for
each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the
'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This applies when you
set the ROIForm property to 'Label matrix'.

Usage

Syntax
[value,index] = stdDev(input)
index = stdDev(input)

[ ___ ] = stdDev(I,ROI)
[ ___ ,flag] = stdDev(I,ROI)

[ ___ ] = stdDev(I,label,labelNumbers)
[ ___ ,flag] = stdDev(I,label,labelNumbers)

Description

[value,index] = stdDev(input) returns the standard deviation value and index of the input.

index = stdDev(input) returns the one-based index of the standard deviation value when you set
the IndexOutputPort property to true and the ValueOutputPort property to false. The
RunningStandardDeviation property must be set to false.

[ ___ ] = stdDev(I,ROI) returns the standard deviation value in the input image within the given
region of interest.

[ ___ ,flag] = stdDev(I,ROI)additionally returns a flag to indicate whether the given ROI is
within the bounds of the image.

[ ___ ] = stdDev(I,label,labelNumbers) returns the standard deviation of the input image for
a region the labels specified in the labelNumbers vector. The regions are defined and labeled in the
label matrix.

[ ___ ,flag] = stdDev(I,label,labelNumbers) additionally returns a flag to indicate whether
the input label numbers are valid.

Input Arguments

input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

 vision.StandardDeviation

2-697



ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is available when
you set the ROIProcessing property to true and the ROIForm property to 'Lines',
'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

Label numbers, specified as a matrix. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

Output Arguments

value — Minimum value
same as input

Minimum value, returned as the same data type as the input

index — Index to standard deviation value
one-based index

Index to standard deviation value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

2 Objects

2-698



Determine Standard Deviation in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(rgb2gray(img));

Find the standard deviation.

stdDev = vision.StandardDeviation;
stdDevValue = stdDev(img);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Maximum | vision.Mean | vision.Minimum | vision.Median

Introduced in R2012a

 vision.StandardDeviation

2-699



stereoParameters
Object for storing stereo camera system parameters

Description
The stereoParameters object stores the intrinsic and extrinsic parameters of two cameras and
their geometric relationship.

Creation
You can create a stereoParameters object using the stereoParameters function described here.
You can also create a stereoParameters object by using the estimateCameraParameters with
an M-by-2-by-numImages-by-2 array of input image points, where M is the number of keypoint
coordinates in each pattern.

Syntax
stereoParams = stereoParameters(cameraParameters1,cameraParameters2,
tformOfCamera2)
stereoParams = stereoParameters(cameraParameters1,cameraParameters2,
rotationOfCamera2,translationOfCamera2)
stereoParams = stereoParameters(paramStruct)

Description

stereoParams = stereoParameters(cameraParameters1,cameraParameters2,
tformOfCamera2) returns a stereo camera system parameters object using the camera parameters
from two cameras and a tformOfCamera2 object that specifies the transformation of camera 2
relative to camera 1. cameraParameters1 and cameraParameters2 are cameraParameters or
cameraIntrinsics objects that contain the intrinsics of camera 1 and camera 2 respectively.

stereoParams = stereoParameters(cameraParameters1,cameraParameters2,
rotationOfCamera2,translationOfCamera2) creates a stereoParameters object that
contains the parameters of a stereo camera system, and sets the cameraParameters1,
cameraParameters2, rotationOfCamera2, and translationOfCamera2 properties.

stereoParams = stereoParameters(paramStruct) creates an identical stereoParameters
object from an existing stereoParameters object with parameters stored in paramStruct.

Input Arguments

tformOfCamera2 — Transformation of camera 2
rigid3d object

Transformation of camera 2 relative to camera 1, specified as a rigid3d.

paramStruct — Stereo parameters
struct

2 Objects

2-700



Stereo parameters, specified as a stereo parameters struct. To get a paramStruct from an existing
stereoParameters object, use the toStruct function.

Properties
Intrinsic and extrinsic parameters of the two cameras

cameraParameters1 — Parameters of camera 1
cameraParameters object

Parameters of camera 1, specified as a cameraParameters object. The object contains the intrinsic,
extrinsic, and lens distortion parameters of a camera.

cameraParameters2 — Parameters of camera 2
cameraParameters object

Parameters of camera 2, specified as a cameraParameters object. The object contains the intrinsic,
extrinsic, and lens distortion parameters of a camera.

Geometric relationship between the two cameras

rotationOfCamera2 — Rotation of camera 2
3-by-3 matrix

Rotation of camera 2 relative to camera 1, specified as a 3-by-3 matrix.

The rotationOfCamera2 and the translationOfCamera2 represent the relative rotation and
translation between camera 1 and camera 2, respectively. They convert camera 2 coordinates back to
camera 1 coordinates using:

orientation1 = rotationOfCamera2 * orientation2
location1 = translationOfCamera2 * orienation2 + location2

where, orientation1 and location1 represent the absolute pose of camera 1, and
orientation2 and location2 represent the absolute pose of camera 2.

translationOfCamera2 — Translation of camera 2
3-element vector

Translation of camera 2 relative to camera 1, specified as a 3-element vector.

The rotationOfCamera2 and the translationOfCamera2 represent the relative rotation and
translation between camera 1 and camera 2, respectively. They convert camera 2 coordinates back to
camera 1 coordinates using:

 stereoParameters

2-701



orientation1 = rotationOfCamera2 * orientation2
location1 = translationOfCamera2 * orienation2 + location2

where, orientation1 and location1 represent the absolute pose of camera 1, and
orientation2 and location2 represent the absolute pose of camera 2.

FundamentalMatrix — Fundamental matrix
3-by-3 matrix

Fundamental matrix, stored as a 3-by-3 matrix. The fundamental matrix relates the two stereo
cameras, such that the following equation must be true:

P2 1 * FundamentalMatrix * P1 1 ′ = 0

P1, the point in image 1 in pixels, corresponds to the point, P2, in image 2.

EssentialMatrix — Essential matrix
3-by-3 matrix

Essential matrix, stored as a 3-by-3 matrix. The essential matrix relates the two stereo cameras, such
that the following equation must be true:

P2 1 * EssentialMatrix * P1 1 ′ = 0

P1, the point in image 1, corresponds to P2, the point in image 2. Both points are expressed in
normalized image coordinates, where the origin is at the camera’s optical center. The x and y pixel
coordinates are normalized by the focal length fx and fy.

Accuracy of estimated parameters

MeanReprojectionError — Average Euclidean distance
number of pixels

Average Euclidean distance between reprojected points and detected points over all image pairs,
specified in pixels.

Settings for camera parameter estimation

NumPatterns — Number of calibrated patterns
integer

Number of calibration patterns that estimate the extrinsics of the two cameras, stored as an integer.

WorldPoints — World coordinates
M-by-2 array

2 Objects

2-702



World coordinates of key points in the calibration pattern, specified as an M-by-2 array. M represents
the number of key points in the pattern.

WorldUnits — World points units
'mm' (default) | character vector

World points units, specified as a character vector. The character vector describes the units of
measure.

Object Functions
toStruct Convert a stereo parameters object into a struct

Examples

Stereo Camera Calibration

Specify calibration images.

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo','right'));

Detect the checkerboards.

[imagePoints,boardSize] = ...
  detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify the world coordinates of the checkerboard keypoints. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1); 
imageSize = [size(I,1),size(I,2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Visualize the calibration accuracy.

  showReprojectionErrors(params);

 stereoParameters

2-703



Visualize camera extrinsics.

figure;
showExtrinsics(params);

2 Objects

2-704



References
[1] Zhang, Z. “A Flexible New Technique for Camera Calibration”. IEEE Transactions on Pattern

Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330–1334.

[2] Heikkila, J, and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” IEEE International Conference on Computer Vision and Pattern Recognition.
1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use the toStruct method to pass a stereoParameters object into generated code. See the
“Code Generation for Depth Estimation From Stereo Video” example.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

 stereoParameters

2-705



Objects
stereoCalibrationErrors | intrinsicsEstimationErrors |
extrinsicsEstimationErrors | cameraParameters | rigid3d | cameraIntrinsics

Functions
estimateCameraParameters | showReprojectionErrors | showExtrinsics |
undistortImage | undistortPoints | detectCheckerboardPoints |
generateCheckerboardPoints | reconstructScene | rectifyStereoImages |
estimateFundamentalMatrix

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Code Generation for Depth Estimation From Stereo Video”
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”
“Import Stereo Camera Parameters from ROS”

Introduced in R2014a

2 Objects

2-706



toStruct
Convert a stereo parameters object into a struct

Syntax
paramStruct = toStruct(stereoParams)

Description
paramStruct = toStruct(stereoParams) returns a struct containing the stereo parameters in
the stereoParams input object. You can use the struct to create an identical stereoParameters
object. Use the struct for C code generation. You can call toStruct, and then pass the resulting
structure into the generated code, which recreates the stereoParameters object.

Examples

Stereo Camera Calibration

Specify calibration images.

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo','right'));

Detect the checkerboards.

[imagePoints,boardSize] = ...
  detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify the world coordinates of the checkerboard keypoints. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1); 
imageSize = [size(I,1),size(I,2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Visualize the calibration accuracy.

  showReprojectionErrors(params);

 toStruct

2-707



Visualize camera extrinsics.

figure;
showExtrinsics(params);

2 Objects

2-708



Input Arguments
stereoParams — Stereo parameters
stereoParameters object

Stereo parameters, specified as a stereoParameters object. The object contains the parameters of
the stereo camera system.

Output Arguments
paramStruct — Stereo parameters
struct

Stereo parameters, returned as a stereo parameters struct.

See Also
Objects
stereoParameters

Topics
“Code Generation for Depth Estimation From Stereo Video”

 toStruct

2-709



Introduced in R2015a

2 Objects

2-710



toStruct
Convert a camera parameters object into a struct

Syntax
paramStruct = toStruct(cameraParams)

Description
paramStruct = toStruct(cameraParams) returns a struct containing the camera parameters in
the cameraParams input object. You can use the struct to create an identical cameraParameters
object. Use the struct for C code generation. You can call toStruct, and then pass the resulting
structure into the generated code, which re-creates the cameraParameters object.

Examples

Remove Distortion from an Image Using the Camera Parameters Object

Use the camera calibration functions to remove distortion from an image. This example creates a
vision.cameraParameters object manually, but in practice, you would use the
estimateCameraParameters or the Camera Calibrator app to derive the object.

Create a vision.cameraParameters object manually.

IntrinsicMatrix = [715.2699 0 0; 0 711.5281 0; 565.6995 355.3466 1];
radialDistortion = [-0.3361 0.0921]; 
cameraParams = cameraParameters('IntrinsicMatrix',IntrinsicMatrix,'RadialDistortion',radialDistortion); 

Remove distortion from the images.

I = imread(fullfile(matlabroot,'toolbox','vision','visiondata','calibration','mono','image01.jpg'));
J = undistortImage(I,cameraParams);

Display the original and the undistorted images.

figure; imshowpair(imresize(I,0.5),imresize(J,0.5),'montage');
title('Original Image (left) vs. Corrected Image (right)');

 toStruct

2-711



Input Arguments
cameraParams — Camera parameters
cameraParameters object

Camera parameters, specified as a cameraParameters object. The object contains the parameters
for the camera.

Output Arguments
paramStruct — Camera parameters
struct

Camera parameters, returned as a camera parameters struct.

See Also
Objects
cameraParameters

Topics
“Code Generation for Depth Estimation From Stereo Video”

Introduced in R2015a

2 Objects

2-712



vision.TemplateMatcher
Package: vision

Locate template in image

Description
To locate a template in an image.

1 Create the vision.TemplateMatcher object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
tMatcher = vision.TemplateMatcher
tMatcher = vision.TemplateMatcher(Name,Value)

Description

tMatcher = vision.TemplateMatcher returns a template matcher object, tMatcher. This
object performs template matching by shifting a template in single-pixel increments throughout the
interior of an image.

tMatcher = vision.TemplateMatcher(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, tMatcher =
vision.TemplateMatcher('Metric','Sum of absolute differences')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Metric — Metric used for template matching source
'Sum of absolute differences' (default) | 'Sum of squared differences' | 'Maximum
absolute difference'

Metric used for template matching, specified as 'Sum of absolute differences', 'Sum of
squared differences' , or 'Maximum absolute difference'.

 vision.TemplateMatcher

2-713



OutputValue — Type of output
'Best match location' (default) | 'Metric matrix'

Type of output, specified as 'Metric matrix' or 'Best match location'.

SearchMethod — Specify search criteria to find minimum difference between two inputs
'Exhaustive' (default) | 'Three-step'

Specify search criteria to find minimum difference between two inputs, specified as 'Exhaustive'
or 'Three-step'. If you set this property to 'Exhaustive', the object searches for the minimum
difference pixel by pixel. If you set this property to 'Three-step', the object searches for the
minimum difference using a steadily decreasing step size. The 'Three-step' method is
computationally less expensive than the 'Exhaustive' method, but sometimes does not find the
optimal solution. This property applies when you set the OutputValue property to 'Best match
location'.

BestMatchNeighborhoodOutputPort — Enable metric values output
false (default) | true

Enable metric values output, specified as true or false. This property applies when you set the
OutputValue property to 'Best match location'.

NeighborhoodSize — Size of the metric values
3 (default) | odd number

Size of the metric values, specified as an odd number. The size N, of the N-by-N matrix of metric
values as an odd number. For example, if the matrix size is 3-by-3 set this property to 3. This property
applies when you set the OutputValue property to 'Best match location' and the
BestMatchNeighborhoodOutputPort property to true.

ROIInputPort — Enable ROI specification through input
false (default) | true

Enable ROI specification through input, specified as true or false. Set this property to true to
define the Region of Interest (ROI) over which to perform the template matching. If you set this
property to true, the ROI must be specified. Otherwise the entire input image is used.

ROIValidityOutputPort — Enable output of a flag indicating if any part of ROI is outside
input image
false (default) | true

Enable output of a flag indicating if any part of ROI is outside input image, specified as true or
false. When you set this property to true, the object returns an ROI flag. The flag, when set to
false, indicates a part of the ROI is outside of the input image. This property applies when you set
the ROIInputPort property to true

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

2 Objects

2-714



OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
location = tMatcher(I,T)

[location,numberOfValues,numValid] = tMatcher(I,T,ROI)
[location,numberOfValues,numValid,ROIvalid] = tMatcher(I,T,ROI)
[location,ROIvalid] = tMatcher(I,T,ROI)

Description

location = tMatcher(I,T) returns the [x y] location coordinates of the best template match
relative to the top left corner of the image between the image matrix, I, and the template matrix, T.
The object computes the location by shifting the template in single-pixel increments throughout the
interior of the image.

[location,numberOfValues,numValid] = tMatcher(I,T,ROI)returns the location of the best
template match location, the metric values around the best match numberOfValues, and a logical
flag numValid. This applies when you set the OutputValue property to 'Best match location'
and the BestMatchNeighborhoodOutputPort property to true.

[location,numberOfValues,numValid,ROIvalid] = tMatcher(I,T,ROI) also returns a
logical flag, ROIvalid to indicate whether the ROI is outside the bounds of the input image I. This
applies when you set the OutputValue property to 'Best match location', and the
BestMatchNeighborhoodOutputPort, ROIInputPort, and ROIValidityOutputPort properties
to true.

 vision.TemplateMatcher

2-715



[location,ROIvalid] = tMatcher(I,T,ROI)also returns a logical flag ROIvalid indicating if
the specified ROI is outside the bounds of the input image I. This applies when you set the
OutputValue property to 'Best match location', and both the ROIInputPort and
ROIValidityOutputPort properties to true.

Input Arguments

I — Input image
truecolor | M-by-N 2-D grayscale image

Input image, specified as either a 2-D grayscale or truecolor image.

T — Template
binary image | truecolor | M-by-N 2-D grayscale image

Input template, specified as 2-D grayscale or truecolor image.

ROI — Input ROI
four-element vector

Input ROI, specified as a four-element vector, [x y width height], where the first two elements
represent the coordinates of the upper-left corner of the rectangular ROI.

Output Arguments

location — Location of best template match
vector

Location of best template match, returned as a vector in the format (x,y). The coordinates indicate
the center of the template relative to the top-left corner of the image. For more details, see
“Algorithms” on page 2-719

numberOfValues — Metric value
matrix

Metric value matrix , returned as a matrix. A false value for numValid indicates that the
neighborhood around the best match extended outside the borders of the metric value matrix
numberOfValues.

numValid — Valid neighborhood
true | false

Valid neighborhood, returned as true or false. A false value for numValid indicates that the
neighborhood around the best match extended outside the borders of the metric value matrix
numberOfValues.

ROIvalid — Valid ROI
true | false

Valid ROI neighborhood, returned as true or false. A false value for ROIvalid indicates that the
ROI is outside the bounds of the input image.

2 Objects

2-716



Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Video Stabilization

This example shows how to remove the effect of camera motion from a video stream.

Introduction

In this example we first define the target to track. In this case, it is the back of a car and the license
plate. We also establish a dynamic search region, whose position is determined by the last known
target location. We then search for the target only within this search region, which reduces the
number of computations required to find the target. In each subsequent video frame, we determine
how much the target has moved relative to the previous frame. We use this information to remove
unwanted translational camera motions and generate a stabilized video.

Initialization

Create a System object™ to read video from a multimedia file. We set the output to be of intensity
only video.

% Input video file which needs to be stabilized.
filename = 'shaky_car.avi';

hVideoSource = VideoReader(filename);

Create a template matcher System object to compute the location of the best match of the target in
the video frame. We use this location to find translation between successive video frames.

hTM = vision.TemplateMatcher('ROIInputPort', true, ...
                            'BestMatchNeighborhoodOutputPort', true);

Create a System object to display the original video and the stabilized video.

hVideoOut = vision.VideoPlayer('Name', 'Video Stabilization');
hVideoOut.Position(1) = round(0.4*hVideoOut.Position(1));
hVideoOut.Position(2) = round(1.5*(hVideoOut.Position(2)));
hVideoOut.Position(3:4) = [650 350];

Here we initialize some variables used in the processing loop.

pos.template_orig = [109 100]; % [x y] upper left corner
pos.template_size = [22 18];   % [width height]

 vision.TemplateMatcher

2-717



pos.search_border = [15 10];   % max horizontal and vertical displacement
pos.template_center = floor((pos.template_size-1)/2);
pos.template_center_pos = (pos.template_orig + pos.template_center - 1);
W = hVideoSource.Width; % Width in pixels
H = hVideoSource.Height; % Height in pixels
BorderCols = [1:pos.search_border(1)+4 W-pos.search_border(1)+4:W];
BorderRows = [1:pos.search_border(2)+4 H-pos.search_border(2)+4:H];
sz = [W, H];
TargetRowIndices = ...
  pos.template_orig(2)-1:pos.template_orig(2)+pos.template_size(2)-2;
TargetColIndices = ...
  pos.template_orig(1)-1:pos.template_orig(1)+pos.template_size(1)-2;
SearchRegion = pos.template_orig - pos.search_border - 1;
Offset = [0 0];
Target = zeros(18,22);
firstTime = true;

Stream Processing Loop

This is the main processing loop which uses the objects we instantiated above to stabilize the input
video.

while hasFrame(hVideoSource)
    input = rgb2gray(im2double(readFrame(hVideoSource)));

    % Find location of Target in the input video frame
    if firstTime
      Idx = int32(pos.template_center_pos);
      MotionVector = [0 0];
      firstTime = false;
    else
      IdxPrev = Idx;

      ROI = [SearchRegion, pos.template_size+2*pos.search_border];
      Idx = hTM(input,Target,ROI);

      MotionVector = double(Idx-IdxPrev);
    end

    [Offset, SearchRegion] = updatesearch(sz, MotionVector, ...
        SearchRegion, Offset, pos);

    % Translate video frame to offset the camera motion
    Stabilized = imtranslate(input, Offset, 'linear');

    Target = Stabilized(TargetRowIndices, TargetColIndices);

    % Add black border for display
    Stabilized(:, BorderCols) = 0;
    Stabilized(BorderRows, :) = 0;

    TargetRect = [pos.template_orig-Offset, pos.template_size];
    SearchRegionRect = [SearchRegion, pos.template_size + 2*pos.search_border];

    % Draw rectangles on input to show target and search region
    input = insertShape(input, 'Rectangle', [TargetRect; SearchRegionRect],...
                        'Color', 'white');
    % Display the offset (displacement) values on the input image

2 Objects

2-718



    txt = sprintf('(%+05.1f,%+05.1f)', Offset);
    input = insertText(input(:,:,1),[191 215],txt,'FontSize',16, ...
                    'TextColor', 'white', 'BoxOpacity', 0);
    % Display video
    hVideoOut([input(:,:,1) Stabilized]);
end

Conclusion

Using the Computer Vision Toolbox™ functionality from MATLAB® command line it is easy to
implement complex systems like video stabilization.

Appendix

The following helper function is used in this example.

• updatesearch.m

Algorithms
Typical use of the template matcher involves finding a small region within a larger image. The region
is specified by the template image which can be as large as the input image, but which is typically
smaller than the input image.

The object outputs the best match coordinates, relative to the top-left corner of the image. The [x y]
coordinates of the location correspond to the center of the template. When you use a template with

 vision.TemplateMatcher

2-719



an odd number of pixels, the object uses the center of the template. When you use a template with an
even number of pixels, the object uses the centered upper-left pixel for the location. The following
table shows how the object outputs the location (LOC), of odd and even templates:

Odd number of pixels in template Even number of pixels in template

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
opticalFlowHS | opticalFlowLKDoG | opticalFlowLK | opticalFlowFarneback |
insertMarker

Introduced in R2012a

2 Objects

2-720



vision.Variance
Package: vision

Find variance values in input or sequence of inputs

Description
Find the variance values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Variance object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
varObj = vision.Variance
varObj = vision.Variance(Name,Value)

Description

varObj = vision.Variance returns an object, varObj, that computes the value and index of the
maximum elements in an input or a sequence of inputs.

varObj = vision.Variance(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, varObj =
vision.Variance('RunningVariance',false)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RunningVariance — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set this
property to true, the object computes the variance value over a sequence of inputs. When you set
this property to false, the object computes the variance value over the current input.

 vision.Variance

2-721



ResetInputPort — Additional input to enable resetting of running variance
false (default) | true

Additional input to enable resetting of running variance, specified as true or false. When you set
this property to true, a reset input must be specified to reset the running variance. This property
applies only when you set the RunningVariance property to true.

ResetCondition — Condition that triggers resetting of running variance
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Condition that triggers resetting of running variance, specified as as 'Rising edge', 'Falling
edge', 'Either edge', or 'Non-zero'. This property applies only when you set the
ResetInputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This property
applies only when you set the RunningVariance property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies
when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies when you set
the Dimension property to 'All' and the RunningVariance property to false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary mask'. This
property applies only when you set the ROIProcessing property to true.

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for
each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the
'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This applies when you
set the ROIForm property to 'Label matrix'.

2 Objects

2-722



Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies
only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property
applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax
[value,index] = varObj(input)
index = varObj(input)

[ ___ ] = varObj(I,ROI)
[ ___ ,flag] = varObj(I,ROI)

[ ___ ] = varObj(I,label,labelNumbers)
[ ___ ,flag] = varObj(I,label,labelNumbers)

Description

[value,index] = varObj(input) returns the variance value and index of the input.

index = varObj(input) returns the one-based index of the variance value when you set the
IndexOutputPort property to true and the ValueOutputPort property to false. The
RunningVariance property must be set to false.

 vision.Variance

2-723



[ ___ ] = varObj(I,ROI) returns the variance value in the input image within the given region of
interest.

[ ___ ,flag] = varObj(I,ROI)additionally returns a flag to indicate whether the given ROI is
within the bounds of the image.

[ ___ ] = varObj(I,label,labelNumbers) returns the variance of the input image for a region
the labels specified in the labelNumbers vector. The regions are defined and labeled in the label
matrix.

[ ___ ,flag] = varObj(I,label,labelNumbers) additionally returns a flag to indicate whether
the input label numbers are valid.

Input Arguments

input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is available when
you set the the ROIProcessing property to true and the ROIForm property to 'Lines',
'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

Label numbers, specified as a matrix. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the ROIProcessing
property to true and the ROIForm property to 'Label matrix'.

Output Arguments

value — Variance value
same as input

Variance value, returned as the same data type as the input

index — Index to variance value
one-based index

Index to variance value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

2 Objects

2-724



Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Determine Variance in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(rgb2gray(img));

Find the variance.

varObj = vision.Variance;
varValue = varObj(img);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Maximum | vision.Mean | vision.Minimum | vision.Median |
vision.StandardDeviation

Introduced in R2012a

 vision.Variance

2-725



vision.VideoPlayer
Package: vision

Play video or display image

Description
Play a video or display image sequences.

Note If you own the MATLAB Coder product, you can generate C or C++ code from MATLAB code in
which an instance of this system object is created. When you do so, the scope system object is
automatically declared as an extrinsic variable. In this manner, you are able to see the scope display
in the same way that you would see a figure using the plot function, without directly generating
code from it. For the full list of system objects supporting code generation, see Code Generation
Support, Usage Notes, and Limitations.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Creation
Syntax
videoPlayer = vision.VideoPlayer
videoPlayer = vision.VideoPlayer( ___ ,Name,Value)

Description

videoPlayer = vision.VideoPlayer returns a video player object, videoPlayer, for displaying
video frames.

videoPlayer = vision.VideoPlayer( ___ ,Name,Value)additionally sets properties using one
or more name-value pairs. Enclose each property name in quotes. For example, videoPlayer =
vision.VideoPlayer('Name','Caption title')

Properties
Name — Caption display on video player window
Video (default) | character vector

Caption display on video player window, specified as a character vector.

Tunable: Yes

Position — Size and position of the video player window in pixels
four-element vector

2 Objects

2-726



Size and position of the video player window in pixels, specified as a four-element vector, [left
bottom width height]. The default size depends on your screen resolution. The window is
positioned in the center of the screen, 400 pixels in width by 300 pixels in height.

Tunable: Yes

Usage

Syntax
videoPlayer(videoFrame)

Description

videoPlayer(videoFrame) displays one grayscale or truecolor RGB video frame,videoFrame, in
the video player.

Input Arguments

videoFrame — Video frame
truecolor | 2-D grayscale image

Video frame, specified as a truecolor or 2-D grayscale image.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Play a Video File

Read video from a file and set up player object.

videoReader = VideoReader('viplanedeparture.mp4');
videoPlayer = vision.VideoPlayer;

Play video. Every call to the step method reads another frame.

while hasFrame(videoReader)
   frame = readFrame(videoReader);
   step(videoPlayer,frame);
end

 vision.VideoPlayer

2-727



Close the video player.

release(videoPlayer);

2 Objects

2-728



See Also
vision.DeployableVideoPlayer | vision.VideoFileReader | vision.VideoFileWriter |
imshow | Video Viewer

Topics
“Face Detection and Tracking Using CAMShift”
“Face Detection and Tracking Using the KLT Algorithm”
“Face Detection and Tracking Using Live Video Acquisition”
“Video Display in a Custom User Interface”

Introduced in R2012a

 vision.VideoPlayer

2-729



fastRCNNObjectDetector
Detect objects using Fast R-CNN deep learning detector

Description
The fastRCNNObjectDetector object detects objects from an image, using a Fast R-CNN (regions
with convolution neural networks) object detector. To detect objects in an image, pass the trained
detector to the detect function. To classify image regions, pass the detector to the
classifyRegions function.

When using the detect or classifyRegions functions with fastRCNNObjectDetector, use of a
CUDA enabled NVIDIA GPU is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox. For information about the supported compute
capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

Creation
Create a fastRCNNObjectDetector object by calling the trainFastRCNNObjectDetector
function with training data (requires Deep Learning Toolbox).

detector = trainFastRCNNObjectDetector(trainingData,...)

Properties
ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainFastRCNNObjectDetector function. You can modify this name after creating your
fastRCNNObjectDetector object.
Example: 'stopSign'

Network — Trained Fast R-CNN object detection network
object

This property is read-only.

Trained Fast R-CNN detection network, specified as an object. This object stores the layers that
define the convolutional neural network used within the Fast R-CNN detector. This network classifies
region proposals produced by the RegionProposalFcn property.

RegionProposalFcn — Region proposal method
function handle

Region proposal method, specified as a function handle.

2 Objects

2-730



ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the Fast R-CNN detector was trained to find, specified as a cell
array. This property is set by the trainingData input argument for the
trainFastRCNNObjectDetector function. Specify the class names as part of the trainingData
table.

MinObjectSize — Minimum object size supported
[height width] vector

This property is read-only.

Minimum object size supported by the Fast R-CNN network, specified as a [height width] vector. The
minimum size depends on the network architecture.

Object Functions
detect Detect objects using Fast R-CNN object detector
classifyRegions Classify objects in image regions using Fast R-CNN object detector

Examples

Detect Vehicles Using Faster R-CNN

Detect vehicles within an image by using a Faster R-CNN object detector.

Load a Faster R-CNN object detector pretrained to detect vehicles.

data = load('fasterRCNNVehicleTrainingData.mat', 'detector');
detector = data.detector;

Read in a test image.

I = imread('highway.png');
imshow(I)

 fastRCNNObjectDetector

2-731



Run the detector on the image and inspect the results. The labels come from the ClassNames
property of the detector.

[bboxes,scores,labels] = detect(detector,I)

bboxes = 2×4

   150    86    80    72
    91    89    67    48

scores = 2x1 single column vector

    1.0000
    0.9001

labels = 2x1 categorical
     vehicle 
     vehicle 

The detector has high confidence in the detections. Annotate the image with the bounding boxes for
the detections and the corresponding detection scores.

  detectedI = insertObjectAnnotation(I,'Rectangle',bboxes,cellstr(labels));
  figure
  imshow(detectedI)

2 Objects

2-732



See Also
Apps
Image Labeler | Video Labeler

Functions
trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector |
trainACFObjectDetector | trainNetwork | selectStrongestBboxMulticlass

Objects
SeriesNetwork | boxLabelDatastore

Topics
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2017a

 fastRCNNObjectDetector

2-733



fasterRCNNObjectDetector
Detect objects using Faster R-CNN deep learning detector

Description
The fasterRCNNObjectDetector object detects objects from an image, using a Faster R-CNN
(regions with convolution neural networks) object detector. To detect objects in an image, pass the
trained detector to the detect function.

When using the detect function, use of a CUDA enabled NVIDIA GPU is highly recommended. The
GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.
For information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

Creation
Create a fasterRCNNObjectDetector object by calling the trainFasterRCNNObjectDetector
function with training data (requires Deep Learning Toolbox).

detector = trainFasterRCNNObjectDetector(trainingData,...)

Properties
ModelName — Name of classification model
character vector | string scalar

This property is read-only.

Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainFasterRCNNObjectDetector function. You can modify this name after creating your
fasterRCNNObjectDetector object.

Network — Trained Fast R-CNN object detection network
DAGNetwork object

This property is read-only.

Trained Fast R-CNN object detection network, specified as a DAGNetwork object. This object stores
the layers that define the convolutional neural network used within the Faster R-CNN detector.

AnchorBoxes — Size of anchor boxes
M-by-2 matrix

This property is read-only.

Size of anchor boxes, specified as an M-by-2 matrix, where each row is in the format [height width].
This value is set during training.

2 Objects

2-734



ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the Faster R-CNN detector was trained to find, specified as a cell
array. This property is set by the trainingData input argument for the
trainFasterRCNNObjectDetector function. Specify the class names as part of the
trainingData table.

MinObjectSize — Minimum object size supported
[height width] vector

This property is read-only.

Minimum object size supported by the Faster R-CNN network, specified as a [height width] vector.
The minimum size depends on the network architecture.

Object Functions
detect Detect objects using Faster R-CNN object detector

Examples

Object Detection Using Faster R-CNN Deep Learning

This example shows how to train a Faster R-CNN (regions with convolutional neural networks) object
detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several deep learning techniques for object detection exist, including Faster R-CNN and
you only look once (YOLO) v2. This example trains a Faster R-CNN vehicle detector using the
trainFasterRCNNObjectDetector function. For more information, see “Object Detection”.

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('fasterRCNNResNet50EndToEndVehicleExample.mat','file')
    disp('Downloading pretrained detector (118 MB)...');
    pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResNet50EndToEndVehicleExample.mat';
    websave('fasterRCNNResNet50EndToEndVehicleExample.mat',pretrainedURL);
end

Load Data Set

This example uses a small labeled dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 data sets, available at the Caltech Computational Vision website,
created by Pietro Perona and used with permission. Each image contains one or two labeled instances
of a vehicle. A small dataset is useful for exploring the Faster R-CNN training procedure, but in
practice, more labeled images are needed to train a robust detector. Unzip the vehicle images and
load the vehicle ground truth data.

 fasterRCNNObjectDetector

2-735

http://www.vision.caltech.edu/archive.html


unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

Split the dataset into training, validation, and test sets. Select 60% of the data for training, 10% for
validation, and the rest for testing the trained detector.

rng(0)
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * height(vehicleDataset));

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) );
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

testIdx = validationIdx(end)+1 : length(shuffledIndices);
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(validationDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

2 Objects

2-736



Create Faster R-CNN Detection Network

A Faster R-CNN object detection network is composed of a feature extraction network followed by
two subnetworks. The feature extraction network is typically a pretrained CNN, such as ResNet-50 or
Inception v3. The first subnetwork following the feature extraction network is a region proposal
network (RPN) trained to generate object proposals - areas in the image where objects are likely to
exist. The second subnetwork is trained to predict the actual class of each object proposal.

The feature extraction network is typically a pretrained CNN (for details, see “Pretrained Deep
Neural Networks” (Deep Learning Toolbox)). This example uses ResNet-50 for feature extraction. You
can also use other pretrained networks such as MobileNet v2 or ResNet-18, depending on your
application requirements.

Use fasterRCNNLayers to create a Faster R-CNN network automatically given a pretrained feature
extraction network. fasterRCNNLayers requires you to specify several inputs that parameterize a
Faster R-CNN network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size. When choosing the network input size, consider the minimum
size required to run the network itself, the size of the training images, and the computational cost
incurred by processing data at the selected size. When feasible, choose a network input size that is
close to the size of the training image and larger than the input size required for the network. To

 fasterRCNNObjectDetector

2-737



reduce the computational cost of running the example, specify a network input size of [224 224 3],
which is the minimum size required to run the network.

inputSize = [224 224 3];

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the
training data. To account for the resizing of the images prior to training, resize the training data for
estimating anchor boxes. Use transform to preprocess the training data, then define the number of
anchor boxes and estimate the anchor boxes.

preprocessedTrainingData = transform(trainingData, @(data)preprocessData(data,inputSize));
numAnchors = 3;
anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData,numAnchors)

anchorBoxes = 3×2

    29    17
    46    39
   136   116

For more information on choosing anchor boxes, see“Estimate Anchor Boxes From Training Data”
(Computer Vision Toolbox™) and “Anchor Boxes for Object Detection”.

Now, use resnet50 to load a pretrained ResNet-50 model.

featureExtractionNetwork = resnet50;

Select 'activation_40_relu' as the feature extraction layer. This feature extraction layer outputs
feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-
off between spatial resolution and the strength of the extracted features, as features extracted
further down the network encode stronger image features at the cost of spatial resolution. Choosing
the optimal feature extraction layer requires empirical analysis. You can use analyzeNetwork to
find the names of other potential feature extraction layers within a network.

featureLayer = 'activation_40_relu';

Define the number of classes to detect.

numClasses = width(vehicleDataset)-1;

Create the Faster R-CNN object detection network.

lgraph = fasterRCNNLayers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the Faster R-CNN network architecture, use Deep Network Designer
to design the Faster R-CNN detection network manually. For more information, see “Getting Started
with R-CNN, Fast R-CNN, and Faster R-CNN”.

2 Objects

2-738



Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to test and validation data. Ideally, test
and validation data are representative of the original data and are left unmodified for unbiased
evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read the same image multiple times and display the augmented training data.

augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedTrainingData);
    augmentedData{k} = insertShape(data{1},'Rectangle',data{2});
    reset(augmentedTrainingData);
end
figure
montage(augmentedData,'BorderSize',10)

 fasterRCNNObjectDetector

2-739



Preprocess Training Data

Preprocess the augmented training data, and the validation data to prepare for training.

trainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));
validationData = transform(validationData,@(data)preprocessData(data,inputSize));

Read the preprocessed data.

data = read(trainingData);

Display the image and box bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

2 Objects

2-740



Train Faster R-CNN

Use trainingOptions to specify network training options. Set 'ValidationData' to the
preprocessed validation data. Set 'CheckpointPath' to a temporary location. This enables the
saving of partially trained detectors during the training process. If training is interrupted, such as by
a power outage or system failure, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm',...
    'MaxEpochs',10,...
    'MiniBatchSize',2,...
    'InitialLearnRate',1e-3,...
    'CheckpointPath',tempdir,...
    'ValidationData',validationData);

Use trainFasterRCNNObjectDetector to train Faster R-CNN object detector if doTraining is
true. Otherwise, load the pretrained network.

if doTraining
    % Train the Faster R-CNN detector.
    % * Adjust NegativeOverlapRange and PositiveOverlapRange to ensure
    %   that training samples tightly overlap with ground truth.
    [detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options, ...
        'NegativeOverlapRange',[0 0.3], ...
        'PositiveOverlapRange',[0.6 1]);
else
    % Load pretrained detector for the example.
    pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
    detector = pretrained.detector;
end

This example was verified on an Nvidia(TM) Titan X GPU with 12 GB of memory. Training the network
took approximately 20 minutes. The training time varies depending on the hardware you use.

As a quick check, run the detector on one test image. Make sure you resize the image to the same
size as the training images.

I = imread(testDataTbl.imageFilename{3});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

 fasterRCNNObjectDetector

2-741



Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Apply the same preprocessing transform to the test data as for the training data.

testData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector,testData,'MinibatchSize',4);   

Evaluate the object detector using the average precision metric.

[ap, recall, precision] = evaluateDetectionPrecision(detectionResults,testData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))

2 Objects

2-742



Supporting Functions

function data = augmentData(data)
% Randomly flip images and bounding boxes horizontally.
tform = randomAffine2d('XReflection',true);
sz = size(data{1});
rout = affineOutputView(sz,tform);
data{1} = imwarp(data{1},tform,'OutputView',rout);

% Sanitize box data, if needed.
data{2} = helperSanitizeBoxes(data{2}, sz);

% Warp boxes.
data{2} = bboxwarp(data{2},tform,rout);
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));

% Sanitize box data, if needed.
data{2} = helperSanitizeBoxes(data{2}, sz);

% Resize boxes.

 fasterRCNNObjectDetector

2-743



data{2} = bboxresize(data{2},scale);
end

References

[1] Ren, S., K. He, R. Gershick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks." IEEE Transactions of Pattern Analysis and Machine Intelligence. Vol. 39,
Issue 6, June 2017, pp. 1137-1149.

[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition. Columbus, OH, June 2014, pp. 580-587.

[3] Girshick, R. "Fast R-CNN." Proceedings of the 2015 IEEE International Conference on Computer
Vision. Santiago, Chile, Dec. 2015, pp. 1440-1448.

[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." European
Conference on Computer Vision. Zurich, Switzerland, Sept. 2014, pp. 391-405.

[5] Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. "Selective Search for
Object Recognition." International Journal of Computer Vision. Vol. 104, Number 2, Sept. 2013, pp.
154-171.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainFasterRCNNObjectDetector | trainFastRCNNObjectDetector |
trainACFObjectDetector | trainNetwork | selectStrongestBboxMulticlass |
SeriesNetwork

Topics
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2017a

2 Objects

2-744



maskrcnn
Detect objects using Mask R-CNN instance segmentation

Description
The maskrcnn object performs instance segmentation of objects in an image using a Mask R-CNN
(regions with convolution neural networks) object detector. To detect objects in an image, pass the
trained detector to the segmentObjects function.

Note This function requires the Computer Vision Toolbox Model for Mask R-CNN Instance
Segmentation. You can install the Computer Vision Toolbox Model for Mask R-CNN Instance
Segmentation from Add-On Explorer. For more information about installing add-ons, see Get and
Manage Add-Ons. To run this function, you will require the Deep Learning Toolbox.

Creation

Syntax
detector = maskrcnn("resnet50-coco")
detector = maskrcnn("resnet50-coco",classNames)
detector = maskrcnn("resnet50-coco",classNames,anchorBoxes)
detector = maskrcnn( ___ ,Name=Value)

Description

detector = maskrcnn("resnet50-coco") loads a pretrained Mask R-CNN object detector
trained on the COCO data set with a ResNet-50 network as the feature extractor.

detector = maskrcnn("resnet50-coco",classNames) creates a pretrained Mask R-CNN
object detector and configures it to perform transfer learning using a specified set of object classes.
The classNames argument sets the ClassNames property. For optimal results, train the detector on
new training images before performing detection.

detector = maskrcnn("resnet50-coco",classNames,anchorBoxes) creates a pretrained
Mask R-CNN object detector and configures it to perform transfer learning using a specified set of
object classes and anchor boxes. The classNames argument sets the ClassNames property. The
anchorBoxes argument sets the AnchorBoxes property.

detector = maskrcnn( ___ ,Name=Value) uses name-value arguments to specify ROI pooling
sizes or to set the ModelName or InputSize properties. Specify name-value arguments in addition to
the input arguments from any of the previous syntaxes.

For example, maskrcnn("resnet50-coco",classNames,anchorBoxes,PoolSize=[11 11])
specifies the ROI pooling size for the detection head as 11-by-11 pixels.

 maskrcnn

2-745



Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: maskrcnn("resnet50-coco",classNames,anchorBoxes,PoolSize=[11 11])
specifies the ROI pooling size for the detection head as 11-by-11 pixels.

PoolSize — ROI pooling size for detection head
[14 14] (default) | 1-by-2 vector

ROI pooling size for the detection head, specified as a 1-by-2 vector in the format [height width].

MaskPoolSize — ROI pooling size for mask segmentation head
[14 14] (default) | 1-by-2 vector

ROI pooling size for the mask segmentation head, specified as a 1-by-2 vector in the format [height
width].

Properties
ModelName — Name of trained Mask R-CNN object detection network
'maskrcnn' | string scalar | character vector

Name of the trained Mask R-CNN object detection network, specified as a string scalar or character
vector.

AnchorBoxes — Size of anchor boxes
M-by-2 matrix

Size of anchor boxes, specified as an M-by-2 matrix, where each row is in the format [height width].
The default value consists of 15 anchor boxes defined by the MS-COCO data set. When you specify
the anchor boxes, the maskrcnn object reinitializes the final convolution layers in the region proposal
subnetwork to the correct size based on the number of anchor boxes.

You cannot modify the value of this property after you create the object.

ClassNames — Object class names
cell array

Names of the object classes that the Mask R-CNN detector is trained to detect, specified as a cell
array. The default value consists of the 80 object class names in the MS-COCO data set, such as
"person", "bicycle", and "car". When you specify the class names, the maskrcnn object reinitializes
the final convolution layers in the detection head and mask segmentation head to the correct size
based on the number of classes.

You cannot modify the value of this property after you create the object.

InputSize — Image size
[800 1200 3] | 1-by-3 vector

2 Objects

2-746



Image size to use for detection, specified as a 1-by-3 vector of positive integers in the format [height
width 3]. The detector resizes input images to this size while maintaining the aspect ratio. The default
value is the network input size.

You cannot modify the value of this property after you create the object.

Object Functions
forward Run forward pass on Mask R-CNN network
segmentObjects Segment objects using Mask R-CNN instance segmentation

Examples

Segment Instances of Objects

Load a pretrained Mask R-CNN object detector.

detector = maskrcnn("resnet50-coco")

detector = 
  maskrcnn with properties:

      ModelName: 'maskrcnn'
     ClassNames: {1×80 cell}
      InputSize: [800 1200 3]
    AnchorBoxes: [15×2 double]

Read a test image that includes objects that the network can detect, such as people.

I = imread("visionteam.jpg");

Segment instances of objects using the Mask R-CNN object detector.

[masks,labels,scores,boxes] = segmentObjects(detector,I,Threshold=0.95);

Overlay the detected object masks in blue on the test image. Display the bounding boxes in red and
the object labels.

overlayedImage = insertObjectMask(I,masks);
imshow(overlayedImage)
showShape("rectangle",boxes,Label=labels,LineColor=[1 0 0])

 maskrcnn

2-747



See Also
Apps
Image Labeler | Video Labeler

Functions
trainMaskRCNN | SeriesNetwork | trainNetwork | fastRCNNObjectDetector |
fasterRCNNObjectDetector

Topics
“Getting Started with Mask R-CNN for Instance Segmentation”
“Perform Instance Segmentation Using Mask R-CNN”

Introduced in R2021b

2 Objects

2-748



forward
Run forward pass on Mask R-CNN network

Syntax
outputFeatures = forward(detector,dlX)
[outputFeatures,state] = forward(detector,dlX)

Description
outputFeatures = forward(detector,dlX) calculates features of the image dlX from the
output layers of the Mask R-CNN object detector.

[outputFeatures,state] = forward(detector,dlX) also returns the state information of the
network. Use the state to update the network parameters.

Note This function requires the Computer Vision Toolbox Model for Mask R-CNN Instance
Segmentation. You can install the Computer Vision Toolbox Model for Mask R-CNN Instance
Segmentation from Add-On Explorer. For more information about installing add-ons, see Get and
Manage Add-Ons. To run this function, you will require the Deep Learning Toolbox.

Examples

Calculate Features of Color Image

Load a pretrained Mask R-CNN object detector.

detector = maskrcnn("resnet50-coco");

Read an image to use for training, and convert the image to a formatted dlarray object.

I = imread("visionteam.jpg");
dlX = dlarray(single(I),"SSCB"); 

Calculate features of the training image.

outputFeatures = forward(detector,dlX);

Input Arguments
detector — Mask R-CNN object detector
maskrcnn object

Mask R-CNN object detector, specified as a maskrcnn object.

dlX — Training data
formatted dlarray object

 forward

2-749



Training data, specified as a formatted dlarray object containing real, nonsparse data. The
dimension labels of the data must be "SSCB".

Output Arguments
outputFeatures — Output features
1-by-6 cell array

Output features, returned as a 1-by-6 cell array. Each element contains activations from an output
layer of the network, as described in the table. In the table, numClasses is the number of classes and
numAnchors is the number of anchor boxes. B is the number of images in the batch. numProposals is
the number of proposals from the region proposal layer.

Network Output Format
Region proposal network classification output
after the softmax operation

h-by-w-by-numAnchors-by-B array. The feature
map has spatial size h-by-w.

Region proposal network regression output h-by-w-by-(4×numAnchors)-by-B array. The
feature map has spatial size h-by-w.

Region proposals 5-by-numProposals matrix. Each column of the
proposals contains box proposals in the format
[xStart, yStart, xEnd, yEnd, batchIdx].

Detection network classification output after the
softmax operation

1-by-1-by-(numClasses+1)-by-numProposals
array.

Detection network regression output 1-by-1-by-(4×numClasses)-by-numProposals
array.

Mask segmentation output hmask-by-wmask-by-numClasses-by-numProposals
array. The mask segmentation output has spatial
size hmask-by-wmask.

state — Updated network state
table

Updated network state, returned as a table. The network state is a table with three columns:

• Layer – Layer name, returned as a string scalar.
• Parameter – Parameter name, returned as a string scalar.
• Value – Value of parameter, returned as a numeric array object.

The network state contains information remembered by the network between iterations.

See Also
maskrcnn | segmentObjects

Introduced in R2021b

2 Objects

2-750



segmentObjects
Segment objects using Mask R-CNN instance segmentation

Syntax
masks = segmentObjects(detector,I)
masks = segmentObjects(detector,I,Name=Value)

[masks,labels] = segmentObjects( ___ )
[masks,labels,scores] = segmentObjects( ___ )
[masks,labels,scores,bboxes] = segmentObjects( ___ )

Description
masks = segmentObjects(detector,I) detects object masks within a single image or an array
of images, I, using a Mask R-CNN object detector.

masks = segmentObjects(detector,I,Name=Value) configures the segmentation using
additional name-value arguments. For example, segmentObjects(detector,I,Threshold=0.9)
specifies the detection threshold as 0.9.

[masks,labels] = segmentObjects( ___ ) also returns the labels assigned to the detected
objects.

[masks,labels,scores] = segmentObjects( ___ ) also returns the detection score for each of
the detected objects.

[masks,labels,scores,bboxes] = segmentObjects( ___ ) also returns the location of
segmented object as bounding boxes, bboxes.

Note This function requires the Computer Vision Toolbox Model for Mask R-CNN Instance
Segmentation. You can install the Computer Vision Toolbox Model for Mask R-CNN Instance
Segmentation from Add-On Explorer. For more information about installing add-ons, see Get and
Manage Add-Ons. To run this function, you will require the Deep Learning Toolbox.

Examples

Segment Instances of Objects

Load a pretrained Mask R-CNN object detector.

detector = maskrcnn("resnet50-coco")

detector = 
  maskrcnn with properties:

      ModelName: 'maskrcnn'
     ClassNames: {1×80 cell}

 segmentObjects

2-751



      InputSize: [800 1200 3]
    AnchorBoxes: [15×2 double]

Read a test image that includes objects that the network can detect, such as people.

I = imread("visionteam.jpg");

Segment instances of objects using the Mask R-CNN object detector.

[masks,labels,scores,boxes] = segmentObjects(detector,I,Threshold=0.95);

Overlay the detected object masks in blue on the test image. Display the bounding boxes in red and
the object labels.

overlayedImage = insertObjectMask(I,masks);
imshow(overlayedImage)
showShape("rectangle",boxes,Label=labels,LineColor=[1 0 0])

Input Arguments
detector — Mask R-CNN object detector
maskrcnn object

Mask R-CNN object detector, specified as a maskrcnn object.

I — Image or batch of images
numeric matrix | numeric array

Image or batch of images to segment, specified as one of these values.

Image Type Data Format
Single grayscale image 2-D matrix of size H-by-W

2 Objects

2-752



Image Type Data Format
Single color image 3-D array of size H-by-W-by-3.
Batch of B grayscale or color
images

4-D array of size H-by-W-by-C-by-B. The number of color channels
C is 1 for grayscale images and 3 for color images.

The height H and width W of each image must be greater than or equal to the input height h and
width w of the network.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: segmentObjects(detector,I,Threshold=0.9) specifies the detection threshold as
0.9.

Threshold — Detection threshold
0.7 (default) | numeric scalar

Detection threshold, specified as a numeric scalar in the range [0, 1]. The Mask R-CNN object
detector does not return detections with scores less than the threshold value. Increase this value to
reduce false positives.

NumStrongestRegions — Maximum number of strongest region proposals
1000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as a positive integer. Reduce this value to
speed up processing time at the cost of detection accuracy. To use all region proposals, specify this
value as Inf.

SelectStrongest — Select strongest bounding box
true or 1 (default) | false or 0

Select the strongest bounding box for each detected object, specified as a numeric or logical 1 (true)
or 0 (false).

• true — Return the strongest bounding box per object. To select these boxes, the
segmentObjects function calls the selectStrongestBboxMulticlass function, which uses
nonmaximal suppression to eliminate overlapping bounding boxes based on their confidence
scores.

• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

MinSize — Minimum size of region
[1 1] (default) | two-element numeric vector

Minimum size of a region containing an object, in pixels, specified as a two-element numeric vector of
the form [height width]. By default, MinSize is the smallest object that the trained detector can
detect. Specify this argument to reduce the computation time.

MaxSize — Maximum size of region
two-element numeric vector

 segmentObjects

2-753



Maximum size of a region containing an object, in pixels, specified as a two-element numeric vector
of the form [height width].

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, MaxSize is set to the height and width of the input image, I.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource for processing images with a network, specified as "auto", "gpu", or "cpu".

ExecutionEnvironment Description
"auto" Use a GPU if available. Otherwise, use the CPU. The use of

GPU requires Parallel Computing Toolbox and a CUDA
enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

"gpu" Use the GPU. If a suitable GPU is not available, the function
returns an error message.

"cpu" Use the CPU.

Output Arguments
masks — Object masks
H-by-W-by-M logical array | B-by-1 cell array

Objects masks, returned as a logical array of size H-by-W-by-M. H and W are the height and width of
the input image I. M is the number of objects detected in the image. Each of the M channels contains
the mask for a single detected object.

When I represents a batch of B images, masks is returned as a B-by-1 cell array. Each element in the
cell array indicates the masks for the corresponding input image in the batch.

labels — Object labels
M-by-1 categorical vector | B-by-1 cell array

Objects labels, returned as an M-by-1 categorical vector where M is the number of detected objects in
image I.

When I represents a batch of B images, then labels is a B-by-1 cell array. Each element is an M-by-1
categorical vector with the labels of the objects in the corresponding image.

scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 numeric vector, where M is the number of
detected objects in image I. A higher score indicates higher confidence in the detection.

When I represents a batch of B images, then scores is a B-by-1 cell array. Each element is an M-by-1
numeric vector with the labels of the objects in the corresponding image.

bboxes — Location of detected objects
M-by-4 matrix | B-by-1 cell array

2 Objects

2-754



Location of detected objects within the input image, returned as an M-by-4 matrix, where M is the
number of detected objects in image I. Each row of bboxes contains a four-element vector of the
form [x y width height]. This vector specifies the upper left corner and size of that corresponding
bounding box in pixels.

When I represents a batch of B images, then bboxes is a B-by-1 cell array. Each element is an M-by-4
numeric matrix with the bounding boxes of the objects in the corresponding image.

See Also
forward

Introduced in R2021b

 segmentObjects

2-755



yolov2ObjectDetector
Detect objects using YOLO v2 object detector

Description
The yolov2ObjectDetector object defines the trained YOLO v2 object detector. To detect objects
in an image, pass the trained YOLO v2 object detector to the detect object function. The YOLO v2
object detector recognizes specific objects in images, based on the training images and ground truth
data used with the trainYOLOv2ObjectDetector function. You can also use the
yolov2ObjectDetector function to create the yolov2ObjectDetector object from a pretrained
YOLO v2 network.

Creation
Create a yolov2ObjectDetector object by calling the trainYOLOv2ObjectDetector function
with training data (requires Deep Learning Toolbox).

detector = trainYOLOv2ObjectDetector(trainingData,____)

Syntax
detector = yolov2ObjectDetector(network)
detector = yolov2ObjectDetector( ___ ,'TrainingImageSize',trainingSizes)

Description

detector = yolov2ObjectDetector(network) creates a YOLO v2 object detector by using the
pretrained YOLO v2 network specified at the input.

The input network can also be an imported network from ONNX™ (Open Neural Network Exchange).
For more information on how to create YOLO v2 object detector from an imported ONNX YOLO v2
network, see “Import Pretrained ONNX YOLO v2 Object Detector”.

detector = yolov2ObjectDetector( ___ ,'TrainingImageSize',trainingSizes) specify
image sizes used during training by using a name-value pair in addition to the input argument in the
previous syntax.

Input Arguments

network — Pretrained YOLO v2 network
DAGNetwork object

Pretrained YOLO v2 network, specified as a DAGNetwork object. The DAGNetwork must have an
image input layer, YOLO v2 transform layer that is connected to a YOLO v2 output layer.

trainingSizes — Set of image sizes used for training
M-by-2 matrix

2 Objects

2-756



Set of image sizes used for training, specified as a comma-separated pair consisting of
'TrainingImageSize' and a M-by-2 matrix. Each row is of the form [height width]. The default
value is the size of the image input layer of the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Properties
ModelName — Name of the classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By default, the name
is set to the heading of the second column of the trainingData table specified in the
trainYOLOv2ObjectDetector function. You can modify this name after creating the
yolov2ObjectDetector object.

Network — Trained YOLO v2 object detection network
DAGNetwork object

This property is read-only.

Trained YOLO v2 object detection network, specified as a DAGNetwork object. This object stores the
layers that define the YOLO v2 object detection network.

ClassNames — Names of object classes
cell array of character vectors

This property is read-only.

Names of object classes that the YOLO v2 object detector was trained to find, specified as a cell array
of character vectors. This property is set by the trainingData input argument in the
trainYOLOv2ObjectDetector function. Specify the class names as part of the trainingData
table.

AnchorBoxes — Set of anchor boxes
N-by-2 matrix

This property is read-only.

Set of anchor boxes, specified as an N-by-2 matrix defining the width and the height of N anchor
boxes. This property is set by the AnchorBoxes property of the output layer in the YOLO v2 network.

The anchor boxes are defined when creating the YOLO v2 network by using the yolov2Layers
function. Alternatively, if you create the YOLO v2 network layer-by-layer, the anchor boxes are
defined by using the yolov2OutputLayer function.

TrainingImageSize — Set of image sizes used for training
M-by-2 matrix

This property is read-only.

Set of image sizes used for training, specified as an M-by-2 matrix, where each row is of the form
[height width]. This property is set by the trainingSizes input argument.

 yolov2ObjectDetector

2-757



If trainingSizes is not specified at the input, then this property is set by the trainingSizes
argument in the trainYOLOv2ObjectDetector function. In this case, the
yolov2ObjectDetector object is created by calling the trainYOLOv2ObjectDetector function.

Object Functions
detect Detect objects using YOLO v2 object detector

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the detect method of the yolov2ObjectDetector is supported for code generation.
• The roi argument to the detect method must be a code generation constant (coder.const())

and a 1x4 vector.
• Only the Threshold, SelectStrongest, MinSize, and MaxSize name-value pairs for detect

are supported.
• To create a yolov2ObjectDetector object for code generation, see “Load Pretrained Networks

for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation,

• Only the detect method of the yolov2ObjectDetector is supported for code generation.
• The roi argument to the detect method must be a codegen constant (coder.const()) and a

1x4 vector.
• Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize Name-Value

pairs are supported.
• The height, width, channel, and batch size of the input image must be fixed size.
• The minimum batch size value passed to detect method must be fixed size.
• To create a yolov2ObjectDetector object for code generation, see “Load Pretrained Networks

for Code Generation” (GPU Coder).

See Also
Apps
Image Labeler | Video Labeler

Functions
yolov2Layers

Objects
fasterRCNNObjectDetector | trainYOLOv2ObjectDetector | boxLabelDatastore

2 Objects

2-758



Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using YOLO v2”
“Getting Started with YOLO v2”
“Anchor Boxes for Object Detection”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2019a

 yolov2ObjectDetector

2-759



yolov3ObjectDetector
Detect objects using YOLO v3 object detector

Description
The yolov3ObjectDetector object creates a you only look once version 3 (YOLO v3) object
detector for detecting objects in an image. Using this object, you can:

• Create a pretrained YOLO v3 object detector by using YOLO v3 deep learning networks trained on
COCO dataset.

• Create a custom YOLO v3 object detector by using any pretrained or untrained YOLO v3 deep
learning network.

Creation

Syntax
detector = yolov3ObjectDetector(name)

detector = yolov3ObjectDetector(name,classes,aboxes)
detector = yolov3ObjectDetector(net,classes,aboxes)
detector = yolov3ObjectDetector(baseNet,classes,
aboxes,'DetectionNetworkSource',layer)

Description
Pretrained YOLO v3 Object Detector

detector = yolov3ObjectDetector(name) creates a pretrained YOLO v3 object detector by
using YOLO v3 deep learning networks trained on a COCO dataset.

Custom YOLO v3 Object Detector

detector = yolov3ObjectDetector(name,classes,aboxes) creates a pretrained YOLO v3
object detector and configures it to perform transfer learning using a specified set of object classes
and anchor boxes. For optimal results, you must train the detector on new training images before
performing detection.

detector = yolov3ObjectDetector(net,classes,aboxes) creates an object detector by
using the deep learning network net.

If net is a pretrained YOLO v3 deep learning network, the function creates a pretrained YOLO v3
object detector. The classes and aboxes are values used for training the network.

If net is an untrained YOLO v3 deep learning network, the function creates a YOLO v3 object
detector to use for training and inference. classes and aboxes specify the object classes and the
anchor boxes, respectively, for training the YOLO v3 network.

2 Objects

2-760



You must train the detector on a training dataset before performing object detection. For information
about how to train a YOLO v3 object detector, see Preprocess Training Data and Train Model
sections in the “Object Detection Using YOLO v3 Deep Learning” example.

detector = yolov3ObjectDetector(baseNet,classes,
aboxes,'DetectionNetworkSource',layer) creates a YOLO v3 object detector by adding
detection heads to a base network, baseNet.

The function adds detection heads to the specified feature extraction layers layer in the base
network. To specify the names of the feature extraction layers, use the name-value argument
'DetectionNetworkSource',layer.

If baseNet is a pretrained deep learning network, the function creates a YOLO v3 object detector
and configures it to perform transfer learning with the specified object classes and anchor boxes.

If baseNet is an untrained deep learning network, the function creates a YOLO v3 object detector
and configures it for object detection. classes and aboxes specify the object classes and the anchor
boxes, respectively, for training the YOLO v3 network.

You must train the detector on a training dataset before performing object detection.

detector = yolov3ObjectDetector( ___ ,Name,Value) sets the InputSize on page 2-
0  and ModelName on page 2-0  properties of the object detector by using name-value pair
arguments. Name is the property name and Value is the corresponding value. You must enclose each
property name in quotes.

Note This function requires the Computer Vision Toolbox Model for YOLO v3 Object Detection. You
can install the Computer Vision Toolbox Model for YOLO v3 Object Detection from Add-On Explorer.
For more information about installing add-ons, see Get and Manage Add-Ons. To run this function,
you will require the Deep Learning Toolbox.

Input Arguments

name — Name of pretrained YOLO v3 deep learning network
'darknet53-coco' | 'tiny-yolov3-coco'

Name of the pretrained YOLO v3 deep learning network, specified as one of these:

• 'darknet53-coco' — A pretrained YOLO v3 deep learning network created using DarkNet-53 as
the base network and trained on COCO dataset.

• 'tiny-yolov3-coco' — A pretrained YOLO v3 deep learning network created using a small
base network and trained on COCO dataset.

Data Types: string

classes — Names of object classes
string vector | cell array of character vectors | categorical vector

Names of object classes for training the detector, specified as a string vector, cell array of character
vectors, or categorical vector. This argument sets the ClassNames property of the
yolov3ObjectDetector object.
Data Types: char | string | categorical

 yolov3ObjectDetector

2-761



aboxes — Anchor boxes
N-by-1 cell array

Anchor boxes for training the detector, specified as an N-by-1 cell array. N is the number of output
layers in the YOLO v3 deep learning network. Each cell contains an M-by-2 matrix, where M is the
number of anchor boxes in that layer. Each row in the M-by-2 matrix denotes the size of an anchor
box in the form [height width].

The first element in the cell array specifies the anchor boxes to associate with the first output layer,
the second element in the cell array specifies the anchor boxes to associate with the second output
layer, and so on. For accurate detection results, specify large anchor boxes for the first output layer
and small anchor boxes for the last output layer. That is, the anchor box sizes must decrease for each
output layer in the order in which the layers appear in the YOLO v3 deep learning network.

This argument sets the AnchorBoxes property of the yolov3ObjectDetector object.
Data Types: cell

net — YOLO v3 deep learning network
dlnetwork object

YOLO v3 deep learning network, specified as a dlnetwork object. The input network can be either
an untrained or a pretrained deep learning network.

baseNet — Base network
dlnetwork object | DAGNetwork object

Base network for creating the YOLO v3 deep learning network, specified as a dlnetwork object, or
DAGNetwork object. The network can be either an untrained or a pretrained deep learning network.

layer — Names of feature extraction layers
cell array of character vectors | string array

Names of the feature extraction layers in the base network, specified as a cell array of character
vectors, or a string array.

The function creates a YOLO v3 network by adding detection head layers to the output of the feature
extraction layers in the base network. The feature extraction layers must be specified in the reverse
of the order in which they appear in the network architecture. For example, given a base network
with four feature extraction layers, you must add the first detection head to the fourth feature
extraction layer, the second detection head to the third feature extraction layer, and so on.
Example: layer = {'conv10','fire9-concat','fire8-concat'}
Example: layer = ["conv10","fire9-concat","fire8-concat"]
Data Types: char | string | cell

Properties
Network — YOLO v3 deep learning network
dlnetwork object

This property is read-only.

YOLO v3 deep learning network to use for object detection, stored as a dlnetwork object.

2 Objects

2-762



ClassNames — Names of object classes
categorical vector

This property is read-only.

Names of object classes to detect, stored as a categorical vector. You can set this property by using
the input argument classes.

AnchorBoxes — Set of anchor boxes
N-by-1 cell array

This property is read-only.

Set of anchor boxes, stored as a N-by-1 cell array. Each element in the cell is a M-by-2 matrix. Each
row in the M-by-2 matrix denotes the size of the anchor box in the form of [height width]. M denotes
the number of anchor boxes. N is the number of output layers in the YOLO v3 deep learning network
for which the anchor boxes are defined. The first element in the cell array specifies the anchor boxes
for the first output layer, the second element in the cell array specifies the anchor boxes for the
second output layer, and so on.

You can set this property by using the input argument aboxes.

InputSize — Set of image sizes used for training
M-by-2 matrix

This property is read-only.

Set of image sizes used for training, stored as an M-by-2 matrix of type double. Each row is of the
form [height width]. To set this property, specify it at object creation.

For example, detector = yolov3ObjectDetector(net,classes,aboxes,'InputSize',[220
220; 440 440]).

ModelName — Name for object detector
' ' (default) | character vector | string scalar

Name for the object detector, stored as a character vector or string scalar. To set this property,
specify it at object creation.

For example,
yolov3ObjectDetector(net,classes,aboxes,'ModelName','customDetector') sets the
name for the object detector to 'customDetector'.

Object Functions
detect Detect objects using YOLO v3 object detector
preprocess Preprocess training and test images
forward Compute YOLO v3 deep learning network output for training
predict Compute YOLO v3 deep learning network outputs for inference

Examples

 yolov3ObjectDetector

2-763



Create Pretrained YOLO v3 Object Detector

Specify the name of a pretrained YOLO v3 deep learning network.

name = 'tiny-yolov3-coco';

Create YOLO v3 object detector by using the pretrained YOLO v3 network.

detector = yolov3ObjectDetector(name);

Display and inspect the properties of the YOLO v3 object detector.

disp(detector)

  yolov3ObjectDetector with properties:

        Network: [1x1 dlnetwork]
    AnchorBoxes: {2x1 cell}
     ClassNames: [80x1 categorical]
      InputSize: [416 416 3]
     Learnables: [48x3 table]
          State: [22x3 table]
      ModelName: 'tiny-yolov3-coco'

Use analyzeNetwork to display the YOLO v3 network architecture and get information about the
network layers. The network has two detection heads attached to the feature extraction network.

analyzeNetwork(detector.Network)

Detect objects in an unknown image by using the pretrained YOLO v3 object detector.

2 Objects

2-764



img = imread('sherlock.jpg');
img = preprocess(detector,img);
img = im2single(img);
[bboxes,scores,labels] = detect(detector,img,'DetectionPreprocessing','none');

Display the detection results.

detectedImg = insertObjectAnnotation(img,'Rectangle',bboxes,labels);
figure
imshow(detectedImg)

Create Custom YOLO v3 Object Detector

This example shows how to create a custom YOLO v3 object detector by using a pretrained
SqueezeNet as the base network.

Load a pretrained SqueezeNet network. The SqueezeNet network is a convolutional neural network
that you can use as the base network for creating a YOLO v3 object detector.

 yolov3ObjectDetector

2-765



net = squeezenet

net = 
  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

Inspect the architecture of the base network by using analyzeNetwork (Deep Learning Toolbox)
function.

analyzeNetwork(net)

Specify the anchor boxes and the classes to use to train the YOLO v3 network.

aboxes = {[150,127;97,90;68,67];[38,42;41,29;31,23]};
classes = {'Car','Truck'};

Select two feature extraction layers in the base network to serve as the source for detection
subnetwork.

layer = {'fire9-concat','fire8-concat'};

2 Objects

2-766



Create a custom YOLO v3 object detector by adding detection heads to the feature extraction layers
of the base network. Specify the model name, classes, and the anchor boxes.

detector = yolov3ObjectDetector(net,classes,aboxes,'ModelName','Custom YOLO v3','DetectionNetworkSource',layer);

Inspect the architecture of the YOLO v3 deep learning network by using analyzeNetwork (Deep
Learning Toolbox) function.

analyzeNetwork(detector.Network)

Inspect the properties of the YOLO v3 object detector. You can now train the YOLO v3 object detector
on a custom training dataset and perform object detection.

disp(detector)

  yolov3ObjectDetector with properties:

        Network: [1x1 dlnetwork]
    AnchorBoxes: {2x1 cell}
     ClassNames: [2x1 categorical]
      InputSize: [227 227 3]
     Learnables: [66x3 table]
          State: [6x3 table]
      ModelName: 'Custom YOLO v3'

For information about how to train a YOLO v3 object detector, see the “Object Detection Using YOLO
v3 Deep Learning” example.

 yolov3ObjectDetector

2-767



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the detect method of the yolov3ObjectDetector is supported for code generation.
• The roi argument to the detect method must be a code generation constant (coder.const())

and a 1x4 vector.
• Only the Threshold, SelectStrongest, MinSize, and MaxSize name-value pairs for detect

are supported.
• To create a yolov3ObjectDetector object for code generation, see “Load Pretrained Networks

for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the detect method of the yolov3ObjectDetector is supported for code generation.
• The roi argument to the detect method must be a codegen constant (coder.const()) and a

1x4 vector.
• Only the Threshold, SelectStrongest, MinSize, and MaxSize name-value pairs are

supported.
• The height, width, and channel of the input image must be fixed size.
• To create a yolov3ObjectDetector object for code generation, see “Load Pretrained Networks

for Code Generation” (MATLAB Coder).

See Also
yolov2ObjectDetector | trainYOLOv2ObjectDetector | fasterRCNNObjectDetector

Topics
“Object Detection Using YOLO v3 Deep Learning”
“Getting Started with YOLO v3”

Introduced in R2021a

2 Objects

2-768



detect
Detect objects using YOLO v3 object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[bboxes,scores,labels] = detect(detector,I)

detectionResults = detect(detector,ds)

[ ___ ] = detect( ___ ,roi)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within a single image or an array of images, I,
using a you only look once version 3 (YOLO v3) object detector, detector. The input size of the
image must be greater than or equal to the network input size of the pretrained detector. The
locations of objects detected are returned as a set of bounding boxes.

[bboxes,scores] = detect(detector,I) also returns the class-specific confidence scores for
each bounding box.

[bboxes,scores,labels] = detect(detector,I) returns a categorical array of labels
assigned to the bounding boxes. The labels for object classes are defined during training.

detectionResults = detect(detector,ds) detects objects within all the images returned by
the read function of the input datastore ds.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region roi, in addition
to any combination of arguments from previous syntaxes.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more name-value arguments.

Note This function requires the Computer Vision Toolbox Model for YOLO v3 Object Detection. You
can install the Computer Vision Toolbox Model for YOLO v3 Object Detection from Add-On Explorer.
For more information about installing add-ons, see Get and Manage Add-Ons. To run this function,
you will require the Deep Learning Toolbox.

Examples

Detect Objects Using YOLO v3 Object Detector

Load a pretrained YOLO v3 object detector.

detector = yolov3ObjectDetector('tiny-yolov3-coco');

 detect

2-769



Read a test image and preprocess the test image by using the preprocess function.

img = imread('sherlock.jpg');
img = preprocess(detector,img);

Detect objects in the test image.

[bboxes,scores,labels] = detect(detector,img);

Display the detection results.

results = table(bboxes,labels,scores)

results=1×3 table
             bboxes             labels    scores 
    ________________________    ______    _______

    133     67    283    278     dog      0.51771

detectedImg = insertObjectAnnotation(img,'Rectangle',bboxes,labels);
figure
imshow(detectedImg)

2 Objects

2-770



Detect Objects from Images Stored in Image Datastore

Load a pretrained YOLOv3 object detector.

detector = yolov3ObjectDetector('tiny-yolov3-coco');

Read the test data and store as an image datastore object.

location = fullfile(matlabroot,'toolbox','vision','visiondata','vehicles');
imds = imageDatastore(location);

Detect objects in the test dataset. Set the Threshold parameter value to 0.3 and MiniBatchSize
parameter value to 32.

detectionResults = detect(detector,imds,'Threshold',0.3,'MiniBatchSize',32);

Read an image from the test dataset and extract the corresponding detection results.

num = 10;
I = readimage(imds,num);
bboxes = detectionResults.Boxes{num};
labels = detectionResults.Labels{num};
scores = detectionResults.Scores{num};

Perform non-maximal suppression to select strongest bounding boxes from the overlapping clusters.
Set the OverlapThreshold parameter value to 0.2.

[bboxes,scores,labels] = selectStrongestBboxMulticlass(bboxes,scores,labels,'OverlapThreshold',0.2);

Display the detection results.

results = table(bboxes,labels,scores)

results=3×3 table
             bboxes             labels    scores 
    ________________________    ______    _______

     14     71     52     27     car      0.93352
     74     73      7      5     car       0.6537
    102     73     15     10     car      0.85313

detectedImg = insertObjectAnnotation(I,'Rectangle',bboxes,labels);
figure
imshow(detectedImg)

 detect

2-771



Detect Objects Within ROI

Load a pretrained YOLO v3 object detector.

detector = yolov3ObjectDetector('tiny-yolov3-coco');

Read a test image.

img = imread('highway.png');

Specify a region of interest (ROI) within the test image.

roiBox = [70 40 100 100];

Detect objects within the specified ROI.

[bboxes,scores,labels] = detect(detector,img,roiBox);

Display the ROI and the detection results.

img = insertObjectAnnotation(img,'Rectangle',roiBox,'ROI','Color',"blue");
detectedImg = insertObjectAnnotation(img,'Rectangle',bboxes,labels);
figure
imshow(detectedImg)

2 Objects

2-772



Input Arguments
detector — YOLO v3 object detector
yolov3ObjectDetector object

YOLO v3 object detector, specified as a yolov3ObjectDetector object.

I — Test images
numeric array

Test images, specified as a numeric array of size H-by-W-byC or H-by-W-byC-by-T. Images must be
real, nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• T: Number of test images in the array. The function computes the object detection results for each

test image in the array.

The intensity range of the test image must be similar to the intensity range of the images used to
train the detector. For example, if you train the detector on uint8 images, rescale the test image to
the range [0, 255] by using the im2uint8 or rescale function. The size of the test image must be
comparable to the sizes of the images used in training. If these sizes are very different, the detector
has difficulty detecting objects because the scale of the objects in the test image differs from the
scale of the objects the detector was trained to identify.
Data Types: uint8 | uint16 | int16 | double | single

 detect

2-773



ds — Test images
ImageDatastore object | CombinedDatastore object | TransformedDatastore object

Test images, specified as a ImageDatastore object, CombinedDatastore object, or
TransformedDatastore object containing full filenames of the test images. The images in the
datastore must be grayscale, or RGB images.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: detect(detector,I,'Threshold',0.25)

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a comma-separated pair consisting of 'Threshold' and a scalar in
the range [0, 1]. Detections that have scores less than this threshold value are removed. To reduce
false positives, increase this value.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Returns the strongest bounding box per object. The method calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

By default, the selectStrongestBboxMulticlass function is called as follows

 selectStrongestBboxMulticlass(bboxes,scores,...
                               'RatioType','Union',...
                               'OverlapThreshold',0.5);

• false — Return all the detected bounding boxes. You can then write your own custom method to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[1 1] (default) | vector of the form [height width]

Minimum region size, specified as the comma-separated pair consisting of 'MinSize' and a vector of
the form [height width]. Units are in pixels. The minimum region size defines the size of the smallest
region containing the object.

By default, MinSize is 1-by-1.

2 Objects

2-774



MaxSize — Maximum region size
size(I) (default) | vector of the form [height width]

Maximum region size, specified as the comma-separated pair consisting of 'MaxSize' and a vector
of the form [height width]. Units are in pixels. The maximum region size defines the size of the
largest region containing the object.

By default, 'MaxSize' is set to the height and width of the input image, I. To reduce computation
time, set this value to the known maximum region size for the objects that can be detected in the
input test image.

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a
scalar value. Use the MiniBatchSize to process a large collection of image. Images are grouped
into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch
size to decrease processing time. Decrease the size to use less memory.

DetectionPreprocessing — Option to preprocess test images
'auto' (default) | 'none'

Option to preprocess the test images before performing object detection, specified as the comma-
separated pair consisting of 'DetectionPreprocessing' and one of these values:

• 'auto' — To preprocess the test image before performing object detection. The detect function
calls the preprocess function that perform these operations:

• Rescales the intensity values of the training images to the range [0, 1].
• Resizes the training images to one of the nearest network input sizes and updates the

bounding box coordinate values for accurate training. The function preserves the original
aspect ratio of the training data.

• 'none' — To perform object detection without preprocessing the test image. If you choose this
option, the datatype of the test image must be either single or double.

Data Types: char | string

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | T-by-1 cell array

Location of objects detected within the input image or images, returned as a

• M-by-4 matrix if the input is a single test image.
• T-by-1 cell array if the input is an array of test images. T is the number of test images in the array.

Each cell in the array contains a M-by-4 matrix specifying the bounding box detections.

. M is the number of bounding boxes in an image.

Each row in the matrix is a four-element vector of the form [x y width height]. This vector specifies
the upper left corner and size of that corresponding bounding box in pixels.

 detect

2-775



scores — Detection scores
M- element row vector | T-by-1 cell array

Detection confidence scores for each bounding box, returned as a

• M- element row vector if the input is a single test image.
• T-by-1 cell array if the input is an array of test images. T is the number of test images in the array.

Each cell in the array contains a M-element row vector indicating the detection scores for the
corresponding bounding box.

M is the number of bounding boxes detected in an image. A higher score indicates higher confidence
in the detection.

labels — Labels for bounding boxes
M-by-1 categorical vector | T-by-1 cell array

Labels for bounding boxes, returned as a

• M-by-1 categorical array if the input is a single test image.
• T-by-1 cell array if the input is an array of test images. T is the number of test images in the array.

Each cell in the array contains a M-by-1 categorical vector containing the names of the object
classes.

M is the number of bounding boxes detected in an image.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The roi argument to the detect method must be a code generation constant (coder.const())
and a 1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, and MaxSize name-value pairs for detect
are supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The roi argument to the detect method must be a codegen constant (coder.const()) and a
1x4 vector.

2 Objects

2-776



• Only the Threshold, SelectStrongest, MinSize, and MaxSize name-value pairs are
supported.

• The height, width, and channel of the input image must be fixed size.

See Also
predict | forward | yolov3ObjectDetector | imageDatastore | CombinedDatastore |
TransformedDatastore

Topics
“Object Detection Using YOLO v3 Deep Learning”
“Getting Started with YOLO v3”

Introduced in R2021a

 detect

2-777



preprocess
Preprocess training and test images

Syntax
outputData = preprocess(detector,trainingData)
outputImg = preprocess(detector,img)
[ ___ ,scaleInfo] = preprocess( ___ )

Description
outputData = preprocess(detector,trainingData) preprocesses the training data
trainingData before using it to train the YOLO v3 object detector. The training images and the
corresponding bounding boxes are stored in the trainingData. The preprocess function performs
these operations:

• Rescales the intensity values of the training images to the range [0, 1].
• Resizes the training images to one of the nearest network input sizes and updates the bounding

box coordinate values for accurate training. The function preserves the original aspect ratio of the
training data.

outputImg = preprocess(detector,img) preprocesses the test images img for object detection
using a YOLO v3 object detector. The preprocess function performs these operations:

• Rescales the intensity values of the test images to the range [0, 1].
• Resizes the test images to one of the nearest network input sizes and preserves the original aspect

ratio of each test image.

[ ___ ,scaleInfo] = preprocess( ___ ) returns information on the scale factor applied for
image resizing, in addition to any combination of arguments from previous syntaxes.

Note This function requires the Computer Vision Toolbox Model for YOLO v3 Object Detection. You
can install the Computer Vision Toolbox Model for YOLO v3 Object Detection from Add-On Explorer.
For more information about installing add-ons, see Get and Manage Add-Ons. To run this function,
you will require the Deep Learning Toolbox.

Examples

Preprocess Training Data Stored In Cell Array

Load a pretrained YOLO v3 object detector.

detector = yolov3ObjectDetector('tiny-yolov3-coco');

Load the training dataset into the workspace. The training data is a cell array that contains three
training images and the corresponding bounding box values and class labels.

load('trainingData.mat','trainingData');

2 Objects

2-778



Resize the training images to the nearest network input size and rescale the intensity values by using
the preprocess function.

[outputData,info] = preprocess(detector,trainingData);

Display the output images and the scale information used for resizing the images.

figure
montage({outputData{1,1},outputData{2,1},outputData{3,1}},Size=[1 3])
title("Preprocessed Output Image")

ScaleX = [info{1,1}.ScaleX;info{2,1}.ScaleX;info{3,1}.ScaleX];
ScaleY = [info{1,1}.ScaleY;info{2,1}.ScaleY;info{3,1}.ScaleY];
table(ScaleX,ScaleY)

ans=3×2 table
     ScaleX       ScaleY  
    _________    _________

    0.0072115    0.0072115
    0.0072115    0.0072115
    0.0072115    0.0072115

Display the input and the preprocessed image size and bounding box values.

bboxIn = cell2table(trainingData,'VariableNames',{'Images','Bounding Boxes','Labels'})

bboxIn=3×3 table
         Images               Bounding Boxes           Labels   
    _________________    ________________________    ___________

    {224x399x3 uint8}    220    136     35     28    {'vehicle'}
    {224x399x3 uint8}    175    126     61     45    {'vehicle'}
    {224x399x3 uint8}    108    120     45     33    {'vehicle'}

bboxOut = cell2table(outputData,'VariableNames',{'Images','Bounding Boxes','Labels'})

bboxOut=3×3 table
          Images               Bounding Boxes           Labels   

 preprocess

2-779



    __________________    ________________________    ___________

    {416x416x3 single}    229    232     36     29    {'vehicle'}
    {416x416x3 single}    182    222     64     46    {'vehicle'}
    {416x416x3 single}    112    215     47     35    {'vehicle'}

Preprocess Test Image

Load a pretrained YOLO v3 object detector.

detector = yolov3ObjectDetector('tiny-yolov3-coco');

Read a test image.

I = imread('highway.png');

Resize the test image to the network input size and rescale the intensity values by using the
preprocess function.

[outputImg,scaleInfo] = preprocess(detector,I);

Display the output image and the scale information used for resizing the image.

figure
imshow(outputImg)

2 Objects

2-780



disp(scaleInfo)

                   ScaleX: 0.7692
                   ScaleY: 0.5769
    PreprocessedImageSize: [416 416 3]

Input Arguments
detector — YOLO v3 object detector
yolov3ObjectDetector object

YOLO v3 object detector, specified as a yolov3ObjectDetector object.

trainingData — Training data for YOLO v3 object detector
N-by-3 cell array

Training data for YOLO v3 object detector, specified as a N-by-3 cell array that contains the images,
bounding boxes, and the class labels. Each row is of the form [images bounding boxes labels]. N is
the number of output layers in the network. The bounding boxes must be stored as a K-by-4 matrix of
the form [x y width height]. K is the number of object classes.

 preprocess

2-781



img — Test images
numeric array

Test images, specified as a numeric array of size M-by-N-by-C or M-by-N-by-C-by-T. M is the number
of rows, N is the number of columns, and C is the number of color channels. The value of C is 1 for
grayscale images and 3 for RGB color images. T is the number of test images in the array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
outputData — Preprocessed training data
N-by-3 cell array

Preprocessed training data, returned as a N-by-3 cell array.
Data Types: cell

outputImg — Preprocessed test images
numeric array

Preprocessed test images, returned as a numeric array of size P-by-Q-by-C or P-by-Q-by-C-by-T. P and
Q are the number of rows and columns, respectively, in the preprocessed image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

scaleInfo — Information about scale factor for image resizing
structure

Information about the scale factor for resizing the input images, returned as a structure with fields
PreprocessedImageSize, ScaleX, and ScaleY.

• PreprocessedImageSize — Size of the output resized image.
• ScaleX — Scale factor for resizing an image in the X-direction (along the rows).
• ScaleY — Scale factor for resizing an image in the Y-direction (along the columns).

Data Types: struct

See Also
predict | forward | detect | yolov3ObjectDetector

Topics
“Object Detection Using YOLO v3 Deep Learning”
“Getting Started with YOLO v3”

Introduced in R2021a

2 Objects

2-782



predict
Compute YOLO v3 deep learning network outputs for inference

Syntax
output = predict(detector,dlX)

Description
output = predict(detector,dlX) computes the YOLO v3 deep learning network outputs during
inference, given the detector and the test data. Use this function to get predictions from the output
layers of the YOLO v3 deep learning network during inference.

Note This function requires the Computer Vision Toolbox Model for YOLO v3 Object Detection. You
can install the Computer Vision Toolbox Model for YOLO v3 Object Detection from Add-On Explorer.
For more information about installing add-ons, see Get and Manage Add-Ons. To run this function,
you will require the Deep Learning Toolbox.

Examples

Compute YOLO v3 Network Predictions

Load a pretrained YOLO v3 object detector.

detector = yolov3ObjectDetector('tiny-yolov3-coco');

Load the test image for prediction.

I = imread('highway.png');

Preprocess the test image and convert the preprocessed image to a formatted dlarray object.

[Ip,info] = preprocess(detector,I);
Ip = im2single(Ip);
dlX = dlarray(Ip,'SSCB');

Compute predictions for the test image. The predict function returns the predictions for the feature
maps from the output layers of the YOLO v3 deep learning network. The first column contains the
confidence scores. Columns 2 to 5 contain the bounding box locations computed relative to the grid
cell coordinates. The sixth column contains the class probabilities for each class used during training.
The seventh and the eighth column contains the prior width and prior height of bounding boxes as
computed by the network, respectively.

output = predict(detector,dlX)

output=2×8 cell array
  Columns 1 through 3

    {13x13x3x1 dlarray}    {13x13x3x1 dlarray}    {13x13x3x1 dlarray}

 predict

2-783



    {26x26x3x1 dlarray}    {26x26x3x1 dlarray}    {26x26x3x1 dlarray}

  Columns 4 through 6

    {13x13x3x1 dlarray}    {13x13x3x1 dlarray}    {13x13x240x1 dlarray}
    {26x26x3x1 dlarray}    {26x26x3x1 dlarray}    {26x26x240x1 dlarray}

  Columns 7 through 8

    {13x13x3x1 dlarray}    {13x13x3x1 dlarray}
    {26x26x3x1 dlarray}    {26x26x3x1 dlarray}

You can then get the final detections by using the predictions for features with maximum objectness
scores. The objectness score is the product of confidence score and class probability. To compute the
exact bounding box location, you must map the predicted bounding box values to box coordinates.
Alternatively, you can use the detect function to directly get the detection results. The detect
function internally calls the predict function to compute the feature maps.

Input Arguments
detector — YOLO v3 object detector
yolov3ObjectDetector object

YOLO v3 object detector, specified as a yolov3ObjectDetector object.

dlX — Test data
formatted dlarray

Test data, specified as a formatted dlarray object. The test data can contain one or more test
images.

2 Objects

2-784



Output Arguments
output — Output predictions
N-by-8 cell array of formatted dlarray

Output predictions, returned as an N-by-8 cell array of formatted dlarray objects. N is the number
of output layers in the YOLO v3 deep learning network. Each row in the cell array is of form [conf bx
by bw bh prob tw th]. The function returns predictions as a formatted dlarray value..

Predictions Description
conf Confidence scores for each bounding box.
bx X-coordinate of the center of the predicted

bounding box relative to the location of the grid
cell.

by Y-coordinate of the center of the predicted
bounding box relative to the location of the grid
cell.

bw Width of the predicted bounding box relative to
the location of the grid cell.

bh Height of the predicted bounding boxes relative
to the location of the grid cell.

prob Class probabilities predicted for each feature in
the output feature map.

tw Prior width of the bounding boxes as computed
by the network.

th Prior height of the bounding boxes as computed
by the network.

See Also
forward | yolov3ObjectDetector | preprocess | detect

Topics
“Object Detection Using YOLO v3 Deep Learning”
“Getting Started with YOLO v3”

Introduced in R2021a

 predict

2-785



forward
Compute YOLO v3 deep learning network output for training

Syntax
features = forward(detector,dlX)
[features,activations] = forward(detector,dlX)
[features,activations,state] = forward(detector,dlX)

Description
features = forward(detector,dlX) computes the output features of the network during
training given the input data dlX.

[features,activations] = forward(detector,dlX) also computes the activations of the
network that you can use for modelling the gradient loss.

[features,activations,state] = forward(detector,dlX) also returns the updated
network state.

Note This function requires the Computer Vision Toolbox Model for YOLO v3 Object Detection. You
can install the Computer Vision Toolbox Model for YOLO v3 Object Detection from Add-On Explorer.
For more information about installing add-ons, see Get and Manage Add-Ons. To run this function,
you will require the Deep Learning Toolbox.

Examples

Compute YOLO v3 Network Output During Forward Pass

Load a pretrained YOLO v3 object detector.

detector = yolov3ObjectDetector('tiny-yolov3-coco');

Read an image to use for training.

I = imread('highway.png');

Preprocess the training data and convert the preprocessed training data to a formatted dlarray
object.

[Ip,info] = preprocess(detector,I);
Ip = im2single(Ip);
dlX = dlarray(Ip,'SSCB');

Compute the network outputs obtained during training. The forward function returns the activations
from the output layers of the YOLO v3 deep learning network. The first column contains the
confidence scores. Columns 2 to 5 contain the bounding box locations computed relative to the grid
cell coordinates. The sixth column contains the class probabilities for each class used during training.

2 Objects

2-786



The seventh and the eighth column contains the prior width and prior height of bounding boxes as
computed by the network, respectively. The output features computed during the forward pass are
used to model the gradient losses for the network.

[output,activations,state] = forward(detector,dlX)

output=2×8 cell array
  Columns 1 through 3

    {13x13x3 single}    {13x13x3 single}    {13x13x3 single}
    {26x26x3 single}    {26x26x3 single}    {26x26x3 single}

  Columns 4 through 6

    {13x13x3 single}    {13x13x3 single}    {13x13x240 single}
    {26x26x3 single}    {26x26x3 single}    {26x26x240 single}

  Columns 7 through 8

    {13x13x3 single}    {13x13x3 single}
    {26x26x3 single}    {26x26x3 single}

activations=2×8 cell array
  Columns 1 through 3

    {13x13x3x1 dlarray}    {13x13x3x1 dlarray}    {13x13x3x1 dlarray}
    {26x26x3x1 dlarray}    {26x26x3x1 dlarray}    {26x26x3x1 dlarray}

  Columns 4 through 6

    {13x13x3x1 dlarray}    {13x13x3x1 dlarray}    {13x13x240x1 dlarray}
    {26x26x3x1 dlarray}    {26x26x3x1 dlarray}    {26x26x240x1 dlarray}

  Columns 7 through 8

    {13x13x3x1 dlarray}    {13x13x3x1 dlarray}
    {26x26x3x1 dlarray}    {26x26x3x1 dlarray}

state=22×3 table
        Layer             Parameter              Value       
    ______________    _________________    __________________

    "batch_norm_1"    "TrainedMean"        {1x1x16   dlarray}
    "batch_norm_1"    "TrainedVariance"    {1x1x16   dlarray}
    "batch_norm_2"    "TrainedMean"        {1x1x32   dlarray}
    "batch_norm_2"    "TrainedVariance"    {1x1x32   dlarray}
    "batch_norm_3"    "TrainedMean"        {1x1x64   dlarray}
    "batch_norm_3"    "TrainedVariance"    {1x1x64   dlarray}
    "batch_norm_4"    "TrainedMean"        {1x1x128  dlarray}
    "batch_norm_4"    "TrainedVariance"    {1x1x128  dlarray}
    "batch_norm_5"    "TrainedMean"        {1x1x256  dlarray}
    "batch_norm_5"    "TrainedVariance"    {1x1x256  dlarray}
    "batch_norm_6"    "TrainedMean"        {1x1x512  dlarray}
    "batch_norm_6"    "TrainedVariance"    {1x1x512  dlarray}
    "batch_norm_7"    "TrainedMean"        {1x1x1024 dlarray}
    "batch_norm_7"    "TrainedVariance"    {1x1x1024 dlarray}

 forward

2-787



    "batch_norm_8"    "TrainedMean"        {1x1x256  dlarray}
    "batch_norm_8"    "TrainedVariance"    {1x1x256  dlarray}
      ⋮

Input Arguments
detector — YOLO v3 object detector
yolov3ObjectDetector object

YOLO v3 object detector, specified as a yolov3ObjectDetector object.

dlX — Training data
formatted dlarray

Training data, specified as a formatted dlarray object.

Output Arguments
features — Output features in box coordinates
N-by-8 cell array

Output features in box coordinates, returned as an N-by-8 cell array. N is the number of output layers
in the YOLO v3 deep learning network.

activations — Activations of network
N-by-8 cell array of formatted dlarray

Activations of the network, returned as an N-by-8 cell array of formatted dlarray objects. N is the
number of output layers in the YOLO v3 deep learning network.

Each row in the cell array is of form [conf bx by bw bh prob tw th]. The function returns each activation
as a formatted dlarray value.

Activations Description
conf Estimated confidence scores for each bounding

box.
bx Estimated X-coordinate value for the center of

the bounding box relative to the location of the
grid cell.

by Estimated Y-coordinate value for the center of the
bounding box relative to the location of the grid
cell.

bw Estimated width of the bounding box relative to
the location of the grid cell.

bh Estimated height of the bounding box relative to
the location of the grid cell.

prob Class probabilities estimated for each feature in
the output feature map.

2 Objects

2-788



tw Prior width of the bounding box as estimated by
the network.

th Prior height of the bounding box as estimated by
the network.

state — Updated network state
table

Updated network state, returned as a table. The network state is a table with three columns:

• Layer – Layer name, returned as a string scalar.
• Parameter – Parameter name, returned as a string scalar.
• Value – Value of parameter, returned as a numeric array object.

The network state contains information remembered by the network between iterations.

See Also
yolov3ObjectDetector | preprocess | detect

Topics
“Object Detection Using YOLO v3 Deep Learning”
“Getting Started with YOLO v3”

Introduced in R2021a

 forward

2-789



yolov4ObjectDetector
Detect objects using YOLO v4 object detector

Description
The yolov4ObjectDetector object creates a you only look once version 4 (YOLO v4) one-stage
object detector for detecting objects in an image. Using this object, you can:

• Create a pretrained YOLO v4 object detector by using YOLO v4 deep learning networks trained on
COCO dataset.

• Create a custom YOLO v4 object detector by using any pretrained or untrained YOLO v4 deep
learning network.

Creation

Syntax
detector = yolov4ObjectDetector(name)

detector = yolov4ObjectDetector(name,classes,aboxes)
detector = yolov4ObjectDetector(net,classes,aboxes)
detector = yolov4ObjectDetector(baseNet,classes,
aboxes,'DetectionNetworkSource',layer)

Description
Pretrained YOLO v4 Object Detector

detector = yolov4ObjectDetector(name) creates a pretrained YOLO v4 object detector by
using YOLO v4 deep learning networks trained on a COCO dataset.

Custom YOLO v4 Object Detector

detector = yolov4ObjectDetector(name,classes,aboxes) creates a pretrained YOLO v4
object detector and configures it to perform transfer learning using a specified set of object classes
and anchor boxes. For optimal results, you must train the detector on new training images before
performing detection. Use the trainYOLOv4ObjectDetector function for training the detector.

detector = yolov4ObjectDetector(net,classes,aboxes) creates an object detector by
using the deep learning network net.

If net is a pretrained YOLO v4 deep learning network, the function creates a pretrained YOLO v4
object detector. The classes and aboxes are values used for training the network.

If net is an untrained YOLO v4 deep learning network, the function creates a YOLO v4 object
detector to use for training and inference. classes and aboxes specify the object classes and the
anchor boxes, respectively, for training the YOLO v4 network.

2 Objects

2-790



Use the trainYOLOv4ObjectDetector function to train the network before performing object
detection.

detector = yolov4ObjectDetector(baseNet,classes,
aboxes,'DetectionNetworkSource',layer) creates a YOLO v4 object detector by adding
detection heads to a base network, baseNet.

The function adds detection heads to the specified feature extraction layers layer in the base
network. To specify the names of the feature extraction layers, use the name-value argument
'DetectionNetworkSource',layer.

If baseNet is a pretrained deep learning network, the function creates a YOLO v4 object detector
and configures it to perform transfer learning with the specified object classes and anchor boxes.

If baseNet is an untrained deep learning network, the function creates a YOLO v4 object detector
and configures it for object detection. classes and aboxes specify the object classes and the anchor
boxes, respectively, for training the YOLO v4 network.

You must train the detector on a training dataset before performing object detection. Use the
trainYOLOv4ObjectDetector function for training the detector.

detector = yolov4ObjectDetector( ___ ,Name=Value) sets the InputSize on page 2-
0  and ModelName on page 2-0  properties of the object detector by using name, value pair
arguments. Name is the property name and Value is the corresponding value. You must enclose each
property name in quotes.

Note To use the pretrained YOLO v4 object detection networks trained on COCO dataset, you must
install the Computer Vision Toolbox Model for YOLO v4 Object Detection. You can download and
install the Computer Vision Toolbox Model for YOLO v4 Object Detection from Add-On Explorer. For
more information about installing add-ons, see Get and Manage Add-Ons. To run this function, you
will require the Deep Learning Toolbox.

Input Arguments

name — Name of pretrained YOLO v4 deep learning network
"csp-darknet53-coco" | "tiny-yolov4-coco"

Name of the pretrained YOLO v4 deep learning network, specified as one of these:

• "csp-darknet53-coco" — A pretrained YOLO v4 deep learning network created using CSP-
DarkNet-53 as the base network and trained on COCO dataset.

• "tiny-yolov4-coco" — A pretrained YOLO v4 deep learning network created using a small
base network and trained on COCO dataset.

Data Types: char | string

classes — Names of object classes
string vector | cell array of character vectors | categorical vector

Names of object classes for training the detector, specified as a string vector, cell array of character
vectors, or categorical vector. This argument sets the ClassNames property of the
yolov4ObjectDetector object.

 yolov4ObjectDetector

2-791



Data Types: char | string | categorical

aboxes — Anchor boxes
N-by-1 cell array

Anchor boxes for training the detector, specified as an N-by-1 cell array. N is the number of output
layers in the YOLO v4 deep learning network. Each cell contains an M-by-2 matrix, where M is the
number of anchor boxes in that layer. Each row in the M-by-2 matrix denotes the size of an anchor
box in the form [height width].

The first element in the cell array specifies the anchor boxes to associate with the first output layer,
the second element in the cell array specifies the anchor boxes to associate with the second output
layer, and so on. For accurate detection results, specify large anchor boxes for the first output layer
and small anchor boxes for the last output layer. That is, the anchor box sizes must decrease for each
output layer in the order in which the layers appear in the YOLO v4 deep learning network.

This argument sets the AnchorBoxes property of the yolov4ObjectDetector object.
Data Types: cell

net — YOLO v4 deep learning network
dlnetwork object

YOLO v4 deep learning network, specified as a dlnetwork object. The input network can be either
an untrained or a pretrained deep learning network. The input network must have an image input
layer and the Normalization property value of the image input layer must be set to "None".

baseNet — Base network
dlnetwork object

Base network for creating the YOLO v4 deep learning network, specified as a dlnetwork object. The
network can be either an untrained or a pretrained deep learning network. The input network must
have an image input layer and the Normalization property value of the image input layer must be
set to "None".

layer — Names of feature extraction layers
cell array of character vectors | string array

Names of the feature extraction layers in the base network, specified as a cell array of character
vectors, or a string array. The function creates a YOLO v4 network by adding detection head layers to
the output of the feature extraction layers in the base network.
Example: layer = {'conv10','fire9-concat','fire8-concat'}
Example: layer = ["conv10","fire9-concat","fire8-concat"]
Data Types: char | string | cell

Properties
Network — YOLO v4 deep learning network
dlnetwork object

YOLO v4 deep learning network to use for object detection, stored as a dlnetwork object.

2 Objects

2-792



ClassNames — Names of object classes
categorical vector

Names of object classes to detect, stored as a categorical vector. You can set this property by using
the input argument classes.

AnchorBoxes — Set of anchor boxes
N-by-1 cell array

This property is read-only.

Set of anchor boxes, stored as a N-by-1 cell array. Each element in the cell is a M-by-2 matrix. Each
row in the M-by-2 matrix denotes the size of the anchor box in the form of [height width]. M denotes
the number of anchor boxes. N is the number of output layers in the YOLO v4 deep learning network
for which the anchor boxes are defined. The first element in the cell array specifies the anchor boxes
for the first output layer, the second element in the cell array specifies the anchor boxes for the
second output layer, and so on. You must specify same number of anchor boxes for each of the output
layer.

You can set this property by using the input argument aboxes.

InputSize — Image size used for training
vector

This property is read-only.

Image size used for training, stored as a vector of form [height width] or [height width channels]. To
set this property, specify it at object creation. The size of the training images must be a multiple of
32.

For example, detector = yolov4ObjectDetector(net,classes,aboxes,InputSize=[220
220]).

ModelName — Name for object detector
' ' (default) | character vector | string scalar

Name for the object detector, stored as a character vector or string scalar. To set this property,
specify it at object creation.

For example, yolov4ObjectDetector(net,classes,aboxes,ModelName="customDetector")
sets the name for the object detector to "customDetector".

Object Functions
detect Detect objects using YOLO v4 object detector

Examples

Create Pretrained YOLO v4 Object Detector

Specify the name of a pretrained YOLO v4 deep learning network.

name = "tiny-yolov4-coco";

 yolov4ObjectDetector

2-793



Create YOLO v4 object detector by using the pretrained YOLO v4 network.

detector = yolov4ObjectDetector(name);

Display and inspect the properties of the YOLO v4 object detector.

disp(detector)  

  yolov4ObjectDetector with properties:

        Network: [1×1 dlnetwork]
    AnchorBoxes: {2×1 cell}
     ClassNames: {80×1 cell}
      InputSize: [416 416 3]
      ModelName: 'tiny-yolov4-coco'

Use analyzeNetwork to display the YOLO v4 network architecture and get information about the
network layers.

analyzeNetwork(detector.Network)

Detect objects in an unknown image by using the pretrained YOLO v4 object detector.

img = imread("highway.png");
[bboxes,scores,labels] = detect(detector,img);

Display the detection results.

detectedImg = insertObjectAnnotation(img,"Rectangle",bboxes,labels);
figure
imshow(detectedImg)

2 Objects

2-794



Create Custom YOLO v4 Object Detector

This example shows how to create a YOLO v4 object detection network by using a pretrained ResNet
-50 convolutional neural network as the base network.

Load a pretrained deep learning network to use as the base network. This example uses ResNet-50
pretrained network as the base network. For information about other available pretrained networks,
see “Pretrained Deep Neural Networks” (Deep Learning Toolbox).

basenet = resnet50;

Use analyzeNetwork to display the architecture of the base network.

analyzeNetwork(basenet)

The first layer in the base network is the image input layer. Inspect the property of the image input
layer in the base network.

basenet.Layers(1)

ans = 
  ImageInputLayer with properties:

                      Name: 'input_1'
                 InputSize: [224 224 3]

   Hyperparameters
          DataAugmentation: 'none'
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
                      Mean: [224×224×3 single]

To create a YOLO v4 deep learning network you must make these changes to the base network:

1 Set the Normalization property of the ImageInputLayer in the base network to 'none'.
2 Remove the fully connected classification layer.

Define an image input layer with Normalization property value as 'none' and other property values
same as that of the base network.

imageSize = basenet.Layers(1).InputSize;
layerName = basenet.Layers(1).Name;
newinputLayer = imageInputLayer(imageSize,'Normalization','none','Name',layerName);

Extract the layer graph of the base network to use for creating YOLO v4 deep learning network..

lgraph = layerGraph(basenet);

Remove the fully connected layer in the base network.

lgraph = removeLayers(lgraph,'ClassificationLayer_fc1000');

Replace the image input layer in the base network with the new input layer.

lgraph = replaceLayer(lgraph,layerName,newinputLayer);

Create a dlnetwork object from the layer

 yolov4ObjectDetector

2-795



dlnet = dlnetwork(lgraph);

Specify the names of the feature extraction layers in the base network to use as the detection heads.

featureExtractionLayers = ["activation_22_relu","activation_40_relu"];

Specify the class names and anchor boxes to use for training the YOLO v4 deep learning network
created using resnet50 as the base network.

classes = {'car','person'};
anchorBoxes = {[122,177;223,84;80,94];...
               [111,38;33,47;37,18]};

Create a YOLO v4 object detector by using the specified base network and the detection heads.

detector = yolov4ObjectDetector(dlnet,classes,anchorBoxes,DetectionNetworkSource=featureExtractionLayers);

Display and inspect the properties of the YOLO v4 object detector.

disp(detector) 

  yolov4ObjectDetector with properties:

        Network: [1×1 dlnetwork]
    AnchorBoxes: {2×1 cell}
     ClassNames: {2×1 cell}
      InputSize: [224 224 3]
      ModelName: ''

Use analyzeNetwork to display the YOLO v4 network architecture and get information about the
network layers.

analyzeNetwork(detector.Network)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The roi argument to the detect method must be a code generation constant (coder.const())
and a 1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize name-value
pairs for detect are supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

• The roi argument to the detect method must be a code generation constant (coder.const())
and a 1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize name-value
pairs for detect are supported.

For information about how to create a yolov4ObjectDetector object for code generation, see
“Load Pretrained Networks for Code Generation” (MATLAB Coder).

2 Objects

2-796



See Also
trainYOLOv4ObjectDetector

Topics
“Object Detection Using YOLO v4 Deep Learning”
“Getting Started with YOLO v4”

Introduced in R2022a

 yolov4ObjectDetector

2-797



detect
Detect objects using YOLO v4 object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[bboxes,scores,labels] = detect(detector,I)

detectionResults = detect(detector,ds)

[ ___ ] = detect( ___ ,roi)
[ ___ ] = detect( ___ ,Name=Value)

Description
bboxes = detect(detector,I) detects objects within a single image or an array of images, I,
using a you only look once version 4 (YOLO v4) object detector, detector. The detect function
automatically resizes and rescales the input image to match that of the images used for training the
detector. The locations of objects detected in the input image are returned as a set of bounding boxes.

[bboxes,scores] = detect(detector,I) also returns the class-specific confidence scores for
each bounding box.

[bboxes,scores,labels] = detect(detector,I) returns a categorical array of labels
assigned to the bounding boxes. The labels for object classes are defined during training.

detectionResults = detect(detector,ds) detects objects within all the images returned by
the read function of the input datastore ds.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region roi, in addition
to any combination of arguments from previous syntaxes.

[ ___ ] = detect( ___ ,Name=Value) specifies options using one or more name, value arguments.

Note To use the pretrained YOLO v4 object detection networks trained on COCO dataset, you must
install the Computer Vision Toolbox Model for YOLO v4 Object Detection. You can download and
install the Computer Vision Toolbox Model for YOLO v4 Object Detection from Add-On Explorer. For
more information about installing add-ons, see Get and Manage Add-Ons. To run this function, you
will require the Deep Learning Toolbox.

Examples

Detect Objects Using Pretrained YOLO v4 Object Detector

Specify the name of a pretrained YOLO v4 deep learning network.

name = 'tiny-yolov4-coco';

2 Objects

2-798



Create YOLO v4 object detector by using the pretrained YOLO v4 network.

detector = yolov4ObjectDetector(name);

Detect objects in an unknown image by using the pretrained YOLO v4 object detector.

img = imread('sherlock.jpg');
img = im2single(imresize(img,0.5));
[bboxes,scores,labels] = detect(detector,img,Threshold=0.4)

bboxes = 1×4 single row vector

   80.9433   31.6083  398.4628  288.3917

scores = single
    0.4281

labels = categorical
     dog 

Display the detection results.

detectedImg = insertObjectAnnotation(img,'Rectangle',bboxes,labels);
figure
imshow(detectedImg)

 detect

2-799



Detect Objects in Image Datastore by Using YOLO v4 Detector

Load a pretrained YOLO v4 object detector.

detector = yolov4ObjectDetector("csp-darknet53-coco");

Read the test data and store as an image datastore object.

location = fullfile(matlabroot,'toolbox','vision','visiondata','vehicles');
imds = imageDatastore(location);

Detect objects in the test dataset. Set the Threshold parameter value to 0.4 and MiniBatchSize
parameter value to 32.

detectionResults = detect(detector,imds,Threshold=0.4,MiniBatchSize=32);

Read an image from the test dataset and extract the corresponding detection results.

num = 20;
I = readimage(imds,num);
bboxes = detectionResults.Boxes{num};
labels = detectionResults.Labels{num};
scores = detectionResults.Scores{num};

Perform non-maximal suppression to select strongest bounding boxes from the overlapping clusters.
Set the OverlapThreshold parameter value to 0.5.

[bboxes,scores,labels] = selectStrongestBboxMulticlass(bboxes,...
                              scores,labels,OverlapThreshold=0.5);

Display the detection results.

results = table(bboxes,labels,scores)

results=2×3 table
                   bboxes                   labels    scores 
    ____________________________________    ______    _______

    17.818    69.966    23.459    11.381     car      0.90267
    75.206    66.011    26.134    23.541     car      0.58296

detectedImg = insertObjectAnnotation(I,"Rectangle",bboxes,labels);
figure
imshow(detectedImg)

2 Objects

2-800



Detect Objects Within ROI by Using YOLO v4 Detector

Load a pretrained YOLO v4 object detector.

detector = yolov4ObjectDetector("csp-darknet53-coco");

Read a test image.

img = imread("stopsign.jpg");

Specify a region of interest (ROI) within the test image.

roiBox = [250 60 500 300];

Detect objects within the specified ROI.

[bboxes,scores,labels] = detect(detector,img,roiBox);

Display the ROI and the detection results.

img = insertObjectAnnotation(img,"Rectangle",roiBox,"ROI",Color="blue");
detectedImg = insertObjectAnnotation(img,"Rectangle",bboxes,labels);
figure
imshow(detectedImg)

 detect

2-801



Input Arguments
detector — YOLO v4 object detector
yolov4ObjectDetector object

YOLO v4 object detector, specified as a yolov4ObjectDetector object.

I — Test images
numeric array

Test images, specified as a numeric array of size H-by-W-byC or H-by-W-byC-by-T. Images must be
real, nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• T: Number of test images in the array. The function computes the object detection results for each

test image in the array.

2 Objects

2-802



Data Types: uint8 | uint16 | int16 | double | single

ds — Test images
ImageDatastore object | CombinedDatastore object | TransformedDatastore object

Test images, specified as a ImageDatastore object, CombinedDatastore object, or
TransformedDatastore object containing full filenames of the test images. The images in the
datastore must be grayscale, or RGB images.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: detect(detector,I,Threshold=0.25)

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a scalar in the range [0, 1]. Detections that have scores less than
this threshold value are removed. To reduce false positives, increase this value.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as true or false.

• true — Returns the strongest bounding box per object. The method calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

By default, the selectStrongestBboxMulticlass function is called as follows

 selectStrongestBboxMulticlass(bboxes,scores,...
                               RatioType="Union",...
                               OverlapThreshold=0.5);

• false — Return all the detected bounding boxes. You can then write your own custom method to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[1 1] (default) | vector of the form [height width]

Minimum region size, specified as a vector of the form [height width]. Units are in pixels. The
minimum region size defines the size of the smallest region containing the object.

By default, MinSize is 1-by-1.

 detect

2-803



MaxSize — Maximum region size
size(I) (default) | vector of the form [height width]

Maximum region size, specified as a vector of the form [height width]. Units are in pixels. The
maximum region size defines the size of the largest region containing the object.

By default, MaxSize is set to the height and width of the input image, I. To reduce computation time,
set this value to the known maximum region size for the objects that can be detected in the input test
image.

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as a scalar value. Use the MiniBatchSize to process a large
collection of image. Images are grouped into minibatches and processed as a batch to improve
computation efficiency. Increase the minibatch size to decrease processing time. Decrease the size to
use less memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA-

enabled NVIDIA GPU. If a suitable GPU is not available, the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'cpu' — Use the CPU.

Acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.

• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU. If Parallel
Computing Toolbox or a suitable GPU is not available, then the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB applies a number of compatible
optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

2 Objects

2-804



The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available for input data specified as a numeric array, cell array of numeric
arrays, table, or image datastore. No other types of datastore support the 'mex' option.

The 'mex' option is only available when you are using a GPU. You must also have a C/C++ compiler
installed. For setup instructions, see “MEX Setup” (GPU Coder).

'mex' acceleration does not support all layers. For a list of supported layers, see “Supported Layers”
(GPU Coder).

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | T-by-1 cell array

Location of objects detected within the input image or images, returned as a

• M-by-4 matrix if the input is a single test image.
• T-by-1 cell array if the input is an array of test images. T is the number of test images in the array.

Each cell in the array contains a M-by-4 matrix specifying the bounding box detections.

. M is the number of bounding boxes in an image.

Each row in the matrix is a four-element vector of the form [x y width height]. This vector specifies
the upper left corner and size of that corresponding bounding box in pixels.

scores — Detection scores
M- element row vector | T-by-1 cell array

Detection confidence scores for each bounding box, returned as a

• M- element row vector if the input is a single test image.
• T-by-1 cell array if the input is an array of test images. T is the number of test images in the array.

Each cell in the array contains a M-element row vector indicating the detection scores for the
corresponding bounding box.

M is the number of bounding boxes detected in an image. A higher score indicates higher confidence
in the detection.

labels — Labels for bounding boxes
M-by-1 categorical vector | T-by-1 cell array

Labels for bounding boxes, returned as a

• M-by-1 categorical array if the input is a single test image.
• T-by-1 cell array if the input is an array of test images. T is the number of test images in the array.

Each cell in the array contains a M-by-1 categorical vector containing the names of the object
classes.

M is the number of bounding boxes detected in an image.

 detect

2-805



detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The roi argument to the detect method must be a code generation constant (coder.const())
and a 1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize name-value
pairs for detect are supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

• The roi argument to the detect method must be a code generation constant (coder.const())
and a 1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize name-value
pairs for detect are supported.

For information about how to create a yolov4ObjectDetector object for code generation, see
“Load Pretrained Networks for Code Generation” (MATLAB Coder).

See Also
forward | imageDatastore | CombinedDatastore | TransformedDatastore |
yolov4ObjectDetector | trainYOLOv4ObjectDetector

Topics
“Object Detection Using YOLO v4 Deep Learning”

Introduced in R2022a

2 Objects

2-806



vision.ChromaResampler
Package: vision

Downsample or upsample chrominance components of images

Description
To downsample or upsample chrominance components of images:

1 Create the vision.ChromaResampler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
resampler = vision.ChromaResampler
gammaCorr = vision.ChromaResampler(Name,Value)

Description

resampler = vision.ChromaResampler returns a chroma resampling object, Cresampler, that
downsamples or upsamples chroma components of a YCbCr signal to reduce the bandwidth and
storage requirements.

gammaCorr = vision.ChromaResampler(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, resampler =
vision.ChromaResampler('InterpolationFilter','Linear')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Resampling — Resampling format
'4:4:4 to 4:2:2' (default) | resample format

Resampling format, specified as one of the following:

'4:4:4 to 4:2:2'
'4:4:4 to 4:2:0 (MPEG1)'

 vision.ChromaResampler

2-807



'4:4:4 to 4:2:0 (MPEG2)'
'4:4:4 to 4:1:1'
'4:2:2 to 4:2:0 (MPEG1)'
'4:2:2 to 4:2:0 (MPEG2)'

To upsample the chrominance components of images, set this property to one of the following:

'4:2:2 to 4:4:4'
'4:2:0 (MPEG1) to 4:4:4'
'4:2:0 (MPEG2) to 4:4:4'
'4:1:1 to 4:4:4'
'4:2:0 (MPEG1) to 4:2:2'
'4:2:0 (MPEG2) to 4:2:2'

InterpolationFilter — Method used to approximate missing values
Pixel replication (default) | Linear

Method used to approximate missing values, specified as Pixel replication or Linear. The
default is Linear. When you set this property to Linear, the object uses linear interpolation to
calculate the missing values. When you set this property to Pixel replication, the object
replicates the chrominance values of the neighboring pixels to create the upsampled image. This
property applies when you upsample the chrominance values.

AntialiasingFilterSource — Lowpass filter used to prevent aliasing
Auto (default) | Property | None

Lowpass filter used to prevent aliasing, specified as Auto, Property , or None. When you set this
property to Auto, the object uses a built-in lowpass filter. When you set this property to Property,
the coefficients of the filters are specified by the HorizontalFilterCoefficients and
VerticalFilterCoefficients properties. When you set this property to None, the object does not
filter the input signal. This property applies when you downsample the chrominance values.

HorizontalFilterCoefficients — Horizontal filter coefficients
[0.2 0.6 0.2] (default) | three-element vector

Horizontal filter coefficients, specified as a three-element vector. This property applies when you set
the Resampling property to one of [4:4:4 to 4:2:2] | [4:4:4 to 4:2:0 (MPEG1)] | [4:4:4
to 4:2:0 (MPEG2)] | [4:4:4 to 4:1:1] and the AntialiasingFilterSource property to
Property.

VerticalFilterCoefficients — Specify the filter coefficients to apply to the input signal
[0.5 0.5] (default) | two-element vector

Specify the filter coefficients to apply to the input signal, specifie as a two-element vector. This
property applies when you set the Resampling property to one of [4:4:4 to 4:2:0 (MPEG1)] |
[4:4:4 to 4:2:0 (MPEG2)] | [4:2:2 to 4:2:0 (MPEG1)] | [4:2:2 to 4:2:0 (MPEG2)]
and the AntialiasingFilterSource property to Property.

TransposedInput — Input is row-major format
false (default) | true

Input is row-major format , specified as true or false. Set this property to true when the input
contains data elements from the first row first, then data elements from the second row second, and
so on through the last row. Otherwise, the object assumes that the input data is stored in column-
major format.

2 Objects

2-808



Usage

Syntax
[Cb1,Cr1] = resampler(Cb,Cr)

Description

[Cb1,Cr1] = resampler(Cb,Cr) resamples the input chrominance components Cb and Cr and
returns Cb1 and Cr1, as the resampled outputs.

Input Arguments

Cb1 — Chrominance component
matrix

Chrominance component of an image, specified as a matrix.

Cr2 — Chrominance component
matrix

Chrominance component of an image, specified as a matrix.

Output Arguments

Cb1 — Resampled chrominance component
same as input (default)

Chrominance component of an image, returned as a matrix.

Cr1 — Resampled chrominance component
same as input (default)

Chrominance component of an image, returned as a matrix.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 vision.ChromaResampler

2-809



Resample Chrominance Components of Image

Create a resampler object

resampler = vision.ChromaResampler;

Read an RGB image and convert it to YCbCr.

imageRGB = imread('peppers.png');
imageYCbCr = rgb2ycbcr(imageRGB);

Resample the Cb and Cr chrominance components.

[Cb,Cr] = resampler(imageYCbCr(:,:,2), imageYCbCr(:,:,3));

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
rgb2ycbcr

Introduced in R2012a

2 Objects

2-810



groundTruthDataSource
Object for storing ground truth data sources

Description
The groundTruthDataSource object defines the source of ground truth data. Use this object to
specify a data source for the groundTruth object. To label the data source, load the
groundTruthDataSource object into a labeling app.

• The Image Labeler supports data sources for collections of images.
• The Video Labeler supports data sources for videos and image sequences. This app also supports

custom data sources.

Creation

Syntax
gtSource = groundTruthDataSource(imds)

gtSource = groundTruthDataSource(imageFiles)

gtSource = groundTruthDataSource(videoName)

gtSource = groundTruthDataSource(imageSeqFolder)
gtSource = groundTruthDataSource(imageSeqFolder,timestamps)

gtSource = groundTruthDataSource(sourceName,readerFcn,timestamps)

Description
Image Datastore Source

gtSource = groundTruthDataSource(imds) returns a ground truth data source object for an
imageDatastore specified by imds.

Collection of Images Source

gtSource = groundTruthDataSource(imageFiles) returns a ground truth data source object
for a collection of images specified by imageFiles. Images must be in a file format readable by
imread.

Video File Source

gtSource = groundTruthDataSource(videoName) returns a ground truth data source object
for a video file specified by videoName. Videos must be in a file format readable by VideoReader.

Video as a Sequence of Images Source

gtSource = groundTruthDataSource(imageSeqFolder) returns a ground truth data source
object for an image sequence located in the folder specified by imageSeqFolder.

 groundTruthDataSource

2-811



gtSource = groundTruthDataSource(imageSeqFolder,timestamps) returns a ground truth
data source object for an image sequence with a corresponding timestamp for each image contained
in the specified folder. timestamps sets the TimeStamps property.

Custom Data Source

gtSource = groundTruthDataSource(sourceName,readerFcn,timestamps) returns a
ground truth data source object by using the custom reader function handle, readerFcn.
sourceName sets the Source property and timestamps set the TimeStamps property. The custom
reader function loads an image from sourceName that corresponds to the current timestamp
specified in the duration vector timestamps.

Input Arguments

imds — Image datastore
imagedatastore object

Image datastore, specified as an imageDatastore object.

imageFiles — Image file names
string array | cell array of character vectors

Image file names, specified as a string array or a cell array of character vectors. Images must be in a
file format readable by imread. For a list of the supported image file formats, see imformats.

videoName — Name of video file
string scalar | character vector

Name of video file, specified as a string scalar or character vector. Videos must be in a file format
readable by VideoReader. For a list of the supported video file formats, see
VideoReader.getFileFormats. If your video format is not supported, specify a custom reader
function, readerFcn.

imageSeqFolder — Image sequence folder
string scalar | character vector

Image sequence folder, specified as a string scalar or a character vector. The image files name
extensions must be supported by imformats. If your video format is not supported, specify a custom
reader function, readerFcn.

The images are loaded in the order returned by the dir command.

readerFcn — Custom reader function
function handle

Custom reader function, specified as a function handle. The custom reader function must load an
image from a source at a specified timestamp by using this syntax:

outputImage = readerFcn(sourceName,currentTimestamp)

• readerFcn is the name of your custom reader function.
• sourceName is the name of the data source.
• currentTimestamp is the current timestamp, as specified by the input vector timestamp.

2 Objects

2-812



The outputImage returned by the custom function must be a grayscale or RGB image in any format
supported by imshow. For more information, see “Use Custom Image Source Reader for Labeling”.

Properties
TimeStamps — Timestamps of video or image sequence
duration vector

This property is read-only.

Timestamps of video or image sequence, specified as a duration vector.

• For a video file, Timestamps is automatically populated with the timestamps that are present for
the video frames.

• For an image sequence or custom reader, Timestamps is populated with the values in the input
duration vector timestamps.

• For an image collection, the TimeStamps property remains empty.

.

Source — Source of ground truth data
character vector | cell array of character vectors

This property is read-only.

Source of ground truth data, specified as a character vector or cell array of character vectors. The
source name can refer to image file names, a video file name, image sequence file names, or custom
data source names.

Examples

Create Data Source From Image Datastore

Load image collection file names.

imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','bookCovers');
imds = imageDatastore(imageDir);

Create a data source from an image datastore.

dataSource = groundTruthDataSource(imds);

Read and display an image from the datastore.

I = read(dataSource.Source);
figure,imshow(I)

 groundTruthDataSource

2-813



Create a Ground Truth Data Source From a Video File

Use the groundTruthDataSource object to create a data source.

Read a video file and create a data source.

videoName = 'vipunmarkedroad.avi';
dataSource = groundTruthDataSource(videoName)

dataSource = 
groundTruthDataSource for a video file with properties

        Source: ...tlab\toolbox\vision\visiondata\vipunmarkedroad.avi
    TimeStamps: [84x1 duration]

Create a VideoReader to read the video frames.

reader = VideoReader(videoName);

Read the 5th frame in the video and display

2 Objects

2-814



 timeStamp = seconds(dataSource.TimeStamps(5));
 reader.CurrentTime = timeStamp;
 I = readFrame(reader);
 
 figure
 imshow(I)

Create Data Source From Image Sequence

Create a ground truth data source from a an image sequence stored in a specified folder.

Specify the folder containing a sequence of images.

imageDir = fullfile(matlabroot,'toolbox','vision',...
        'visiondata','building');

Create a data source for the images that are in the imageDir folder.

    dataSource = groundTruthDataSource(imageDir)

dataSource = 
groundTruthDataSource for a video as an image sequence with properties

                      Source: {
                              'B:\matlab\toolbox\vision\visiondata\building\building1.JPG';
                              'B:\matlab\toolbox\vision\visiondata\building\building2.JPG';
                              'B:\matlab\toolbox\vision\visiondata\building\building3.JPG'
                               ... and 2 more
                              }
                  TimeStamps: [5x1 duration]

Read the 5th frame in the sequence.

 groundTruthDataSource

2-815



    I = imread(dataSource.Source{5});
    figure
    imshow(I)

Create Data Source Using Custom Reader

Create a ground truth data source by using a custom reader function.

Specify an image folder containing a sequence of road images.

imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','building');

Use an image datastore as the custom data source.

imgDataStore = imageDatastore(imgFolder);

Write a reader function, readerFcn, to read images from the datastore. The first input argument,
sourceName, is not used. The second input argument, currentTimestamp, is the current
timestamp. The function converts currentTimestamp from a duration scalar to a 1-based index
suitable for reading images from the datastore.

2 Objects

2-816



readerFcn = @(~,idx)readimage(imgDataStore,seconds(idx));

Create a data source for the images in the image folder by using the custom reader function.

dataSource = groundTruthDataSource(imgFolder,readerFcn,1:5)

dataSource = 
groundTruthDataSource for a custom data source with properties

        Source: B:\matlab\toolbox\vision\visiondata\building
    TimeStamps: [5x1 duration]

Read the fifth frame in the sequence.

I = readerFcn(imgFolder,seconds(5));
figure
imshow(I)

Tips
• groundTruth objects for video-based groundTruthDataSource objects rely on the video

reading capabilities of your operating system. A groundTruth object created using a video data

 groundTruthDataSource

2-817



source remains consistent only for the same platform that was used to create it. To create a
platform-specific groundTruth object, convert the video into a sequence of images.

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions
groundTruth | labelType | objectDetectorTrainingData | imageDatastore | duration

Topics
“Get Started with the Image Labeler”
“Get Started with the Video Labeler”
“Use Custom Image Source Reader for Labeling”
“Create Automation Algorithm for Labeling”
“Training Data for Object Detection and Semantic Segmentation”

Introduced in R2017a

2 Objects

2-818



groundTruth
Ground truth label data

Description
The groundTruth object contains information about the data source, label definitions, and marked
label annotations for a set of ground truth labels. You can export or import a groundTruth object
from the Image Labeler and Video Labeler apps.

• To create training data for an object detector from arrays of groundTruth objects, use the
objectDetectorTrainingData function.

• To create training data for a semantic segmentation network from arrays of groundTruth
objects, use the pixelLabelTrainingData function.

Creation
To export a groundTruth object from a labeling app, on the app toolstrip, select Export Labels > To
Workspace. The app exports the object to the MATLAB workspace. To create a groundTruth object
programmatically, use the groundTruth function (described here).

Syntax
gTruth = groundTruth(dataSource,labelDefs,labelData)

Description

gTruth = groundTruth(dataSource,labelDefs,labelData) returns an object containing
ground truth labels that can be imported into the Image Labeler and Video Labeler apps.

• dataSource specifies the source of the ground truth data and sets the DataSource property.
• labelDefs specifies the label, sublabel, and attribute definitions of the ground truth data and

sets the LabelDefinitions property.
• labelData specifies the identifying information, position, and timestamps for marked labels and

sets the LabelData property.

Properties
DataSource — Source of ground truth data
groundTruthDataSource object

Source of ground truth data, specified as a groundTruthDataSource object. The object contains
information that describes the video, image sequence, or custom data source from which ground
truth data was labeled.

To access images from the original data source, use VideoReader or imageDatastore. You can also
use a custom read function. For more details, see “Use Custom Image Source Reader for Labeling”.

 groundTruth

2-819



LabelDefinitions — Label definitions
table

This property is read-only.

Label definitions, specified as a table. To create this table, use one of these options.

• In one of the labeling apps, create label definitions, and then export them as part of a
groundTruth object.

• Use a labelDefinitionCreator object to generate a label definitions table. If you save this
table to a MAT-file, you can then load the label definitions into a labeling app session by selecting
Load > Label Definitions from the app toolstrip.

• Create the label definitions table at the MATLAB command line.

This table describes the required and optional columns of the table specified in the
LabelDefinitions property.

Column Description Required or
Optional

Name Strings or character vectors specifying the name of each label
definition.

Required

Type labelType enumerations that specify the type of each label
definition, such as Rectangle or Scene.

Required

2 Objects

2-820



Column Description Required or
Optional

LabelColor 1-by-3 row vectors of RGB triplets that specify the colors of the
label definitions. Values are in the range [0, 1]. The color yellow
(RGB triplet [1 1 0]) is reserved for the color of selected labels in
the labeling apps.

Optional

When you
define labels in
a labeling app,
you must
specify a color.
Therefore, an
exported label
definitions
table always
includes this
column.

When you
create label
definitions
using the
labelDefini
tionCreator
object without
specifying
colors, the
returned label
definitions
table includes
this column,
but all column
values are
empty.

 groundTruth

2-821



Column Description Required or
Optional

PixelLabelI
D

Scalars, column vectors, or M-by-3 matrices of integer-valued label
IDs. PixelLabelID specifies the pixel label values used to
represent a label definition. Pixel label ID values must be between
0 and 255.

Optional

When you
define pixel
labels in a
labeling app or
the
labelDefini
tionCreator
object, the
generated
label
definitions
table includes
this column.

When creating
a label
definitions
table at the
MATLAB
command line,
if you set Type
to
labelType.P
ixelLabel for
any label, then
this column is
required.

2 Objects

2-822



Column Description Required or
Optional

Group Strings or character vectors specifying the group to which each
label definition belongs.

Optional

If you create
the label
definitions
table at the
MATLAB
command line,
you do not
need to
include a
Group column.

If you export
label
definitions
from a labeling
app or create
them using a
labelDefini
tionCreator
object, the
label
definitions
table includes
this column,
even if you did
not specify
groups. The
app assigns
each label
definition a
Group value of
'None'.

 groundTruth

2-823



Column Description Required or
Optional

Description Strings or character vectors that describe each label definition. Optional

If you create
the label
definitions
table at the
MATLAB
command line,
you do not
need to
include a
Description
column.

If you export
label
definitions
from a labeling
app or create
them using a
labelDefini
tionCreator
object, the
label
definitions
table includes
this column,
even if you did
not specify
descriptions.
The
Description
for these label
definitions is
an empty
character
vector.

Hierarchy Structures containing sublabel and attribute data for each label
definition. For an example of the Hierarchy format, see “Get
Started with the Image Labeler” or “Get Started with the Video
Labeler”.

Optional

In labeling
apps, when
you define
sublabels or
attributes, the
exported
groundTruth
object includes
this column.

2 Objects

2-824



For example, consider a table with label definitions named Sky, Vegetation, Lanes, StopSign, and
Vehicle, and that was exported from the Video Labeler app.

• The label definitions include pixel labels, so the table includes a PixelLabelID column.
• Two of the labels contain attributes, so the app created a Hierarchy column that applies across

all label definitions.
• The label definitions do not have assigned groups, so the Group column is 'None' for all label
definitions.

Note Labeler apps can only load pixel data that have pixel IDs between 1 and 255.

LabelData — Label data for each ROI and scene label
table | timetable

This property is read-only.

Label data for each ROI and scene label, specified as a table for image collections or a timetable
for videos or image sequences. Each column of LabelData holds labels for a single label definition
and corresponds to the Name value for each row in LabelDefinitions. These LabelData describes
the elements of the table. The label categories are specified as labelType enumerations.

Alternatively, for ROI label data that is grouped by label type, a single column labeled
ROILabelData, can be used and specified as a structure containing at least one label type,
RectangleData, PolygonData, LineData, or ProjCuboidData.

The storage format for each label type is described in the table.

 groundTruth

2-825



Label Type Storage Format for Labels at Each
Timestamp

labelType.Rectangle M-by-4 numeric matrix of the form [x, y, w,
h], where:

• M is the number of labels in the frame.
• x and y specify the upper-left corner of the

rectangle.
• w specifies the width of the rectangle, which is

its length along the x-axis.
• h specifies the height of the rectangle, which

is its length along the y-axis.

2 Objects

2-826



Label Type Storage Format for Labels at Each
Timestamp

labelType.Cuboid M-by-9 numeric matrix with rows of the form
[xctr, yctr, zctr, xlen, ylen, zlen,
xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of

the cuboid.
• xlen, ylen, and zlen specify the length of

the cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation has been applied.

• xrot, yrot, and zrot specify the rotation
angles for the cuboid along the x-axis, y-axis,
and z-axis, respectively. These angles are
clockwise-positive when looking in the
forward direction of their corresponding axes.

The figure shows how these values determine the
position of a cuboid.

 groundTruth

2-827



Label Type Storage Format for Labels at Each
Timestamp

labelType.ProjectedCuboid M-by-8 vector of the form [x1, y1, w1, h1,
x2, y2, w2, h2], where:

• M is the number of labels in the frame.
• x1, y1 specifies the x,y coordinates for the

upper-left location of the front-face of the
projected cuboid

• w1 specifies the width for the front-face of the
projected cuboid.

• h1 specifies the height for the front-face of the
projected cuboid.

• x2, y2 specifies the x,y coordinates for the
upper-left location of the back-face of the
projected cuboid.

• w2 specifies the width for the back-face of the
projected cuboid.

• h2 specifies the height for the back-face of the
projected cuboid.

The figure shows how these values determine the
position of a cuboid.

labelType.Line M-by-1 vector of cell arrays, where M is the
number of labels in the frame. Each cell array
contains an N-by-2 numeric matrix of the form
[x1 y1; x2 y2; ... ; xN yN] for N points
in the polyline.

2 Objects

2-828



Label Type Storage Format for Labels at Each
Timestamp

labelType.PixelLabel Label data for all pixel label definitions is stored
in a single M-by-1 PixelLabelData column for
M images or frames. Each element contains a
filename for a pixel label image. A pixel label
image describes the label or labels contained in
the corresponding image. The labels can be
described as a 1- or 3- channel label matrix. To
use PixelLabelData with any of the labeler
apps, you must use a single-channel label matrix,
where the values are of type uint8. You can
convert a 3-channel pixel label data matrix to a
single-channel label matrix programmatically to
use with the labeler apps.

labelType.Polygon M-by-1 vector of cell arrays, where M is the
number of labels. Each cell array contains an N-
by-2 numeric matrix of the form [x1 y1; x2
y2; ... ; xN yN] for N points in the polygon.

labelType.Custom Labels are stored exactly as they are specified in
the timetable. If you import a
groundTruthMultisignal object containing
custom label data into the Ground Truth
Labeler app, this data is not imported into the
app. Use custom data when gathering label data
for training and combining it with data labeled in
the app.

Supported GroundTruth Objects

 Video Labeler App Image Labeler App
Data source Video file, image sequence

folder, custom reader
Image files

Label definitions Rectangle, Line,
PixelLabel, or Scene label
types

Rectangle, Line,
PixelLabel, or Scene label
types

Label data Timetable of Rectangle, Line,
PixelLabel, or Scene label
types

Table (no timetable) for
Rectangle, Line,
PixelLabel, or Scene label
types

 groundTruth

2-829



To add ground truth data that is not an ROI (Rectangle, Line, PixelLabel) or Scene label
category to a groundTruth object, provide a label definition with a labelType that is Custom. The
custom data is not visible when you load it into the labeling app.

Object Functions
selectLabelsByGroup Select ground truth labels by label group
selectLabelsByType Select ground truth labels by label type
selectLabelsByName Select ground truth labels by label name
changeFilePaths Change file paths in ground truth data
gatherLabelData Gather label data from ground truth

Examples

Create Ground Truth for Stop Signs and Cars

Create a data source from a collection of images.

data = load('stopSignsAndCars.mat');
imageFilenames = data.stopSignsAndCars.imageFilename(1:2)

imageFilenames = 2x1 cell
    {'stopSignImages/image001.jpg'}
    {'stopSignImages/image002.jpg'}

2 Objects

2-830



imageFilenames = fullfile(toolboxdir('vision'),'visiondata',imageFilenames);
dataSource = groundTruthDataSource(imageFilenames);

Define labels used to specify the ground truth. Use labelDefinitionCreator to create the label
definitions table.

ldc = labelDefinitionCreator();
addLabel(ldc,'stopSign',labelType.Rectangle);
addLabel(ldc,'carRear',labelType.Rectangle);
labelDefs = create(ldc)

labelDefs=2×5 table
        Name          Type       LabelColor     Group      Description
    ____________    _________    __________    ________    ___________

    {'stopSign'}    Rectangle    {0x0 char}    {'None'}       {' '}   
    {'carRear' }    Rectangle    {0x0 char}    {'None'}       {' '}   

Initialize label data for rectangle ROIs.

stopSignTruth = {[856   318    39    41];[445   523    52    54]};
carRearTruth = {[398   378   315   210];[332   633   691   287]};

Construct a table of label data.

labelNames = {'stopSign';'carRear'};
labelData = table(stopSignTruth,carRearTruth,'VariableNames',labelNames)

labelData=2×2 table
        stopSign               carRear      
    _________________    ___________________

    {[856 318 39 41]}    {[398 378 315 210]}
    {[445 523 52 54]}    {[332 633 691 287]}

Create a ground truth object.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth = 
  groundTruth with properties:

          DataSource: [1x1 groundTruthDataSource]
    LabelDefinitions: [2x5 table]
           LabelData: [2x2 table]

Create Ground Truth Data of Road Lanes

Create a groundTruth object to store data representing marked road lanes.

Create a data source from an image.

dataSource = groundTruthDataSource({'stopSignTest.jpg'});

 groundTruth

2-831



Define labels used to specify ground truth. Use labelDefinitionCreator to create label
definitions table.

ldc = labelDefinitionCreator();
addLabel(ldc,'Lane',labelType.Line);
labelDefs = create(ldc);

Assign two lane markers in the image.

laneMarkerTruth = {[257 254;311 180] [327 183;338 205;374 250]};

Construct a table of label data.

labelNames = {'Lane'};
labelData = table(laneMarkerTruth,'VariableNames',labelNames)

labelData=table
                Lane            
    ____________________________

    {2x2 double}    {3x2 double}

Create a groundTruth object.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth = 
  groundTruth with properties:

          DataSource: [1x1 groundTruthDataSource]
    LabelDefinitions: [1x5 table]
           LabelData: [1x1 table]

Create Ground Truth Data For Pixel Labels

Create a groundTruth object to store data representing parts of a scene.

Create a data source.

dataSource = groundTruthDataSource({'visionteam.jpg'});

Use labelDefinitionCreator to create the label definitions table. Define labels, 'Person' and
'Background'. Assign their corresponding label type as PixelLabel.

ldc =labelDefinitionCreator();
addLabel(ldc,'Person',labelType.PixelLabel);
addLabel(ldc,'Background',labelType.PixelLabel);
labelDefs = create(ldc)             

labelDefs=2×6 table
         Name            Type       LabelColor    PixelLabelID     Group      Description
    ______________    __________    __________    ____________    ________    ___________

    {'Person'    }    PixelLabel    {0x0 char}       {[1]}        {'None'}       {' '}   

2 Objects

2-832



    {'Background'}    PixelLabel    {0x0 char}       {[2]}        {'None'}       {' '}   

Specify the location of the pixel label data for the image.

dataFile = {'visionteamPixelLabels.png'}    

dataFile = 1x1 cell array
    {'visionteamPixelLabels.png'}

Construct a table of label data for the pixel label data.

labelData = table(dataFile,'VariableNames',{'PixelLabelData'})

labelData=table
           PixelLabelData        
    _____________________________

    {'visionteamPixelLabels.png'}

Create a groundTruth object.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth = 
  groundTruth with properties:

          DataSource: [1x1 groundTruthDataSource]
    LabelDefinitions: [2x6 table]
           LabelData: [1x1 table]

Create Ground Truth for Car and Lane Markers

Create a data source from a video.

videoName = 'caltech_cordova1.avi';
dataSource = groundTruthDataSource(videoName);

Define labels used to specify the ground truth. Use a labelDefinitionCreator object to create
the label definitions table.

ldc = labelDefinitionCreator();
addLabel(ldc,'Cars',labelType.Rectangle);
addLabel(ldc,'LaneMarkers',labelType.Line);
labelDefs = create(ldc)

labelDefs=2×5 table
         Name            Type       LabelColor     Group      Description
    _______________    _________    __________    ________    ___________

    {'Cars'       }    Rectangle    {0x0 char}    {'None'}       {' '}   
    {'LaneMarkers'}    Line         {0x0 char}    {'None'}       {' '}   

 groundTruth

2-833



Create label data for cars and lane markers.

numRows = numel(dataSource.TimeStamps);
carsTruth = cell(numRows,1);
laneMarkerTruth = cell(numRows,1);

Add two car labels and two lane markers to the first frame.

carsTruth{1} = [182 186 31 22;404 191 53 34];
laneMarkerTruth{1} = {[257 254;311 180] [327 183;338 205;374 250]};

Create a table of label data.

labelNames = {'Cars','LaneMarkers'};
labelData = table(carsTruth,laneMarkerTruth,'VariableNames',labelNames);

Create a groundTruth object. To import this object into a labeling app, select an option from the
Open > Import Labels menu.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth = 
  groundTruth with properties:

          DataSource: [1x1 groundTruthDataSource]
    LabelDefinitions: [2x5 table]
           LabelData: [250x2 timetable]

Tips
• groundTruth objects for video-based data sources rely on the video reading capabilities of your

operating system. A groundTruth object created using a video data source remains consistent
only for the same platform that was used to create it. To create a platform-independent
groundTruth object, convert the video into a sequence of images and include the associated
timestamps with the image sequence.

See Also
Apps
Image Labeler | Video Labeler

Functions
pixelLabelTrainingData | objectDetectorTrainingData | pixelLabelDatastore |
pixelLabelImageDatastore

Objects
labelDefinitionCreator | groundTruthDataSource | labelType | attributeType

Topics
“Get Started with the Image Labeler”
“Get Started with the Video Labeler”
“Use Custom Image Source Reader for Labeling”
“Share and Store Labeled Ground Truth Data”

2 Objects

2-834



“How Labeler Apps Store Exported Pixel Labels”

Introduced in R2017a

 groundTruth

2-835



selectLabels
Select ground truth data for a set of labels

Note The function will be removed in a future release. Use selectLabelsByGroup,
selectLabelsByType, and selectLabelsByName instead.

For more information, see “selectLabels object function will be removed”

Syntax
gtLabel = selectLabels(gTruth,labelNames)
gtLabel = selectLabels(gTruth,types)

Description
gtLabel = selectLabels(gTruth,labelNames) returns a new groundTruth object, or array of
groundTruth objects, containing only the labels specified by labelNames.

gtLabel = selectLabels(gTruth,types) returns a new groundTruth object, or array of
groundTruth objects, containing only the label types specified by types.

Examples

Select Ground Truth Data By Label Name and Type

Add the image folder to the MATLAB path.

imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imageDir);

Load the ground truth object.

load('stopSignsAndCarsGroundTruth.mat');

View the definitions.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
        Name          Type        Group  
    ____________    _________    ________

    {'stopSign'}    Rectangle    {'None'}
    {'carRear' }    Rectangle    {'None'}
    {'carFront'}    Rectangle    {'None'}

Obtain the ground truth data for labelName 'stopSign'.

stopSignGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,'stopSign');

2 Objects

2-836



Obtain the ground truth data for labelType Rectangle.

rectGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,labelType.Rectangle);

Obtain ground truth for 'carRear' and 'carFront'.

carGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,{'carRear','carFront'});

Remove the image folder from the path.

rmpath(imageDir);

Input Arguments
gTruth — Ground truth labels
groundTruth object | array of groundTruth objects

Ground truth labels, specified as a groundTruth object or as an array of groundTruth objects.

labelNames — Label names
cell array of character vectors

Label names, specified as a cell array of character vectors.

types — Label type
labelType enumeration

Label type, specified as a labelType enumeration.

Output Arguments
gtLabel — Ground truth with only specified labels or types
groundTruth object | array of groundTruth objects

Ground truth with only specified labels or types, returned as a groundTruth object or as an array of
groundTruth objects.

Compatibility Considerations
selectLabels object function will be removed
Not recommended starting in R2019a

The selectLabels function will be removed in a future release. Use selectLabelsByName,
selectLabelsByType, and selectLabelsByGroup instead.

See Also
Functions
groundTruth | groundTruthDataSource | selectLabelsByName | selectLabelsByGroup |
selectLabelsByType

 selectLabels

2-837



Introduced in R2017a

2 Objects

2-838



vision.labeler.AutomationAlgorithm class
Package: vision.labeler

Interface for algorithm automation in ground truth labeling

Description
The vision.labeler.AutomationAlgorithm class specifies the interface for defining custom
automation algorithms to run in the Image Labeler, Video Labeler, and Ground Truth Labeler
apps. Classes that inherit from the AutomationAlgorithm interface can be used with the
automation workflow of the labeling apps to generate ground truth labels.

The vision.labeler.AutomationAlgorithm class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Properties
The AutomationAlgorithm class predefines this set of properties.

GroundTruth — Ground truth data
groundTruth object | groundTruthMultisignal object

Ground truth data, specified as a groundTruth or groundTruthMultisignal object. This property
holds all the labels in the labeling app prior to automation.

• For automation algorithms used in the Image Labeler or Video Labeler app, this property must
be a groundTruth object.

• For automation algorithms used in the Ground Truth Labeler app, this property must be a
groundTruthMultisignal object.

Attributes:

GetAccess public
SetAccess private

SelectedLabelDefinitions — Selected label definitions
structure

Label definitions selected for automation in the labeling app, specified as a structure. The labeling
apps support selection of only one labeling definition per automation session. In the labeling apps,
the selected label definition is highlighted in yellow in either the ROI Labels or Scene Labels pane
on the left.

The structure contains these fields.

 vision.labeler.AutomationAlgorithm class

2-839



Field Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Rectangle
• labelType.Cuboid (for point clouds)
• labelType.ProjectedCuboid (for image and video data)
• labelType.Line
• labelType.PixelLabel
• labelType.Scene

labelType.Custom is not supported.
Name Character vector that contains the name of the label definition.
Attributes
(optional)

Structure array that contains one structure for each attribute in the label
definition. If the label definition does not contain attributes, then this property
does not include the Attributes field.

The first field of each attribute structure in this structure array contains the
attribute name. The second field contains a structure of values that are associated
with that name. If you are defining a List attribute, you must also define the list
of values for that attribute. Values for Numeric Value, String, or Logical
attributes are optional. Descriptions for the attributes are optional for all cases.

PixelLabelID
(optional)

Positive integer that contains the pixel label ID for the label definition. This
PixelLabelID field applies only for label definitions of type PixelLabel.

To view a sample SelectedLabelDefinitions structure that contains an attribute, enter this code
at the MATLAB command prompt.

selectedLabelDefs.Type = labelType.Rectangle;
selectedLabelDefs.Name = 'Car';
selectedLabelDefs.Attributes = struct('distance', ...
    struct('DefaultValue',0,'Description','Sensor distance'))

To view a sample SelectedLabelDefinitions structure that contains pixel label definitions, enter
this code at the MATLAB command prompt.

selectedLabelDefs.Type = labelType.PixelLabel;
selectedLabelDefs.Name = 'Car';
selectedLabelDefs.Attributes = struct('distance', ...
    struct('DefaultValue',0,'Description','Sensor distance'))

Attributes:

GetAccess public
SetAccess private

ValidLabelDefinitions — Valid label definitions
structure array

Valid label definitions that the algorithm can automate, specified as a structure array. Each structure
in the array corresponds to a valid label definition. To determine which label definitions are valid, the

2 Objects

2-840



app uses the checkLabelDefinition method. This table describes the fields for each valid label
definition structure.

Field Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Rectangle
• labelType.Cuboid (for point clouds)
• labelType.ProjectedCuboid (for image and video data)
• labelType.Line
• labelType.PixelLabel
• labelType.Scene

labelType.Custom is not supported.
Name Character vector that contains the name of the label definition.
Attributes
(optional)

Structure array that contains one structure for each attribute in the label
definition. If the label definition does not contain attributes, then this property
does not include the Attributes field.

The first field of each attribute structure in this structure array contains the
attribute name. The second field contains a structure of values that are associated
with that name. If you are defining a List attribute, you must also define the list
of values for that attribute. Values for Numeric Value, String, or Logical
attributes are optional. Descriptions for the attributes are optional for all cases.

PixelLabelID
(optional)

Positive integer that contains the pixel label ID for the label definition. This
PixelLabelID field applies only for label definitions of type PixelLabel.

To view a sample ValidLabelDefinitions structure that contains an attribute, enter this code at
the MATLAB command prompt.

validLabelDefs(1).Type = labelType.Rectangle;
validLabelDefs(1).Name = 'Car';
validLabelDefs(2).Type = labelType.Line;
validLabelDefs(2).Name = 'LaneMarker';
validLabelDefs(3).Type = labelType.Scene
validLabelDefs(3).Name = 'Sunny';

To view a sample ValidLabelDefinitions structure that contains pixel label definitions, enter this
code at the MATLAB command prompt.

validLabelDefs(1).Type = labelType.PixelLabel;
validLabelDefs(1).Name = 'Road';
validLabelDefs(1).PixelLabelID  = 1;
validLabelDefs(2).Type = labelType.PixelLabel;
validLabelDefs(2).Name = 'Sky';
validLabelDefs(2).PixelLabelID = 2

Attributes:

GetAccess public
SetAccess private

 vision.labeler.AutomationAlgorithm class

2-841



Clients of the AutomationAlgorithm class are required to define this set of properties. These
properties set up the name, description, and user instructions for your automated algorithm.

Name — Automation algorithm name
character vector

Automation algorithm name, specified as a character vector.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

Description — Automation algorithm description
character vector

Algorithm description, specified as a character vector.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

UserDirections — Algorithm directions displayed in app
cell array

Algorithm directions displayed in app, specified as a cell array. UserDirections are specified as a
cellstr, with each string representing a separate direction. Use the checkSetup method to verify
that the directions have been adhered to.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

Methods
Public Methods

Clients of an AutomationAlgorithm implement these user-defined functions to define execution of
the algorithm. For more information on creating your own automation algorithm, see “Create
Automation Algorithm for Labeling”.
checkLabelDefinition Validate label definition
checkSignalType Validate signal type
supportsMultisignalAutomation Set multisignal algorithm automation flag
checkSetup Set up validation (optional)
initialize Initialize state for algorithm execution (optional)
run Run label automation on every frame in interval

2 Objects

2-842



terminate Terminate automated algorithm (optional)
settingsDialog Display algorithm settings (optional)

See Also
Apps
Image Labeler | Ground Truth Labeler | Video Labeler

Functions
groundTruth | groundTruthMultisignal | labelType | vision.labeler.mixin.Temporal |
vision.labeler.mixin.BlockedImageAutomation

Topics
“Create Automation Algorithm for Labeling”
“Temporal Automation Algorithms”
“Blocked Image Automation Algorithms”
“Automate Ground Truth Labeling of Lane Boundaries” (Automated Driving Toolbox)
“Automate Ground Truth Labeling for Semantic Segmentation” (Automated Driving Toolbox)
“Automate Attributes of Labeled Objects” (Automated Driving Toolbox)

Introduced in R2017a

 vision.labeler.AutomationAlgorithm class

2-843



checkLabelDefinition
Class: vision.labeler.AutomationAlgorithm
Package: vision.labeler

Validate label definition

Syntax
isValid = checkLabelDefinition(algObj,labelDef)

Description
In the labeling apps, the checkLabelDefinition method checks whether each label defined in the
ROI Labels and Scene Labels panes is valid. The method restricts an automation algorithm to use
only relevant labels. For example, a label definition of type Rectangle cannot be used to mark a lane
boundary.

Clients of AutomationAlgorithm must implement this method.

isValid = checkLabelDefinition(algObj,labelDef) returns true for valid label definitions
and false for invalid definitions for the automation algorithm provided by algObj. labelDef is a
structure containing all the label definitions in the ROI Labels and Scene Labels panes. Definitions
that return false are disabled during automation.

Examples

Restrict Automation to Rectangular ROI Labels

This implementation of the checkLabelDefinition method designates Rectangle labels as valid
and all other labels as invalid.

function isValid = checkLabelDefinition(algObj,labelDef)
    isValid = (labelDef.Type == labelType.Rectangle);
end

Restrict Automation to ROI Labels of Any Type

This implementation of the checkLabelDefinition method designates ROI labels such as
Rectangle and Line as valid and all other labels as invalid.

function isValid = checkLabelDefinition(algObj,labelDef)
    isValid = isROI(labelDef.Type);
end

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

2 Objects

2-844



Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

labelDef — Label definition
structure

Label definition, specified as a structure containing Type and Name fields.

Field Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Rectangle
• labelType.Cuboid (for point clouds)
• labelType.ProjectedCuboid (for image and video data)
• labelType.Line
• labelType.PixelLabel
• labelType.Scene

labelType.Custom is not supported.
Name Character vector that contains the name of the label definition.

To view a sample labelDef structure that contains a rectangle label definition, enter this code at the
MATLAB command prompt.

labelDef(1).Type = labelType.Rectangle;
labelDef(1).Name = 'Car';

Output Arguments
isValid — True of false result of label definition validity check
1 | 0

True or false result of the label definition validity check, returned as a 1 or 0 of data type logical.

Tips
• To access the selected label definitions, use the SelectedLabelDefinitions property of the

automation algorithm. In the labeling apps, the selected label definitions are highlighted in yellow
in the ROI Labels and Scene Labels panes on the left.

See Also
labelType | vision.labeler.AutomationAlgorithm | checkSignalType | checkSetup

Introduced in R2017a

 checkLabelDefinition

2-845



checkSetup
Class: vision.labeler.AutomationAlgorithm
Package: vision.labeler

Set up validation (optional)

Syntax
isReady = checkSetup(algObj)
isReady = checkSetup(algObj,labelsToAutomate)

Description
In the labeling apps, the checkSetup method checks the validity of the setup when you click Run in
an automation session. If checkSetup returns true, then the setup is valid and the app proceeds to
run the automation algorithm by using the initialize, run, and terminate methods.

Clients of AutomationAlgorithm can optionally implement this method.

isReady = checkSetup(algObj) returns true if you completed set up correctly and the
automation algorithm algObj can begin execution. Otherwise, checkSetup returns false.

isReady = checkSetup(algObj,labelsToAutomate) additionally provides a table,
labelsToAutomate, that contains labels selected for the automation algorithm to use for labeling.
This syntax does not support pixel label automation. In addition, this syntax is available only for time-
dependent (temporal) automation algorithms. The Ground Truth Labeler and Video Labeler apps
support temporal algorithms but the Image Labeler does not. For more information on these types
of algorithms, see “Temporal Automation Algorithms”.

Examples

Check Setup for ROI Labels

This implementation of the checkSetup method checks the setup for a temporal automation
algorithm. This method determines that an automation algorithm is ready to run if at least one ROI
label exists.

function isReady = checkSetup(algObj,labelsToAutomate)
    
    notEmpty = ~isempty(labelsToAutomate);
    hasROILabels = any(labelsToAutomate.Type == labelType.Rectangle);
    isReady = (notEmpty && hasROILabels)
        
end

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

2 Objects

2-846



Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

labelsToAutomate — Labels selected for automation
table

Labels selected for automation, specified as a table with these columns.

Column Name Description
Type labelType enumeration that contains the type of the label. Valid label types

are:

• labelType.Rectangle
• labelType.Cuboid (Ground Truth Labeler app only)
• labelType.ProjectedCuboid
• labelType.Line
• labelType.Scene

labelType.PixelLabel and labelType.Custom are not supported.
Name Character vector that contains the name of the label.
Time Scalar of type double that specifies the time, in seconds, when the label was

marked.

 checkSetup

2-847



Column Name Description
Position Location of the label in the frame. The format of this vector depends on the

label type.

Label Type Position Format
Rectangle —
Rectangular
region of
interest (ROI)
labels

M-by-4 numeric vector of the form [x, y, w, h], where:

• M is the number of labels in the frame.
• x and y specify the upper-left corner of the rectangle.
• w specifies the width of the rectangle, which is the length

of the rectangle along the x-axis.
• h specifies the height of the rectangle, which is the length

of the rectangle along the y-axis.
Cuboid —
Cuboid ROI
labels

M-by-9 numeric vector of the form [xctr, yctr, zctr,
xlen, ylen, zlen, xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid

along the x-axis, y-axis, and z-axis, respectively.
• xrot, yrot, and zrot specify the rotation angles for the

cuboid along the x-axis, y-axis, and z-axis, respectively.
These angles are clockwise-positive when looking in the
forward direction of their corresponding axes.

This figure shows how these values specify the position of a
cuboid.

2 Objects

2-848



Column Name Description
Label Type Position Format

ProjectedCu
boid — Cuboid
ROI labels

M-by-8 vector of the form [x1, y1, w1, h1, x2, y2, w2,
h2], where:

• M is the number of labels in the frame.
• x1, y1 specifies the x,y coordinates for the upper-left

location of the front-face of the projected cuboid
• w1 specifies the width for the front-face of the projected

cuboid.
• h1 specifies the height for the front-face of the projected

cuboid.
• x2, y2 specifies the x,y coordinates for the upper-left

location of the back-face of the projected cuboid.
• w2 specifies the width for the back-face of the projected

cuboid.
• h2 specifies the height for the back-face of the projected

cuboid.

The figure shows how these values determine the position of a
cuboid.

 checkSetup

2-849



Column Name Description
Label Type Position Format

Line —
Polyline ROI
labels

M-by-1 vector of cell arrays, where M is the number of labels in
the frame. Each cell array contains an N-by-2 numeric matrix
of the form [x1 y1; x2 y2; ... ; xN yN] for N points in
the polyline.

Scene —
Scene labels

Logical value of 1 if the label is present in the frame and 0
otherwise.

Each row of the table corresponds to a label selected for automation. This labelsToAutomate table
contains a rectangle label, a line label with five points, and a cuboid label.

       Type           Name           Time        Position  
     _________    ____________    _________    ____________
 
     Rectangle    'Car'           0.033333     [1x4 double]
     Line         'LaneMarker'    0.066667     [5x2 double]
     Cuboid       'Truck'         0.099999     [1x9 double] 

Output Arguments
isReady — True or false result of setup check
1 | 0

True or false result of the setup check, returned as a 1 or 0 of data type logical.

See Also
labelType | vision.labeler.AutomationAlgorithm | checkLabelDefinition |
checkSignalType

2 Objects

2-850



Introduced in R2017a

 checkSetup

2-851



checkSignalType
Class: vision.labeler.AutomationAlgorithm
Package: vision.labeler

Validate signal type

Syntax
isValid = checkSignalType(signalType)

Description
In the labeling apps, the checkSignalType method validates whether each signal selected for
automation supports the signal type relevant to the automation algorithm.

• Algorithms that automate the labeling of image collections, videos, or image sequences support
signals of type Image only.

• Algorithms that automate the labeling of lidar point clouds support signals of type PointCloud
only.

The implementation of this method depends on which labeling app the automation algorithm is being
used with.

Labeling App of Automation Algorithm checkSignalType Implementation
Image Labeler

Video Labeler

You do not need to implement this method. By
default, this method validates that the signal
being automated is of type Image, which is the
only signal type that these apps support.

Ground Truth Labeler Update this method to validate whether the
automation algorithm supports Image signals,
PointCloud signals, or both types of signals.

Lidar Labeler You do not need to implement this method. If you
do implement this method, update it to validate
that the signal is of type PointCloud, which is
the only signal type that this app supports.

isValid = checkSignalType(signalType) returns logical 1 (true) when the specified signal
type is valid. In the Ground Truth Labeling app, if you select an automation algorithm, select
signals that are of an invalid type, and then click Automate, the app displays an error.

Examples

Restrict Automation to Image Signals

Implement the checkSignalType method to designate Image signals as valid and all other signals
as invalid.

2 Objects

2-852



function isValid = checkSignalType(signalType)
    isValid = (signalType == vision.labeler.loading.SignalType.Image);
end

Restrict Automation to Point Cloud Signals

Implement the checkSignalType method to designate PointCloud signals as valid and all other
signals as invalid.

function isValid = checkSignalType(signalType)
    isValid = (signalType == vision.labeler.loading.SignalType.PointCloud);
end

Enable Automation for Image and Point Cloud Signals

Implement the checkSignalType method to designate Image and PointCloud signals as valid.

function isValid = checkSignalType(signalType)
    isValid = any(signalType == vision.labeler.loading.SignalType.Image) && ...
    any(signalType == vision.labeler.loading.SignalType.PointCloud);
end

Input Arguments
signalType — Signal type
vision.labeler.loading.SignalType enumeration

Signal type, specified as a vision.labeler.loading.SignalType enumeration.
Example: vision.labeler.loading.SignalType.Image
Example: vision.labeler.loading.SignalType.PointCloud

Output Arguments
isValid — Result of signal type validity check
1 | 0

Result of the signal type validity check, returned as logical 1 (true) or logical 0 (false).

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

See Also
vision.labeler.loading.SignalType | checkLabelDefinition |
vision.labeler.AutomationAlgorithm | checkSetup

 checkSignalType

2-853



Introduced in R2020a

2 Objects

2-854



initialize
Class: vision.labeler.AutomationAlgorithm
Package: vision.labeler

Initialize state for algorithm execution (optional)

Syntax
initialize(algObj,frame)
initialize(algObj,frame,labelsToAutomate)

Description
The initialize method initializes the state of the automation algorithm before the automation
algorithm runs.

Clients of AutomationAlgorithm can optionally implement this method.

initialize(algObj,frame) initializes the state of the algObj automation algorithm using the
first frame in the time range of the data being labeled.

Clients of AutomationAlgorithm must implement this user-defined method.

initialize(algObj,frame,labelsToAutomate) additionally provides a table,
labelsToAutomate, that contains labels selected for the automation algorithm to use for labeling.
This syntax does not support pixel label automation. In addition, this syntax is available only for time-
dependent (temporal) automation algorithms. The Ground Truth Labeler (requires Automated
Driving Toolbox™) and Video Labeler apps support temporal algorithms but the Image Labeler
does not. For more information on these types of algorithms, see “Temporal Automation Algorithms”.

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

frame — Frame corresponding to start of time range
numeric matrix | pointCloud object

Frame corresponding to the start of time range, specified as a numeric matrix for Image signals or a
pointCloud object for PointCloud signals.

labelsToAutomate — Labels selected for automation
table

Labels selected for automation, specified as a table with these columns.

 initialize

2-855



Column Name Description
Type labelType enumeration that contains the type of the label. Valid label types

are:

• labelType.Rectangle
• labelType.Cuboid (Ground Truth Labeler app only)
• labelType.ProjectedCuboid
• labelType.Line
• labelType.Scene

labelType.PixelLabel and labelType.Custom are not supported.
Name Character vector that contains the name of the label.
Time Scalar of type double that specifies the time, in seconds, when the label was

marked.

2 Objects

2-856



Column Name Description
Position Location of the label in the frame. The format of this vector depends on the

label type.

Label Type Position Format
Rectangle —
Rectangular
region of
interest (ROI)
labels

M-by-4 numeric vector of the form [x, y, w, h], where:

• M is the number of labels in the frame.
• x and y specify the upper-left corner of the rectangle.
• w specifies the width of the rectangle, which is the length

of the rectangle along the x-axis.
• h specifies the height of the rectangle, which is the length

of the rectangle along the y-axis.
Cuboid —
Cuboid ROI
labels

M-by-9 numeric vector of the form [xctr, yctr, zctr,
xlen, ylen, zlen, xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid

along the x-axis, y-axis, and z-axis, respectively.
• xrot, yrot, and zrot specify the rotation angles for the

cuboid along the x-axis, y-axis, and z-axis, respectively.
These angles are clockwise-positive when looking in the
forward direction of their corresponding axes.

This figure shows how these values specify the position of a
cuboid.

 initialize

2-857



Column Name Description
Label Type Position Format

ProjectedCu
boid — Cuboid
ROI labels

M-by-8 vector of the form [x1, y1, w1, h1, x2, y2, w2,
h2], where:

• M is the number of labels in the frame.
• x1, y1 specifies the x,y coordinates for the upper-left

location of the front-face of the projected cuboid
• w1 specifies the width for the front-face of the projected

cuboid.
• h1 specifies the height for the front-face of the projected

cuboid.
• x2, y2 specifies the x,y coordinates for the upper-left

location of the back-face of the projected cuboid.
• w2 specifies the width for the back-face of the projected

cuboid.
• h2 specifies the height for the back-face of the projected

cuboid.

The figure shows how these values determine the position of a
cuboid.

2 Objects

2-858



Column Name Description
Label Type Position Format

Line —
Polyline ROI
labels

M-by-1 vector of cell arrays, where M is the number of labels in
the frame. Each cell array contains an N-by-2 numeric matrix
of the form [x1 y1; x2 y2; ... ; xN yN] for N points in
the polyline.

Scene —
Scene labels

Logical value of 1 if the label is present in the frame and 0
otherwise.

Each row of the table corresponds to a label selected for automation. This labelsToAutomate table
contains a rectangle label, a line label with five points, and a cuboid label.

       Type           Name           Time        Position  
     _________    ____________    _________    ____________
 
     Rectangle    'Car'           0.033333     [1x4 double]
     Line         'LaneMarker'    0.066667     [5x2 double]
     Cuboid       'Truck'         0.099999     [1x9 double] 

See Also
checkSetup | run | terminate | labelType | vision.labeler.AutomationAlgorithm

Introduced in R2017a

 initialize

2-859



run
Class: vision.labeler.AutomationAlgorithm
Package: vision.labeler

Run label automation on every frame in interval

Syntax
autoLabels = run(algObj,frame)

Description
The run method computes the automated labels for a single frame by executing the automation
algorithm. During automation, the labeling apps run this method in a loop to compute the automated
labels for each frame in the selection being automated.

Clients of AutomationAlgorithm must implement this method.

autoLabels = run(algObj,frame) processes a single frame, frame, using the algObj
automation algorithm, and returns the automated labels, autoLabels.

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

frame — Frame
numeric matrix

Frame whose labels are being computed, specified as a numeric matrix for Image signals or a
pointCloud object for PointCloud signals.

Output Arguments
autoLabels — Labels produced by automation
categorical matrix | structure array | table

Labels produced by the automation algorithm, returned as a categorical matrix, structure array, or
table.

For algorithms that automate pixel labeling, implement the run method to return autoLabels as a
categorical label matrix, where each category represents a pixel label. For more information, see
“How Labeler Apps Store Exported Pixel Labels”.

For algorithms that automate nonpixel labels, implement the run method to return a structure array.
Each structure in the array contains the labels of a specific name and type. The method combines
labels of the same name and type into a single structure in the array.

2 Objects

2-860



This table describes the columns of the autoLabels table or fields of each autoLabels structure.

Field Name Description
Type labelType enumeration that contains the type of the label. Valid label types

are:

• labelType.Rectangle
• labelType.Cuboid (Ground Truth Labeler app only)
• labelType.ProjectedCuboid
• labelType.Line
• labelType.Scene

Name Character vector containing the name of the label.

 run

2-861



Field Name Description
Position Position of labels of the specified Name and Type. The format of Position

depends on the label type.

Label Type Position Format
Rectangle — Rectangular region of
interest (ROI) labels

M-by-4 numeric matrix of the form [x,
y, w, h], where:

• M is the number of labels in the
frame.

• x and y specify the upper-left
corner of the rectangle.

• w specifies the width of the
rectangle, which is its length along
the x-axis.

• h specifies the height of the
rectangle, which is its length along
the y-axis.

Cuboid — Cuboid ROI labels M-by-9 numeric matrix with rows of
the form [xctr, yctr, zctr,
xlen, ylen, zlen, xrot, yrot,
zrot], where:

• M is the number of labels in the
frame.

• xctr, yctr, and zctr specify the
center of the cuboid.

• xlen, ylen, and zlen specify the
length of the cuboid along the x-
axis, y-axis, and z-axis,
respectively, before rotation has
been applied.

• xrot, yrot, and zrot specify the
rotation angles for the cuboid
along the x-axis, y-axis, and z-axis,
respectively. These angles are
clockwise-positive when looking in
the forward direction of their
corresponding axes.

The figure shows how these values
determine the position of a cuboid.

2 Objects

2-862



Field Name Description
Label Type Position Format

ProjectedCuboid — Cuboid ROI
labels

M-by-8 vector of the form [x1, y1,
w1, h1, x2, y2, w2, h2], where:

• M is the number of labels in the
frame.

• x1, y1 specifies the x,y
coordinates for the upper-left
location of the front-face of the
projected cuboid

• w1 specifies the width for the front-
face of the projected cuboid.

• h1 specifies the height for the
front-face of the projected cuboid.

• x2, y2 specifies the x,y
coordinates for the upper-left
location of the back-face of the
projected cuboid.

• w2 specifies the width for the back-
face of the projected cuboid.

• h2 specifies the height for the
back-face of the projected cuboid.

The figure shows how these values
determine the position of a cuboid.

 run

2-863



Field Name Description
Label Type Position Format

Line — Polyline ROI labels M-by-1 vector of cell arrays, where M is
the number of labels in the frame.
Each cell array contains an N-by-2
numeric matrix of the form [x1 y1;
x2 y2; ... ; xN yN] for N points
in the polyline.

Scene — Scene labels Logical value of 1 if the algorithm
determines that the label is present in
the frame and 0 otherwise.

Attributes
(optional)

Structure array that contains one structure for each attribute in the label. If
the label definition does not contain attributes, then the autoLabels output
does not include this field.

For each structure in the Attributes structure array, the name of that
structure is the name of the corresponding attribute. The value of the structure
is the value of the corresponding attribute.

To view a sample autoLabels structure array, enter this code at the MATLAB command prompt.

autoLabels(1).Name      = 'Car';
autoLabels(1).Type      = labelType.Rectangle;
autoLabels(1).Position  = [20 20 50 50];

autoLabels(2).Name      = 'Truck';
autoLabels(2).Type      = labelType.Rectangle;
autoLabels(2).Position  = [70 70 50 50; 100 100 25 25];

Alternatively, for nonpixel labels, you can use the run method to return autoLabels as a table. The
table rows are equivalent to the structures in a structure array. The table columns are equivalent to

2 Objects

2-864



the structure fields. This table is equivalent to the sample autoLabels structure array previously
specified.

        Name          Type         Position  
    ____________    _________    ____________

    'Car'           Rectangle    [1x4 double]
    'Truck'         Rectangle    [2x4 double]

See Also
checkSetup | initialize | terminate | labelType |
vision.labeler.AutomationAlgorithm

Introduced in R2017a

 run

2-865



settingsDialog
Class: vision.labeler.AutomationAlgorithm
Package: vision.labeler

Display algorithm settings (optional)

Syntax
settingsDialog(algObj)

Description
The settingsDialog method runs when the user clicks Settings in the labeling app. Use this
method to provide a dialog figure with controls for user settings required for the algorithm. Use a
modal dialog, created using functions like dialog, inputdlg or listdlg.

Clients of AutomationAlgorithm can optionally implement this method.

settingsDialog(algObj) displays automated algorithm settings in a dialog.

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

Introduced in R2017a

2 Objects

2-866



supportsMultisignalAutomation
Package: vision.labeler

Set multisignal algorithm automation flag

Syntax
success = supportsMultisignalAutomation(algObj)

Description
success = supportsMultisignalAutomation(algObj) indicates whether the automation
algorithm algObj supports the automation of multiple signals in a single automation session.
Implement this method in automation algorithms developed for the Ground Truth Labeler app,
which supports the labeling and automation of multiple signals. If the algorithm supports multisignal
automation, then this method returns success as true.

In automation algorithms developed for the Image Labeler, Video Labeler, and Lidar Labeler
apps, which support the labeling and automation of only one signal at a time, you can either delete
this method or leave it unchanged. The default implementation of this method indicates that the
automation algorithm does not support multisignal automation (success = false).

Examples

Indicate Algorithm Supports Multisignal Automation

Implement the supportsMultisignalAutomation method to indicate that the automation
algorithm supports multisignal automation. This method is static and does not use the input
automation algorithm, algObj. Therefore, you can specify the input argument as unused by using the
tilde (~) operator.

function success = supportsMultisignalAutomation(~)
      success = true;
end

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

See Also
Apps
Ground Truth Labeler

 supportsMultisignalAutomation

2-867



Objects
vision.labeler.AutomationAlgorithm

Introduced in R2021a

2 Objects

2-868



terminate
Class: vision.labeler.AutomationAlgorithm
Package: vision.labeler

Terminate automated algorithm (optional)

Syntax
terminate(algObj)

Description
The terminate method cleans up the state of the automation algorithm after run processes the last
frame in the specified interval or when you stop the automation algorithm.

Clients of AutomationAlgorithm can optionally implement this method.

terminate(algObj) cleans up the state of the automation algorithm.

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

See Also
checkSetup | initialize | run | vision.labeler.AutomationAlgorithm

Introduced in R2017a

 terminate

2-869



vision.labeler.mixin.Temporal class
Package: vision.labeler.mixin

Mixin interface for adding temporal context to automation algorithms

Description
The vision.labeler.mixin.Temporal class provides an interface for attaching temporal
properties to an automation algorithm. You can add this class only to automation algorithms used by
the Ground Truth Labeler or Video Labeler app.

The vision.labeler.mixin.Temporal class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Properties
StartTime — Timestamp of first frame
scalar

Timestamp of the first frame of the algorithm interval, specified as a scalar.

Attributes:

GetAccess public
SetAccess private
Dependent true
NonCopyable true

CurrentTime — Timestamp of current executing frame
scalar

Timestamp of the current executing frame, specified as a scalar. This value updates during the
execution of the algorithm.

Attributes:

GetAccess public
SetAccess private

EndTime — Timestamp of last frame
scalar

Timestamp of the last frame of the algorithm interval, specified as a scalar.

2 Objects

2-870



Attributes:

GetAccess public
SetAccess private
Dependent true
NonCopyable true

StartFrameIndex — Index of first frame
integer

Index of the first frame of the algorithm interval, specified as an integer.

Attributes:

GetAccess public
SetAccess private
Dependent true
NonCopyable true

EndFrameIndex — Index of last frame
integer

Index of the last frame of the algorithm interval, specified as an integer.

Attributes:

GetAccess public
SetAccess private
Dependent true
NonCopyable true

AutomationDirection — Direction in which to run automated algorithm
'Forward' | 'Reverse'

Direction in which to run the automated algorithm, specified as 'Forward' or 'Reverse'.

Attributes:

GetAccess public
SetAccess private

Methods
Public Methods
supportsReverseAutomation Set reverse algorithm automation flag

See Also
Apps
Ground Truth Labeler | Video Labeler

Objects
vision.labeler.AutomationAlgorithm

 vision.labeler.mixin.Temporal class

2-871



Topics
“Create Automation Algorithm for Labeling”
“Temporal Automation Algorithms”

Introduced in R2017b

2 Objects

2-872



supportsReverseAutomation
Set reverse algorithm automation flag

Syntax
flag = supportsReverseAutomation(algObj)

Description
flag = supportsReverseAutomation(algObj) indicates whether the temporal automation
algorithm, algObj, supports automation in the reverse direction. A true value enables the Ground
Truth Labeler or Video Labeler to open the algorithm in reverse mode.

Examples
Set Algorithm Automation Direction Flag

function flag = supportsReverseAutomation(algObj)
      flag = true;
end

Input Arguments
algObj — Temporal automation algorithm
object

Temporal automation algorithm, specified as a vision.labeler.mixin.Temporal object.

Output Arguments
flag — Reverse automation indicator
true | false

Reverse automation indicator, returned as true or false.

See Also
Apps
Ground Truth Labeler | Video Labeler

Objects
vision.labeler.mixin.Temporal

Introduced in R2017b

 supportsReverseAutomation

2-873



vision.labeler.mixin.BlockedImageAutomation
Mixin interface for performing blocked image automation

Description
The BlockedImageAutomation mixin class provides an interface for attaching blocked image
properties to an automation algorithm. You can add this class only to automation algorithms used by
the Image Labeler app.

Creation
Description

To use the vision.labeler.mixin.BlockedImageAutomation object, open the Image Labeler
app, load a blocked image, and create at least one label. Then, click Select Algorithm in the
Automate Labeling section of the app toolstrip. Select Add Blocked Image Algorithm and then
choose Create New Blocked Image Algorithm. A class template opens in the editor that inherits
from both the vision.labeler.AutomationAlgorithm class and the
vision.labeler.mixin.BlockedImageAutomation mixin class. Edit this template to create your
blocked image automation algorithm.

Properties
The BlockedImageAutomation mixin class predefines this set of properties.

BatchSize — Number of blocks supplied to the apply function at a time
numeric scalar

Number of blocks supplied to the apply function at a time, specified as an integer valued vector of
length equal to the NumDimensions property of the blocked image.

BorderSize — Size of additional border elements
1-by-D numeric vector

Size of additional border elements to add around a block in each dimension, specified as a 1-by-D
numeric vector, where D is equal to the NumDimensions property of the first blockedImage object.

InclusionThreshold — Ratio that determines whether a block should be considered for
processing
double

Ratio that determines whether a block should be considered for processing, specified as a value in
the range [0 1]. The value specifies the minimum percentage of nonzero pixels in the block. A value of
0 means that only one pixel in the block must be true/nonzero for it to be included in processing. A
value of 1 requires that all pixels in the block be true/nonzero for it to be included in processing.

PadMethod — Method used to obtain padding pixels
scalar string | char vector

2 Objects

2-874



Method used to obtain padding pixels to honor the BorderSize or the PadPartialBlocks
parameters, specified as scalar string or char vector

PadPartialBlocks — Pad partial blocks that might exist on the edges
true | false

Pad partial blocks that might exist on the edges, specified as a logical scalar, true or false.

Resume — Continue processing from where a previous run stopped
true | false

Continue processing from where a previous run stopped, specified as a logical scalar, true or false.

Object Functions
blockedImageAutomationAlgorithm Implements the blocked image automation algorithm

See Also
Apps
Image Labeler

Objects
vision.labeler.AutomationAlgorithm

Topics
“Create Automation Algorithm for Labeling”
“Temporal Automation Algorithms”

Introduced in R2021a

 vision.labeler.mixin.BlockedImageAutomation

2-875



blockedImageAutomationAlgorithm
Implements the blocked image automation algorithm

Syntax
res = blockedImageAutomationAlgorithm(algObj,bstruct)

Description
res = blockedImageAutomationAlgorithm(algObj,bstruct) computes labels based on the
algorithm you specify in this method. The Image Labeler app invokes this method on each image
you choose for blocked image automation in the app. algObj is a
vision.labeler.AutomationAlgorithm object. bstruct is a structure. The format of the
output, res, depends on the type of automation algorithm specified.

Examples
Sample Blocked Image Algorithm Automation Function

• Here is an example of a blocked image algorithm automation function.

function res = blockedImageAutomationAlgorithm(algObj,bstruct)
   % Detect people using aggregate channel features
   detector = peopleDetectorACF('inria-100x41');
   [bboxes, scores] = detect(detector, bstruct.Data,...
            'SelectStrongest', false);
           
   % Apply non-maximum suppression to select the strongest bounding boxes.
   [selectedBboxes, selectedScores] = selectStrongestBbox(bboxes, scores,...
            'RatioType', 'Min',...
            'OverlapThreshold', 0.65);
           
   % Consider only detections that meet specified score threshold
   selectedBboxes = selectedBboxes(selectedScores > 0, :);
   selectedBboxes(:,1) = selectedBboxes(:,1)+bstruct.Start(2);
   selectedBboxes(:,2) = selectedBboxes(:,2)+bstruct.Start(1);
           
   if algObj.SelectedLabelDefinitions.Type == "Rectangle"
      % Add the selected label at the bounding box position(s)
      res = struct(...
          'Type', labelType.Rectangle,...
          'Name', algObj.SelectedLabelDefinitions.Name,...
          'Position', selectedBboxes);
   end
end

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

2 Objects

2-876



Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

bstruct — Structure of data passed to function
scalar struct

Structure of data passed to the blocked image apply object function, specified as a scalar struct
with these fields.

Field Description
Data A block of array data from the blocked image.
Start Array subscripts of the first element in the block. If BorderSize

is specified, this subscript can be out-ot-bounds for edge blocks.
End Array subscripts of the last element in the block. If BorderSize

is specified, this subscript can be out-of-bounds for edge blocks.
Blocksub The block subscripts of the current block
BorderSize The value of the BorderSize parameter
BlockSize The value of the BlockSize parameter. Note: size(data) can be

less than this value for border blocks PadPartialValue is
false.

BatchSize The value of the BatchSize parameter

Output Arguments
res — Result of processing
scalar struct

Result of processing, returned as a scalar struct. The format of the structure depends on the type of
automation algorithm.

For automation algorithms without pixel labels, the struct has fields described in this table.

Field Description
Type A labelType enumeration that defines the type of label. Type can have

values: Rectangle, Line, Projected cuboid, Cuboid, or Scene.
Name A character vector specifying a label name that returns true for

checkLabelDefinition. Only existing label names previously defined
in the Image Labeler app can be used.

 blockedImageAutomationAlgorithm

2-877



Field Description
Position Positions of the labels. The type of label determines the format of the

position data.

Label Type Description
Rectangle P-by-1 cell array specifying P

Rectangles, each containing a 1-by-4
vector specifying position of the
bounding box locations as [x y w h]
or multiple Rectangle ROIs specified as
an M-by-4 matrix.

Line P-by-1 cell array specifying P polylines
each containing N-by-2 vector
specifying N points along each polyline
as: [x1,y1; x2,y2;...xN,yN]

Polygons P-by-1 cell array specifying P polygons
each containing N-by-2 vector
specifying N points along each polygon
as: [x1,y1; x2,y2;...xN,yN]

Projected Cuboid P-by-1 cell array specifying P projected
cuboids each containing 1-by-8 vector
specifying position of primary and
secondary faces as: [x1 y1 w1 h1
x2 y2 w2 h2] or multiple projected
cuboid ROIs can be specified as an M-
by-8 matrix.

Attributes An array of structs representing the attributes contained by the
automated labels. Each attribute is specified as a field of the struct
with the name of the field representing the name of the attribute and the
value of the field representing the value of the attribute. This is an
optional field, only present if the labels defined have attributes.

For automation algorithms with pixel labels, res is a categorical label matrix, where each
category represents a pixel label.

Tips
• For automation algorithms without pixel labels, the Position field in res must be in a world

coordinate system. This can be achieved by adding the X and Y indices in the bstruct.Start
field to the output of the automation algorithm. To get the correct X coordinate, add
bstruct.Start(2) to get the position of the automation output in world coordinates. To get the
correct Y coordinate, add bstruct.Start(1) to get the position of the automation output in
world coordinates.

See Also
Apps
Image Labeler

2 Objects

2-878



Objects
vision.labeler.mixin.Temporal

Introduced in R2021a

 blockedImageAutomationAlgorithm

2-879



labelType
Label type enumerations for labeling

Description
The labelType enumerations enable you to specify the types of labels used in these labeling apps:
Image Labeler, Video Labeler, Lidar Labeler, and Ground Truth Labeler. When creating label
definitions by using a labelDefinitionCreator or labelDefinitionCreatorMultisignal
object, use these enumerations to create label definitions of specific types. When selecting labels
from a groundTruth or groundTruthMultisignal or groundTruthLidar (Lidar Toolbox) object,
use these enumerations to select labels of a specific type.

Creation

Syntax
labelType('Rectangle')
labelType('Line')
labelType('PixelLabel')
labelType('Polygon')
labelType('Cuboid')
labelType('ProjectedCuboid')
labelType('Scene')
labelType('Custom')

Description

labelType('Rectangle') creates a rectangular region of interest (ROI) label type for labeling
image and video data. You can also use the programmatic format, labelType.Rectangle.

labelType('Line') creates a polyline ROI label type for labeling image and video data. You can
also use the programmatic format, labelType.Line.

labelType('PixelLabel') creates a pixel ROI label type for labeling image and video data. You
can also use the programmatic format, labelType.PixelLabel.

labelType('Polygon') creates a polygon ROI label type for labeling image and video data. You
can also use the programmatic format, labelType.Polygon.

labelType('Cuboid') creates a cuboid ROI label type for labeling lidar point cloud data. You can
also use the programmatic format, labelType.Cuboid.

labelType('ProjectedCuboid') creates a projected cuboid ROI label type for labeling image and
video data. You can also use the programmatic format, labelType.ProjectedCuboid.

labelType('Scene') creates a scene label type for labeling data across a specified time range. You
can also use the programmatic format, labelType.Scene.

2 Objects

2-880



labelType('Custom') creates a custom label type. Labeler apps do not display labels of type
Custom. You can also use the programmatic format, labelType.Custom.

Object Functions
isCustom Determine if label types are Custom labels
isROI Determine if label types are ROI labels
isScene Determine if label types are Scene labels

Examples

Specify Label Type in Label Definition Creator Object

Create a label definition creator object. Add a label named "Road" with the label type specified as a
rectangle.

ldc = labelDefinitionCreator();
addLabel(ldc,'Road',labelType.Rectangle);

Add a label named "Sky" with the label type specified as a scene.

addLabel(ldc,'Sky',labelType.Scene);

Add a sublabel named "Lanes" to the label "Road". Specify the label type for the sublabel as a line.

addSublabel(ldc,'Road','Lanes',labelType.Line);

Display the details of the definitions stored in the label definition creator object.

ldc

ldc = 
labelDefinitionCreator contains the following labels:

    Road with 1 sublabels and 0 attributes and belongs to None group.    (info)
    Sky with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the label "Road" as a structure by using the info function. The Type field
in the structure labelStruct indicates the type of label.

labelStruct = info(ldc,'Road')

labelStruct = struct with fields:
           Name: "Road"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: "Lanes"
    Description: ' '

 labelType

2-881



See Also
Apps
Image Labeler | Ground Truth Labeler | Video Labeler

Objects
groundTruth | labelDefinitionCreator | labelDefinitionCreatorMultisignal |
groundTruthMultisignal | attributeType

Introduced in R2017a

2 Objects

2-882



isCustom
Determine if label types are Custom labels

Syntax
tf = isCustom(labelTypes)

Description
tf = isCustom(labelTypes) returns a logical array that indicates which elements in
labelTypes are Custom label types. isCustom returns logical 1 (true) for Custom labels and
otherwise returns logical 0 (false).

Input Arguments
labelTypes — Type of labels
enumeration

Types of labels, specified as a labelType or lidarLabelType enumeration.

See Also
isROI | isScene

Introduced in R2017a

 isCustom

2-883



isROI
Determine if label types are ROI labels

Syntax
tf = isROI(labelTypes)

Description
tf = isROI(labelTypes) returns a logical array that indicates which elements in labelTypes
are ROI label types. isROI returns logical 1 (true) for ROI labels and otherwise returns logical 0
(false). Valid ROI label types are Rectangle, Cuboid,ProjectedCuboid, Line, Voxel and
PixelLabel.

Input Arguments
labelTypes — Type of labels
enumeration

Types of labels, specified as a labelType or lidarLabelType enumeration.

See Also
isCustom | isScene

Introduced in R2017a

2 Objects

2-884



isScene
Determine if label types are Scene labels

Syntax
tf = isScene(labelTypes)

Description
tf = isScene(labelTypes) returns a logical array that indicates which elements in labelTypes
are Scene label types. isScene returns logical 1 (true) for Scene labels and otherwise returns
logical 0 (false).

Input Arguments
labelTypes — Type of labels
enumeration

Types of labels, specified as a labelType or lidarLabelType enumeration.

See Also
isCustom | isROI

Introduced in R2017a

 isScene

2-885



attributeType
Attribute type enumerations for labeling

Description
The attributeType enumerations enable you to specify the types of attributes used in these
labeling apps: Image Labeler, Video Labeler, Lidar Labeler, and Ground Truth Labeler
(requires Automated Driving Toolbox). When creating label definitions by using a
labelDefinitionCreator or labelDefinitionCreatorMultisignal object, use these
enumerations to create attributes of specific types.

Creation

Syntax
attributeType('Numeric')
attributeType('String')
attributeType('Logical')
attributeType('List')
attributeType('None')

Description

attributeType('Numeric') creates a numeric attribute type enumeration. Attributes of this type
are numeric scalar values. You can also use the programmatic format, attributeType.Numeric.

attributeType('String') creates a string attribute type enumeration. Attributes of this type are
string scalars. You can also use the programmatic format, attributeType.String.

attributeType('Logical') creates a logical attribute type enumeration. Attributes of this type
are true (logical 1), false (logical 0), or an empty logical value. You can also use the programmatic
format, attributeType.Logical.

attributeType('List') creates a list attribute type enumeration. Attributes of this type are lists
of predefined strings. You can also use the programmatic format, attributeType.List.

attributeType('None') creates an enumeration whose type is not defined. You can also use the
programmatic format, attributeType.None.

Object Functions
hasValue Determine if the attribute type is numeric or logical

Examples

2 Objects

2-886



Specify Attribute Type in Label Definition Creator Object

Create a label definition creator object and add a label named "Vehicle". Specify the type of label as a
rectangle.

ldc = labelDefinitionCreator;
addLabel(ldc,'Vehicle',labelType.Rectangle);

Add an attribute named "Color" to the label "Vehicle". Specify the attribute type as a list.

addAttribute(ldc,'Vehicle','Color',attributeType.List,{'White','Green','Blue'})

Display information about the attribute "Color" as a structure by using the info function. The Type
field in the output structure colorStruct indicates the type of attribute.

colorStruct = info(ldc,'Vehicle/Color')

colorStruct = struct with fields:
           Name: "Color"
           Type: List
      ListItems: {'White'  'Green'  'Blue'}
    Description: ' '

See Also
Apps
Image Labeler | Ground Truth Labeler | Video Labeler

Objects
labelType | labelDefinitionCreator | labelDefinitionCreatorMultisignal

Introduced in R2018b

 attributeType

2-887



hasValue
Determine if the attribute type is numeric or logical

Syntax
tf = hasValue(typeOfAttribute)

Description
tf = hasValue(typeOfAttribute) returns a logical value that indicates if the enumerator in
typeOfAttribute is either Numeric or Logical. hasValue returns logical 1 (true) for Numeric
and Logical attributes. Otherwise returns logical 0 (false).

Examples

Determine the Type of Attribute

Create an attributeType enumeration array.

Type = attributeType({'Numeric'; 'String'; 'Logical'; 'List'});

Check if any of the enumerator defined in the attributeType enumeration array is Numeric or
Logical.

tf = zeros(0,length(Type));
for i = 1:length(Type)
    tf(i) = hasValue(Type(i)); 
end

Display the output. The value 1 is returned when an enumerator in the attributeType enumeration
array is either Numeric or Logical. Otherwise, the value 0 is returned.

tf

tf = 1×4

     1     0     1     0

Input Arguments
typeOfAttribute — Type of attribute
attributeType enumeration

Type of attribute, specified as an attributeType enumeration. The enumerator in the
attributeType enumeration can be Numeric, String, Logical, List, or None.

2 Objects

2-888



See Also
Objects
groundTruth | groundTruthMultisignal | labelDefinitionCreator |
labelDefinitionCreatorMultisignal | attributeType

Introduced in R2018b

 hasValue

2-889



cameraParameters
Object for storing camera parameters

Description
The cameraParameters object stores the intrinsic, extrinsic, and lens distortion parameters of a
camera.

Creation
You can create a cameraParameters object using the cameraParameters function described here.
You can also create a cameraParameters object by using the estimateCameraParameters with
an M-by-2-by-numImages array of input image points. M is the number of keypoint coordinates in
each pattern.

Syntax
cameraParams = cameraParameters
cameraParams = cameraParameters(Name,Value)
cameraParams = cameraParameters(paramStruct)

Description

cameraParams = cameraParameters creates a cameraParameters object that contains the
intrinsic, extrinsic, and lens distortion parameters of a camera.

cameraParams = cameraParameters(Name,Value) sets properties on page 2-890 of the
cameraParameters object by using one or more Name,Value pair arguments. Unspecified
properties use default values.

cameraParams = cameraParameters(paramStruct) creates an identical cameraParameters
object from an existing cameraParameters object with parameters stored in paramStruct.

Input Arguments

paramStruct — Camera parameters
struct

Stereo parameters, specified as a stereo parameters struct. To get a paramStruct from an existing
cameraParameters object, use the toStruct function.

Properties
Intrinsic Camera Parameters:

IntrinsicMatrix — Projection matrix
3-by-3 identity matrix

2 Objects

2-890



Projection matrix, specified as a 3-by-3 identity matrix. The object uses the following format for the
matrix format:

fx 0 0
s f y 0
cx cy 1

The coordinates [cx cy] represent the optical center (the principal point), in pixels. When the x and y
axis are exactly perpendicular, the skew parameter, s, equals 0.
fx = F*sx
fy = F*sy
F, is the focal length in world units, typically expressed in millimeters.
[sx, sy] are the number of pixels per world unit in the x and y direction respectively.
fx and fy are expressed in pixels.

Intrinsics — Camera intrinsics object
cameraIntrinsics object

This property is read-only.

Camera intrinsics object, stated as a cameraIntrinsics object. The object contains information
about camera intrinsic calibration parameters, including lens distortion.
Dependency

You must provide an image size (using the ImageSize property) for the Intrinsics property to be
non-empty. The intrinsics for the camera parameters depends on the image size.

ImageSize — Image size
two-element vector

Image size, specified as a two-element vector [mrows,ncols].

Camera Lens Distortion:

RadialDistortion — Radial distortion coefficients
[0 0 0] (default) | 2-element vector | 3-element vector

Radial distortion coefficients, specified as either a two- or three-element vector. When you specify a
two-element vector, the object sets the third element to 0. Radial distortion is the displacement of
image points along radial lines extending from the principal point.

The camera parameters object calculates the radial-distorted location of a point. You can denote the
distorted points as (xdistorted, ydistorted), as follows:

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6) (2-5)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6) (2-6)

x, y = undistorted pixel locations
k1, k2, and k3 = radial distortion coefficients of the lens
r2 = x2 + y2

Typically, two coefficients are sufficient. For severe distortion, you can include k3. The undistorted
pixel locations appear in normalized image coordinates, with the origin at the optical center. The
coordinates are expressed in world units.

 cameraParameters

2-891



TangentialDistortion — Tangential distortion coefficients
[0 0]' (default) | 2-element vector

Tangential distortion coefficients, specified as a two-element vector. Tangential distortion occurs
when the lens and the image plane are not parallel. The camera parameters object calculates the
tangential distorted location of a point. You can denote the distorted points as (xdistorted, ydistorted). The
undistorted pixel locations appear in normalized image coordinates, with the origin at the optical
center. The coordinates are expressed in world units.

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential
distortion coefficients model this type of distortion.

The distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)]

ydistorted = y + [p1 * (r2 + 2 *y2) + 2 * p2 * x * y]

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• p1 and p2 — Tangential distortion coefficients of the lens.
• r2 = x2 + y2

Extrinsic Camera Parameters:

RotationMatrices — 3-D rotation matrix
3-by-3-by-P matrix (read-only)

3-D rotation matrix, specified as a 3-by-3-by-P, with P number of pattern images. Each 3-by-3 matrix
represents the same 3-D rotation as the corresponding vector.

The following equation provides the transformation that relates a world coordinate in the
checkerboard frame [X Y Z] and the corresponding image point [x y]:

s x y 1 = X Y Z 1
R
t

K

2 Objects

2-892



R is the 3-D rotation matrix.
t is the translation vector.
K is the IntrinsicMatrix.
s is a scalar.
This equation does not take distortion into consideration. The undistortImage function removes
distortion.

RotationVectors — 3-D rotation vectors
[] (default) | P-by-3 matrix (read-only)

3-D rotation vectors, specified as a P-by-3 matrix containing P rotation vectors. Each vector describes
the 3-D rotation of the camera image plane relative to the corresponding calibration pattern. The
vector specifies the 3-D axis about which the camera is rotated, where the magnitude is the rotation
angle in radians. The RotationMatrices property provides the corresponding 3-D rotation
matrices.

TranslationVectors — Camera translations
[] (default) | P-by-3 matrix

Camera translations, specified as an P-by-3 matrix. This matrix contains translation vectors for P
images. The vectors contain the calibration pattern that estimates the calibration parameters. Each
row of the matrix contains a vector that describes the translation of the camera relative to the
corresponding pattern, expressed in world units.

The following equation provides the transformation that relates a world coordinate in the
checkerboard frame [X Y Z] and the corresponding image point [x y]:

s x y 1 = X Y Z 1
R
t

K

R is the 3-D rotation matrix.
t is the translation vector.
K is the IntrinsicMatrix.
s is a scalar.
This equation does not take distortion into consideration. The undistortImage function removes
distortion.

To ensure that the number of rotation vectors equals the number of translation vectors, set the
RotationVectors and TranslationVectors properties in the constructor. Setting only one
property but not the other results in an error.

Estimated Camera Parameter Accuracy:

MeanReprojectionError — Average Euclidean distance
numeric value (read-only)

Average Euclidean distance between reprojected and detected points, specified as a numeric value in
pixels.

ReprojectionErrors — Estimated camera parameters accuracy
[] (default) | M-by-2-by-P array

Estimated camera parameters accuracy, specified as an M-by-2-by-P array of [x y] coordinates. The [x
y] coordinates represent the translation in x and y between the reprojected pattern key points and

 cameraParameters

2-893



the detected pattern key points. The values of this property represent the accuracy of the estimated
camera parameters. P is the number of pattern images that estimates camera parameters. M is the
number of keypoints in each image.

ReprojectedPoints — World points reprojected onto calibration images
M-by-2-by-P array

World points reprojected onto calibration images, specified as an M-by-2-by-P array of [x y]
coordinates. P is the number of pattern images and M is the number of keypoints in each image.
Missing points in the pattern's detected keypoints are denoted as [NaN,NaN].

DetectedKeypoints — Detected keypoints in the calibration pattern
[] (default) | M-by-P array

Detected keypoints in the calibration pattern, specified as a logical M-by-P array. M is the number of
keypoints in the entire calibration pattern and P specifies the number of calibration images.

Settings for Camera Parameter Estimation:

NumPatterns — Number of calibrated patterns
integer

Number of calibration patterns that estimates camera extrinsics, specified as an integer. The number
of calibration patterns equals the number of translation and rotation vectors.

WorldPoints — World coordinates
M-by-2 array | []

World coordinates of key points on calibration pattern, specified as an M-by-2 array. M represents the
number of key points in the pattern.

WorldUnits — World points units
'mm' (default) | character vector | string scalar

World points units, specified as a character vector or string scalar. The value describes the units of
measure.

EstimateSkew — Estimate skew flag
false (default) | logical scalar

Estimate skew flag, specified as a logical scalar. When you set the logical to true, the object
estimates the image axes skew. When you set the logical to false, the image axes are exactly
perpendicular.

NumRadialDistortionCoefficients — Number of radial distortion coefficients
2 (default) | 3

Number of radial distortion coefficients, specified as the number '2' or '3'.

EstimateTangentialDistortion — Estimate tangential distortion flag
false (default) | logical scalar

Estimate tangential distortion flag, specified as the logical scalar true or false. When you set the
logical to true, the object estimates the tangential distortion. When you set the logical to false, the
tangential distortion is negligible.

2 Objects

2-894



Examples

Remove Distortion from an Image Using the Camera Parameters Object

Use the camera calibration functions to remove distortion from an image. This example creates a
vision.cameraParameters object manually, but in practice, you would use the
estimateCameraParameters or the Camera Calibrator app to derive the object.

Create a vision.cameraParameters object manually.

IntrinsicMatrix = [715.2699 0 0; 0 711.5281 0; 565.6995 355.3466 1];
radialDistortion = [-0.3361 0.0921]; 
cameraParams = cameraParameters('IntrinsicMatrix',IntrinsicMatrix,'RadialDistortion',radialDistortion); 

Remove distortion from the images.

I = imread(fullfile(matlabroot,'toolbox','vision','visiondata','calibration','mono','image01.jpg'));
J = undistortImage(I,cameraParams);

Display the original and the undistorted images.

figure; imshowpair(imresize(I,0.5),imresize(J,0.5),'montage');
title('Original Image (left) vs. Corrected Image (right)');

References
[1] Zhang, Z. “A flexible new technique for camera calibration”. IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330–1334, 2000.

[2] Heikkila, J, and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction”, IEEE International Conference on Computer Vision and Pattern Recognition,
1997.

 cameraParameters

2-895



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use the toStruct method to pass a cameraParameters object into generated code. See the
“Code Generation for Depth Estimation From Stereo Video” example.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Classes
stereoParameters | cameraCalibrationErrors | intrinsicsEstimationErrors |
extrinsicsEstimationErrors | cameraIntrinsics

Functions
worldToImage | pointsToWorld | estimateCameraParameters | showReprojectionErrors |
showExtrinsics | undistortImage | detectCheckerboardPoints |
generateCheckerboardPoints

Topics
“Measuring Planar Objects with a Calibrated Camera”
“Code Generation for Depth Estimation From Stereo Video”
“Using the Single Camera Calibrator App”

Introduced in R2014a

2 Objects

2-896



fisheyeCalibrationErrors
Object for storing standard errors of estimated fisheye camera parameters

Description
fisheyeCalibrationErrors contains the standard errors of estimated camera parameters. You
can access the standard errors of the intrinsics and extrinsics by using the object properties. To
display the standard errors, use the displayErrors function.

Creation
The estimateFisheyeParameters function returns the fisheyeCalibrationErrors object.

Properties
IntrinsicsErrors — Standard errors of estimated intrinsics
fisheyeIntrinsicsEstimationErrors object

Standard errors of the estimated intrinsics for a fisheye camera, specified as a
fisheyeIntrinsicsEstimationErrors object.

ExtrinsicsErrors — Standard errors of estimated rotations and translations
extrinsicsEstimationErrors object

Standard errors of the estimated rotations and translations for a fisheye camera relative to the
calibration pattern, specified as a extrinsicsEstimationErrors object.

Object Functions
displayErrors Display standard errors of camera parameter estimates

Examples

Display Fisheye Camera Calibration Errors

Gather a set of checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','gopro'));

Detect the calibration pattern from the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

 fisheyeCalibrationErrors

2-897



Estimate the fisheye parameters using image and world points. Use the first image to get the image
size. Also, store the errors from the calibration.

I = readimage(images,1); 
imageSize = [size(I,1) size(I,2)];
[params,~,errors] = estimateFisheyeParameters(imagePoints, ...
                                 worldPoints,imageSize);

Display the standard errors of the estimated camera parameters.

displayErrors(errors,params);

            Standard Errors of Estimated Camera Parameters
            ----------------------------------------------

Intrinsics
----------
Mapping coefficients:    [  875.0783 +/- 0.9451       -0.0003 +/- -0.0000      -0.0000 +/- 0.0000        0.0000 +/- -0.0000 ]
Distortion center (pixels):[ 1005.8164 +/- 0.6871      743.0346 +/- 0.5578  ]
Stretch matrix parameters:[    1.0000 +/- 0.0000        0.0000 +/- 0.0000        0.0000 +/- 0.0000  ]

Extrinsics
----------
Rotation vectors:
                         [   -0.0699 +/- 0.0010       -0.0267 +/- 0.0009        0.0258 +/- 0.0002  ]
                         [    0.3628 +/- 0.0010        0.2950 +/- 0.0009       -0.1967 +/- 0.0003  ]
                         [   -0.2159 +/- 0.0009        0.3442 +/- 0.0009       -0.1941 +/- 0.0003  ]
                         [    0.0282 +/- 0.0009       -0.3784 +/- 0.0009        0.0829 +/- 0.0003  ]
                         [    0.0146 +/- 0.0008        0.4575 +/- 0.0009       -0.1215 +/- 0.0003  ]
                         [    0.6775 +/- 0.0008        0.1089 +/- 0.0008       -0.0386 +/- 0.0004  ]
                         [   -0.4936 +/- 0.0008        0.0063 +/- 0.0008        0.0486 +/- 0.0003  ]
                         [    0.3823 +/- 0.0008        0.2797 +/- 0.0008        0.1509 +/- 0.0003  ]
                         [    0.5171 +/- 0.0008       -0.3295 +/- 0.0008        0.0541 +/- 0.0003  ]
                         [   -0.1896 +/- 0.0008       -0.3543 +/- 0.0009        0.2637 +/- 0.0003  ]
                         [   -0.2911 +/- 0.0008        0.3680 +/- 0.0008       -0.1329 +/- 0.0003  ]

Translation vectors (mm):
                         [ -132.9182 +/- 0.1609      -82.6066 +/- 0.1356      195.1106 +/- 0.2311  ]
                         [ -178.9931 +/- 0.1905      -15.7750 +/- 0.1712      241.7127 +/- 0.2795  ]
                         [ -183.7957 +/- 0.2168      -56.7378 +/- 0.1884      269.9740 +/- 0.2790  ]
                         [  -17.6295 +/- 0.1315      -70.2875 +/- 0.1041      157.0827 +/- 0.1933  ]
                         [ -161.9824 +/- 0.1808      -46.9681 +/- 0.1569      228.4061 +/- 0.2302  ]
                         [ -122.4240 +/- 0.1309      -16.0260 +/- 0.1153      162.6247 +/- 0.2072  ]
                         [ -112.4268 +/- 0.1745     -125.5876 +/- 0.1428      212.8055 +/- 0.2156  ]
                         [ -148.7137 +/- 0.1387      -72.5409 +/- 0.1260      173.7615 +/- 0.2086  ]
                         [  -49.5392 +/- 0.0919      -24.8329 +/- 0.0745      104.3541 +/- 0.1506  ]
                         [   -3.4045 +/- 0.1274      -93.4074 +/- 0.1010      155.8247 +/- 0.1693  ]
                         [ -160.7344 +/- 0.1855      -51.9152 +/- 0.1600      234.4075 +/- 0.2318  ]

See Also
fisheyeParameters | estimateFisheyeParameters |
fisheyeIntrinsicsEstimationErrors | extrinsicsEstimationErrors

Topics
“Fisheye Calibration Basics”
“Configure Monocular Fisheye Camera” (Automated Driving Toolbox)

2 Objects

2-898



Introduced in R2017b

 fisheyeCalibrationErrors

2-899



fisheyeIntrinsics
Object for storing intrinsic fisheye camera parameters

Description
The fisheyeIntrinsics object stores the camera intrinsics for a fisheye camera. See
fisheyeParameters for details on other fisheye parameters.

Creation

Syntax
intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize,distortionCenter)
intrinsics = fisheyeIntrinsics( ___ ,stretchMatrix)

Description

intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize,distortionCenter)
returns a fisheyeIntrinsics object with the specified [a0 a2 a3 a4] polynomial coefficients,
image size, and center of distortion. These input arguments are assigned directly to the
corresponding properties of the object. See fisheyeParameters for more details.

intrinsics = fisheyeIntrinsics( ___ ,stretchMatrix) additionally specifies a 2-by-2
transformation matrix that describes the alignment between the sensor plane and the image plane.
The default value is an identity matrix.

Properties
MappingCoefficients — Polynomial coefficients for projection function
[a0 a2 a3 a4] vector

This property is read-only.

Polynomial coefficients for the projection function described by Scaramuzza's Taylor model, specified
as an [a0 a2 a3 a4] vector.

DistortionCenter — Center of distortion in pixels
[cx cy] vector

This property is read-only.

Center of distortion in pixels, specified as a [cx cy] vector.

Stretchmatrix — Transformation from sensor plane to pixel in camera image plane
2-by-2 transformation matrix

This property is read-only.

2 Objects

2-900



Transformation from the sensor plane to a pixel in the camera image plane, specified as a 2-by-2
transformation matrix. This misalignment is caused by the lens not being parallel to the sensor and
by the digitization process.

ImageSize — Image size
[mrows ncols] vector

This property is read-only.

Image size, specified as an [mrows ncols] vector.

Examples

Create Fisheye Intrinsics

Specify the mapping coefficients, image size, and distortion center parameters of a
fisheyeIntrinsics object. Ignore optical axis misalignment.

mappingCoeffs = [880 -3e-4 0 0];    % mapping polynomial coefficients
imageSize = [1500 2000];            % in [mrows ncols]
distortionCenter = [1000 750];      % in pixels

intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize,distortionCenter);

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional

Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems
(IROS 2006). Beijing, China, October 7–15, 2006.

[2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional Camera
Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol. 108, 2015, pp.72–
79.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
estimateFisheyeParameters | worldToImage | pointsToWorld

Objects
fisheyeParameters

Topics
“Fisheye Calibration Basics”
“Configure Monocular Fisheye Camera” (Automated Driving Toolbox)

 fisheyeIntrinsics

2-901



Introduced in R2017b

2 Objects

2-902



fisheyeIntrinsicsEstimationErrors
Object for storing standard errors of estimated fisheye camera intrinsics

Description
fisheyeIntrinsicsEstimationErrors contains the standard errors of estimated fisheye camera
intrinsics.

Creation
The estimateFisheyeParameters function returns the fisheyeCalibrationErrors object,
which contains fisheyeIntrinsicsEstimationErrors and extrinsicsEstimationErrors as
properties.

Properties
MappingCoefficentsError — Standard error of mapping coefficient estimates
4-element vector

Standard error of mapping coefficient estimates, specified as a 4-element vector.

DistortionCenterError — Standard error of distortion center estimates
2-element vector

Standard error of distortion center estimates, specified as a two-element vector.

StretchMatrixError — Standard error of stretch matrix estimate
3-element vector

Standard error of stretch matrix estimate, specified as a 3-element vector.

See Also
cameraCalibrationErrors | stereoCalibrationErrors

Topics
“Fisheye Calibration Basics”
“Configure Monocular Fisheye Camera” (Automated Driving Toolbox)

Introduced in R2017b

 fisheyeIntrinsicsEstimationErrors

2-903



fisheyeParameters
Object for storing fisheye camera parameters

Description
The fisheyeParameters object is used to store fisheye camera parameters. Use
estimateFisheyeParameters to estimate parameters using calibration images.

Creation

Syntax
fisheyeParams = fisheyeParameters(intrinsics)
fisheyeParams = fisheyeParameters(intrinsics,Name,Value)

Description

fisheyeParams = fisheyeParameters(intrinsics) returns an object that contains intrinsic
and extrinsic parameters of a fisheye camera. intrinsics must be a fisheyeIntrinsics object.
This syntax sets the Intrinsics property of the object.

fisheyeParams = fisheyeParameters(intrinsics,Name,Value) configures the
fisheyeParams object properties using one or more Name,Value pair arguments. Enclose the
property name in single quotes. Unspecified properties have their default values. For example,
'WorldUnits','m' sets the world units to 'm'.

Properties
Intrinsic Camera Parameters

Intrinsics — Fisheye intrinsic camera parameters
fisheyeIntrinsics object

Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

Extrinsic Camera Parameters

RotationVectors — Camera rotations
[] (default) | M-by-3 matrix

Camera rotations, specified as an M-by-3 matrix. The matrix contains rotation vectors for M images,
where each image contains the calibration pattern that estimates the calibration parameters. Each
row of the matrix contains a vector that describes the 3-D rotation of the camera relative to the
corresponding pattern.

Each vector specifies the 3-D axis about which the camera is rotated. The magnitude of the vector
represents the angle of rotation in radians. You can convert any rotation vector to a 3-by-3 rotation
matrix using the Rodrigues formula.

2 Objects

2-904



To ensure that the number of rotation vectors equals the number of translation vectors, you must set
the RotationVectors and TranslationVectors properties together when creating the object.
Setting only one property results in an error.

TranslationVectors — Camera translations
[] (default) | M-by-3 matrix

Camera translations, specified as an M-by-3 matrix. This matrix contains translation vectors for M
images. The vectors contain the calibration pattern that estimates the calibration parameters. Each
row of the matrix contains a vector that describes the translation of the camera relative to the
corresponding pattern, expressed in world units.

To ensure that the number of rotation vectors equals the number of translation vectors, you must set
the RotationVectors and TranslationVectors properties together when creating the object.
Setting only one property results in an error.

Accuracy of Estimated Camera Parameters

ReprojectionErrors — Reprojection errors
[] (default) | M-by-2-by-P array

Reprojection errors, specified as an M-by-2-by-P array of [x,y] pairs. The [x,y] pairs represent the
translation in x and y between the reprojected pattern keypoints and the detected pattern keypoints.

ReprojectedPoints — World points reprojected onto calibration images
M-by-2-by-P array

World points reprojected onto calibration images, specified as an M-by-2-by-P array of [x y]
coordinates. P is the number of pattern images and M is the number of keypoints in each image.
Missing points in the pattern's detected keypoints are denoted as [NaN,NaN].

DetectedKeypoints — Detected keypoints in the calibration pattern
[] | M-by-P array

Detected keypoints in the calibration pattern, specified as a logical M-by-P array. M is the number of
keypoints in the entire calibration pattern and P specifies the number of calibration images.

Settings Used to Estimate Camera Parameters

NumPatterns — Number of calibrated patterns
integer

Number of calibration patterns used to estimate camera extrinsics, specified as an integer. The
number of calibration patterns must equal the number of translation and rotation vectors.

WorldPoints — World coordinates
[] (default) | M-by-2 matrix

World coordinates of key points on the calibration pattern, specified as an M-by-2 matrix. M
represents the number of key points in the pattern.

WorldUnits — World point units
'mm' (default) | character vector | string scalar

 fisheyeParameters

2-905



World point units, specified as the comma-separated pair consisting of 'WorldUnits' and a
character vector or string scalar. This argument is used simply to store the unit type and does not
affect any calculations.

EstimateAlignment — Estimate axes alignment
false (default) | true

Estimate axes alignment, specified as false or true. Set to true if the optical axis of the fisheye
lens is not perpendicular to the image plane.

Examples

Create Fisheye Parameters Object Manually

Create a fisheye parameters object by specifying the properties manually. Alternatively, you can
create this object using the estimateFisheyeParameters function.

Specify fisheye intrinsics.

 mappingCoefficients = rand(1,4);
 distortionCenter = [320 240];
 imageSize = [480 640];
 intrinsics = fisheyeIntrinsics(mappingCoefficients,imageSize,distortionCenter);

Create a fisheyeParameters object using the specified intrinsics.

 params = fisheyeParameters(intrinsics);

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional

Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems
(IROS 2006). Beijing, China, October 7–15, 2006.

[2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional Camera
Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol. 108, 2015, pp.72–
79.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
estimateFisheyeParameters | undistortFisheyeImage | fisheyeIntrinsics |
showExtrinsics | showReprojectionErrors

Topics
“Fisheye Calibration Basics”
“Configure Monocular Fisheye Camera” (Automated Driving Toolbox)

2 Objects

2-906



Introduced in R2017b

 fisheyeParameters

2-907



velodyneFileReader
Read point cloud data from Velodyne PCAP file

Description
The velodyneFileReader object reads point cloud data from a Velodyne® packet capture (PCAP)
file.

Creation

Syntax
veloReader = velodyneFileReader(fileName,deviceModel)
veloReader = velodyneFileReader(fileName,deviceModel,Name=Value)

Description

veloReader = velodyneFileReader(fileName,deviceModel) creates a Velodyne file reader
that reads in point cloud data. Specify the PCAP file and the device model that generated the file. The
inputs set the FileName and DeviceModel properties directly. The reader supports the VLP-16,
Puck LITE, Puck Hi-Res, VLP-32C, HDL-32E, HDL-64E, and VLS-128 device models.

veloReader = velodyneFileReader(fileName,deviceModel,Name=Value) specifies options
using one or more name-value arguments in addition to any combination of arguments from previous
syntaxes. For example, (OrganizePoints=true) returns an organized point cloud.

Properties
FileName — Velodyne PCAP file name
character vector | string scalar

This property is read-only.

Name of Velodyne PCAP file to read lidar data from, specified as a character vector or string scalar.

DeviceModel — Velodyne device model name
'VLP16' | 'PuckLITE' | 'PuckHiRes' | 'VLP32C' | 'HDL32E' | 'HDL64E' | 'VLS128'

This property is read-only.

Velodyne device model name, specified as 'VLP16', 'PuckLITE', 'PuckHiRes', 'VLP32C',
'HDL32E', 'HDL64E', or 'VLS128'.

Note Specifying the incorrect device model returns an improperly calibrated point cloud.

2 Objects

2-908



CalibrationFile — Name of Velodyne calibration XML file
character vector | string scalar

This property is read-only.

Name of the Velodyne calibration XML file, specified as a character vector or string scalar. This
calibration file is included with every sensor.

NumberOfFrames — Total number of point clouds
positive integer

This property is read-only.

Total number of point clouds in the file, specified as a positive integer.

Duration — Total duration of file in seconds
duration scalar

This property is read-only.

Total duration of the file in seconds, specified as a duration scalar.

StartTime — Time of first point cloud reading
duration scalar

This property is read-only.

Time of the first point cloud, specified as a duration scalar in seconds.

Start and end times are specified relative to the previous whole hour. For instance, if the file is
recorded for 7 minutes from 1:58 p.m. to 2:05 p.m., then:

• StartTime = 58 min × 60 s = 3840 s
• EndTime = StartTime + 7 min × 60 s = 3900 s

EndTime — Time of last point cloud reading
duration scalar

This property is read-only.

Time of the last point cloud reading, specified as a duration scalar.

Start and end times are specified relative to the previous whole hour. For instance, if the file is
recorded for 7 minutes from 1:58 PM to 2:05 PM, then:

• StartTime = 58 min × 60 s = 3840 s
• EndTime = StartTime + 7 min × 60 s = 3900 s

CurrentTime — Time of current point cloud reading
duration scalar

Time for the current point cloud reading in seconds, specified as a duration scalar. As you read
point clouds using readFrame, this property is updated with the most recent point cloud reading
time. You can use reset to reset the value of this property to the default value. The default value
matches the StartTime property.

 velodyneFileReader

2-909



Timestamps — Start time for each point cloud frame
duration vector

This property is read-only.

Start time for each point cloud frame in seconds, specified as a duration vector. The length of the
vector is equal to the value of NumberOfFrames property. The value of first element in the vector is
same as that of the StartTime property. You can use this property to read point cloud frames
captured at different times.

For example, read start time of a point cloud frame from the Timestamps property. Pass the start
time as an input to the readFrame function and read the corresponding point cloud frame.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E')
frameTime  = veloReader.Timestamps(10);
ptCloud    = readFrame(veloReader,frameTime);

OrganizePoints — Logical to set the structure for the output point cloud
true (default) | false

This property is read-only.

Logical to set the structure for the output point cloud, specified as a numeric or logical 1 (true) or 0
(false). This read-only property is set using the OrganizePoints on page 2-0  name-value
argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: (OrganizePoints=true) returns an organized point cloud.

CalibrationFile — Calibration XML file
'' (default) | string

Calibration XML file, specified as a string. If you do not specify a calibration file, the reader selects a
default calibration file containing data from the Velodyne device manual.

OrganizePoints — Logical to set the structure for the output point cloud
true (default) | false

Logical to set the structure for the output point cloud, specified as a numeric or logical 1 (true) or 0
(false).

To return an organized point cloud structure, set OrganizePoints to true. For an organized point
cloud, every row represents a separate laser scan, and the number of columns is based on the
horizontal angle resolution of the sensor.

To return an organized point cloud structure, set OrganizePoints to false.

2 Objects

2-910



Object Functions
hasFrame Determine if another Velodyne point cloud is available
readFrame Read Velodyne point cloud from file
reset Reset the CurrentTime property of velodyneFileReader object to the default value

Examples

Display Point Clouds from Velodyne PCAP File

Use the velodyneFileReader to read a packet capture (PCAP) file from a Velodyne® sensor. View
point clouds using pcplayer.

Read in point clouds by using a Velodyne® file reader. Specify the PCAP file to read and the
Velodyne® device model.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Define x-, y-, and z-axes limits for pcplayer in meters. Label the axes.

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create the point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

Label the axes.

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

The first point cloud of interest is captured at 0.3 second into the file. Set the CurrentTime property
to that time to being reading point clouds from there.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3); 

Display the point cloud stream for 10 seconds. Remove the last while condition to display the full
stream.

Use hasFrame to check if a new frame is available. Iterate through the file by calling readFrame to
read in point clouds. Display them using the point cloud player. Remove the last while condition to
display the full stream.

while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.StartTime + seconds(10)))
    ptCloudObj = readFrame(veloReader);
    view(player,ptCloudObj.Location,ptCloudObj.Intensity);
    pause(0.1);
end

 velodyneFileReader

2-911



See Also
Functions
pcplayer | readFrame | hasFrame | reset | pcshow | pcread

Objects
pcplayer | pointCloud

Topics
“Lidar Toolbox Supported Hardware” (Lidar Toolbox)
Velodyne LiDAR Sensors Data Acquisition (Lidar Toolbox Support Package for Velodyne LiDAR
Sensors)
“Build a Map from Lidar Data”

External Websites
Velodyne Manuals

2 Objects

2-912

https://velodynelidar.com/downloads/


Introduced in R2018a

 velodyneFileReader

2-913



hasFrame
Determine if another Velodyne point cloud is available

Syntax
isAvailable = hasFrame(veloReader)

Description
isAvailable = hasFrame(veloReader) determines if another point cloud is available in the
packet capture (PCAP) file of the input Velodyne file reader. As you read point clouds using
readFrame, the point clouds are read sequentially until this function returns false.

Examples

Check for Next Point Cloud in Velodyne PCAP File

Create a velodyneFileReader object to read a Velodyne® packet capture (PCAP) file and check for
available frames using hasFrame.

Read in a point cloud by using a Velodyne® file reader. Specify the PCAP file to be read and
Velodyne® device model.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Check if the file reader has a point cloud to read.

disp(hasFrame(veloReader));

   1

Read the last frame of the file.

ptCloudObj = readFrame(veloReader,veloReader.NumberOfFrames);

Check again if the file reader has another point cloud available.

disp(hasFrame(veloReader));

   0

Input Arguments
veloReader — Velodyne file reader
velodyneFileReader object

Velodyne file reader, specified as a velodyneFileReader object.

2 Objects

2-914



Output Arguments
isAvailable — Indicator if frame is available
true | false

Indicator if frame is available, returned as true or false.

See Also
velodyneFileReader | readFrame | reset | pcplayer | pointCloud | pcshow

External Websites
Velodyne Manuals

Introduced in R2018a

 hasFrame

2-915

https://velodynelidar.com/downloads/


readFrame
Read Velodyne point cloud from file

Syntax
ptCloud = readFrame(veloReader)
ptCloud = readFrame(veloReader,frameNumber)
ptCloud = readFrame(veloReader,frameTime)

Description
ptCloud = readFrame(veloReader) reads the next point cloud in sequence from the Velodyne
PCAP file and returns a pointCloud object.

ptCloud = readFrame(veloReader,frameNumber) reads the point cloud with the specific frame
number from the file.

ptCloud = readFrame(veloReader,frameTime) reads the first point cloud recorded at or after
the given frameTime.

Examples

Read Point Cloud from File Using Time Duration

Create a velodyneFileReader object to read a Velodyne® packet capture (PCAP) file and select
specific point clouds using a duration scalar.

Read in point clouds by using a Velodyne® file reader. Specify the PCAP file to read and the
Velodyne® device model.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Create a duration scalar that represents three seconds after the first point cloud reading.

timeDuration = veloReader.StartTime + duration(0,0,3,'Format','s');

Read the first point cloud recorded at or after the given time duration.

ptCloudObj   = readFrame(veloReader,timeDuration);

Display the point cloud using pcshow.

figure
pcshow(ptCloudObj)

2 Objects

2-916



Input Arguments
veloReader — Velodyne file reader
velodyneFileReader object

Velodyne file reader, specified as a velodyneFileReader object.

frameNumber — Frame number of desired point cloud in the file
positive integer

Frame number of the desired point cloud in file, specified as a positive integer. Frame numbers are
sequential.

frameTime — Frame time of desired point cloud in file
duration scalar

Frame time of the desired point cloud in the file, specified as a duration scalar in seconds. The first
frame available at or after frameTime is given.

Output Arguments
ptCloud — Point cloud
pointCloud object

 readFrame

2-917



Point cloud, returned as a pointCloud object.

See Also
velodyneFileReader | pcplayer | pointCloud | pcshow | reset | hasFrame

External Websites
Velodyne Manuals

Introduced in R2018a

2 Objects

2-918

https://velodynelidar.com/downloads/


reset
Reset the CurrentTime property of velodyneFileReader object to the default value

Syntax
reset(veloReader)

Description
reset(veloReader) resets the CurrentTime property of velodyneFileReader to the default
value. The default value is the StartTime property of velodyneFileReader.

Examples

Reset the velodyneFileReader object

Construct velodyneFileReader object.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','PuckLITE');

Inspect the properties of the velodyneFileReader object to know the CurrentTime. The default
value of CurrentTime is the value of StartTime.

veloReader

veloReader = 
  velodyneFileReader with properties:

           FileName: 'B:\matlab\toolbox\vision\visiondata\lidarData_ConstructionRoad.pcap'
        DeviceModel: 'PuckLITE'
    CalibrationFile: 'B:\matlab\toolbox\shared\pointclouds\utilities\velodyneFileReaderConfiguration\PuckLITE.xml'
     OrganizePoints: 1
     NumberOfFrames: 1238
           Duration: 61.845 sec
          StartTime: 1145.1 sec
            EndTime: 1206.9 sec
         Timestamps: [1145.1 sec    1145.1 sec    1145.2 sec    ...    ]
        CurrentTime: 1145.1 sec

Use readFrame to read a pointcloud sequence from the object veloReader. Specify frame number
corresponding to the pointcloud sequence as 1000.

ptCloud = readFrame(veloReader,1000);

Inspect the CurrentTime property of velodyneFileReader object. The value of CurrentTime is
changed to 1195 sec with reference to the pointcloud sequence read.

veloReader.CurrentTime

 reset

2-919



ans = duration
   1195 sec

Reset the CurrentTime property of velodyneFileReader object.

reset(veloReader)

Inspect the CurrentTime property and verify that its value is reset to the default value.

veloReader.CurrentTime

ans = duration
   1145.1 sec

Input Arguments
veloReader — Velodyne file reader
velodyneFileReader object

Velodyne file reader, specified as a velodyneFileReader object.

See Also
velodyneFileReader | readFrame | hasFrame

External Websites
Velodyne Manuals

Introduced in R2018a

2 Objects

2-920

https://velodynelidar.com/downloads/


changeFilePaths
Change file paths in ground truth data

Syntax
unresolvedPaths = changeFilePaths(gTruth,alternativePaths)

Description
unresolvedPaths = changeFilePaths(gTruth,alternativePaths) changes the file paths
stored in a groundTruth object, gTruth, based on pairs of current paths and alternative paths,
alternativePaths. If gTruth is a vector of groundTruth objects, the function changes the file
paths across all objects. The function returns the unresolved paths in unresolvedPaths. An
unresolved path is any current path in alternativePaths not found in gTruth or any alternative
path in alternativePaths not found at the specified path location. In both cases,
unresolvedPaths returns only the current paths.

Use this function to update the file paths of ground truth data that changes folder locations. You can
change file paths for the ground truth data source and pixel label data.

Examples

Change File Paths in Ground Truth Data

Change the file paths to the data source and pixel label data in a groundTruth object.

Load a groundTruth object containing ground truth data into the workspace. The data source and
pixel label data of the object contains file paths corresponding to an image sequence showing a
building. MATLAB® displays a warning that the path to the data source cannot be found.

load('gTruthSeq.mat');

Warning: The data source points to a directory that cannot be found.
'C:\CFP\building'
Update the DataSource using <a href="matlab:doc('changeFilePaths')">changeFilePaths</a> method.

Display the current path to the data source.

gTruth.DataSource

ans = 
'C:\CFP\building'

Specify the current path to the data source and an alternative path and store these paths in a cell
array. Use the changeFilePaths function to update the data source path based on the paths in the
cell array. Because the function does not find the pixel label data at the specified new path, it returns
the current unresolved paths.

currentPathDataSource = "C:\CFP\building";
newPathDataSource = fullfile(matlabroot,"toolbox\vision\visiondata\building");

 changeFilePaths

2-921



alternativePaths = {[currentPathDataSource newPathDataSource]};
unresolvedPaths = changeFilePaths(gTruth,alternativePaths)

unresolvedPaths = 5×1 string
    "C:\CFP\building\PixelLabelData\Label_1.png"
    "C:\CFP\building\PixelLabelData\Label_2.png"
    "C:\CFP\building\PixelLabelData\Label_3.png"
    "C:\CFP\building\PixelLabelData\Label_4.png"
    "C:\CFP\building\PixelLabelData\Label_5.png"

Verify that the paths in the groundTruth object match the unresolved paths returned by the
changeFilePaths function. The unresolved paths are stored in the LabelData property of the
groundTruth object, in the PixelLabelData column.

gTruth.LabelData.PixelLabelData

ans = 5×1 cell
    {'C:\CFP\building\PixelLabelData\Label_1.png'}
    {'C:\CFP\building\PixelLabelData\Label_2.png'}
    {'C:\CFP\building\PixelLabelData\Label_3.png'}
    {'C:\CFP\building\PixelLabelData\Label_4.png'}
    {'C:\CFP\building\PixelLabelData\Label_5.png'}

Specify the current path and an alternative path for the pixel label files and change the file paths. The
function updates the paths for all pixel labels. Because the function resolves all paths, it returns an
empty array of unresolved paths.

currentPathPixels = "C:\CFP\building\PixelLabelData";
newPathPixels = fullfile(matlabroot,"toolbox\vision\visiondata\buildingPixellabels");
alternativePaths = {[currentPathPixels newPathPixels]};
unresolvedPaths = changeFilePaths(gTruth,alternativePaths)

unresolvedPaths = 

  0×0 empty string array

To view the new data source path, use the gTruth.DataSource command. To view the new pixel
label data paths, use the gTruth.LabelData.PixelLabelData command.

Input Arguments
gTruth — Ground truth data
groundTruth object | array of groundTruth objects

Ground truth data, specified as a groundTruth object or array of groundTruth objects. You can
export these objects from the Ground Truth Labeler app or create them programmatically.

alternativePaths — Alternative file paths
1-by-2 string vector | cell array of 1-by-2 string vectors

Alternative file paths, specified as a 1-by-2 string vector or cell array of 1-by-2 string vectors of the
form [pcurrent pnew].

2 Objects

2-922



• pcurrent is a current file path in gTruth. This file path can be from the data source or pixel label
data of gTruth. Specify pcurrent using backslashes as the path separators.

• pnew is the new path to which you want to change pcurrent. Specify pnew using either forward slashes
or backslashes as the path separators.

You can specify alternatives paths to these files:

• Data source — This path is stored in the DataSource property of gTruth.
• Pixel label data — These paths are stored in the PixelLabelData column of the LabelData

property of gTruth.

If gTruth is a vector of groundTruth objects, the function changes the file paths across all objects.
Example: ["C:\Pixels\PixelLabelData_1" "C:\Pixels\PixelLabelData_2] changes the
path to the pixel label data folder. The function updates the path in all pixel label files stored in that
folder.
Example: {["C:\Pixels\PixelLabelData_1" "C:\Pixels\PixelLabelData_2];
["B:\Sources\video.mp4" "C:\Sources\video.mp4"]} changes the path to the pixel label
data folder and the drive letter in the path to the data source.

Output Arguments
unresolvedPaths — Unresolved file paths
string array

Unresolved file paths, returned as a string array. If the function cannot find either the current path or
new path in the string vectors specified by alternativePaths, then it returns the unresolved
current paths in unresolvedPaths.

If the function finds and resolves all file paths, then it returns unresolvedPaths as an empty string
array.

See Also
groundTruth | groundTruthDataSource

Topics
“Share and Store Labeled Ground Truth Data”
“How Labeler Apps Store Exported Pixel Labels”

Introduced in R2018b

 changeFilePaths

2-923



labelDefinitionCreator
Object for storing, modifying and creating label definitions table

Description
The labelDefinitionCreator object stores definitions of labels, sublabels, and attributes for
labeling ground truth data. Use “Object Functions” on page 2-925 to add, remove, modify, or display
label definitions. Using the create object function, you can create label definitions table from the
labelDefinitionCreator object. You can use this label definitions table with the Image Labeler,
and Video Labeler apps. To create a label definitions table for use with the Ground Truth Labeler
app, use a labelDefinitionCreatorMultisignal object instead.

Creation

Syntax
ldc = labelDefinitionCreator
ldc = labelDefinitionCreator(labelDefs)

Description

ldc = labelDefinitionCreator creates an empty label definition creator object, ldc. Add label
definitions by using “Object Functions” on page 2-925. The details of the stored labels, sublabels,
and attributes can be inspected using the info object function.

ldc = labelDefinitionCreator(labelDefs) creates a label definition creator object ldc and
stores definitions from the label definitions table labelDefs. Use “Object Functions” on page 2-925
to add new label definitions or modify the existing label definitions. The details of the stored labels,
sublabels, and attributes can be inspected using the info object function.

Input Arguments

labelDefs — Label definitions
table

Label definitions, specified as a table with up to seven columns. The possible columns are Name,
Type, LabelColor, PixelLabelID, Group, Description, and Hierarchy. This table specifies the definitions
of labels, sublabels, and attributes for labeling ground truth data. For more details, see
“LabelDefinitions” on page 2-0 .

Output Arguments

ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, returned as a labelDefinitionCreator object that contains information
about label definitions associated with ground truth data.

2 Objects

2-924



Object Functions
addLabel Add label to label definition creator object
addSublabel Add sublabel to label in label definition creator object
addAttribute Add attributes to label or sublabel in label definition creator object
removeLabel Remove label from label definition creator object
removeSublabel Remove sublabel from label in label definition creator object
removeAttribute Remove attribute from label or sublabel in label definition creator object
editLabelGroup Modify a label group name
editGroupName Change group name
editLabelDescription Modify description of label or sublabel in label definition creator object
editAttributeDescription Modify description of attribute in label definition creator object
create Create label definitions table from the label definition creator object
info Display information about a label, sublabel, or attribute stored in label definition creator object

Examples

Create Label Definition Creator Object and Add Label Definitions

Create an empty label definition creator object.

ldc = labelDefinitionCreator

ldc = 

labelDefinitionCreator with 0 labels. Use the addLabel method to add a label.

Add a label with the name "Vehicle" and specify the type of label as a rectangle.

addLabel(ldc,'Vehicle',labelType.Rectangle)

Add a sublabel with the name "Wheel" and an attribute with the name "Color" to the label "Vehicle"
stored in ldc. Specify the type of sublabel as a rectangle and the attribute type as a string with value
'Red'.

addSublabel(ldc,'Vehicle','Wheel',labelType.Rectangle)
addAttribute(ldc,'Vehicle','Color',attributeType.String,'Red')

Display the details of the label definition creator object.

ldc

ldc = 

labelDefinitionCreator contains the following labels:

    Vehicle with 1 sublabels and 1 attributes.    (info)

For more details about attributes and sublabels, use the info method.

Create Label Definition Creator Object from Existing Label Definitions Table

Load an existing label definitions table into the workspace.
labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.mat');
ld = load(labelDefFile)

 labelDefinitionCreator

2-925



ld = 

  struct with fields:

    labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table. Display the details of the label
definition creator object.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc = 

labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 3 attributes.    (info)
    Pedestrian with 0 sublabels and 0 attributes.    (info)
    LaneMarker with 0 sublabels and 2 attributes.    (info)
    TrafficLight with 1 sublabels and 0 attributes.    (info)

For more details about attributes and sublabels, use the info method.

See Also
Apps
Image Labeler | Video Labeler

Objects
groundTruth | labelType | attributeType

Introduced in R2018b

2 Objects

2-926



addLabel
Add label to label definition creator object

Syntax
addLabel(ldc,labelName,typeOfLabel)
addLabel( ___ ,Name,Value)

Description
addLabel(ldc,labelName,typeOfLabel) adds a label with the specified name and type to the
label definition creator object ldc.

addLabel( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to the input arguments in the previous syntax.

Examples

Add Label Using Label Definition Creator

Create a labelDefinitionCreator.

ldc = labelDefinitionCreator;

Add a label named 'Car'.

addLabel(ldc,'Car',labelType.Rectangle);

Inspect the label.

ldc

ldc = 
labelDefinitionCreator contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Add another label named 'StopSign' in a group named 'TrafficSign'. Add a description.

addLabel(ldc,'StopSign','Rectangle','Group','TrafficSign','Description','Bounding boxes for stop signs');

Inspect the labels.

ldc

ldc = 
labelDefinitionCreator contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to None group.    (info)
    StopSign with 0 sublabels and 0 attributes and belongs to TrafficSign group.    (info)

 addLabel

2-927



For more details about attributes and sublabels, use the info method.

Add Labels Related to Driving Scene to Label Definition Creator Object

Create an empty label definition creator object.

ldc = labelDefinitionCreator

ldc = 
labelDefinitionCreator

Add label "Vehicle" to the label definition creator object. Specify the type of label as a rectangle.

addLabel(ldc,'Vehicle',labelType.Rectangle)

Add label "StopSign" to the label definition creator object. Specify the type of label as a rectangle and
add a description to the label.

addLabel(ldc,'StopSign',labelType.Rectangle,'Description','Bounding boxes for stop signs')

Display the details of the label definition creator object.

ldc

ldc = 
labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 0 attributes and belongs to None group.    (info)
    StopSign with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the label "Vehicle" using the object function info.

info(ldc,'Vehicle')

           Name: "Vehicle"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: []
    Description: ' '

Display information about the label "StopSign" using the object function info.

info(ldc,'StopSign')

           Name: "StopSign"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: []
    Description: 'Bounding boxes for stop signs'

2 Objects

2-928



Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label to be
added.

typeOfLabel — Type of label
labelType enumeration | character vector | string scalar

Type of label, specified as one of these values:

• labelType enumeration — You can use any of these labelType enumerators to specify the type
of label: Rectangle, Line, PixelLabel, Scene, or Custom.

Example: addLabel(ldc,'Car',labelType.Rectangle);

• Character vector or string scalar — This value must partially or fully match one of the labelType
enumerators.

Example: addLabel(ldc,'Car','Rec');

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addLabel(ldc,'Car',labelType.Rectangle,'Description','Type of
Vehicle');

Group — Group name
' None' (default) | character vector | string scalar

Group name, specified as a comma-separated pair consisting of 'Group' and a character vector or
string scalar. Use this name-value pair to specify a name for a group of labels.

Description — Label description
' ' (default) | character vector | string scalar

Label description, specified as a comma-separated pair consisting of 'Description' and a
character vector or string scalar. Use this name-value pair to describe the label.

See Also
Objects
labelDefinitionCreator | labelType

 addLabel

2-929



Functions
addSublabel | addAttribute | editLabelDescription | removeLabel

Introduced in R2018b

2 Objects

2-930



addSublabel
Add sublabel to label in label definition creator object

Syntax
addSublabel(ldc,labelName,sublabelName,typeOfSublabel)
addSublabel( ___ ,Name,Value)

Description
addSublabel(ldc,labelName,sublabelName,typeOfSublabel) adds a sublabel with the
specified name and type to the indicated label. The sublabel is added under the hierarchy for the
specified label in the label definition creator object ldc.

addSublabel( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to the input arguments in the previous syntax.

Examples

Add Sublabels to Labels in Label Definition Creator Object

Load an existing label definitions table into the workspace.

load('labelDefsTable.mat')

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(labelDefs)

ldc = 
labelDefinitionCreator contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to None group.    (info)
    TrafficLight with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Add sublabel "Wheel" to the label "Car". Specify the label type for sublabel as a rectangle and add
description to the sublabel.

addSublabel(ldc,'Car','Wheel',labelType.Rectangle,'Description','Bounding box for the wheel')

Add sublabels "RedLight" and "GreenLight" to the label "TrafficLight". Specify the label type for the
sublabels as rectangle.

addSublabel(ldc,'TrafficLight','RedLight',labelType.Rectangle)
addSublabel(ldc,'TrafficLight','GreenLight',labelType.Rectangle)

Display the details of the label definition creator object.

ldc

 addSublabel

2-931



ldc = 
labelDefinitionCreator contains the following labels:

    Car with 1 sublabels and 0 attributes and belongs to None group.    (info)
    TrafficLight with 2 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the sublabels under the label "Car" using the info object function.

info(ldc,'Car')

           Name: "Car"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: "Wheel"
    Description: 'Bounding box for car'

Display information about the sublabels under the label "TrafficLight" using the info object function.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: ["RedLight"    "GreenLight"]
    Description: 'Bounding boxes for traffic light'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label to which
the sublabel is associated.

sublabelName — Sublabel name
character vector | string scalar

Sublabel name, specified as a character vector or string scalar that identifies the sublabel to be
added.

typeOfSublabel — Type of sublabel
labelType enumeration | character vector | string scalar

Type of sublabel, specified as one of these values:

2 Objects

2-932



• labelType enumeration — The type of sublabel must be one of these labelType enumerators:
Rectangle or Line.

Example: addSublabel(ldc,'Car','Wheel',labelType.Rectangle)

• Character vector or string scalar — This value must partially or fully match one of these
labelType enumerators: Rectangle or Line.

Example: addSublabel(ldc,'Car','Wheel','Rec')

Note The labelType enumerators PixelLabel, Scene, and Custom are not supported as values
for the type of sublabel in labeling apps.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addSublabel(ldc,'Car','Wheel','Rect','Description','Bounding box for
Wheel');

Description — Sublabel description
' ' (default) | character vector | string scalar

Sublabel description, specified as a comma-separated pair consisting of 'Description' and a
character vector or string scalar. Use this name-value pair to describe the sublabel.

See Also
Objects
labelDefinitionCreator | labelType

Functions
addLabel | addAttribute | removeSublabel

Introduced in R2018b

 addSublabel

2-933



addAttribute
Add attributes to label or sublabel in label definition creator object

Syntax
addAttribute(ldc,labelName,attributeName,typeOfAttribute,attributeDefault)
addAttribute( ___ ,Name,Value)

Description
addAttribute(ldc,labelName,attributeName,typeOfAttribute,attributeDefault)
adds an attribute with specified name and type to the indicated label or sublabel. The attribute is
added under the hierarchy for the specified label or sublabel in the label definition creator object
ldc.

addAttribute( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to the input arguments in the previous syntax.

Examples

Add Attributes to Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.

load('sublabelDefsTable.mat')

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(labelDefs)

ldc = 
labelDefinitionCreator contains the following labels:

    Car with 1 sublabels and 0 attributes and belongs to None group.    (info)
    TrafficLight with 2 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Add attribute "Color" to the label "Car". Specify the attribute type as a string with value 'Red'.

addAttribute(ldc,'Car','Color',attributeType.String,'Red')

Display information about the sublabels under the label "TrafficLight".

info(ldc,'TrafficLight')

           Name: "TrafficLight"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []

2 Objects

2-934



      Sublabels: ["RedLight"    "GreenLight"]
    Description: 'Bounding boxes for traffic light'

Add attribute "IsOn" to the label "TrafficLight/RedLight". Specify the attribute type as logical with
value true.

addAttribute(ldc,'TrafficLight/RedLight','IsOn','logical',true)

Display the details of the label definition creator object.

ldc

ldc = 
labelDefinitionCreator contains the following labels:

    Car with 1 sublabels and 1 attributes and belongs to None group.    (info)
    TrafficLight with 2 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the attributes under the label "Car" using the info object function.

info(ldc,'Car')

           Name: "Car"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: "Color"
      Sublabels: "Light"
    Description: 'Bounding box for vehicle'

Display information about the attributes for sublabel "RedLight" under the label "TrafficLight" using
the info object function.

info(ldc,'TrafficLight/RedLight')

           Name: "RedLight"
           Type: Rectangle
     Attributes: "IsOn"
      Sublabels: []
    Description: ' '

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the
label or sublabel to which the attribute is to be added.

 addAttribute

2-935



• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute

associates to the sublabel.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the attribute to be
added to the label or sublabel.

typeOfAttribute — Type of attribute
attributeType enumeration | character vector | string scalar

Type of attribute, specified as one of these values:

• attributeType enumeration — The type of attribute must be one of these enumerators in
attributeType enumeration: Numeric, Logical, String, or List.

Example: addAttribute(ldc,'Car','Color',attributeType.String,'Red');

• Character vector or string scalar — This value must partially or fully match one of the
enumerators in attributeType enumeration.

Example: addAttribute(ldc,'Car','Color','Str','Red');

attributeDefault — Default value of attribute
numeric scalar | logical scalar | character vector | string scalar | cell array of character vectors | cell
array of string scalars

Default value of the attribute, specified as one of these values:

• Numeric scalar — Specify this value when typeOfAttribute is Numeric.
• Logical scalar — Specify this value when typeOfAttribute is Logical.
• Character vector or string scalar — Specify this value when typeOfAttribute is String.
• Cell array of character vectors or cell array of string scalars — Specify this value when

typeOfAttribute is List.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addAttribute(ldc,'Car/
Wheel','Outsidediameter',attributeType.Numeric,740,'Description','Outside
diameter in mm');

Description — Attribute description
' ' (default) | character vector | string scalar

Attribute description, specified as a comma-separated pair consisting of 'Description' and a
character vector or string scalar. Use this name-value pair to describe the attribute.

2 Objects

2-936



See Also
Objects
labelDefinitionCreator | attributeType

Functions
addLabel | addSublabel | removeAttribute | editAttributeDescription

Introduced in R2018b

 addAttribute

2-937



removeLabel
Remove label from label definition creator object

Syntax
removeLabel(ldc,labelName)

Description
removeLabel(ldc,labelName) removes the specified label from the label definition creator object
ldc.

Note Removing a label also removes any attributes or sublabels associated with that label.

Examples

Remove Label from Label Definition Creator Object

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('vision'),'visiondata','labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld = struct with fields:
    labelDefs: [4x4 table]

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc = 
labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 3 attributes and belongs to None group.    (info)
    Pedestrian with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LaneMarker with 0 sublabels and 2 attributes and belongs to None group.    (info)
    TrafficLight with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Remove the label "Vehicle" from the label definition creator object.

removeLabel(ldc,'Vehicle')

Display the details of the label definition creator object to confirm that "Vehicle" is removed from the
label definitions.

ldc

2 Objects

2-938



ldc = 
labelDefinitionCreator contains the following labels:

    Pedestrian with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LaneMarker with 0 sublabels and 2 attributes and belongs to None group.    (info)
    TrafficLight with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label to be
removed from the label definition creator object.

See Also
Objects
labelDefinitionCreator

Functions
addLabel | removeAttribute

Introduced in R2018b

 removeLabel

2-939



removeSublabel
Remove sublabel from label in label definition creator object

Syntax
removeSublabel(ldc,labelName,sublabelName)

Description
removeSublabel(ldc,labelName,sublabelName) removes the specified sublabel from the
indicated label. This label must be in the label definition creator object ldc.

Note Removing a sublabel also removes any attributes associated with that sublabel.

Examples

Remove Sublabel from Label in Label Definition Creator Object

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld = struct with fields:
    labelDefs: [4x4 table]

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc = 
labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 3 attributes and belongs to None group.    (info)
    Pedestrian with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LaneMarker with 0 sublabels and 2 attributes and belongs to None group.    (info)
    TrafficLight with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the label "TrafficLight" defined in the label definition creator object.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []

2 Objects

2-940



      Sublabels: "Light"
    Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Remove the sublabel "Light" from the label "TrafficLight".

removeSublabel(ldc,'TrafficLight','Light')

Display the details of the label definition creator object to confirm that a sublabel is removed from the
label "TrafficLight".

ldc

ldc = 
labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 3 attributes and belongs to None group.    (info)
    Pedestrian with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LaneMarker with 0 sublabels and 2 attributes and belongs to None group.    (info)
    TrafficLight with 0 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Display information about the label "TrafficLight". Confirm that the sublabel "Light" is removed.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: []
    Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label to which
the sublabel is associated.

sublabelName — Sublabel name
character vector | string scalar

Sublabel name, specified as a character vector or string scalar that identifies the sublabel to be
removed from the indicated label labelName.

 removeSublabel

2-941



See Also
Objects
labelDefinitionCreator

Functions
removeLabel | removeAttribute | addLabel | addSublabel

Introduced in R2018b

2 Objects

2-942



removeAttribute
Remove attribute from label or sublabel in label definition creator object

Syntax
removeAttribute(ldc,labelName,attributeName)

Description
removeAttribute(ldc,labelName,attributeName) removes the specified attribute from the
indicated label or sublabel in the label definition creator object ldc.

Examples

Remove Attributes from Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('vision'),'visiondata','labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld = struct with fields:
    labelDefs: [4x4 table]

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc = 
labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 3 attributes and belongs to None group.    (info)
    Pedestrian with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LaneMarker with 0 sublabels and 2 attributes and belongs to None group.    (info)
    TrafficLight with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Remove an Attribute from a Label

Display information about the label "Vehicle" defined in the label definition creator object.

info(ldc,'Vehicle')

           Name: "Vehicle"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: ["Class"    "Color"    "View"]
      Sublabels: []
    Description: 'Draw a tight bounding box around the vehicle. Use this label for cars, buses and trailers.'

 removeAttribute

2-943



Remove the attribute "Color" from the label "Vehicle".

removeAttribute(ldc,'Vehicle','Color')

Display information about the label "Vehicle". Confirm that the attribute "Color" is removed.

info(ldc,'Vehicle')

           Name: "Vehicle"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: ["Class"    "View"]
      Sublabels: []
    Description: 'Draw a tight bounding box around the vehicle. Use this label for cars, buses and trailers.'

Remove an Attribute from a Sublabel

Display information about the label "TrafficLight" defined in the label definition creator object.

info(ldc,'TrafficLight')

           Name: "TrafficLight"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: "Light"
    Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Display information about the sublabel "Light" under the label "TrafficLight".

info(ldc,'TrafficLight/Light')

           Name: "Light"
           Type: Rectangle
     Attributes: ["Active"    "Color"]
      Sublabels: []
    Description: 'Mark a tight bounding box around each light.'

Remove the attribute "Active" from the sublabel "TrafficLight/Light".

removeAttribute(ldc,'TrafficLight/Light','Active')

Display information about the sublabel "TrafficLight/Light". Confirm that the attribute "Active" is
removed.

info(ldc,'TrafficLight/Light')

           Name: "Light"
           Type: Rectangle
     Attributes: "Color"
      Sublabels: []
    Description: 'Mark a tight bounding box around each light.'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

2 Objects

2-944



Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the
label or sublabel from which the attribute is to be removed.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute

associates to the sublabel.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the attribute to be
removed from the indicated label or sublabel labelName.

See Also
Objects
labelDefinitionCreator

Functions
removeLabel | addLabel | addAttribute

Introduced in R2018b

 removeAttribute

2-945



editLabelDescription
Modify description of label or sublabel in label definition creator object

Syntax
editLabelDescription(ldc,labelName,description)

Description
editLabelDescription(ldc,labelName,description) modifies the description of a label or
sublabel identified by labelName. The label or sublabel must be in the label definition creator object
ldc.

Examples

Modify Description of Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.

load('editlabelDefs.mat')

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(labelDefs)

ldc = 
labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 3 attributes and belongs to None group.    (info)
    Pedestrian with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LaneMarker with 0 sublabels and 2 attributes and belongs to None group.    (info)
    TrafficLight with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Modify the Description of a Label

Display information about the label "LaneMarker".

info(ldc,'LaneMarker')

           Name: "LaneMarker"
           Type: Line
     LabelColor: {''}
          Group: "None"
     Attributes: ["BoundaryType"    "Location_wrt_Ego"]
      Sublabels: []
    Description: ''

Modify the description for the label "LaneMarker".

editLabelDescription(ldc,'LaneMarker','Use 5 or more points for curved lane lines.')

2 Objects

2-946



Display information about the label "LaneMarker" to verify the modified label description.

info(ldc,'LaneMarker')

           Name: "LaneMarker"
           Type: Line
     LabelColor: {''}
          Group: "None"
     Attributes: ["BoundaryType"    "Location_wrt_Ego"]
      Sublabels: []
    Description: 'Use 5 or more points for curved lane lines.'

Modify the Description of a Sublabel

Display information about the label "TrafficLight".

info(ldc,'TrafficLight')

           Name: "TrafficLight"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: "Light"
    Description: 'Bounding box for the traffic light. Use sublabels to mark each individual light.'

Display information about the sublabel "Light" under the label "TrafficLight".

info(ldc,'TrafficLight/Light')

           Name: "Light"
           Type: Rectangle
     Attributes: ["Active"    "Color"]
      Sublabels: []
    Description: 'lights'

Modify the description for the sublabel "Light".

editLabelDescription(ldc,'TrafficLight/Light','Mark a tight bounding box around each light.')

Display information about the sublabel "Light" to verify the modified sublabel description.

info(ldc,'TrafficLight/Light')

           Name: "Light"
           Type: Rectangle
     Attributes: ["Active"    "Color"]
      Sublabels: []
    Description: 'Mark a tight bounding box around each light.'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label or sublabel name
character vector | string scalar

 editLabelDescription

2-947



Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the
label or sublabel for which the description is to be updated.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar that contains the new description for the
label or sublabel identified by labelName.

See Also
Objects
labelDefinitionCreator | groundTruth

Functions
editAttributeDescription

Introduced in R2018b

2 Objects

2-948



editLabelGroup
Modify a label group name

Syntax
editLabelGroup(ldc,labelName,groupName)

Description
editLabelGroup(ldc,labelName,groupName) modifies the group name that corresponds to the
label identified by labelName. The label must be in the label definition creator object ldc.

Examples

Modify Group Name for Labels

Create a labelDefinitionCreator.

ldc = labelDefinitionCreator;

Add a rectangle label named Car in a group named Vehicle.

addLabel(ldc,'Car',labelType.Rectangle,'Group','Vehicle');

Add a rectangle label named Truck in a group named FourWheeler.

addLabel(ldc,'Truck',labelType.Rectangle,'Group','FourWheeler');

Move the Car label into the FourWheeler group.

editLabelGroup(ldc,'Car','FourWheeler');

Inspect the labels.

ldc

ldc = 
labelDefinitionCreator contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to FourWheeler group.    (info)
    Truck with 0 sublabels and 0 attributes and belongs to FourWheeler group.    (info)

For more details about attributes and sublabels, use the info method.

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

 editLabelGroup

2-949



labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the label that
corresponds to the groupName you want to modify.

groupName — Group name
character vector | string scalar

Group name, specified as a character vector or string scalar that identifies the group you want to
modify, which corresponds to the label specified by labelName.

See Also
Objects
labelDefinitionCreator

Functions
editLabelDescription | editGroupName

Introduced in R2019a

2 Objects

2-950



editGroupName
Change group name

Syntax
editGroupName(ldc,oldname,newname)

Description
editGroupName(ldc,oldname,newname) changes the group name from oldname to newname.
This function changes the group name in all the label definitions that have the oldname.

Examples

Rename Label Group Created with labelDefinitionCreator

Create a labelDefinitionCreator.

ldc = labelDefinitionCreator;

Add labels named Car and Truck in a group named Vehicle.

addLabel(ldc,'Car',labelType.Rectangle,'Group','Vehicle');
addLabel(ldc,'Truck',labelType.Rectangle,'Group','Vehicle');

Change the Vehicle group name FourWheeler.

editGroupName(ldc,'Vehicle','FourWheeler');

Inspect the labels.

ldc

ldc = 
labelDefinitionCreator contains the following labels:

    Car with 0 sublabels and 0 attributes and belongs to FourWheeler group.    (info)
    Truck with 0 sublabels and 0 attributes and belongs to FourWheeler group.    (info)

For more details about attributes and sublabels, use the info method.

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

oldname — Old group name
character vector | string scalar

 editGroupName

2-951



Old group name, specified as a character vector or string scalar that uniquely identifies group name
you want to modify.

newname — New group name
character vector | string scalar

New group name, specified as a character vector or string scalar that uniquely identifies the new
group name.

See Also
Objects
labelDefinitionCreator

Functions
editLabelDescription | editLabelGroup

Introduced in R2019a

2 Objects

2-952



editAttributeDescription
Modify description of attribute in label definition creator object

Syntax
editAttributeDescription(ldc,labelName,attributeName,description)

Description
editAttributeDescription(ldc,labelName,attributeName,description) modifies the
description of an attribute under the label or sublabel identified by labelName. The label or sublabel
must be in the label definition creator object ldc.

Examples

Modify Description of Attributes in Label Definition Creator Object

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld = struct with fields:
    labelDefs: [4x4 table]

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc = 
labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 3 attributes and belongs to None group.    (info)
    Pedestrian with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LaneMarker with 0 sublabels and 2 attributes and belongs to None group.    (info)
    TrafficLight with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Modify the Description of Attribute Under a Label

Display information about the label "Vehicle".

info(ldc,'Vehicle')

           Name: "Vehicle"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: ["Class"    "Color"    "View"]

 editAttributeDescription

2-953



      Sublabels: []
    Description: 'Draw a tight bounding box around the vehicle. Use this label for cars, buses and trailers.'

Display information about the attribute "Color" under the label "Vehicle".

info(ldc,'Vehicle/Color')

            Name: "Color"
            Type: String
    DefaultValue: ""
     Description: 'Color of the vehicle, specified as a string, such as red, blue, white.'

Modify the description of the attribute "Color" under the label "Vehicle".

editAttributeDescription(ldc,'Vehicle','Color','Color of the vehicle, specified as a string, e.g. "red".')

Display information about the label "Vehicle" to verify the modified attribute description.

info(ldc,'Vehicle/Color')

            Name: "Color"
            Type: String
    DefaultValue: ""
     Description: 'Color of the vehicle, specified as a string, e.g. "red".'

Modify the Description of Attribute Under a Sublabel

Display information about the label "TrafficLight".

info(ldc,'TrafficLight')

           Name: "TrafficLight"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: "Light"
    Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Display information about the sublabel "Light" under the label "TrafficLight".

info(ldc,'TrafficLight/Light')

           Name: "Light"
           Type: Rectangle
     Attributes: ["Active"    "Color"]
      Sublabels: []
    Description: 'Mark a tight bounding box around each light.'

Display information about the attribute "Active" under the sublabel "TrafficLight/Light".

info(ldc,'TrafficLight/Light/Active')

            Name: "Active"
            Type: Logical
    DefaultValue: 0
     Description: 'Mark true if this light is active and false if not.'

Modify the description of the attribute "Active" under the sublabel "TrafficLight/Light".

2 Objects

2-954



editAttributeDescription(ldc,'TrafficLight/Light','Active','Is Active: true (DefaultValue: 1), false (DefaultValue: 0)')

Display information about the attribute "Active" to verify the modified attribute description.

info(ldc,'TrafficLight/Light/Active')

            Name: "Active"
            Type: Logical
    DefaultValue: 0
     Description: 'Is Active: true (DefaultValue: 1), false (DefaultValue: 0)'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the
label or sublabel to which the attribute is associated.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute is

associated with the sublabel.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the attribute for which
the description is to be updated.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar that contains the new description for the
attribute identified by attributeName.

See Also
Objects
labelDefinitionCreator

Functions
editLabelDescription

Introduced in R2018b

 editAttributeDescription

2-955



create
Create label definitions table from the label definition creator object

Syntax
labelDefs = create(ldc)

Description
labelDefs = create(ldc) creates a label definitions table, labelDefs, from the label definition
creator object ldc. You can import the labelDefs table into the Image Labeler and Video Labeler
apps to label ground truth data.

Examples

Create Label Definitions Table from Label Definition Creator Object

Create an empty label definition creator object.

ldc = labelDefinitionCreator

ldc = 
labelDefinitionCreator

Add a label "Vehicle" to the label definition creator object. Specify the type of label as a rectangle and
add a description to the label.

addLabel(ldc,'Vehicle','Rectangle','Description','Bounding box for the vehicle. Use this label for cars and buses.')

Add an attribute "IsCar" to the label "Vehicle". Specify the type of attribute as logical with value true
and add description to the attribute.

addAttribute(ldc,'Vehicle','IsCar','logical',true,'Description','Type of vehicle')

Add an attribute "IsBus" to the label "Vehicle". Specify the type of attribute as logical with value
false and add description to the attribute.

addAttribute(ldc,'Vehicle','IsBus','logical',false,'Description','Type of vehicle')

Create a label definitions table from the definitions stored in the label definition creator object.

labelDefs = create(ldc)

labelDefs=1×6 table
       Name          Type       LabelColor     Group                                  Description                                  Hierarchy  
    ___________    _________    __________    ________    ____________________________________________________________________    ____________

    {'Vehicle'}    Rectangle    {0x0 char}    {'None'}    {'Bounding box for the vehicle. Use this label for cars and buses.'}    {1x1 struct}

2 Objects

2-956



Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object. The object ldc defines
the labels, sublabels, and attributes used for generating the label definitions table labelDefs.

Output Arguments
labelDefs — Label definitions
table

Label definitions, returned as a table with up to seven columns. The possible columns are Name,
Type, LabelColor, PixelLabelID, Group, Description, and Hierarchy. This table specifies the definitions
of labels, sublabels, and attributes for labeling ground truth data. For more details, see
“LabelDefinitions” on page 2-0 .

See Also
Objects
labelDefinitionCreator

Functions
addLabel | addSublabel | addAttribute | info

Introduced in R2018b

 create

2-957



info
Display information about a label, sublabel, or attribute stored in label definition creator object

Syntax
info(ldc,name)
infoStruct = info(ldc,name)

Description
info(ldc,name) displays information about the specified label, sublabel or attribute stored in the
label definition creator object ldc.

infoStruct = info(ldc,name) returns the information as a structure.

Examples

Display Information About Definitions Stored in Label Definition Creator Object

Load an existing label definitions table into the workspace. Create a label definition creator object.

FilePath = fullfile(toolboxdir('vision'),'visiondata','labelDefsWithAttributes.mat');
Ld = load(FilePath);
ldc = labelDefinitionCreator(Ld.labelDefs)

ldc = 
labelDefinitionCreator contains the following labels:

    Vehicle with 0 sublabels and 3 attributes and belongs to None group.    (info)
    Pedestrian with 0 sublabels and 0 attributes and belongs to None group.    (info)
    LaneMarker with 0 sublabels and 2 attributes and belongs to None group.    (info)
    TrafficLight with 1 sublabels and 0 attributes and belongs to None group.    (info)

For more details about attributes and sublabels, use the info method.

Get information about the label "TrafficLight" as a structured data.

trafficStruct = info(ldc,'TrafficLight')

trafficStruct = struct with fields:
           Name: "TrafficLight"
           Type: Rectangle
     LabelColor: {''}
          Group: "None"
     Attributes: []
      Sublabels: "Light"
    Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Get information about the sublabel "Light" under the label "TrafficLight" as a structured data.

lightStruct = info(ldc,'TrafficLight/Light')

2 Objects

2-958



lightStruct = struct with fields:
           Name: "Light"
           Type: Rectangle
     Attributes: ["Active"    "Color"]
      Sublabels: []
    Description: 'Mark a tight bounding box around each light.'

Get information about the attribute "Color" under the sublabel "TrafficLight/Light" as a structured
data.

colorStruct = info(ldc,'TrafficLight/Light/Color')

colorStruct = struct with fields:
           Name: "Color"
           Type: List
      ListItems: {3x1 cell}
    Description: 'Specify the color of the light as one of Red, Yellow (amber) or Green.'

Display the ListItems field of the structure colorStruct.

colorStruct.ListItems

ans = 3x1 cell
    {'Red'   }
    {'Yellow'}
    {'Green' }

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

name — Name of label, sublabel, or attribute
character vector | string scalar

Name of label, sublabel, or attribute in the ldc object, specified as a character vector or string scalar
whose form depends on the type of name you specify.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'.
• To specify an attribute, use the form 'labelName/sublabelName/attributeName'.

Output Arguments
infoStruct — Information structure
structure

Information structure, returned as a structure that contains the fields Name, Type, Attributes
(when pertinent), Sublabels (when pertinent), and Description. If name specifies an attribute,
then infoStruct also contains the fields DefaultValue and ListItems (for List attributes).

 info

2-959



See Also
Objects
labelDefinitionCreator

Functions
addLabel | create

Introduced in R2018b

2 Objects

2-960



vision.DeployableVideoPlayer
Package: vision

Display video

Description
The DeployableVideoPlayer object displays video frames. This player is capable of displaying
high definition video at high frame rates. This video player object supports C code generation.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Creation

Syntax
depVideoPlayer = vision.DeployableVideoPlayer
depVideoPlayer = vision.DeployableVideoPlayer(Name,Value)

Description

depVideoPlayer = vision.DeployableVideoPlayer returns a video player depVideoPlayer,
for displaying video frames. This object, unlike the vision.VideoPlayer object, can generate C
code.

depVideoPlayer = vision.DeployableVideoPlayer(Name,Value) sets properties using one
or more name-value pairs. Enclose each property name in quotes. For example, depVideoPlayer =
vision.DeployableVideoPlayer('Name','Caption title')

Properties
Location — Bottom left corner of video window
[ ] (default) | two-element vector

Location of bottom left corner of video frame, specified as a two-element vector. The first and second
elements are specified in pixels and represent the horizontal and vertical coordinates respectively.
The coordinates [0 0] represent the bottom left corner of the screen. The default location depends
on the screen resolution, and will result in a window positioned in the center of the screen.

Name — Video window title bar caption
'Deployable Video Player'

Video window title bar caption, specified as the comma-separated pair consisting of 'Name' and a
character vector.

 vision.DeployableVideoPlayer

2-961



Size — Size of video display window
True size (1:1) (default) | Full-screen | Custom

Size of video display window, specified as the comma-separated pair consisting of 'Size' and Full-
screen, True size (1:1) or Custom. When this property is set to Full-screen, use the Esc key
to exit out of full-screen mode.

CustomSize — Custom size for video player window
[300 410] (default) | two-element vector

Custom size for video player window, specified as the comma-separated pair consisting of
'CustomSize' and a two-element vector. The first and second elements are specified in pixels and
represent the horizontal and vertical components respectively. The video data will be resized to fit the
window. This property applies when you set the Size property to Custom.

InputColorFormat — Color format of input signal
RGB (default) | 'YCbCr 4:2:2'

Color format of input signal, specified as the comma-separated pair consisting of
'InputColorFormat' and 'RGB' or 'YCbCr 4:2:2'. The number of columns in the Cb and Cr
components must be half the number of columns in Y.

Usage

Syntax
depVideoPlayer(videoFrame)
depVideoPlayer(videoFrame,Y,Cb,Cr)

Description

depVideoPlayer(videoFrame) displays one grayscale or truecolor RGB video frame in the video
player.

depVideoPlayer(videoFrame,Y,Cb,Cr) displays one frame of YCbCr 4:2:2 video in the color
components Y, Cb, and Cr when you set the InputColorFormat property to YCbCr 4:2:2. The
number of columns in the Cb and Cr components must be half the number of columns in the Y
component.

Input Arguments

videoFrame — Video frame
truecolor | 2-D grayscale image

Video frame, specified as a truecolor or 2-D grayscale image.

Y,Cb,Cr — YCbCr color format
'YCbCr 4:2:2'

YCbCr color format, returned in the YCbCr 4:2:2 format.

2 Objects

2-962



Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.DeployableVideoPlayer
isOpen Visible or hidden status for player

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Play a Video From a File

Create a video reader and a video player object to read and view a video file.

videoFReader   = vision.VideoFileReader('atrium.mp4');
depVideoPlayer = vision.DeployableVideoPlayer;

Continue to read frames of video until the last frame is read. Exit the loop if the user closes the video
player window.

cont = ~isDone(videoFReader);
  while cont
    videoFrame = videoFReader();
    depVideoPlayer(videoFrame);
    cont = ~isDone(videoFReader) && isOpen(depVideoPlayer);
  end

Release the System objects.

release(videoFReader);
release(depVideoPlayer);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code for this function uses a precompiled platform-specific shared library.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 vision.DeployableVideoPlayer

2-963

https://www.mathworks.com/support/requirements/matlab-system-requirements.html


See Also
Objects
vision.VideoFileWriter | vision.VideoFileReader | vision.VideoPlayer

Functions
delete

Introduced in R2012a

2 Objects

2-964



Simulink.ImageType
Specify image data type

Description
Use a Simulink.ImageType object to set and share image data types for signal, state, and
parameter data in a model.

1 Create an instance of this class in the MATLAB base workspace.
2 Set the properties of the object to describe the image.
3 Assign the data type to supported blocks, which have a Data type parameter, that you want to

conform to the data type.

The benefits of the Simulink.ImageType data type include:

• Strong typing of image data at model interfaces.
• Carrying image data attributes such as color format and pixel data type, eliminating the need to

create and maintain secondary signals.
• Enabling the Simulink environment to interpret the data as an image.
• Enabling custom data type replacement with third party implementation, such as the OpenCV

class cv::Mat.

Creation
To create a Simulink.NumericType object programmatically, use the Simulink.NumericType
function described below.

Syntax
imageType = Simulink.ImageType
imageType = Simulink.ImageType(Rows,Columns,Channels)
imageType = Simulink.ImageType(Rows,Columns,Channels,'ClassUnderlying',
ClassUnderlying,'ColorFormat',ColorFormat,'Layout',Layout)

Description

imageType = Simulink.ImageType returns a Simulink.Parameter object with default property
values.

imageType = Simulink.ImageType(Rows,Columns,Channels) returns a
Simulink.ImageType object and initializes the Rows, Columns, and Channels property to the
specified values.

imageType = Simulink.ImageType(Rows,Columns,Channels,'ClassUnderlying',
ClassUnderlying,'ColorFormat',ColorFormat,'Layout',Layout) returns a
Simulink.ImageType object and additionally initializes the optional properties ClassUnderlying,
ColorFormat, and Layout to the specified values.

 Simulink.ImageType

2-965



Properties
Rows — Number of rows in image data
480 (default) | positive integer

Number of rows in the image data, specified as a positive integer.
Example: 480
Data Types: double

Columns — Number of columns in image data
640 (default) | positive integer

Number of columns in the image data, specified as a positive integer.
Example: 640
Data Types: double

Channels — Number of color channels or samples for each pixel in array
3 (default) | 1 | 4

Number of color channels or samples for each pixel in the array, specified as 1, 3, or 4. The number
of channels must correspond to the number of color channels in the color format of the image data.
These are the values of Channels for the supported color formats:

Color Format Channels
Grayscale 1
RGB 3
BGR 3
BGRA 4

Example: 3
Data Types: double

ClassUnderlying — Data type of underlying image data
'uint8' (default) | 'int8' | 'uint16' | 'int16' | 'uint32' | 'int32' | 'single' | 'double' |
'boolean'

Data type of the underlying image data, specified as one of these values:

• 'uint8'
• 'int8'
• 'uint16'
• 'int16'
• 'uint32'
• 'int32'
• 'single'
• 'double'

2 Objects

2-966



• 'boolean'

Example: 'uint8'
Data Types: char | string

ColorFormat — Color format of underlying image data
'RGB' (default) | 'Grayscale' | 'BGR' | 'BGRA'

Color format of the underlying image data, specified as 'RGB', 'Grayscale', 'BGR', or 'BGRA'.
The color format determines what each color channel of a pixel in the image represents.
Example: 'RGB'
Data Types: char | string

Layout — Memory arrangement of matrix data in image
'ColumnMajor' (default) | 'RowMajor'

Memory arrangement of the matrix data in the image, specified as 'ColumnMajor' or 'RowMajor'.
Example: 'ColumnMajor'
Data Types: char | string

Examples

Configure Data as Simulink.ImageType Data Type

1 Create a Simulink.ImageType object with default values.

imageType = Simulink.ImageType;

imageType = 

  ImageType with properties:

               Rows: 480
               Cols: 640
           Channels: 3
    ClassUnderlying: 'uint8'
        ColorFormat: 'RGB'
             Layout: 'ColumnMajor'

2 Set the properties of the object to describe the image.

imageType.Rows = 720
imageType.Cols = 860

You can then reference this object from supported blocks that have a Data type field parameter.

Limitations
These blocks support simulation and code generation of a Simulink.ImageType object:

 Simulink.ImageType

2-967



Block Library Block Name
Sources • Ground

• Inport
• Outport
• From Multimedia File

Signal Routing • Goto
• From
• Data Store Read
• Data Store Write
• Data Store Memory
• Switch
• Multiport Switch
• Merge
• Variant Source
• Variant Merge (internal block added during

code generation)
• Mux
• Demux
• Vector Concatenate, Matrix Concatenate
• Selector

Sink • Terminator
• To Workspace (simulation only)
• Record, XY Graph (simulation only)
• Video Viewer (simulation only)

Ports & Subsystems • Subsystem
• Enabled Subsystem
• Triggered Subsystem
• Function-Call Subsystem
• Resettable Subsystem
• For Iterator Subsystem
• Model

Discrete • Unit Delay
Signal Attributes • Signal Conversion

• Signal Specification
User-Defined Functions • Initialize Function

• Reset Function
• Terminate Function
• Simulink Function block with side I/O and

arguments

2 Objects

2-968



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports C++ code generation. To generate code, set the Language model configuration
parameter to C++ and the Language standard to C++11 (ISO).

See Also
Image To Matrix | Matrix To Image

Topics
“Convert Between Simulink Image Type and Matrices”
“Smile Detection by Using OpenCV Code in Simulink”
“Convert RGB Image to Grayscale Image by Using OpenCV Importer”
“Shadow Detection by Using OpenCV Code in Simulink”

Introduced in R2021b

 Simulink.ImageType

2-969





Functions

3



folders2labels
Get list of labels from folder names

Syntax
lbls = folders2labels(loc)
lbls = folders2labels(loc,Name,Value)

lbls = folders2labels(ds)

[lbls,files] = folders2labels( ___ )

Description
Use this function when you are working on a machine or deep learning classification problem and
your labeled data is stored in folders that have the corresponding label names.

lbls = folders2labels(loc) creates a list of labels based on the folder names specified by the
location loc.

lbls = folders2labels(loc,Name,Value) specifies additional input arguments using name-
value pairs. For example, 'FileExtensions','.mat' includes only .mat files in the scan for labels.

lbls = folders2labels(ds) creates a list of labels based on the files contained in ds. ds can be
a datastore, a matlab.io.datastore.FileSet object, or a
matlab.io.datastore.BlockedFileSet object.

[lbls,files] = folders2labels( ___ ) additionally returns a list of files. The ith element of
lbls corresponds to the label of the ith file in files.

Examples

Labels from Folder Names

Create a folder called Files in the current folder containing three subfolders, Files_1, Files_2,
and Files_3. Add to each subfolder a random number of files, each containing a random signal of
random size.

mkdir Files

for kj = 1:3
    fname = "Files_" + kj;
    mkdir(fname)
    for jk = 1:randi(4)
        sname = "sig_" + kj + "_" + jk;
        sgn = randn(randi([30 50]),randi(2));
        save(sname,"sgn")
        movefile(sname + ".mat",fname)
    end

3 Functions

3-2



    movefile(fname,"Files")
end

List the contents of the folders.

dir("*/*/*")

Files Found in: Files\Files_1

.            sig_1_1.mat  sig_1_3.mat  

..           sig_1_2.mat  sig_1_4.mat  

Files Found in: Files\Files_2

.            ..           sig_2_1.mat  sig_2_2.mat  

Files Found in: Files\Files_3

.            ..           sig_3_1.mat  sig_3_2.mat  sig_3_3.mat  

Create a list of labels based on the folder names.

lbls = folders2labels("Files")

lbls = 9x1 categorical
     Files_1 
     Files_1 
     Files_1 
     Files_1 
     Files_2 
     Files_2 
     Files_3 
     Files_3 
     Files_3 

List the names of the files associated with the labels.

[~,files] = folders2labels("Files");
[~,fnames] = fileparts(files)

fnames = 9x1 string
    "sig_1_1"
    "sig_1_2"
    "sig_1_3"
    "sig_1_4"
    "sig_2_1"
    "sig_2_2"
    "sig_3_1"
    "sig_3_2"
    "sig_3_3"

Remove the Files directory you created at the beginning of the example.

rmdir Files s

 folders2labels

3-3



Input Arguments
loc — Files or folders to scan for labels
character vector | cell array of character vectors | string scalar | string array

Files or folders to scan for labels, specified as a character vector, a cell array of character vectors, a
string scalar, or a string array, containing the location of files or folders that are local or remote.

• Local files or folders — Specify loc as a local path to files or folders. If the files are not in the
current folder, then the local path must specify full or relative paths. Files within subfolders of the
specified folder are included by default. You can use the wildcard character (*) when specifying
the local path. This character specifies that the file search include all matching files or all files in
the matching folders.

• A remote location specified using an internationalized resource identifier (IRI).
• Remote files or folders — Specify loc to be the full paths of the files or folders as a uniform

resource locator (URL) of the form hdfs:///path_to_file. For more information, see “Work
with Remote Data”.

folders2labels looks for all file formats. To specify a custom list of file extensions to scan, use the
FileExtensions argument.
Example: 'whale.mat'
Example: '../dir/data/signal.mat'
Example: "../dir/data/"
Example: {'dataFiles/Files_1/' 'dataFiles/Files_2/'}
Example: ["dataFiles/Files_1/" "dataFiles/Files_2/"]
Data Types: char | string | cell

ds — Data repository
datastore | matlab.io.datastore.FileSet object | matlab.io.datastore.BlockedFileSet
object

Data repository, specified as a datastore, a matlab.io.datastore.FileSet object, or a
matlab.io.datastore.BlockedFileSet object.

• If ds is a datastore, it must contain a Files property from which label names are parsed.
• If ds is a matlab.io.datastore.FileSet object, folders2labels obtains the label names

from the file names listed in the FileInfo property of ds.
• If ds is a matlab.io.datastore.BlockedFileSet object, folders2labels obtains the label

names from the file names listed in the BlockInfo property of ds.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: folders2labels('C:\dir\signaldata','FileExtensions','.csv') specifies a
local path and includes only CSV files in the scan for labels.

3 Functions

3-4



IncludeSubfolders — Subfolder inclusion flag
false or 0 (default) | true or 1

Subfolder inclusion flag, specified as true or false. Specify true to include all files and subfolders
within each folder or false to include only the files within each folder.
Example: 'IncludeSubfolders',true
Data Types: logical | double

FileExtensions — Signal file extensions
character vector | cell array of character vectors | string scalar | string array

Signal file extensions, specified as a string scalar, string array, character vector, or cell array of
character vectors.
Example: 'FileExtensions','.csv'
Data Types: string | char | cell

Output Arguments
lbls — List of labels
categorical vector

List of labels, returned as a categorical vector.

files — List of files
string vector

List of files, returned as a string vector. The ith element of lbls corresponds to a label for the ith
file in files.

See Also
labeledSignalSet | signalLabelDefinition | countlabels | splitlabels

Introduced in R2021a

 folders2labels

3-5



splitlabels
Find indices to split labels according to specified proportions

Syntax
idxs = splitlabels(lblsrc,p)
idxs = splitlabels(lblsrc,p,'randomized')
idxs = splitlabels( ___ ,Name,Value)

Description
Use this function when you are working on a machine or deep learning classification problem and you
want to split a dataset into training, testing, and validation sets that hold the same proportion of label
values.

idxs = splitlabels(lblsrc,p) finds logical indices that split the labels in lblsrc based on the
proportions or number of labels specified in p.

idxs = splitlabels(lblsrc,p,'randomized') randomly assigns the specified proportion of
label values to each index set in idxs.

idxs = splitlabels( ___ ,Name,Value) specifies additional input arguments using name-value
pairs. For example, 'UnderlyingDatastoreIndex',3 splits the labels only in the third underlying
datastore of a combined datastore.

Examples

Split Vowels

Read William Shakespeare's sonnets with the fileread function. Extract all the vowels from the text
and convert them to lowercase.

sonnets = fileread("sonnets.txt");
vowels = lower(sonnets(regexp(sonnets,"[AEIOUaeiou]")))';

Count the number of instances of each vowel.

cnts = countlabels(vowels)

cnts=5×3 table
    Label    Count    Percent
    _____    _____    _______

      a      4940     18.368 
      e      9028     33.569 
      i      4895     18.201 
      o      5710     21.232 
      u      2321     8.6302 

3 Functions

3-6



Split the vowels into a training set containing 500 instances of each vowel, a validation set containing
300, and a testing set with the rest. All vowels are represented with equal weights in the first two
sets but not in the third.

spltn = splitlabels(vowels,[500 300]);

for kj = 1:length(spltn)
    cntsn{kj} = countlabels(vowels(spltn{kj}));
end
cntsn{:}

ans=5×3 table
    Label    Count    Percent
    _____    _____    _______

      a       500       20   
      e       500       20   
      i       500       20   
      o       500       20   
      u       500       20   

ans=5×3 table
    Label    Count    Percent
    _____    _____    _______

      a       300       20   
      e       300       20   
      i       300       20   
      o       300       20   
      u       300       20   

ans=5×3 table
    Label    Count    Percent
    _____    _____    _______

      a      4140     18.083 
      e      8228      35.94 
      i      4095     17.887 
      o      4910     21.447 
      u      1521     6.6437 

Split the vowels into a training set containing 50% of the instances, a validation set containing
another 30%, and a testing set with the rest. All vowels are represented with the same weight across
all three sets.

spltp = splitlabels(vowels,[0.5 0.3]);

for kj = 1:length(spltp)
    cntsp{kj} = countlabels(vowels(spltp{kj}));
end
cntsp{:}

ans=5×3 table
    Label    Count    Percent
    _____    _____    _______

 splitlabels

3-7



      a      2470     18.367 
      e      4514     33.566 
      i      2448     18.203 
      o      2855      21.23 
      u      1161     8.6333 

ans=5×3 table
    Label    Count    Percent
    _____    _____    _______

      a      1482     18.371 
      e      2708     33.569 
      i      1468     18.198 
      o      1713     21.235 
      u       696     8.6277 

ans=5×3 table
    Label    Count    Percent
    _____    _____    _______

      a       988     18.368 
      e      1806     33.575 
      i       979       18.2 
      o      1142     21.231 
      u       464     8.6261 

Split Vowels and Consonants

Read William Shakespeare's sonnets with the fileread function. Remove all nonalphabetic
characters from the text and convert to lowercase.

sonnets = fileread("sonnets.txt");
letters = lower(sonnets(regexp(sonnets,"[A-z]")))';

Classify the letters as consonants or vowels and create a table with the results. Show the first few
rows of the table.

type = repmat("consonant",size(letters));
type(regexp(letters',"[aeiou]")) = "vowel";

T = table(letters,type,'VariableNames',["Letter" "Type"]);
head(T)

ans=8×2 table
    Letter       Type    
    ______    ___________

      t       "consonant"
      h       "consonant"
      e       "vowel"    
      s       "consonant"
      o       "vowel"    

3 Functions

3-8



      n       "consonant"
      n       "consonant"
      e       "vowel"    

Display the number of instances of each category.

cnt = countlabels(T,'TableVariable',"Type")

cnt=2×3 table
      Type       Count    Percent
    _________    _____    _______

    consonant    46516    63.365 
    vowel        26894    36.635 

Split the table into two sets, one containing 60% of the consonants and vowels and the other
containing 40%. Display the number of instances of each category.

splt = splitlabels(T,0.6,'TableVariable',"Type");

sixty = countlabels(T(splt{1},:),'TableVariable',"Type")

sixty=2×3 table
      Type       Count    Percent
    _________    _____    _______

    consonant    27910    63.366 
    vowel        16136    36.634 

forty = countlabels(T(splt{2},:),'TableVariable',"Type")

forty=2×3 table
      Type       Count    Percent
    _________    _____    _______

    consonant    18606    63.363 
    vowel        10758    36.637 

Split the table into two sets, one containing 60% of each particular letter and the other containing
40%. Exclude the letter y, which sometimes acts as a consonant and sometimes as a vowel. Display
the number of instances of each category.

splt = splitlabels(T,0.6,'Exclude',"y");

sixti = countlabels(T(splt{1},:),'TableVariable',"Type")

sixti=2×3 table
      Type       Count    Percent
    _________    _____    _______

    consonant    26719    62.346 
    vowel        16137    37.654 

forti = countlabels(T(splt{2},:),'TableVariable',"Type")

 splitlabels

3-9



forti=2×3 table
      Type       Count    Percent
    _________    _____    _______

    consonant    17813    62.349 
    vowel        10757    37.651 

Split the table into two sets of the same size. Include only the letters e and s. Randomize the sets.

halves = splitlabels(T,0.5,'randomized','Include',["e" "s"]);

cnt = countlabels(T(halves{1},:))

cnt=2×3 table
    Letter    Count    Percent
    ______    _____    _______

      e       4514     64.385 
      s       2497     35.615 

Split Data in Datastore

Create a dataset that consists of 100 Gaussian random numbers. Label 40 of the numbers as A, 30 as
B, and 30 as C. Store the data in a combined datastore containing two datastores. The first datastore
has the data and the second datastore contains the labels.

dsData = arrayDatastore(randn(100,1));
dsLabels = arrayDatastore([repmat("A",40,1); repmat("B",30,1); repmat("C",30,1)]);
dsDataset = combine(dsData,dsLabels);
cnt = countlabels(dsDataset,'UnderlyingDatastoreIndex',2)

cnt=3×3 table
    Label    Count    Percent
    _____    _____    _______

      A       40        40   
      B       30        30   
      C       30        30   

Split the data set into two sets, one containing 60% of the numbers and the other with the rest.

splitIndices = splitlabels(dsDataset,0.6,'UnderlyingDatastoreIndex',2);

dsDataset1 = subset(dsDataset,splitIndices{1});
cnt1 = countlabels(dsDataset1,'UnderlyingDatastoreIndex',2)

cnt1=3×3 table
    Label    Count    Percent
    _____    _____    _______

      A       24        40   
      B       18        30   

3 Functions

3-10



      C       18        30   

dsDataset2 = subset(dsDataset,splitIndices{2});
cnt2 = countlabels(dsDataset2,'UnderlyingDatastoreIndex',2)

cnt2=3×3 table
    Label    Count    Percent
    _____    _____    _______

      A       16        40   
      B       12        30   
      C       12        30   

Input Arguments
lblsrc — Input label source
categorical vector | string vector | logical vector | numeric vector | cell array | table | datastore |
CombinedDatastore object

Input label source, specified as one of these:

• A categorical vector.
• A string vector or a cell array of character vectors.
• A numeric vector or a cell array of numeric scalars.
• A logical vector or a cell array of logical scalars.
• A table with variables containing any of the previous data types.
• A datastore whose readall function returns any of the previous data types.
• A CombinedDatastore object containing an underlying datastore whose readall function

returns any of the previous data types. In this case, you must specify the index of the underlying
datastore that has the label values.

lblsrc must contain labels that can be converted to a vector with a discrete set of categories.
Example: lblsrc = categorical(["B" "C" "A" "E" "B" "A" "A" "B" "C" "A"],["A"
"B" "C" "D"]) creates the label source as a ten-sample categorical vector with four categories: A,
B, C, and D.
Example: lblsrc = [0 7 2 5 11 17 15 7 7 11] creates the label source as a ten-sample
numeric vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | table | cell | categorical

p — Proportions or numbers of labels
integer scalar | scalar in (0, 1) | vector of integers | vector of fractions

Proportions or numbers of labels, specified as an integer scalar, a scalar in the range (0, 1), a vector
of integers, or a vector of fractions.

• If p is a scalar, splitlabels finds two splitting index sets and returns a two-element cell array in
idxs.

 splitlabels

3-11



• If p is an integer, the first element of idxs contains a vector of indices pointing to the first p
values of each label category. The second element of idxs contains indices pointing to the
remaining values of each label category.

• If p is a value in the range (0, 1) and lblsrc has Ki elements in the ith category, the first
element of idxs contains a vector of indices pointing to the first p × Ki values of each label
category. The second element of idxs contains the indices of the remaining values of each
label category.

• If p is a vector with N elements of the form p1, p2, …, pN, splitlabels finds N + 1 splitting index
sets and returns an (N + 1)-element cell array in idxs.

• If p is a vector of integers, the first element of idxs is a vector of indices pointing to the first
p1 values of each label category, the next element of idxs contains the next p2 values of each
label category, and so on. The last element in idxs contains the remaining indices of each
label category.

• If p is a vector of fractions and lblsrc has Ki elements of the ith category, the first element of
idxs is a vector of indices concatenating the first p1 × Ki values of each category, the next
element of idxs contains the next p2 × Ki values of each label category, and so on. The last
element in idxs contains the remaining indices of each label category.

Note

• If p contains fractions, then the sum of its elements must not be greater than one.
• If p contains numbers of label values, then the sum of its elements must not be greater than the

smallest number of labels available for any of the label categories.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'TableVariable',"AreaCode",'Exclude',["617" "508"] specifies that the
function split labels based on telephone area code and exclude numbers from Boston and Natick.

Include — Labels to include in index sets
vector of label categories | cell array of label categories

Labels to include in the index sets, specified as a vector or cell array of label categories. The
categories specified with this argument must be of the same type as the labels in lblsrc. Each
category in the vector or cell array must match one of the label categories in lblsrc.

Exclude — Labels to exclude from index sets
vector of label categories | cell array of label categories

Labels to exclude from the index sets, specified as a vector or cell array of label categories. The
categories specified with this argument must be of the same type as the labels in lblsrc. Each
category in the vector or cell array must match one of the label categories in lblsrc.

3 Functions

3-12



TableVariable — Table variable to read
first table variable (default) | character vector | string scalar

Table variable to read, specified as a character vector or string scalar. If this argument is not
specified, then splitlabels uses the first table variable.

UnderlyingDatastoreIndex — Underlying datastore index
integer scalar

Underlying datastore index, specified as an integer scalar. This argument applies when lblsrc is a
CombinedDatastore object. splitlabels counts the labels in the datastore obtained using the
UnderlyingDatastores property of lblsrc.

Output Arguments
idxs — Splitting indices
cell array

Splitting indices, returned as a cell array.

See Also
countlabels | folders2labels

Introduced in R2021a

 splitlabels

3-13



generateCircleGridPoints
Generate circle grid point locations

Syntax
worldPoints = generateCircleGridPoints(patternDims,centerDistance)
[worldPoints] = generateCircleGridPoints( ___ ,PatternType="symmetry")

Description
worldPoints = generateCircleGridPoints(patternDims,centerDistance) generates
circle grid point locations based on the specified number of circles in each dimension patternDims
and the specified distance in world units between the centers of two adjacent circles
centerDistance.

For more details on circle grid patterns, see “Circle Grid Patterns”.

[worldPoints] = generateCircleGridPoints( ___ ,PatternType="symmetry") specifies
the type of circle grid for which the function generates point locations. Specify PatternType as
"asymmetric or "symmetric". By default, the function generates point locations for an asymmetric
circle grid.

Examples

Generate Point Locations for Asymmetric Circle Grid

Specify the distance between the centers of adjacent circles, in millimeters (mm). By default, the
function generates point locations for an asymmetric circle grid.

centerDistance = 9;
worldPoints = generateCircleGridPoints([4 11],centerDistance);

Generate Point Locations for Symmetric Circle Grid

Specify the distance between the centers, in millimeters (mm). Set the pattern type to "symmetric".

centerDistance = 19;
worldPoints = generateCircleGridPoints([8 11],centerDistance, ...
                                        PatternType="symmetric");

Input Arguments
patternDims — Pattern dimensions
1-by-2 vector

Pattern dimensions, specified as a 1-by-2 vector that represents the number of circles in each
dimension. For the asymmetric pattern, Dimension 1 corresponds to the number of circles in each

3 Functions

3-14



column. Dimension 2 corresponds to the total number of circles in the first two adjacent rows. For
more details on circle grid patterns, see “Circle Grid Patterns”.

Asymmetric Symmetric

centerDistance — Distance between centers of two adjacent circles
scalar

Distance between centers of two adjacent circles in the same row or column, specified as a scalar in
world units, such as millimeters.

Output Arguments
worldPoints — Circle grid center locations
M-by-2 matrix

Circle grid center locations, returned as an M-by-2 matrix. Each row of the matrix specifies the xy-
coordinates of a circle center relative to the origin. The origin (0,0) is the center of the top-left circle
in the grid. M is the total number of circles in the grid,calculated as the product of the circle count in
each dimension: prod(patternDims).

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
detectCircleGridPoints | estimateCameraParameters | generateCheckerboardPoints

Topics
“Camera Calibration Using AprilTag Markers”

 generateCircleGridPoints

3-15



Introduced in R2021b

3 Functions

3-16



detectCircleGridPoints
Detect circle grid pattern in images

Syntax
imagePoints = detectCircleGridPoints(I,patternDims)
[imagePoints,imagesUsed] = detectCircleGridPoints(imageFileNames,patternDims)
[ ___ ] = detectCircleGridPoints(images,patternDims)

[imagePoints,pairsUsed] = detectCircleGridPoints(imageFileNames1,
imageFileNames2,patternDims)
[ ___ ] = detectCircleGridPoints(images1,images2,patternDims)

[ ___ ] = detectCircleGridPoints( ___ ,Name=Value)

Description
Single Image Circle Grid Detection

imagePoints = detectCircleGridPoints(I,patternDims) detects a circle grid in a 2-D
truecolor or grayscale image, I. For more details on circle grid patterns, see “Circle Grid Patterns”.

[imagePoints,imagesUsed] = detectCircleGridPoints(imageFileNames,patternDims)
detects a circle grid in the image files specified by imageFileNames, and additionally returns the list
of images in which the circle grid is detected imagesUsed.

[ ___ ] = detectCircleGridPoints(images,patternDims) detects a circle grid in the
specified images images.
Stereo Pair Circle Grid Detection

[imagePoints,pairsUsed] = detectCircleGridPoints(imageFileNames1,
imageFileNames2,patternDims) detects a circle grid in the stereo pairs of image files specified
by imageFileNames1 and imageFileNames2. The function additionally returns a list of the pairs in
which the pattern is detected pairsUsed.

[ ___ ] = detectCircleGridPoints(images1,images2,patternDims) detects a circle grid in
the stereo pairs of image files specified by images1 and images2.
Optional Arguments

[ ___ ] = detectCircleGridPoints( ___ ,Name=Value) specifies options using one or more
name-value arguments in addition to any combination of arguments from previous syntaxes. For
example, detectCircleGridPoints(I,patternDims,PatternType="symmetric") detects a
symmetric circle grid in the specified workspace.

Examples

Detect Symmetric Circle Grid in Image

Load an image containing a circle grid pattern into the workspace.

 detectCircleGridPoints

3-17



imageFileName = fullfile(toolboxdir('vision'),'visiondata', ...
                'calibration','circleGrid','mono','image08.jpg');
I = imread(imageFileName);

Define the dimensions for the circle grid pattern.

patternDims = [8 11];

Detect the circle grid points.

imagePoints = detectCircleGridPoints(I,patternDims,PatternType="symmetric")

imagePoints = 88×2

  395.1729  358.4451
  383.5573  388.4410
  370.8857  420.9698
  356.9887  456.5418
  341.6686  495.7388
  325.0617  538.9151
  306.5055  586.8763
  285.8323  640.1285
  436.4195  363.5016
  426.5806  393.4896
      ⋮

Display the detected points on the image.

J = insertText(I,imagePoints,1:size(imagePoints,1));
J = insertMarker(J,imagePoints,'x',Color="green",Size=5);
imshow(J)
title("Detected a Circle Grid of Dimensions " + mat2str(patternDims))

3 Functions

3-18



Detect Asymmetric Circle Grid in Stereo Images

Specify your calibration images.

imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
                            'calibration','circleGrid','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));
images1 = leftImages.Files;
images2 = rightImages.Files;

Define the dimensions for the circle grid pattern.

patternDims = [4 11];

Detect the circle grid points in the images.

[imagePoints,pairsUsed] = detectCircleGridPoints(images1,images2,patternDims);

Display the points from the first four images of camera one.

figure
t1 = tiledlayout(2,2,TileSpacing="compact",Padding="compact");
for i = 1:4
  nexttile

 detectCircleGridPoints

3-19



  imshow(images1{i}) 
  hold on
  plot(imagePoints(:,1,i,1),imagePoints(:,2,i,1),"gx");    
end
title(t1,"Camera 1")

Display points from the first four images from camera two.

images2 = images2(pairsUsed);
figure
t2 = tiledlayout(2,2,TileSpacing="compact",Padding="compact");
for i = 1:4
  nexttile
  imshow(images2{i}) 
  hold on
  plot(imagePoints(:,1,i,2),imagePoints(:,2,i,2),"gx");    
end
title(t2,"Camera 2")

3 Functions

3-20



Input Arguments
patternDims — Pattern dimensions
two-element vector

Pattern dimensions, specified as a two-element vector that represents the number of circles in the x
and y dimensions of the image, respectively. For more details on circle grid patterns, see “Circle Grid
Patterns”.

Asymmetric Symmetric

I — Image
2-D truecolor image | grayscale image

 detectCircleGridPoints

3-21



Image, specified as a 2-D truecolor image or grayscale image.
Data Types: uint8 | int16 | uint16 | single | double

images — Images
H-by-W-by-numColorChannels-by-numImages array

Images, specified as an H-by-W-by-numColorChannels-by-numImages array, where H and W describe
the height and width of each image, respectively. numColorChannels is the number of color channels
in each image, and numImages is the number of images.
Data Types: uint8 | int16 | uint16 | single | double

images1 — Stereo pair images from camera one
H-by-W-by-numColorChannels-by-numImages array

Stereo pair images from camera one, specified as an H-by-W-by-numColorChannels-by-numImages
array, where H and W describe the height and width of each image, respectively. numColorChannels
is the number of color channels in each image, and numImages is the number of images
Data Types: uint8 | int16 | uint16 | single | double

images2 — Stereo pair images from camera two
H-by-W-by-numColorChannels-by-numImages array

Stereo pair images from camera two, specified as an H-by-W-by-numColorChannels-by-numImages
array, where H and W describe the height and width of each image, respectively. numColorChannels
is the number of color channels in each image, and numImages is the number of images
Data Types: uint8 | int16 | uint16 | single | double

imageFileNames — Image file names
cell array of character vectors | array of strings

Image file names, specified as a cell array of character vectors or an array of strings.

imageFileNames1 — Stereo image file names for camera one
cell array of character vectors | array of strings

Stereo image file names for camera one, specified as a cell array of character vectors or an array of
strings.

imageFileNames2 — Stereo image file names for camera two
cell array of character vectors | array of strings

Stereo image file names for camera two, specified as a cell array of character vectors or an array of
strings.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: detectCircleGridPoints(I,patternDims,PatternType="symmetric") detects a
symmetric circle grid in the specified workspace.

3 Functions

3-22



PatternType — Circle grid pattern type
"asymmetric" (default) | "symmetric"

Circle grid pattern type, specified as "asymmetric" or "symmetric".

circleColor — Circle color
"black" (default) | "white"

Circle color, specified as "black" or "white". Choose the color for the circle that has the strongest
contrast with the background.

Output Arguments
imagePoints — Center coordinates of detected circle grid
M-by-2 matrix | M-by-2-by- numPairs-by-2 array

Center coordinates of detected circle grid, returned as an M-by-2 matrix or an M-by-2-by-numPairs-
by-2 array. M is the number of circle grids detected, calculated as the product of the number of circle
grids detected in each dimension. Each row of the matrix or array specifies the x-y coordinates of the
center of a circle grid.

• For single images — This argument is an M-by-2 matrix when detecting circle grids in single
images.

• For stereo pairs — This argument is an M-by-2-by-numPairs-by-2 array when detecting circle grids
in stereo pairs of images. numPairs is the number of image pairs in which a circle grid is detected.
imagePoints(:,:,:,1) returns the points from the first set of images, and
imagePoints(:,:,:,2) are the points from the second set.

imagesUsed — Pattern detection flag
logical vector

Pattern detection flag, returned as a logical vector. A value of true in the imagesUsed vector
indicates that the pattern has been detected in the corresponding image.

pairsUsed — Stereo pair pattern detection flag
logical vector

Stereo pair pattern detection flag, returned as a logical vector. A value of true in the pairsUsed
vector indicates that the pattern has been detected in the corresponding image pair.

Algorithms
For a circle grid pattern to be detected, the pattern must:

• Contain at least 16 circles
• Be fully visible in the image of a single camera or in both images of a pair of stereo cameras

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

 detectCircleGridPoints

3-23



Functions
generateCircleGridPoints | estimateCameraParameters | detectCheckerboardPoints

Objects
cameraParameters | stereoParameters

Topics
“Camera Calibration Using AprilTag Markers”

Introduced in R2021b

3 Functions

3-24



writeVideoScenes
Write video sequence to video file

Syntax
filenames = writeVideoScenes(gTruth,timeRanges,folderNames)
filenames = writeVideoScenes(gTruth,timeRanges,rootFolder,folderNames)
filenames = writeVideoScenes( ___ ,Name=Value)

Description
filenames = writeVideoScenes(gTruth,timeRanges,folderNames) writes sequences of
ground truth data to separate files, filenames, that correspond to time ranges, timeRanges. Video
files are written to the folders specified by the folderNames input.

The function writes video scenes using the image data and corresponding timestamp data contained
in the specified groundTruth objects. All nonimage data, such as lidar, is ignored.

filenames = writeVideoScenes(gTruth,timeRanges,rootFolder,folderNames) also
specifies the root folder name to prepend to each of the folder names.

filenames = writeVideoScenes( ___ ,Name=Value) specifies options using name-value
arguments, in addition to any combination of input arguments from previous syntaxes. For example,
writeVideoScenes(gTruth,timeRanges,folderNames,Verbose=true) displays progress
information while writing video scenes to files.

Examples

Gather Scene Label Information and Write Video Scenes to Files

Load ground truth scene label definitions and label data into the workspace.

data = load("groundTruthSceneLabels.mat");
labelDefinitions = data.labelDefinitions;
labelData = data.labelData;

Create a ground truth data source using a video file.

gSource = groundTruthDataSource("viptrain.avi");

Create a ground truth object using the ground truth data source.

gTruth = groundTruth(gSource,labelDefinitions,labelData);

Gather all the scene time ranges and the scene labels.

[timeRanges,sceneLabels] = sceneTimeRanges(gTruth);

Select a folder in the temp directory to write the video scenes to.

rootFolder = fullfile(tempdir,"videoScenes");

 writeVideoScenes

3-25



Use the scene label names as folder names.

folderNames = sceneLabels;

Write the video scenes to the "videoScenes" folder. Specify the subfolder names for each duration
as the scene label names.

filenames = writeVideoScenes(gTruth,timeRanges,rootFolder,folderNames);

[==================================================] 100%
Elapsed time: 00:00:02
Estimated time remaining: 00:00:00

Input Arguments
gTruth — Ground truth
vector of groundTruth objects | vector of groundTruthMultisignal objects

Ground truth, specified as a vector of groundTruth objects or groundTruthMultisignal objects.

timeRanges — Time ranges of ground truth source data
M-by-1 cell array | M-by-N cell array

Time ranges of ground truth source data, specified as an M-by-1 cell array for a groundTruth object
or an M-by-N cell array for a groundTruthMultisignal object. M is the number of elements in
gTruth and N represents the number of signals per element. Each cell of the array contains a T-by-2
duration matrix, where T is the number of time ranges in the corresponding element of gTruth. Each
row of the matrix corresponds to a time range in the ground truth data for which a scene label has
been applied, specified in the form [rangeStart rangeEnd].

folderNames — Folder names
M-1 cell array | M-by-N cell array

Folder names for the video scenes, specified as an M-by-1 cell array for a groundTruth object or an
M-by-N cell array for a groundTruthMultisignal object. Each cell in the cell array corresponds to
an element of gTruth, and contains a T-by-1 vector of strings or categorical vector that specifies the
paths to the folders for the corresponding time ranges.

You must specify each folder name must be specified as a full path or as a relative path from the
current folder. When you specify a folder name that does not exist, the function creates a new folder
with the specified name. When writing video scene files, the function overwrites files with the same
name that already exists in the specified folder. For example, if you call the writeVideoScenes
function twice with the same input arguments, the files output by the second function call overwrite
those from the first.

To select and write specific signals in a groundTruthMultisignal object to a specified location,
use the selectLabelsBySignalName function before calling the writeVideoScene function.

rootFolder — Root folder name
character vector | string scalar

Root folder name to prepend to each of the folder names, specified as a character vector or a string
scalar.

3 Functions

3-26



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: writeVideoScenes(gTruth,timeRanges,folderNames,Verbose=true) displays
progress information while writing video scenes to files.

NamePrefix — File name prefix
array of strings | cell array of character vectors

File name prefix, specified as an array of strings or a cell array of character vectors. Default values
depend on the gTruth input type:

• groundTruth object — The function uses the file names (without their extension) in the
DataSource property of the groundTruth object.

• groundTruthMultisignal object — The function uses the input signal names.

VideoProfile — Video profile
"Motion JPEG AVI" (default) | "Archival" | "Motion JPEG 2000" | "MPEG-4" |
"Uncompressed AVI" | "Indexed AVI" | "Grayscale AVI"

Video profile for writing video scenes, specified as one of the video profiles listed in the table. The
VideoProfile argument usage is the same as the profile argument of the VideoWriter object.

Value of VideoProfile Description
"Archival" Motion JPEG 2000 file with lossless compression
"Motion JPEG AVI" AVI file using Motion JPEG encoding
"Motion JPEG 2000" Motion JPEG 2000 file
'MPEG-4' MPEG-4 file with H.264 encoding (systems with

Windows 7 or later, or macOS 10.7 and later)
'Uncompressed AVI' Uncompressed AVI file with RGB24 video
'Indexed AVI' Uncompressed AVI file with indexed video
'Grayscale AVI' Uncompressed AVI file with grayscale video

Verbose — Display progress on screen
true or 1 (default) | false or 0

Display progress on screen, specified as a logical 1(true) or 0(false).

Output Arguments
filenames — Full path file names
M-by-1 cell array

Full path file names to the saved video scenes, returned as an M-by-1 cell array of T-by-1 vector of
strings. M is the number of elements in the gTruth input argument. T is the number of time ranges
in the corresponding element of gTruth. Each element of the vector of strings specifies the full path
to the saved video scene for the corresponding time range.

 writeVideoScenes

3-27



The function sets the output file names as NamePrefix_UID.EXT, where UID is a unique integer
index for each written scene and EXT is the video file extension determined by the VideoProfile
argument.

See Also
Objects
groundTruthMultisignal | groundTruthDataSource | groundTruth

Functions
selectLabelsBySignalName | gatherLabelData | objectDetectorTrainingData |
pixelLabelTrainingData | sceneTimeRanges

Introduced in R2021b

3 Functions

3-28



sceneTimeRanges
Time ranges of scene labels from ground truth data

Syntax
timeRanges = sceneTimeRanges(gTruth)
[timeRanges,sceneLabels] = sceneTimeRanges(gTruth)

Description
timeRanges = sceneTimeRanges(gTruth) returns the time ranges that define the start and end
times for the scene labels applied to the ground truth data sources in gTruth.

[timeRanges,sceneLabels] = sceneTimeRanges(gTruth) also returns the scene labels that
correspond to the time ranges.

Examples

Gather Scene Time Ranges and Scene Labels

Load ground truth scene label definitions and label data into the workspace.

data = load("groundTruthSceneLabels.mat");
labelDefinitions = data.labelDefinitions;
labelData = data.labelData;

Create a ground truth data source using a video file.

gSource = groundTruthDataSource("viptrain.avi");

Create a ground truth object using the ground truth data source.

gTruth = groundTruth(gSource,labelDefinitions,labelData);

Gather all the scene time ranges and the scene labels.

[timeRanges,sceneLabels] = sceneTimeRanges(gTruth);

Display the scene time ranges for the ground truth data.

timeRanges{1}

ans = 3x2 duration
        0 sec   8.0333 sec
      8.3 sec   10.033 sec
       12 sec   16.333 sec

Display the corresponding scene labels for the ground truth data.

sceneLabels{1}

 sceneTimeRanges

3-29



ans = 3x1 categorical
     walking 
     sitting 
     trainMoving 

Input Arguments
gTruth — Ground truth
vector of groundTruth objects | vector of groundTruthMultisignal objects

Ground truth, specified as a vector of groundTruth objects or groundTruthMultisignal objects.

Output Arguments
timeRanges — Time ranges of ground truth source data
M-by-1 cell array

Time ranges of the ground truth source data, returned as an M-by-1 cell array. M is the number of
elements in gTruth. Each of the cell array contains a T-by-2 duration matrix. T is the number of time
ranges in the corresponding element of gTruth. Each row of the matrices corresponds to a time
range in the ground truth data for which a scene label has been applied, specified in the form
[rangeStart rangeEnd].

To select and obtain scene time ranges for specific signals in a groundTruthMultisignal object,
use the selectLabelsBySignalName function before calling the sceneTimeRanges function.

sceneLabels — Scene labels for each time range
M-by-1 cell array of categorical vectors

Scene labels for each time range, returned as an M-by-1 cell array of T-by-2 categorical vectors. M is
the number of elements in gTruth. T is the number of time ranges in each corresponding ground
truth data source.

See Also
Objects
groundTruthMultisignal | groundTruthDataSource | groundTruth

Functions
selectLabelsBySignalName | gatherLabelData | objectDetectorTrainingData |
pixelLabelTrainingData | writeVideoScenes

Introduced in R2021b

3 Functions

3-30



stereoParametersFromOpenCV
Convert stereo camera parameters from OpenCV to MATLAB

Syntax
stereoParams = stereoParametersFromOpenCV(intrinsicMatrix1,
distortionCoefficients1,intrinsicMatrix2,distortionCoefficients2,
rotationOfCamera2,translationOfCamera2,imageSize)
stereoParams = stereoParametersFromOpenCV( ___ ,WorldUnits=worldUnits)

Description
stereoParams = stereoParametersFromOpenCV(intrinsicMatrix1,
distortionCoefficients1,intrinsicMatrix2,distortionCoefficients2,
rotationOfCamera2,translationOfCamera2,imageSize) converts the OpenCV stereo
parameters, specified by the input arguments, into a MATLAB stereoParameters object
stereoParams.

The OpenCV spatial coordinate system specifies the upper-left pixel center at (0,0), whereas the
MATLAB spatial coordinate system specifies the pixel center at (1,1). The
stereoParametersFromOpenCV function compensates for this difference by adding 1 to both of the
x and y-values for the converted principal point.

OpenCV stereo parameters cannot be converted to a MATLAB stereoParameters object when:

• The OpenCV pinhole camera model uses more than five distortion coefficients.
• An OpenCV fisheye model is used.

In these cases, you can recalibrate the stereo camera using the Stereo Camera Calibrator app.

stereoParams = stereoParametersFromOpenCV( ___ ,WorldUnits=worldUnits) specifies a
string worldUnits, that describes the units of the world points in addition to the input arguments
from the previous syntax. Specify worldUnits as a character vector or string scalar. For example,
stereoParametersFromOpenCV( ___ ,WorldUnits="mm") describes all parameters in terms of
the world units "mm".

Examples

Rectify Stereo Images in MATLAB Using Stereo Parameters From OpenCV

Load OpenCV stereo parameters from a MAT file into the workspace.

load openCVStereoParameters.mat

Convert the loaded stereo parameters from OpenCV to MATLAB format.

stereoParams = stereoParametersFromOpenCV(intrinsicMatrix1, ...    
    distortionCoefficients1,intrinsicMatrix2,distortionCoefficients2, ...
    rotationOfCamera2,translationOfCamera2,imageSize);

 stereoParametersFromOpenCV

3-31



Load the images to rectify.

imageDir = fullfile(toolboxdir('vision'),'visiondata','calibration','stereo');
I1 = imread(fullfile(imageDir,'left','left01.png'));
I2 = imread(fullfile(imageDir,'right','right01.png'));

Display the unrectified images.

imshow(stereoAnaglyph(I1,I2));

Rectify the images using the full output view.

[J1,J2] = rectifyStereoImages(I1,I2,stereoParams,OutputView='full');

Display the resulting rectified images.

imshow(stereoAnaglyph(J1,J2));

3 Functions

3-32



Import Stereo Camera Parameters from ROS

The ROS camera calibration package estimates stereo camera parameters using the OpenCV camera
calibration tools [1]. After calibrating a stereo camera in ROS, you can export its camera parameters
to an INI file using the camera calibration parser. To use the calibrated stereo camera with Computer
Vision Toolbox™ functions, such as rectifyStereoImages, you must read the camera parameters
from the INI file and convert them into a stereoParameters object using
stereoParametersFromOpenCV.

Note: The stereoParametersFromOpenCV function supports importing stereo camera parameters
for only those pinhole camera models that use the ROS plumb-bob distortion model.

Read Stereo Camera Parameters from ROS INI File

Read the stereo camera parameters stored in stereoParams.ini using the helper function
helperReadINI.

stereoParamsINI = helperReadINI("stereoParams.ini");

 stereoParametersFromOpenCV

3-33

http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration_parsers


Compute Baseline Parameters of Stereo Camera

The baseline parameters of a stereo camera describe the relative translation and rotation of the two
cameras in the stereo camera pair. The relative rotation and translation of camera 2 with respect to
camera 1 is required to create the stereoParameters object using
stereoParametersFromOpenCV. You can compute these from the rectification and projection
matrices read from the ROS INI file [2].

Extract the two camera parameters from the stereoParams structure.

cameraParams1 = stereoParamsINI.narrow_stereo_left;
cameraParams2 = stereoParamsINI.narrow_stereo_right;

Extract the translation of camera 2 relative to camera 1 from the last column of the projection matrix.

translationOfCamera2 = cameraParams2.projection(:,end);

The rotation of camera 2 relative to camera 1, R21, is derived from the rectification matrices of the
stereo pair R1 and R2. The rectification matrices are the rotation matrices that align the camera
coordinate system to the ideal stereo image plane such that epipolar lines in both stereo images are
parallel. Compute the rotation of camera 2 relative to camera 1 as R21= R2*R1

T.

rotationOfCamera2 = cameraParams2.rectification*cameraParams1.rectification';

Create stereoParameters Object using stereoParametersFromOpenCV

Extract the intrinsic matrices and distortion coefficients of the two cameras from the stereoParams
structure.

intrinsicMatrix1 = cameraParams1.camera_matrix;
intrinsicMatrix2 = cameraParams2.camera_matrix;

distortionCoefficients1 = cameraParams1.distortion;
distortionCoefficients2 = cameraParams2.distortion;

Obtain the image size from the image field of the stereoParams structure.

imageSize = [stereoParamsINI.image.height stereoParamsINI.image.width];

Use stereoParametersFromOpenCV to create a stereoParameters object from the ROS stereo
camera parameters.

stereoParametersObj = stereoParametersFromOpenCV(intrinsicMatrix1, ...
    distortionCoefficients1,intrinsicMatrix2,distortionCoefficients2, ...
    rotationOfCamera2,translationOfCamera2,imageSize);

Rectify Pair of Stereo Images

Use the imported stereo parameters with rectifyStereoImages to rectify an image pair captured
using the calibrated stereo camera.

% Load the image pair.
imageDir = fullfile(toolboxdir('vision'),'visiondata','calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));
I1 = readimage(leftImages,1);
I2 = readimage(rightImages,1);

3 Functions

3-34



% Rectify the image pair.
[J1,J2] = rectifyStereoImages(I1,I2,stereoParametersObj,OutputView='full');

% Display the results.
figure
J = stereoAnaglyph(J1,J2);
imshow(J)

Supporting Functions

helperReadINI

The helperReadINI function reads the camera parameters from its input INI file that has been
exported from ROS.

function cameraParams = helperReadINI(filename)
% helperReadINI reads a ROS INI file, filename, and returns a structure with
% these fields: image, <camera_name1>, <camera_name2>. image is a
% structure describing the height and width of the image captured by the
% cameras of the stereo pair. The fields <camera_name1> and <camera_name2>
% are structures named after the camera names present in the INI file, and they contain
% these fields: camera_matrix, distortion, rectification_matrix,

 stereoParametersFromOpenCV

3-35



% and projection_matrix. These fields are stored in the INI file with their
% values placed in a new line followed by their name.

    f = fopen(filename,'r');
    sectionName = '';
    
    while ~feof(f)
        % Read line from file.
        line = fgetl(f);

        % Trim leading and trailing whitespaces.
        line = strtrim(line);
        
        if isempty(line) || line(1)=='#'
            % Skip empty line and comments.
            continue
        elseif line(1) == '[' && line(end) == ']'
            % Identify section names and continue reading.
            sectionName = line(2:end-1);
            sectionName = strrep(sectionName,'/','_');
            continue
        end

        % Replace blankspaces with underscores to create valid MATLAB variable
        % name.
        name = line;
        name(name == ' ') = '_';
        
        % Read the value data in upcoming lines.
        value = [];
        while ~feof(f)
            line = fgetl(f);
            line = strtrim(line);

            if isempty(line)
                % A empty line indicates end of value data.
                break
            elseif line(1)=='#'
                % Skip comment lines.
                continue
            end
            line = str2num(line); %#ok
            value = [value; line]; %#ok
        end
    
        % Store post-processed value.
        if isempty(sectionName)
            cameraParams.(name) = value;
        else
            cameraParams.(sectionName).(name) = value;
        end
    end
    
    fclose(f);
end

3 Functions

3-36



References

[1] http://wiki.ros.org/camera_calibration

[2] http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html

Input Arguments
intrinsicMatrix1 — Intrinsics matrix of camera 1
3-by-3 matrix

Intrinsics matrix of camera 1 from OpenCV, specified as a 3-by-3 matrix of the form:

f x 0 cx
0 f y cy
0 0 1

where fx and fy are the focal lengths in the x and y-directions, and cx,cy) is the principal point in
specified in OpenCV.

intrinsicMatrix2 — Intrinsics matrix of camera 2
3-by-3 matrix

Intrinsics matrix of camera 2 from OpenCV, specified as a 3-by-3 matrix of the form:

f x 0 cx
0 f y cy
0 0 1

where fx and fy are the focal lengths in the x and y-directions, and cx,cy is the principal point in
specified in OpenCV.

distortionCoefficients1 — Camera 1 radial and tangential distortion coefficients
five-element vector

Camera 1 radial and tangential distortion coefficients, returned as a five-element vector in the form
[k1 k2 p1 p2 k3]. The values of k1, k2, and k3 describe the radial distortion and p1 and p2 describe
the tangential distortion, specified in OpenCV.

distortionCoefficients2 — Camera 2 radial and tangential distortion coefficients
five-element vector

Camera 2 radial and tangential distortion coefficients, returned as a five-element vector in the form
[k1 k2 p1 p2 k3]. The values of k1, k2, and k3 describe the radial distortion and p1 and p2 describe
the tangential distortion, specified in OpenCV.

rotationOfCamera2 — Rotation of camera 2 relative to camera 1
3-by-3 matrix

Rotation of camera 2 relative to camera 1 from OpenCV, specified as a 3-by-3 matrix.

translationOfCamera2 — Translation of camera 2 relative to camera 1
three-element vector

 stereoParametersFromOpenCV

3-37

http://wiki.ros.org/camera_calibration
http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html


Translation of camera 2 relative to camera 1 from OpenCV, specified as a three-element vector.

imageSize — Image size
two-element vector

Image size, specified as a two-element vector in the form [mrows,ncols].

Output Arguments
stereoParams — Stereo parameters
stereoParameters object

Stereo parameters, returned as a stereoParameters object.

See Also
Apps
Stereo Camera Calibrator | Camera Calibrator

Objects
cameraParameters | stereoParameters

Functions
undistortImage | stereoAnaglyph | stereoParametersToOpenCV |
cameraIntrinsicsFromOpenCV | cameraIntrinsicsToOpenCV

Introduced in R2021b

3 Functions

3-38



stereoParametersToOpenCV
Convert stereo camera parameters from MATLAB to OpenCV

Syntax
[intrinsicMatrix1,distortionCoefficients1,intrinsicMatrix2,
distortionCoefficients2,rotationOfCamera2,translationOfCamera2,imageSize] =
stereoParametersToOpenCV(stereoParams)

Description
[intrinsicMatrix1,distortionCoefficients1,intrinsicMatrix2,
distortionCoefficients2,rotationOfCamera2,translationOfCamera2,imageSize] =
stereoParametersToOpenCV(stereoParams) converts a MATLAB stereoParameters object
stereoParams to OpenCV stereo parameters.

The OpenCV spatial coordinate system specifies the upper-left pixel center at (0,0), whereas the
MATLAB spatial coordinate system specifies the pixel center at (1,1). The
stereoParametersToOpenCV function compensates for this difference by subtracting 1 to both of
the x and y-values for the converted principal point.

OpenCV stereo parameters do not include the skew of a pinhole camera model. Therefore, only the
intrinsics estimated without the skew can be exported to OpenCV.

Examples

Calibrate Stereo Camera and Convert Parameters To OpenCV Format

Specify the calibration images.

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
   'calibration','stereo','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
   'calibration','stereo','right'));

Detect the checkerboards in the image pairs.

[imagePoints,boardSize] = detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify the world coordinates of the checkerboard keypoints in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1); 
imageSize = [size(I,1),size(I,2)];
stereoParams = estimateCameraParameters(imagePoints,worldPoints, ...
   ImageSize=imageSize);

 stereoParametersToOpenCV

3-39



Convert the MATLAB stereo parameters object to the OpenCV format.

[intrinsicMatrix1,distortionCoefficients1,intrinsicMatrix2, ...
   distortionCoefficients2,rotationOfCamera2,translationOfCamera2] =... 
   stereoParametersToOpenCV(stereoParams);

Input Arguments
stereoParams — Stereo parameters
stereoParameters object

Stereo parameters, specified as a stereoParameters object.

Output Arguments
intrinsicMatrix1 — Intrinsics matrix of camera 1
3-by-3 matrix

Intrinsics matrix of camera 1 formatted for OpenCV, returned as a 3-by-3 matrix of the form:

f x 0 cx
0 f y cy
0 0 1

where fx and fy are the focal lengths in the x and y-directions, and (cx,cy) is the principal point in
specified in the OpenCV input.

intrinsicMatrix2 — Intrinsics matrix of camera 2
3-by-3 matrix

Intrinsics matrix of camera 2 formatted for OpenCV, returned as a 3-by-3 matrix of the form:

f x 0 cx
0 f y cy
0 0 1

where fx and fy are the focal lengths in the x and y-directions, and (cx,cy) is the principal point in
specified in the OpenCV input.

distortionCoefficients1 — Camera 1 radial and tangential distortion coefficients
five-element vector

Camera 1 radial and tangential distortion coefficients, returned as a five-element vector in the form
[k1 k2 p1 p2 k3]. The values of k1, k2, and k3 describe the radial distortion and p1 and p2 describe
the tangential distortion, specified in OpenCV.

distortionCoefficients2 — Camera 2 radial and tangential distortion coefficients
five-element vector

Camera 2 radial and tangential distortion coefficients, returned as a five-element vector in the form
[k1 k2 p1 p2 k3]. The values of k1, k2, and k3 describe the radial distortion and p1 and p2 describe
the tangential distortion, specified in OpenCV.

3 Functions

3-40



rotationOfCamera2 — Rotation of camera 2 relative to camera 1
3-by-3 matrix

Rotation of camera 2 relative to camera 1 from OpenCV, specified as a 3-by-3 matrix.

translationOfCamera2 — Translation of camera 2 relative to camera 1
three-element vector

Translation of camera 2 relative to camera 1 from OpenCV, specified as a three-element vector.

imageSize — Image size
two-element vector

Image size, specified as a two-element vector in the form [mrows,ncols].

See Also
Apps
Stereo Camera Calibrator | Camera Calibrator

Objects
cameraParameters | stereoParameters

Functions
undistortImage | stereoAnaglyph | cameraIntrinsicsFromOpenCV |
stereoParametersFromOpenCV | stereoParametersToOpenCV

Introduced in R2021b

 stereoParametersToOpenCV

3-41



cameraIntrinsicsFromOpenCV
Convert camera intrinsic parameters from OpenCV to MATLAB

Syntax
intrinsics = cameraIntrinsicsFromOpenCV(intrinsicMatrix,
distortionCoefficients,imageSize)

Description
intrinsics = cameraIntrinsicsFromOpenCV(intrinsicMatrix,
distortionCoefficients,imageSize) converts the OpenCV intrinsics, specified by the input
arguments, into a MATLAB cameraIntrinsics object intrinsics.

The OpenCV spatial coordinate system specifies the upper-left pixel center at (0,0), whereas the
MATLAB spatial coordinate system specifies the pixel center at (1,1). The
cameraIntrinsicsFromOpenCV function compensates for this difference by adding 1 to both of the
x and y-values for the converted principal point.

OpenCV intrinsics cannot be converted to a MATLAB cameraIntrinsics object when:

• The OpenCV pinhole camera model uses more than five distortion coefficients.
• An OpenCV fisheye model is used.

In these cases, you can recalibrate the stereo camera using the Camera Calibrator app.

Examples

Undistort Image in MATLAB Using Camera Intrinsics from OpenCV

Define OpenCV camera intrinsic parameters in the workspace.

intrinsicMatrix = [729.4644    0       570.6455;
                     0       728.8196  346.0108;
                     0         0         1  ];
distortionCoefficients = [-0.4262  0.5460  0.0038  -0.0051  -0.6176];

Define the image size returned by the camera.

imageSize = [712 1072];

Convert the intrinsic parameters from OpenCV to MATLAB format.

intrinsics = cameraIntrinsicsFromOpenCV(intrinsicMatrix, ...
                                       distortionCoefficients,imageSize);

Load the image to undistort.

filename = fullfile(toolboxdir("vision"),"visiondata","calibration", ...
                        "mono","image01.jpg");
I = imread(filename);

3 Functions

3-42



Undistort the image and diplay the results.

J = undistortImage(I,intrinsics);
imshowpair(I,J,"montage");
title("Original Image (left) vs. Corrected Image (right)");

Import Camera Intrinsic Parameters from ROS

The ROS camera calibration package estimates camera intrinsic parameters using the OpenCV
camera calibration tools [1]. After calibrating a camera in ROS, you can import its intrinsic
parameters to a YAML file using the camera calibration parser in ROS. To use the calibrated camera
with Computer Vision Toolbox™ functions, such as undistortImage, you must read the camera
parameters from the YAML file and then convert them into a cameraIntrinsics object using
cameraIntrinsicsFromOpenCV.

Note: The cameraIntrinsicsFromOpenCV function supports importing camera intrinsic
parameters for only those pinhole camera models that use the ROS plumb-bob distortion model.

Read Camera Intrinsic Parameters from a ROS YAML File

Read the camera parameters stored in cameraParams.yaml using the helper function
helperReadYAML.

intrinsicsParams = helperReadYAML('cameraParams.yaml');

Create cameraIntrinsics Object Using cameraIntrinsicsFromOpenCV

Use the cameraIntrinsicsFromOpenCV function to create a cameraIntrinsics object from the
camera matrix and the distortion coefficients.

imageSize = [intrinsicsParams.image_height intrinsicsParams.image_width];
intrinsicMatrix = intrinsicsParams.camera_matrix;
distortionCoefficients = intrinsicsParams.distortion_coefficients;

intrinsicsObj = cameraIntrinsicsFromOpenCV(intrinsicMatrix,distortionCoefficients,imageSize);

 cameraIntrinsicsFromOpenCV

3-43

http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration_parsers


Undistort Image

Use the imported camera intrinsics with undistortImage to undistort an image captured using the
calibrated camera.

% Load the captured image.
imageName = fullfile(toolboxdir('vision'),'visiondata','calibration','stereo','left','left01.png');
I = imread(imageName);

% Undistort the image.
J = undistortImage(I,intrinsicsObj,'OutputView','full');

% Display the result.
figure
montage({I,J})

Supporting Functions

helperReadYAML

The helperReadYAML function reads the monocular camera parameters from the input YAML file
that was exported from ROS.

function cameraParams = helperReadYAML(filename)
% helperReadYAML reads a ROS YAML file, filename, and returns a structure 
% with these fields: image_width, image_height, camera_name,
% camera_matrix, distortion_model, distortion_coefficients,
% rectification_matrix, and projection_matrix. These fields are stored 
% in the YAML file colon separated from their values in different lines.

    f = fopen(filename,'r');
    stringFields = {'camera_name','distortion_model'};
    
    while ~feof(f)

        [name,value,isEmptyLine] = helperReadYAMLLine(f);
        if isEmptyLine
            continue

3 Functions

3-44



        end

        if ~isempty(value)
            % Convert all values to numbers except for known string
            % fields.
            if ~any(contains(name, stringFields))
                value = str2num(value); %#ok
            end
        else
            % An empty value in ROS YAML files indicates a matrix in
            % upcoming lines. Read the matrix from the upcoming lines.
            value = helperReadYAMLMatrix(f);
        end

        % Store post-processed value.
        cameraParams.(name) = value;
    end
    
    fclose(f);
end

helperReadYAMLMatrix

The helperReadYAMLMatrix function reads the rows, columns and data fields of a matrix in the
ROS YAML file.

function matrix = helperReadYAMLMatrix(f)
%   helperReadYAMLMatrix reads a matrix from the ROS YAML file. A matrix in
%   a ROS YAML file has three fields: rows, columns and data. rows and col
%   describe the matrix size. data is a continguous array of the matrix
%   elements in row-major order. This helper function assumes the presence
%   of all three fields of a matrix to return the correct matrix.

    numRows = 0;
    numCols = 0;
    data = [];

    % Read numRows, numCols and matrix data.
    while ~feof(f)
        [name,value,isEmptyLine] = helperReadYAMLLine(f);

        if isEmptyLine
            continue
        end

        switch name
            case 'rows'
                numRows = str2num(value); %#ok
            case 'cols'
                numCols = str2num(value); %#ok
            case 'data'
                data    = str2num(value); %#ok

                % Terminate the while loop as data is the last 
                % field of a matrix in the ROS YAML file.
                break
            otherwise
                % Terminate the while loop if any other field is

 cameraIntrinsicsFromOpenCV

3-45



                % encountered.
                break
        end
    end

    if numel(data) == numRows*numCols
        % Reshape the matrix using row-major order.
        matrix = reshape(data,[numCols numRows])';
    end
end

helperReadYAMLLine

The helperReadYAMLLine function reads a line of a ROS YAML file.

function [name,value,isEmptyLine] = helperReadYAMLLine(f)

    % Read line from file.
    line = fgetl(f); 

    % Trim leading and trailing whitespaces.
    line = strtrim(line);

    if isempty(line) || line(1)=='#'
        % Empty line or comment.
        name = '';
        value = '';
        isEmptyLine = true;
    else
        % Split the line to get name and value.
        c = strsplit(line,':');
        assert(length(c)==2,'Unexpected file format')
        
        name = c{1};
        value = strtrim(c{2}); % Trim leading whitespace.
        isEmptyLine = false;
    end
end

References

[1] http://wiki.ros.org/camera_calibration

Input Arguments
intrinsicMatrix — Camera intrinsic matrix
3-by-3 matrix

Camera intrinsic matrix from OpenCV, specified as a 3-by-3 matrix of the form:

f x 0 cx
0 f y cy
0 0 1

where fx and fy are the focal lengths in the x and y-directions, and (cx,cy) is the principal point in
OpenCV.

3 Functions

3-46

http://wiki.ros.org/camera_calibration


distortionCoefficients — Camera radial and tangential distortion coefficients
five-element vector

Camera radial and tangential distortion coefficients from OpenCV, specified as a five-element vector
of the form [k1 k2 p1 p2 k3]. The values of k1, k2, and k3 describe the radial distortion and p1 and p2
describe the tangential distortion, specified in OpenCV.

imageSize — Image size
2-element vector

Image size, specified as a 2-element vector in the form [mrows,ncols].

Output Arguments
intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, returned as a cameraIntrinsics object.

See Also
Apps
Stereo Camera Calibrator | Camera Calibrator

Objects
cameraParameters | stereoParameters

Functions
undistortImage | stereoAnaglyph | stereoParametersFromOpenCV |
stereoParametersToOpenCV | cameraIntrinsicsToOpenCV

Introduced in R2021b

 cameraIntrinsicsFromOpenCV

3-47



cameraIntrinsicsToOpenCV
Convert camera intrinsic parameters from MATLAB to OpenCV

Syntax
[intrinsicMatrix,distortionCoefficients] = cameraIntrinsicsToOpenCV(
intrinsics)

Description
[intrinsicMatrix,distortionCoefficients] = cameraIntrinsicsToOpenCV(
intrinsics) converts a MATLAB cameraIntrinsics or cameraParameters object, specified by
intrinsics, to OpenCV camera intrinsic parameters.

The OpenCV spatial coordinate system specifies the upper-left pixel center at (0,0), whereas the
MATLAB spatial coordinate system specifies the pixel center at (1,1). The
cameraIntrinsicsToOpenCV function compensates for this difference by subtracting 1 from both
the x and y-values for the converted principal point.

OpenCV camera intrinsic parameters do not include the skew of a pinhole camera model. Therefore,
only the intrinsics that were estimated without the skew can be exported to OpenCV.

Examples

Calibrate Camera in MATLAB and Convert Intrinsic Parameters to OpenCV

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
                        'calibration','mono'));
imageFileNames = images.Files;

Detect the checkerboard calibration pattern in the images.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate the world coordinates of the corners of the squares. Square size is in millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I,1),size(I,2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
                                  ImageSize=imageSize);

Convert the intrinsic parameters to OpenCV format

[intrinsicMatrix,distortionCoefficients] = cameraIntrinsicsToOpenCV(params);

3 Functions

3-48



Input Arguments
intrinsics — Camera intrinsic parameters
cameraIntrinsics object | cameraParameters object

Camera intrinsic parameters, specified as a cameraIntrinsics or a cameraParameters object.

Output Arguments
intrinsicMatrix — Camera intrinsic matrix
3-by-3 matrix

Camera intrinsics matrix formatted for OpenCV, returned as a 3-by-3 matrix of the form:

f x 0 cx
0 f y cy
0 0 1

where fx and fy are the focal lengths in the x and y-directions, and (cx,cy) is the principal point in
OpenCV.

distortionCoefficients — Camera radial and tangential distortion coefficients
five-element vector

Camera radial and tangential distortion coefficients, returned as a five-element vector in the form [k1
k2 p1 p2 k3]. The values of k1, k2, and k3 describe the radial distortion and p1 and p2 describe the
tangential distortion, specified in OpenCV.

See Also
Apps
Stereo Camera Calibrator | Camera Calibrator

Objects
cameraParameters | stereoParameters

Functions
undistortImage | stereoAnaglyph | stereoParametersToOpenCV |
cameraIntrinsicsFromOpenCV | stereoParametersFromOpenCV |
cameraIntrinsicsFromOpenCV

Introduced in R2021b

 cameraIntrinsicsToOpenCV

3-49



detectSIFTFeatures
Detect scale invariant feature transform (SIFT) features and return SIFTPoints object

Syntax
points = detectSIFTFeatures(I)
points = detectSIFTFeatures(I,Name=Value)

Description
points = detectSIFTFeatures(I) detects SIFT features in the 2-D grayscale input image I and
returns a SIFTPoints object. The detectSIFTFeatures function implements the Scale-Invariant
Feature Transform (SIFT) algorithm to find local features in an image.

points = detectSIFTFeatures(I,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from previous syntaxes. For example,
detectSIFTFeatures(I,ContrastThreshold=0.0133) detects SIFT features with a contrast of
less than 0.0133.

Examples

Detect Interest Points and Mark Locations

Load an image.

I = imread('cameraman.tif');

Detect SIFT features in the image.

points = detectSIFTFeatures(I);

Display the results

imshow(I);
hold on;
plot(points.selectStrongest(10))

3 Functions

3-50



Input Arguments
I — Input image
M-by-N matrix

Input image, specified as an M-by-N matrix. The input image must be a real, nonsparse value.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: detectSIFTFeatures(I,ContrastThreshold=0.0133) detects SIFT features with a
contrast of less than 0.0133.

ContrastThreshold — Contrast threshold
0.0133 (default) | non-negative scalar in range [0,1]

Contrast threshold for selecting the strongest features, specified as a non-negative scalar in the
range [0,1]. The threshold is used to filter out weak features in low-contrast regions of the image.
Increase the contrast threshold to decrease the number of returned features.

EdgeThreshold — Edge threshold
10.0 (default) | non-negative scalar

Edge threshold, specified as a non-negative scalar greater than or equal to 1. The threshold is used to
filter out unstable edge-like features in the image that are susceptible to noise. Increase the edge
threshold to decrease the number of features removed by filtering.

 detectSIFTFeatures

3-51



NumLayersInOctave — Number of layers in each octave
3 (default) | integer scalar

Number of layers in each octave, specified as an integer scalar greater than or equal to 1. The
number of octaves is computed automatically from the image resolution. Increase the number of
layers in each octave to detect larger features in the image.

Sigma — Sigma of the Gaussian
1.6 (default) | scalar

Sigma of the Gaussian, specified as a scalar. The sigma of the Gaussian is applied to the input image
at the initial octave. Sigma values are typically in the range [1,2]. Lower the sigma value if the
image is blurry.

Output Arguments
points — SIFT features
SIFTPoints object

SIFT features, returned as a SIFTPoints object. This object contains information about SIFT
features detected in the 2-D grayscale image.

References
[1] Lowe, David G. "Distinctive Image Features from Scale-Invariant Keypoints." International Journal

of Computer Vision 60, no. 2 (November 2004): 91--110.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• Generates portable C code using a C++ compiler that links to OpenCV (Version 4.2.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

See Also
Objects
SIFTPoints | SURFPoints | MSERRegions | BRISKPoints | cornerPoints | ORBPoints |
KAZEPoints

Functions
detectBRISKFeatures | detectFASTFeatures | detectKAZEFeatures | detectORBFeatures |
detectMinEigenFeatures | detectHarrisFeatures | detectMSERFeatures |
detectSURFFeatures | extractFeatures | matchFeatures

Introduced in R2021b

3 Functions

3-52



normalRotation
Compute transform for rotation of a normal to a plane

Syntax
normalRotation(model,referenceVector)

Description
tform = normalRotation(model,referenceVector) returns a rigid3d object tform, that
specifies the transformation for a normal vector of a plane to the referenceVector. model is a
planeModel. referenceVector is a 1-by-3 vector.

Examples

Transform Point Cloud

Construct a velodyneFileReader object.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read the first frame of lidar data.

frameNumber = 1;
ptCloud  = readFrame(veloReader,frameNumber);

Find the ground plane.

maxDistance = 0.4;
referenceVector = [0 0 1];

groundPlane = pcfitplane(ptCloud,maxDistance,referenceVector);

Transform the ground plane such that it is parallel to the X-Y plane.

tform = normalRotation(groundPlane,referenceVector);

Transform the point cloud.

ptCloudOut = pctransform(ptCloud,tform);

Display the original and transformed point cloud.

planeParams = groundPlane.Parameters * tform.T;
transformedPlane = planeModel(planeParams);
figure;
pcshowpair(ptCloudOut,ptCloud);
hold on;
plot(groundPlane, 'Color', 'magenta');
plot(transformedPlane, 'Color', 'green');

 normalRotation

3-53



Input Arguments
model — Parametric plane model
plane model

Parametric plane model returned by planeModel.

referenceVector — Reference vector
1-by-3 vector

Reference vector, specified as a 1-by-3 vector.

See Also
Functions
pcfitplane | pcregistercorr

Objects
pointCloud | rigid3d | planeModel

Introduced in R2020b

3 Functions

3-54



showShape
Display shapes on image, video, or point cloud

Syntax
showShape(shape,position)
showShape( ___ ,Name,Value)

Description
showShape(shape,position) displays one or more instances of a shape shape in the current axes
at the specified locations position.

showShape( ___ ,Name,Value) specifies options using one or more name-value pair arguments.
For example, 'Color','yellow' specifies the color of the displayed shapes as yellow.

Examples

Display Detected Objects in Image

Read an image into the workspace.

I = imread('visionteam1.jpg');

Create an aggregate channel features (ACF) people detector.

detector = peopleDetectorACF()

detector = 
  acfObjectDetector with properties:

             ModelName: 'inria-100x41'
    ObjectTrainingSize: [100 41]
       NumWeakLearners: 2048

Detect people in the image.

[bboxes,scores] = detect(detector,I);

Display the image with a labeled rectangle, including the associated detection score, around each
detected person.

figure
imshow(I)
labels = "person:"+scores;
showShape('rectangle',bboxes,'Label',labels)

 showShape

3-55



Display Bounding Box Around Object in Point Cloud

Read point cloud data into the workspace.

ptCloud = pcread('teapot.ply');

Display the point cloud data.

figure
pcshow(ptCloud)
xlabel('X')
ylabel('Y')
zlabel('Z')

Define a cuboid and display it in green with an opacity of 0.5.

pos = [0.3753 0 1.65 6 4 3 0 0 0];
showShape('cuboid',pos,'Color','green','Opacity',0.5)

3 Functions

3-56



Visualize Cuboid Around Moving Object in Point Cloud Stream

Read point cloud data into the workspace.

ptCloud = pcread('teapot.ply');

Define a rotation matrix and 3-D transform to rotate the point cloud, and an associated cuboid, by 5
degrees.

rot = 5;
R = [ cosd(rot) sind(rot) 0 0; ...
     -sind(rot) cosd(rot) 0 0; ...
      0       0           1 0; ...
      0       0           0 1];
  
tform = affine3d(R);

Compute the x and y rendered limits of the point cloud to ensure that the point cloud is not clipped
during rotation.

pcLimits = abs([ptCloud.XLimits ptCloud.YLimits]);
maxLimit = max(pcLimits);

Add an additional margin to the plot to prevent the cuboid from being clipped during rotation.

 showShape

3-57



margin = 1;
maxLimit = maxLimit + margin;

xlimits = [-maxLimit maxLimit];
ylimits = [-maxLimit maxLimit];
zlimits = ptCloud.ZLimits;

Create a player for visualizing the point cloud.

player = pcplayer(xlimits,ylimits,zlimits);

Customize the player axis labels.

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

Define a cuboid around the point cloud.

cuboidPosition = [0.3753 0 1.65 6 4 3 0 0 0];

Define the output view for a cuboid rotation. Use the same limits as the player so that the cuboid is
not clipped. Then, display the rotated point cloud and cuboid.

gridSize = [1 1 1];
ref = imref3d(gridSize,xlimits,ylimits,zlimits);

for i = 1:round((360/rot))
    % Rotate point cloud.
    ptCloud = pctransform(ptCloud,tform);
    
    % Rotate the cuboid.
    cuboidPosition = bboxwarp(cuboidPosition,tform,ref);
    
    % Show rotated point cloud data.
    view(player,ptCloud)
    
    % Show rotated cuboid.
    showShape('cuboid',cuboidPosition, ...
        'Parent',player.Axes, ...
        'Color','green', ...
        'Opacity',0.5)
    
    % Use drawnow to synchronize point cloud and shape visualization.
    drawnow
end

3 Functions

3-58



Input Arguments
shape — Type of shape
'line' | 'rectangle' | 'cuboid' | 'polygon' | 'circle'

Type of shape, specified as a character vector. The vector can be 'line', 'rectangle', 'cuboid,
'polygon', or 'circle'.
Data Types: string

position — Positions and sizes of shapes
M-by-4 matrix | M-by-5 matrix | M-by-9 matrix | M-by-2 matrix | M-by-3 matrix | cell array

Positions and sizes of shapes, specified according to the type of shapes, described in this table.

 showShape

3-59



Bounding Box Description
Axis-aligned rectangle Defined in spatial coordinates as an M-by-4 numeric matrix with rows of

the form [x y w h], where:

• M is the number of axis-aligned rectangles.
• x and y specify the upper-left corner of the rectangle.
• w specifies the width of the rectangle, which is its length along the x-

axis.
• h specifies the height of the rectangle, which is its length along the y-

axis.
Rotated rectangle Defined in spatial coordinates as an M-by-5 numeric matrix with rows of

the form [xctr yctr xlen ylen yaw], where:

• M is the number of rotated rectangles.
• xctr and yctr specify the center of the rectangle.
• xlen specifies the width of the rectangle, which is its length along the

x-axis before rotation.
• ylen specifies the height of the rectangle, which is its length along the

y-axis before rotation.
• yaw specifies the rotation angle in degrees. The rotation is clockwise-

positive around the center of the bounding box.

3 Functions

3-60



Bounding Box Description
Cuboid Defined in spatial coordinates as an M-by-9 numeric matrix with rows of

the form [xctr yctr zctr xlen ylen zlen xrot yrot zrot], where:

• M is the number of cuboids.
• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid along the x-axis,

y-axis, and z-axis, respectively, before rotation.
• xrot, yrot, and zrot specify the rotation angles of the cuboid around

the x-axis, y-axis, and z-axis, respectively. The xrot, yrot, and zrot
rotation angles are in degrees about the cuboid center. Each rotation
is clockwise-positive with respect to the positive direction of the
associated spatial axis. The function computes rotation matrices
assuming ZYX order Euler angles [xrot yrot zrot].

The figure shows how these values determine the position of a cuboid.

Circle Defined in spatial coordinates as an M-by-3 numeric matrix with rows of
the form [xctr yctr radius], where:

• M is the number of circles.
• xctr and yctr specify the center of the circle.
• radius specifies the radius of the circle.

 showShape

3-61



Bounding Box Description
Line Defined in spatial coordinates as a P-by-2 matrix in which each row is an

[x y] endpoint or a 1-by-2P vector of consecutive endpoints of the from
[x1 y1 x2 y2 … xP xP].

• P is the number of endpoints.
• [x1 y1], [x2 y2], and xP xP describe endpoints.

To specify several lines that contain different numbers of endpoints, you
can use the cell array format described for a polygon.

Polygon Defined in spatial coordinates as an M-by-1 cell array in which each cell
contains an L-by-2 matrix of [x y] vertex locations or a 1-by-2L vector of
consecutive vertex locations of the form [x1, y1, x2,y2, … xL,yL ], where:

• M is the number of polygons.
• [x1 y1], [x2 y2] describe vertex locations or endpoints.
• L is the number of vertices in a polygon or endpoints in a line. Each

polygon or line can have different number of vertices or endpoints.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','yellow' specifies the color of the displayed shapes as yellow.

Label — Shape label
[] (default) | scalar | M-element vector | M-element cell array of character vectors

Shape label, specified as the comma-separated pair consisting of 'Label' and either a scalar, M-
element vector, or an M-element cell array of character vectors.

If the input is a scalar value, then the function applies that same value as a label to each shape. If the
input is an M-element vector or cell array, then the function applies each value to the corresponding
shape, using the order in which the shapes are specified to the function. M is the number of shapes
specified to the function.

Color — Shape color
lines(1) (default) | one or more RGB triplets | one or more color names or short color names

Shape color, specified as the comma-separated pair consisting of 'Color' and one or more RGB
triplets, or one or more color names or short color names. To use the same color for all shapes,
specify a single (MATLAB ColorSpec) color name or a single RGB triplet.

To use a different color for each shape, specify an M-element vector or cell array of color names or an
M-by-3 numeric matrix in which each row is an RGB triplet. M is the number of shapes specified to
the function.

Opacity — Opacity of shape fill
0 (default) | M-element vector of values in the range [0 1]

3 Functions

3-62



Opacity of the shape fill, specified as the comma-separated pair consisting of 'Opacity' and an M-
element vector of numeric values in the range [0 1]. To use the same opacity for all shapes, specify a
scalar opacity value. For a fully opaque shape fill, set 'Opacity' to 1.

Parent — Output axes
gca (default) | Axes graphics object

Output axes, specified as the comma-separated pair consisting of 'Parent' and an Axes Properties
graphics object.

LineColor — Border line color
'auto' (default) | one or more RGB triplets | one or more color names or short color names

Border line color, specified as the comma-separated pair consisting of 'Color' and one or more RGB
triplets, or one or more color names or short color names. To use the same color for all border lines,
specify a single (MATLAB ColorSpec) color name or a single RGB triplet.

To use a different color for each shape, specify an M-element vector or cell array of color names or an
M-by-3 numeric matrix in which each row is an RGB triplet. M is the number of shapes specified to
the function.

LineWidth — Border line width
'auto' (default) | positive scalar integer | M-element vector of positive values

Border line width in pixels, specified as the comma-separated pair consisting of 'LineWidth' and a
positive scalar integer or an M-element vector of positive scalar integers. To use the same line width
for all shapes, specify a positive scalar integer. Otherwise, specify an M-element vector of positive
integers, where M is the number of shapes specified to the function.

LineOpacity — Border line opacity of shape fill
0 (default) | M-element vector of values in the range [0 1]

Border line opacity of the shape fill, specified as the comma-separated pair consisting of 'Opacity'
and an M-element vector of numeric values in the range [0 1]. To use the same opacity for the border
line of all shapes, specify a scalar opacity value. For a fully opaque border line, set 'Opacity' to 1.

LabelTextColor — Label text color
'black (default) | one or more RGB triplets | one or more color names or short color names

Label text color, specified as the comma-separated pair consisting of 'Color' and one or more RGB
triplets, or one or more color names or short color names. To use the same color for the text of all
labels, specify a single (MATLAB ColorSpec) color name or a single RGB triplet.

To use a different color for text of each label, specify an M-element vector or cell array of color names
or an M-by-3 numeric matrix in which each row is an RGB triplet. M is the number of labels specified
to the function.

LabelOpacity — Label opacity
0 (default) | M-element vector of values in the range [0 1]

Label opacity, specified as the comma-separated pair consisting of 'Opacity' and an M-element
vector of numeric values in the range [0 1]. To use the same opacity for all labels, specify a scalar
opacity value. For a fully opaque label, set 'Opacity' to 1.

 showShape

3-63



LabelFont — Label font
'Helvetica' (default) | 'FixedWidth' | supported font

Label font, specified as the comma-separated pair consisting of 'LabelFont' and 'FixedWidth' or
a font that your system supports. To display and print text properly, you must select a font that your
system supports. If you select an unsupported font, the function returns an error. If you specify
'FixedWidth', the function uses the font specified by the FixedWidthFont property of the Root
Properties object. The fixed-width font relies on the value of get(0,'FixedWidthFontName') .

LabelFontSize — Label font size
12 (default) | positive scalar

Label font size in point units, specified as the comma-separated pair consisting of 'LabelFontSize'
and a positive scalar.

Compatibility Considerations
Bounding Box Coordinates: Data augmentation for object detection using spatial
coordinates
Behavior changed in R2022a

The bboxresize, bboxcrop, bboxwarp, and showShape functions assume the input bounding box
coordinates for axis-aligned rectangles are specified in spatial coordinates and return the
transformed bounding boxes in spatial coordinates.

See Also
insertObjectAnnotation | insertObjectMask | insertMarker | insertText | insertShape
| pcplayer | pcshow | imshow

Topics
“Draw Markers on an Image” on page 3-646
“Insert Numbers and Text on Image” on page 3-667
“Choose Function to Visualize Detected Objects”

Introduced in R2020b

3 Functions

3-64



pcregistercorr
Register two point clouds using phase correlation

Syntax
tform = pcregistercorr(moving,fixed,gridSize,gridStep)
[tform,rmse] = pcregistercorr( ___ )
[ ___ ,peak] = pcregistercorr( ___ )
[ ___ ] = pcregistercorr( ___ ,Name=Value)

Description
tform = pcregistercorr(moving,fixed,gridSize,gridStep) computes the rigid
transformation that registers the moving point cloud, moving, to the fixed point cloud, fixed using a
phase correlation algorithm.

The function performs registration by first converting both point clouds to a 2-D occupancy grid in
the X-Y plane with center at the origin (0,0,0). The occupancy of each grid cell is determined using
the Z-coordinate values of points within the grid.

[tform,rmse] = pcregistercorr( ___ ) additionally returns the root mean square error of the
Euclidean distance between the registered point clouds.

[ ___ ,peak] = pcregistercorr( ___ ) additionally returns the peak correlation value of the
phase difference between the two occupancy grids.

[ ___ ] = pcregistercorr( ___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from previous syntaxes. For example,
Window=false sets the Window name-value argument to false to suppress using windowing .

Examples

Register Lidar Moving Point Cloud to Fixed Point Cloud

Read data from a Velodyne packet capture (PCAP) file into the workspace.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read a fixed and a moving point cloud from frames of the lidar data.

frameNumber = 1;
skipFrame   = 5;
fixed  = readFrame(veloReader,frameNumber);
moving = readFrame(veloReader,frameNumber + skipFrame);
 

Find the ground planes for both the moving and the fixed point clouds. Set the maximum distance in
meters.

maxDistance = 0.4;
referenceVector = [0 0 1];

 pcregistercorr

3-65



groundMoving = pcfitplane(moving,maxDistance,referenceVector);
groundFixed = pcfitplane(fixed,maxDistance,referenceVector);
 

Transform the point clouds so that their ground planes are parallel to the X-Y plane.

tformMoving = normalRotation(groundMoving,referenceVector);
tformFixed = normalRotation(groundFixed,referenceVector);

movingCorrected = pctransform(moving,tformMoving);
fixedCorrected = pctransform(fixed,tformFixed);
 

Register the moving point cloud against the fixed point cloud. Set the occupancy grid size to 100-
by-100 meters and the size of each grid cell to 0.5-by-0.5 meters.

gridSize = 100;
gridStep = 0.5;

tform = pcregistercorr(movingCorrected,fixedCorrected,gridSize,gridStep);
 

Transform the moving point cloud using an estimated rigid transformation.

combinedTform = rigid3d(tform.T * tformMoving.T * tformFixed.T);
movingReg = pctransform(moving,combinedTform);
 

Visualize the registration.

figure
subplot(121)
pcshowpair(moving,fixed)
title('Before Registration')
view(2)

subplot(122)
pcshowpair(movingReg,fixed)
title('After Registration')
view(2)

3 Functions

3-66



Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

gridSize — Size of square occupancy grid
scalar

Size of square occupancy grid, specified as a scalar value in world units. The occupancy grid has both
width and height equal to this value. The center is at the origin (0, 0, 0).

gridStep — Size of each grid cell
scalar

Size of each grid cell, specified as a scalar value in world units.

 pcregistercorr

3-67



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: zlim=[0 3] sets the Z-axis lower limit to 0 and the upper limit to 3.

zlim — Z-axis limit
[0 3] (default) | vector of form [zmin zmax]

Z-axis limit to compute the occupancy of a grid cell, specified as a vector of the form [zmin zmax],
where zmin and zmax are numeric scalars. The function scales points with a Z-axis value from zmin to
zmax to probabilities in the range [0, 1]. Values less than zmin are assigned an occupancy value of 0.
Values greater than zmax are assigned an occupancy value of 1.

Window — Logical to use windowing
1 (true) (default) | 0 (false)

Logical to use windowing to suppress spectral leakage effects in the frequency domain, specified as a
numeric or logical 0 (false) or 1 (true). When you set Window to true, the function uses a
Blackman window to increase the stability of registration results. If the common features that will be
aligned in the occupancy grids are oriented along the edges, then setting Window to false could
provide superior registration results.

Output Arguments
tform — Rigid transformation
rigid3d object

Rigid transformation, returned as a rigid3d object. The rigid transformation registers a moving
point cloud to a fixed point cloud. The rigid3d object describes the rigid 3-D transform.

rmse — Root mean square error
positive scalar

Root mean square error, returned as the Euclidean distance between the aligned point cloud. A low
rmse value indicates a more accurate registration.

peak — Peak correlation value
scalar value

Peak correlation value of the phase difference between the two occupancy grids, returned as a scalar
value. A peak value less than 0.03 indicates a poor registration result.

Tips
• The phase correlation method is best used to register point clouds when the transformation can be

described by a translation in the X-Y plane and a rotation around the Z-axis. For example, a
ground vehicle with a horizontally mounted lidar moving on a flat surface.

• The phase correlation algorithm expects motion to be exclusively along the X-Y plane, as with the
ground plane. If motion is not exactly in the X-Y plane, you can use the normalRotation function

3 Functions

3-68



to transform the point clouds. For example, in vehicular motion, you can reduce the effects of
vehicle suspension or surface features such as potholes and speed bumps by using the
normalRotation function.

• Increasing the size of the occupancy grid increases the computational demands of this function.
You can control the size of the occupancy grid by modifying the gridSize and gridStep
arguments.

• If you obtain poor registration results and the peak correlation value is less than 0.03, try setting
the Window argument to false.

References
[1] Dimitrievski, Martin, David Van Hamme, Peter Veelaert, and Wilfried Philips. “Robust Matching of

Occupancy Maps for Odometry in Autonomous Vehicles.” In Proceedings of the 11th Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,
626–33. Rome, Italy: SCITEPRESS - Science and Technology Publications, 2016.

See Also
Functions
pcregisterndt | pcregistercpd | pctransform | pcshow | pcshowpair | pcdownsample |
pcfitplane | pcdenoise | pcmerge

Objects
pointCloud | rigid3d

Topics
“3-D Point Cloud Registration and Stitching”
“Implement Point Cloud SLAM in MATLAB”

Introduced in R2020b

 pcregistercorr

3-69



scanContextDistance
Distance between scan context descriptors

Syntax
dist = scanContextDistance(descriptor1,descriptor2)

Description
dist = scanContextDistance(descriptor1,descriptor2) computes the normalized distance
between scan context descriptors. Determine loop closure candidates using the computed distance.

A scan context descriptor is a 2-D global feature descriptor for a point cloud that can be used to
detect loop closures. To extract a scan context descriptor fro a point cloud, use the
scanContextDescriptor function.

Examples

Extract and Compare Scan Context Descriptors of Point Clouds

Create a Velodyne® packet capture (PCAP) file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read the 1st, 2nd, and 30th scan into the workspace.

ptCloud1 = readFrame(veloReader,1);
ptCloud2 = readFrame(veloReader,2);
ptCloud30 = readFrame(veloReader,30);

Extract scan context descriptors from each of the point clouds.

descriptor1 = scanContextDescriptor(ptCloud1);
descriptor2 = scanContextDescriptor(ptCloud2);
descriptor30 = scanContextDescriptor(ptCloud30);

Compute the descriptor distance between the 1st and 2nd scan context descriptors, and between the
1st and 30th scan context descriptors.

dist1to2 = scanContextDistance(descriptor1,descriptor2);
dist1to30 = scanContextDistance(descriptor1,descriptor30);

Display the scan context descriptor distances.

disp("Descriptor distance from frame 1 to 2:  " + num2str(dist1to2))

Descriptor distance from frame 1 to 2:  0.087647

disp("Descriptor distance from frame 1 to 30: " + num2str(dist1to30))

Descriptor distance from frame 1 to 30: 0.31551

3 Functions

3-70



Input Arguments
descriptor1 — Scan context descriptor of point cloud
M-by-N matrix

Scan context descriptor of point cloud, specified as an M-by-N matrix. To ensure an accurate distance
measurement, use the same radial range when extracting this descriptor as for descriptor2.
Data Types: single | double

descriptor2 — Scan context descriptor of point cloud
M-by-N matrix

Scan context descriptor of point cloud, specified as an M-by-N matrix. To ensure an accurate distance
measurement, use the same radial range when extracting this descriptor as for descriptor1.
Data Types: single | double

Output Arguments
dist — Distance between scan context descriptors
scalar in the range [0, 1]

Distance between the scan context descriptors, returned as a scalar in the range [0, 1]. A small value
indicates that the scan contexts are likely to belong to the same location, and are loop closure
candidates.
Data Types: single | double

Algorithms
• The function computes the distance between scan context descriptors using a modified cosine

distance and normalizes it to the range [0 to 1).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pointCloud

Functions
scanContextDescriptor

Topics
“Implement Point Cloud SLAM in MATLAB”

Introduced in R2020b

 scanContextDistance

3-71



scanContextDescriptor
Extract scan context descriptor from point cloud

Syntax
descriptor = scanContextDescriptor(ptCloud)
descriptor = scanContextDescriptor(ptCloud,Name,Value)

Description
descriptor = scanContextDescriptor(ptCloud) extracts a scan context descriptor from a
point cloud, ptCloud.

A scan context descriptor is a 2-D global feature descriptor of a point cloud that can be used to detect
loop closures. The function computes the descriptor by first binning points from a 3-D point cloud
scan into concentric radial and azimuthal bins, and then selecting the maximum z-height of points in
each bin.

descriptor = scanContextDescriptor(ptCloud,Name,Value) specifies options using one or
more name-value pair arguments.

Examples

Extract and Compare Scan Context Descriptors of Point Clouds

Create a Velodyne® packet capture (PCAP) file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read the 1st, 2nd, and 30th scan into the workspace.

ptCloud1 = readFrame(veloReader,1);
ptCloud2 = readFrame(veloReader,2);
ptCloud30 = readFrame(veloReader,30);

Extract scan context descriptors from each of the point clouds.

descriptor1 = scanContextDescriptor(ptCloud1);
descriptor2 = scanContextDescriptor(ptCloud2);
descriptor30 = scanContextDescriptor(ptCloud30);

Compute the descriptor distance between the 1st and 2nd scan context descriptors, and between the
1st and 30th scan context descriptors.

dist1to2 = scanContextDistance(descriptor1,descriptor2);
dist1to30 = scanContextDistance(descriptor1,descriptor30);

Display the scan context descriptor distances.

disp("Descriptor distance from frame 1 to 2:  " + num2str(dist1to2))

3 Functions

3-72



Descriptor distance from frame 1 to 2:  0.087647

disp("Descriptor distance from frame 1 to 30: " + num2str(dist1to30))

Descriptor distance from frame 1 to 30: 0.31551

Input Arguments
ptCloud — Point cloud object
pointCloud object

Point cloud object, specified as pointCloud object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumBins',[20 60] sets the number of radial bins to 20, and the number of azimuthal
bins to 60.

NumBins — Number of concentric radial and angular bins
[20 60] (default) | vector of form [numRadialBins numAzimuthalBins]

Number of concentric radial and angular bins, specified as the comma-separated pair consisting of
'NumBins' and a vector of the form [numRadialBins numAzimuthalBins], where numRadialBins is a
positive integer that specifies the number of concentric radial bins and numAzimuthalBins specifies
the number of concentric angular bins. To extract more compact descriptors, you can decrease the
number of bins, but this reduces the discriminative power.

MinPointsPerBin — Minimum number of points to include bin
5 (default) | scalar

Minimum number of points for a bin to be included in descriptor, specified as the comma-separated
pair consisting of 'MinPointsPerBin' and a positive integer. Bins that do not contain the minimum
number of points are not included in the descriptor. For these bins, the function returns NaN. To
reduce the chances for noise to be included as a bin, increase this value.

SensorOrigin — Sensor origin
[0 0] (default) | two-element vector

Sensor origin, specified as the comma-separated pair consisting of 'SensorOrigin' and a two-
element vector. The elements set the x- and y-axis coordinate points, respectively, of the sensor origin
in world units. The function centers the bins around the origin of the scan.

RadialRange — Radial bounds of descriptor
full spatial extent of point cloud (default) | two-element vector

Radial bounds of the descriptor used when binning points, specified as the comma-separated pair
consisting of 'RadialRange' and a two-element vector in the form [rmin,rmax]. Use this name-value
argument to restrict the spatial bounds covered by the descriptor.

 scanContextDescriptor

3-73



Output Arguments
descriptor — Scan context descriptor
M-by-N matrix

Scan context descriptor, returned as an M-by-N matrix, where M and N are the number of concentric
radial and angular bins, respectively, in the descriptor. These are specified by the NumBins property.

The function returns inherits the data type of the Location property of the input point cloud.
Data Types: single | double

Tips
• The scan context descriptor function assumes that the sensor is mounted roughly horizontally and

that the input point cloud is in the sensor coordinate system.
• To determine loop closure candidates, compare the distance between two scan context descriptors

using the scanContextDistance function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pointCloud

Functions
scanContextDistance

Topics
“Implement Point Cloud SLAM in MATLAB”

Introduced in R2020b

3 Functions

3-74



pcalign
Align an array point clouds

Syntax
ptCloudOut = pcalign(ptClouds,tforms)
ptCloudOut = pcalign(ptClouds,tforms,gridStep)

Description
ptCloudOut = pcalign(ptClouds,tforms) aligns an array of point clouds, ptClouds, into one
point cloud by using the specified transformations tforms.

ptCloudOut = pcalign(ptClouds,tforms,gridStep) applies a box grid filter, with 3-D boxes
of the specified size gridStep, to the aligned point cloud. Points within the same box are merged to
a single point in the output, with averaged Color, Normal, and Intensity properties.

Examples

Align Point Clouds from View Set

Load a point cloud view set into the workspace.

data = load('vSetPointClouds.mat');
vSet = data.vSet;

Extract the point clouds and their absolute poses from the view set.

ptClouds = vSet.Views.PointCloud;
tforms   = vSet.Views.AbsolutePose;

Align the point clouds using their absolute poses, and apply a 3-D box filter of size 1 to the aligned
point cloud.

gridStep = 1;
ptCloudMap = pcalign(ptClouds,tforms,gridStep);

Display the aligned point cloud map.

pcshow(ptCloudMap)
hold on
plot(vSet)

 pcalign

3-75



Input Arguments
ptClouds — Point clouds
pointCloud array

Point clouds, specified as a pointCloud array.

tforms — 3-D rigid or affine geometric transformations
M-by-1 rigid3d array | M-by-1 affine3d array

3-D rigid or affine geometric transformations, specified as an M-by-1 rigid3d array or an M-by-1
affine3d array. The tforms argument must contain the same number of elements as the ptClouds
argument.

gridStep — Size of 3-D box for grid filter
positive scalar

3 Functions

3-76



Size of the 3-D box for the grid filter, specified as a positive scalar. Increasing the value of gridStep
can reduce memory usage by merging more points, but it can also reduce the amount of detail
captured.
Data Types: single | double

Output Arguments
ptCloudOut — Aligned point cloud
pointCloud object

Aligned point cloud, returned as a pointCloud object.

Tips
• If the input point clouds do not all have an assigned value for a property, the function does not

assign a value for that property in the returned point cloud. For example, if some of the input
point clouds have values for the Color property but another one does not, then the function does
not return a value for the Color property of ptCloudOut.

• The function filters out points with NaN or Inf values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pointCloud | planeModel | affine3d | rigid3d | pcviewset

Functions
pcplayer | pcshow | pcwrite | pcread | pcmerge | pcdownsample | pcfitplane | pcdenoise |
pcregistericp | pccat

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2020b

 pcalign

3-77



pccat
Concatenate 3-D point cloud array

Syntax
ptCloudOut = pccat(ptClouds)

Description
ptCloudOut = pccat(ptClouds) concatenates a 3-D point cloud array, ptClouds. ptCloudOut
contains the Location, Color, Normal, and Intensity property values of all the concatenated
point clouds.

Examples

Combine Sequence of Point Clouds

Read a sequence of aligned point clouds.

filePath = fullfile(toolboxdir('vision'),'visiondata','pcdmapseq');
fileDS = fileDatastore(filePath,'ReadFcn',@pcread,'UniformRead',true);
ptClouds = readall(fileDS);

Concatenate point clouds into a single point cloud.

ptCloudOut = pccat(ptClouds);

Display concatenated point cloud.

pcshow(ptCloudOut)

3 Functions

3-78



Input Arguments
ptClouds — Point clouds
M-by-1 pointCloud array

Point cloud objects, specified as an M-by-1 pointCloud array.

Output Arguments
ptCloudOut — Concatenated point cloud
pointCloud object

Concatenated point cloud, returned as a pointCloud object. ptCloudOut contains the Location,
Color, Normal, and Intensity property values of all the concatenated point clouds.

Tips
• If the input point clouds do not all have an assigned value for a property, the function does not

assign a value for that property in the returned point cloud. For example, if some of the input
point clouds have values for the Color property but another one does not, then the function does
not return a value for the Color property of ptCloudOut.

• The function filters out points with NaN or Inf values.

 pccat

3-79



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• All point clouds in the input point cloud array must be either organized or unorganized point
clouds.

See Also
Objects
pointCloud

Functions
pcalign | pcmerge

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2020b

3 Functions

3-80



readAprilTag
Detect and estimate pose for AprilTag in image

Syntax
[id,loc] = readAprilTag(I)
[id,loc] = readAprilTag(I,tagFamily)
[ ___ ,pose] = readAprilTag( ___ ,intrinsics,tagSize)
[ ___ ,detectedFamily] = readAprilTag( ___ )

Description
[id,loc] = readAprilTag(I) detects AprilTags in the input image I and returns the locations
and IDs associated with the tags.

[id,loc] = readAprilTag(I,tagFamily) detects AprilTags of only the specified families,
tagFamily.

[ ___ ,pose] = readAprilTag( ___ ,intrinsics,tagSize) returns the poses of the tags with
respect to the specified camera intrinsic parameters, intrinsics and size of the tags tagSize in
addition to any combination of arguments in previous syntaxes.

[ ___ ,detectedFamily] = readAprilTag( ___ ) returns the recognized AprilTag families,
detectedFamily.

Examples

Detect AprilTags in Image

Read an image into the workspace.

I = imread("aprilTagsMulti.jpg");

Specify the AprilTag formats to search in the image.

tagFamily = ["tag36h11","tagCircle21h7","tagCircle49h12","tagCustom48h12","tagStandard41h12"];

Detect tags and tag locations in the image, and read the tag IDs.

[id,loc,detectedFamily] = readAprilTag(I,tagFamily);

for idx = 1:length(id)
        % Display the ID and tag family
        disp("Detected Tag ID, Family: " + id(idx) + ", " ...
            + detectedFamily(idx));
 
        % Insert markers to indicate the locations
        markerRadius = 8;
        numCorners = size(loc,1);
        markerPosition = [loc(:,:,idx),repmat(markerRadius,numCorners,1)];

 readAprilTag

3-81



        I = insertShape(I,"FilledCircle",markerPosition,Color="red",Opacity=1);
end

Detected Tag ID, Family: 30, tag36h11
Detected Tag ID, Family: 32, tagCircle21h7
Detected Tag ID, Family: 98, tagStandard41h12
Detected Tag ID, Family: 195, tagCustom48h12
Detected Tag ID, Family: 884, tagCircle49h12

Display the image with markers to indicate the corner locations of the detected tags.

imshow(I)

Estimate AprilTag Poses in Image

Read an image that contains AprilTags into the workspace. Display the image.

I = imread("aprilTag36h11.jpg");
imshow(I)

3 Functions

3-82



Load the camera intrinsic parameters.

data = load("camIntrinsicsAprilTag.mat");
intrinsics = data.intrinsics;  

Specify the tag size in meters.

tagSize = 0.04;

Undistort the input image using the camera intrinsic parameters.

I = undistortImage(I,intrinsics,"OutputView","same");

Detect a specific family of AprilTags and estimate the tag poses.

[id,loc,pose] = readAprilTag(I,"tag36h11",intrinsics,tagSize);

Set the origin for the axes vectors and for the tag frames.

worldPoints = [0 0 0; tagSize/2 0 0; 0 tagSize/2 0; 0 0 tagSize/2];

Add the tag frames and IDs to the image.

 readAprilTag

3-83



for i = 1:length(pose)
    % Get image coordinates for axes.
    imagePoints = worldToImage(intrinsics,pose(i).Rotation, ...
                  pose(i).Translation,worldPoints);

    % Draw colored axes.
    I = insertShape(I,"Line",[imagePoints(1,:) imagePoints(2,:); ...
        imagePoints(1,:) imagePoints(3,:); imagePoints(1,:) imagePoints(4,:)], ...
        "Color",["red","green","blue"],"LineWidth",7);

    I = insertText(I,loc(1,:,i),id(i),"BoxOpacity",1,"FontSize",25);
end

Display the annotated image.

imshow(I)

3 Functions

3-84



Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N grayscale image

Input image, specified as an M-by-N-by-3 truecolor image or an M-by-N grayscale image.

tagFamily — AprilTag families
one or more valid AprilTag families

AprilTag families, specified as one or more of the valid AprilTag families listed in this table. Specifying
a family can reduce the run time of the function by restricting the search.

AprilTag Family
"tag16h5"
"tag25h9"
"tag36h11"
"tagCircle21h7"
"tagCircle49h12"
"tagCustom48h12"
"tagStandard41h12"
"tagStandard52h13"

Data Types: char | string | cell

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

tagSize — Size of tag
positive scalar

Size of the tags in world units (such as millimeters), specified as a positive scalar. The function
defines the size of the tags as the length between two adjacent corner outer black edges.

Output Arguments
id — Tag IDs
vector of positive integers

Tag IDs, returned a vector of positive integers.

loc — Locations of tags in image
4-by-2-by-N array

Locations of tags in image, returned as a 4-by-2-by-N array. The array contains the (x,y) locations for
each of the four corners for N tags.

pose — Poses of tags
array of rigid3d objects

 readAprilTag

3-85



Poses of tags with respect to the camera, returned as an array of rigid3d objects. Each object
encapsulates the 3-D rigid transformation of a tag in the same world units as the tagSize input
argument. The origin of each tag frame is located at the center of the corresponding tag.

detectedFamily — Detected tag families
vector of strings

Detected tag families, returned as a vector of strings.

Tips
• For applications that require real-time performance, while also minimizing false-positive

detections, consider using the "tag36h11" family tag.
• For applications that require a faster detection time as opposed to the number of supported IDs,

use the "tagStandard41h12" family tag.
• For pregenerated tags for all supported tag families, see Pregenerated AprilTag Images on

GitHub.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• Generates code only on host platforms.
• You must specify the input argument tagFamily as a character vector or an array of character

vectors. String inputs are not supported.

See Also
Functions
readBarcode | rigid3d | cameraIntrinsics | worldToImage | insertText | insertShape |
insertMarker

Topics
“Camera Calibration Using AprilTag Markers”
“Landmark SLAM Using AprilTag Markers” (Navigation Toolbox)

Introduced in R2020b

3 Functions

3-86

https://github.com/AprilRobotics/apriltag-imgs
https://github.com/AprilRobotics/apriltag-imgs


evaluateDetectionAOS
Evaluate average orientation similarity metric for object detection

Syntax
metrics = evaluateDetectionAOS(detectionResults,groundTruthData)
metrics = evaluateDetectionAOS(detectionResults,groundTruthData,threshold)

Description
metrics = evaluateDetectionAOS(detectionResults,groundTruthData) computes the
average orientation similarity (AOS) metric. The metric can be used to measure the detection results
detectionResults against ground truth data groundTruthData. The AOS is a metric for
measuring detector performance on rotated rectangle detections.

metrics = evaluateDetectionAOS(detectionResults,groundTruthData,threshold)
additionally specifies the overlap threshold for assigning a detection to a ground truth bounding box.

Examples

Evaluate Rotated Rectangle Detections

Define ground truth bounding boxes for a vehicle class. Each row defines a rotated bounding box of
the form [xcenter, ycenter, width, height, yaw].

gtbbox = [
    2 2 10 20 45
    80 80 30 40 15
    ];

gtlabel = "vehicle";

Create a table to hold the ground truth data.

groundTruthData = table({gtbbox},'VariableNames',gtlabel)

groundTruthData=table
      vehicle   
    ____________

    {2x5 double}

Define detection results for rotated bounding boxes, scores, and labels.

bbox = [
    4 4 10 20 20
    50 50 30 10 30
    90 90 40 50 10 ];

scores = [0.9 0.7 0.8]';

 evaluateDetectionAOS

3-87



labels = [
    "vehicle"
    "vehicle"
    "vehicle"
    ];
labels = categorical(labels,"vehicle");

Create a table to hold the detection results.

detectionResults = table({bbox},{scores},{labels},'VariableNames',{'Boxes','Scores','Labels'})

detectionResults=1×3 table
       Boxes           Scores            Labels      
    ____________    ____________    _________________

    {3x5 double}    {3x1 double}    {3x1 categorical}

Evaluate the detection results against ground truth by calculating the AOS metric.

metrics = evaluateDetectionAOS(detectionResults,groundTruthData)

metrics=1×5 table
                AOS        AP       OrientationSimilarity     Precision         Recall   
               ______    _______    _____________________    ____________    ____________

    vehicle    0.5199    0.54545        {4x1 double}         {4x1 double}    {4x1 double}

Input Arguments
detectionResults — Detection results
three-column table

Detection results, specified as a three-column table. The columns contain bounding boxes, scores,
and labels. The bounding boxes can be axis-aligned rectangles or rotated rectangles.

Bounding Box Format Description
Axis-aligned rectangle [xmin, ymin, width, height] This type of bounding box is

defined in pixel coordinates as
an M-by-4 matrix representing
M bounding boxes

3 Functions

3-88



Bounding Box Format Description
Rotated rectangle [xcenter, ycenter, width, height,

yaw]
This type of bounding box is
defined in spatial coordinates as
an M-by-5 matrix representing
M bounding boxes. The xcenter
and ycenter coordinates represent
the center of the bounding box.
The width and height elements
represent the length of the box
along the x and y axes,
respectively. The yaw represents
the rotation angle in degrees.
The amount of rotation about
the center of the bounding box
is measured in the clockwise
direction.

   

groundTruthData — Labeled ground truth images
datastore | table

Labeled ground truth images, specified as a datastore or a table.

• If you use a datastore, your data must be set up so that calling the datastore with the read and
readall functions returns a cell array or table with two or three columns. When the output
contains two columns, the first column must contain bounding boxes, and the second column must
contain labels, {boxes,labels}. When the output contains three columns, the second column must
contain the bounding boxes, and the third column must contain the labels. In this case, the first
column can contain any type of data. For example, the first column can contain images or point
cloud data.

data boxes labels
The first column must be
images.

M-by-4 matrices of bounding
boxes of the form [x, y, width,
height], where [x,y] represent
the top-left coordinates of the
bounding box.

The third column must be a
cell array that contains M-
by-1 categorical vectors
containing object class names.
All categorical data returned
by the datastore must contain
the same categories.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).
• If you use a table, the table must have two or more columns.

 evaluateDetectionAOS

3-89



data boxes ...
The first column can contain
data, such as point cloud data
or images.

Each of the remaining
columns must be a cell vector
that contains M-by-5 matrices
representing rotated
rectangle bounding boxes.
Each rotated rectangle must
be of the form[xcenter, ycenter,
width, height, yaw]. The
vectors represent the location
and size of bounding boxes for
the objects in each image.

 

threshold — Overlap threshold
nonnegative scalar

Overlap threshold, specified as a nonnegative scalar. The overlap ratio is defined as the intersection
over union.

Output Arguments
metrics — AOS metrics
five-column table

AOS metrics, returned as a five-column table. Each row in the table contains the evaluation metrics
for a class which is defined in the ground truth data contained in the groundTruthData input. To
get the object class names:

metrics.Properties.RowNames

This table describes the five columns in the metrics table.

Column Description
AOS Average orientation similarity value
AP Average precision over all the detection results,

returned as a numeric scalar. Precision is a ratio
of true positive instances to all positive instances
of objects in the detector, based on the ground
truth.

OrientationSimilarity Orientation similarity values for each detection,
returned as an M-element numeric column. M is
one more than the number of detections assigned
to a class. The first value of
OrientationSimilarity is 1.

Orientation similarity is a normalized variant of
the cosine similarity that measures the similarity
between the predicted rotation angle and the
ground truth rotation angle.

3 Functions

3-90



Column Description
Precision Precision values from each detection, returned as

an M-element numeric column vector. M is one
more than the number of detections assigned to a
class. For example, if your detection results
contain 4 detections with class label 'car', then
Precision contains 5 elements. The first value
of Precision is 1.

Precision is a ratio of true positive instances to all
positive instances of objects in the detector,
based on the ground truth.

Recall Recall values from each detection, returned as an
M-element numeric column vector. M is one more
than the number of detections assigned to a
class. For example, if your detection results
contain 4 detections with class label 'car', then
Recall contains 5 elements. The first value of
Recall is 0.

Recall is a ratio of true positive instances to the
sum of true positives and false negatives in the
detector, based on the ground truth.

References
[1] Geiger, A., P. Lenz., and R. Urtasun. "Are we ready for autonomous driving? The KITTI vision

benchmark suite." IEEE Conference on Computer Visin and Pattern Recognition. IEEE, 2012.

See Also
Functions
evaluateDetectionPrecision | evaluateDetectionMissRate | bboxOverlapRatio

Objects
boxLabelDatastore

Introduced in R2020a

 evaluateDetectionAOS

3-91



ssdLayers
(To be removed) SSD multibox object detection network

Note  function will be removed in a future release. Use the ssdObjectDetector function to create
a SSD object detection network, instead.

Syntax
lgraph = ssdLayers(imageSize,numClasses,networkName)
lgraph = ssdLayers(imageSize,numClasses,network,anchorBoxes,
predictorLayerNames)

Description
lgraph = ssdLayers(imageSize,numClasses,networkName) creates a single shot detector
(SSD) multibox object detection network based on the networkName, input image size, and the
number of classes the network should be configured to classify. The network is returned as an
LayerGraph object.

The SSD is a convolutional neural network-based object detector that predicts bounding box
coordinates, classification scores, and corresponding class labels.

lgraph = ssdLayers(imageSize,numClasses,network,anchorBoxes,
predictorLayerNames) returns an SSD that contains custom anchor boxes specified by
anchorBoxes that are connected to the network layers at locations specified by
predictorLayerNames. Specify these arguments in addition to the input argument from the
previous syntax.

Examples

Create SSD Network Using VGG-16 Network

Specify the base network.

networkName = 'vgg16';

Specify the image size.

imageSize = [300 300 3];

Specify the classes to detect.

numClasses = 2;

Create the SSD object detection network.

lgraph = ssdLayers(imageSize,numClasses,networkName);

Visualize the network using the network analyzer.

3 Functions

3-92



analyzeNetwork(lgraph)

Input Arguments
imageSize — Size of input image
two-element vector | three-element vector

Size of input image, specified as one of these values.

• Two-element vector of the form [H W] for a grayscale image of size H-by-W
• Three-element vector of the form [H W 3] for an RGB color image of size H-by-W

When you set the baseNetwork input to 'vgg16', 'resnet50', or 'resnet101', the imageSize
input must be of the form [H W 3].

numClasses — Number of classes for network to classify
positive scalar

Number of classes for the network to classify, specified as a positive scalar.

network — Pretrained convolutional neural network
LayerGraph object | DAGNetwork object | SeriesNetwork object

Pretrained convolutional neural network, specified as a LayerGraph, DAGNetwork, or
SeriesNetwork object.

 ssdLayers

3-93



The pretrained convolutional neural network is used as the base for the SSD multibox object
detection network. For details on pretrained networks in MATLAB, see “Pretrained Deep Neural
Networks” (Deep Learning Toolbox).

networkName — Pretrained convolutional neural network
'vgg16' | 'resnet50' | 'resnet101'

Pretrained convolutional neural network, specified as a string or character vector for the 'vgg16',
'resnet50', or 'resnet101' network. To specify one of these names, you must download and
install the network support packages for the corresponding valid network names.

• vgg16
• resnet50
• resnet101

The pretrained convolutional neural network is used as the base for the SSD multibox object
detection network. For details on pretrained networks in MATLAB, see “Pretrained Deep Neural
Networks” (Deep Learning Toolbox).

anchorBoxes — Anchor boxes
1-by-M cell array

Anchor boxes, specified as a 1-by-M cell array for M number of predictor layers in the SSD network.
Each predictor layer contains a K-by-2 matrix that defines K anchor boxes of the form [height width].
The number of anchor boxes in each element can vary.

The size of each anchor box is determined based on the scale and aspect ratio of different object
classes present in input training data. The size of each anchor box must be smaller than or equal to
the size of the input image. You can use the clustering approach for estimating anchor boxes from the
training data. For more information, see “Estimate Anchor Boxes From Training Data”.

predictorLayerNames — Names of layers in input
M-element vector of strings | 1-by-M cell array of character vectors

Names of layers in input, specified as an M-element vector of strings or a 1-by-M cell array of
character vectors. The SSD detection subnetworks are attached to the predictor layers specified by
this input.

Output Arguments
lgraph — SSD multibox object detection network
LayerGraph object

SSD multibox object detection network, returned as a LayerGraph object.

Note The default value for the Normalization property of the image input layer in the returned
lgraph object is set to the Normalization property of the base network specified in baseNetwork.

Algorithms
The ssdLayers function creates an SSD network and returns lgraph, an object that represents the
network architecture for an SSD object detector.

3 Functions

3-94



The trainSSDObjectDetector function trains and returns an SSD object detector,
ssdObjectDetector. Use the detect object function for the ssdObjectDetector object to detect
objects using the detector trained with the SSD network architecture.

bbox = detect(detector,I)

The ssdLayers function uses a pretrained neural network as the base network, to which it adds a
detection subnetwork required for creating an SSD object detection network. Given a base network,
ssdLayers removes all the layers succeeding the feature layer in the base network and adds the
detection subnetwork. The detection subnetwork is comprised of groups of serially connected
convolution, rectified linear unit (ReLU), and batch normalization layers. The SSD merge layer, a box
regression layer, and a focal loss classification layer are added to the detection subnetwork.

Compatibility Considerations
ssdLayers function will be removed
Not recommended starting in R2022a

The ssdLayers function will be removed in a future release. You can use the ssdObjectDetector
function to create a SSD object detection network, instead.

References
[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and

Alexander C. Berg. "SSD: Single Shot MultiBox Detector." In Computer Vision – ECCV 2016,
edited by Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, 9905:21-37. Cham: Springer
International Publishing, 2016. https://doi.org/10.1007/978-3-319-46448-0_2.

[2] Huang, Jonathan, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian
Fischer, et al. "Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors." In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3296-97.
Honolulu, HI:IEEE, 2017. https//doi.org/10.1109/CVPR.2017.351.

See Also
Objects
ssdObjectDetector | anchorBoxLayer | focalLossLayer

Functions
trainSSDObjectDetector | analyzeNetwork | resnet50 | vgg16 | resnet101

Topics
“Object Detection Using SSD Deep Learning”
“Create SSD Object Detection Network”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using Single Shot Multibox Detector”
“Getting Started with SSD Multibox Detection”
“Anchor Boxes for Object Detection”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2020a

 ssdLayers

3-95



pcbin
Spatially bin point cloud points

Syntax
bins = pcbin(ptCloud,numBins)
bins = pcbin(ptCloud,numBins,spatialLimits)
[bins,binLocations] = pcbin( ___ )
[ ___ ] = pcbin( ___ ,'BinOutput',true)

Description
bins = pcbin(ptCloud,numBins) spatially grids points in the point cloud, ptCloud. The output
bins stores spatial bin locations, which are the indices for the points. The function finds the bin
locations by sampling the point cloud in each dimension by the number of bins specified by numBins.

bins = pcbin(ptCloud,numBins,spatialLimits) specifies the spatial limits to use when the
function places points into bins.

[bins,binLocations] = pcbin( ___ ) also returns binLocations, the spatial bounds of each
bin in bins. binLocations is the same size as bins.

[ ___ ] = pcbin( ___ ,'BinOutput',true) also specifies the format of the bins and
binLocations output.

When you set 'BinOutput' to true, bins and binLocations are returned as cell arrays of size
[numBinsX,numBinsY,numBinsZ].

When you set 'BinOutput' to false and ptCloud are unorganized point clouds, bins is returned as
an M-by-1 numeric vector. binLocations is returned as an M-by-6 matrix.

When you set 'BinOutput' to false and ptCloud are organized point clouds, bins is returned an
M-by-N matrix. binLocations is returned as an M-by-N-by-6 matrix.

Examples

Build Occupancy Grid from Point Cloud

Read point cloud data into the workspace.

ptCloud = pcread('teapot.ply');

Spatially bin the point cloud into a 32-by-32-by-32 grid.

indices = pcbin(ptCloud,[32 32 32]);

Build an occupany grid.

occupancyGrid = cellfun(@(c) ~isempty(c), indices);

3 Functions

3-96



Display the occupany grid.

ViewPnl = uipanel(figure);
volshow(occupancyGrid,'Parent',ViewPnl);

Build Bird's Eye View Density Grid from Point Cloud

Read point cloud data into the workspace.

ptCloud = pcread('teapot.ply');

Spatially bin the point cloud into a 32-by-32-by-1 grid.

indices = pcbin(ptCloud,[32 32 1]);

Build a density grid.

densityGrid = cellfun(@(c) ~isempty(c),indices);

Display the density grid.

figure;
imagesc(densityGrid);

 pcbin

3-97



Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

numBins — Number of bins
three-element numeric vector

Number of bins, specified as a three-element vector of the form [numBinsX,numBinsY, numBinsZ].
The vector elements indicate the number of bins to use in each dimension, respectively.

spatialLimits — Spatial limits
3-by-2 numeric matrix

Spatial limits, specified as a 3-by-2 numeric matrix of the form [Xmin, Xmax; Ymin, Ymax; Zmin,
Zmax]. The spatial limits define the bounds used when the function bins points. Points that are
outside of the specified limits are not included in the output.

3 Functions

3-98



Output Arguments
bins — Spatial bin locations
cell array | cell arrays of size [numBinsX,numBinsY,numBinsZ] | M-by-1 numeric vector | M-by-N
matrix

Spatial bin locations, returned as a cell array of the same size as input numBins, an M-by-1 numeric
vector, or an M-by-N matrix. The function returns a cell array when you do not use the 'BinOutput'
argument. Each cell in the array contains indices to locations of points in the input point cloud that
define the bins. Each bin includes the left bin edge, except for the last bin which includes both bin
edges.

The table describes the size of bins based how you specify the 'BinOutput' argument, and whether
ptCloud is unorganized or organized.

'BinOutput' bins
true cell arrays of size

[numBinsX,numBinsY,numBinsZ]
false Unorganized point clouds

M-by-1 numeric vector
, where M represents the number of points.
Organized point clouds

M-by-N matrix, where M and N represents the
total number of points set up as an organized
point cloud.

The function processes invalid points differently, depending on how you specify the 'BinOutput'
argument. Invalid points are points with coordinates that contain Inf or NaN . When you set
'BinOutput' to true, the function ignores invalid points and does not include them in the output.
When you set 'BinOutput' to false, the function returns NaN values for invalid points.

binLocations — Bin spatial bounds
cell array | cell arrays of size [numBinsX,numBinsY,numBinsZ] | M-by-6 matrix | M-by-N-by-6 matrix

Bin spatial bounds, returned as a cell array the same size as the output bins, cell arrays of size
[numBinsX,numBinsY,numBinsZ], an M-by-6 matrix, or an M-by-N-by-6 matrix . The function returns
a cell array when you do not use the 'BinOutput' argument. Each cell in the array contains the
spatial bounds of the bins in bins. The bounds for a bin are of the form [Xmin, Xmax; Ymin, Ymax;
Zmin, Zmax].

The table describes the size of binLocations based how you specify the 'BinOutput' argument,
and whether ptCloud is unorganized or organized.

'BinOutput' binLocations
true cell arrays of size

[numBinsX,numBinsY,numBinsZ]

 pcbin

3-99



'BinOutput' binLocations
false Unorganized point clouds:

M-by-6 matrix, where M represents the number
of points located in the bin specified by the
[Xmin, Xmax; Ymin, Ymax; Zmin, Zmax] spatial
bound.
Organized point clouds:

M-by-N-by-6 matrix, where M and N represents
the number of points in an organized point cloud,
with each point located in the bin specified by the
[Xmin, Xmax; Ymin, Ymax; Zmin, Zmax] spatial
bound.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Functions
pctransform

Objects
pointCloud

Introduced in R2020a

3 Functions

3-100



readBarcode
Detect and decode 1-D or 2-D barcode in image

Syntax
msg = readBarcode(I)
msg = readBarcode(I,roi)
msg = readBarcode( ___ ,format)
[msg,detectedFormat,loc] = readBarcode( ___ )

Description
msg = readBarcode(I) detects and decodes a 1-D or 2-D barcode in the input image and returns
the message associated with that barcode.

If the input image contains multiple barcodes, the readBarcode function decodes only the first
barcode detected.

msg = readBarcode(I,roi) specifies a rectangular region of interest (ROI) to reduce the area in
which the function searches for a barcode. The ROI must be fully contained in the input image.

msg = readBarcode( ___ ,format) specifies barcode formats to reduce the types of barcodes for
which the function searches. Specify this argument in addition to any of the input argument
combinations in previous syntaxes.

[msg,detectedFormat,loc] = readBarcode( ___ ) additionally returns the format,
detectedFormat, and location, loc, of the detected barcode.

Examples

Detect and decode 1-D Barcode

Read an image containing a barcode into the workspace.

I = imread("barcode1D.jpg");

Detect the barcode and decode its message.

msg = readBarcode(I);

Display the decoded barcode message.

disp("Decoded barcode message: " + msg)

Decoded barcode message: 1234567890128

 readBarcode

3-101



Search Image for 1-D Barcode

Read an image containing a barcode into the workspace.

I = imread("barcode1D.jpg");

Search the image for a 1-D barcode, returning its message, format, and location.

[msg,detectedFormat,loc] = readBarcode(I,'1D');

Display the detected barcode format.

disp("Barcode format: " + detectedFormat)

Barcode format: EAN-13

Annotate the image with the decoded barcode message.

xyBegin = loc(1,:);
Imsg = insertText(I,xyBegin,msg,'BoxOpacity',1,'FontSize',30);

Insert a line to show the scan row.

imSize = size(Imsg);
Imsg = insertShape(Imsg,'Line',[1 xyBegin(2) imSize(2) xyBegin(2)],'LineWidth',5);

Display the image.

imshow(Imsg)

3 Functions

3-102



Read a QR Barcode

Read an image containing a barcode.

I = imread("barcodeQR.jpg");

Define the ROI in the image that contains the barcode.

roi = [470, 300, 720, 620];

Search for a QR barcode within the ROI.

[msg,~,loc] = readBarcode(I,roi,"QR-CODE");

Annotate the image with the decoded message from the detected barcode.

xyText =  loc(2,:);
Imsg = insertText(I,xyText,msg,"BoxOpacity",1,"FontSize",25);

Insert red circles onto the image to indicate the finder pattern locations.

Imsg = insertShape(Imsg, "FilledCircle", [loc, ...
     repmat(10, length(loc), 1)],"Color","red","Opacity",1);

 readBarcode

3-103



Display the image.

imshow(Imsg)

Input Arguments
I — Input image
truecolor image | grayscale image

Input image, specified as a truecolor or grayscale image.

roi — Region of interest
four-element vector

Region of interest, specified as a four-element row vector of the form [x, y, width, height]. The
rectangular ROI must be fully contained in the input image. [x,y] specifies the starting point for the
ROI relative to the upper-left corner of the image.

If an image contains multiple barcodes, specifying an ROI can help the function detect a particular
barcode. For more information, see “Localize and Read Multiple Barcodes in Image”.

3 Functions

3-104



format — Barcode format
'1D' | '2D' | one or more valid barcode formats

Barcode format, specified as one of these options. The table lists valid barcode formats.

• 'all' — Use this option to specify all valid barcode formats. If you do not specify a format, the
function uses this option.

• '1D' — Use this option to specify all valid 1-D barcode formats.
• '2D' — Use this option to specify all valid 2-D barcode formats.
• A character vector or string scalar of a valid format — Use this option to specify one barcode

format.
• A cell array of character vectors or vector of strings of valid formats — Use this option to specify

multiple barcode formats. The function prioritizes its search for specific barcode formats based on
the order of the elements in this array.

Specifying a format can reduce the run time of the function by restricting the barcode search.

1-D Formats 2-D Formats
UPC-A QR-CODE
UPC-E DATA-MATRIX
EAN-8 AZTEC
EAN-13 PDF-417
CODE-39  
CODE-93  
CODE-128  
CODABAR  
ITF  
RSS-14  
RSS-EXPANDED  

Output Arguments
msg — Barcode message
string scalar

Barcode message, returned as a string scalar.

detectedFormat — Detected barcode format
string scalar

Detected barcode format, returned as a string scalar of one of the formats in this table.

1-D Formats 2-D Formats
UPC-A QR-CODE
UPC-E DATA-MATRIX
EAN-8 AZTEC

 readBarcode

3-105



1-D Formats 2-D Formats
EAN-13 PDF-417
CODE-39  
CODE-93  
CODE-128  
CODABAR  
ITF  
RSS-14  
RSS-EXPANDED  

loc — Location of barcode
M-by-2 matrix | 2-by-2 matrix

Location of barcode, returned as an M-by-2 matrix for 2-D barcodes or a 2-by-2 matrix for 1-D
barcodes. The matrix elements represent finder pattern locations.

Barcode loc Value Finder Pattern Locations
2-D M-by-2 matrix. M represents the number of

[x, y] locations of finder patterns.

1-D 2-by-2 matrix of the form [x1, y1;x2, y2],
where each row represents the location of
a finder pattern.

Tips
• The function detects only clearly visible barcodes.
• Specifying a format can reduce the run time of the function by restricting the barcode search.
• For noisy images with unclear barcodes, use image preprocessing functions, such as imsharpen.
• The function detects only horizontally or vertically aligned barcodes.Use imrotate to correct

poorly aligned barcodes.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• Generates code only on host platforms.
• Input argument format must be specified as a string scalar, character vector, or cell array of

character vectors. String arrays are not supported.

3 Functions

3-106



See Also
Functions
imrotate | imsharpen | ocr | insertText | insertShape | insertMarker | readAprilTag

Topics
“Localize and Read Multiple Barcodes in Image”

Introduced in R2020a

 readBarcode

3-107



balanceBoxLabels
Balance bounding box labels for object detection

Syntax
locationSet = balanceBoxLabels(boxLabels,blockedImages,blockSize,
numObservations)
locationSet = balanceBoxLabels(boxLabels,blockedImages,blockSize,
numObservations,Name,Value)

Description
locationSet = balanceBoxLabels(boxLabels,blockedImages,blockSize,
numObservations) balances bounding box labels, boxLabels, by oversampling blocks of images
containing less frequent classes, contained in the collection of blocked image objects
blockedImages. numObservations is the required number of block locations, and blockSize
specifies the block size.

locationSet = balanceBoxLabels(boxLabels,blockedImages,blockSize,
numObservations,Name,Value) specifies additional aspects of the selected blocks using name-
value arguments.

Examples

Sample Block Sets to Use in Blocked Image Object Detection

Load box labels data that contains boxes and labels for one image. The height and width of each box
is [20,20].

d  = load('balanceBoxLabelsData.mat');
boxLabels    = d.BoxLabels;

Create a blocked image of size [500,500].

blockedImages = blockedImage(zeros([500,500]));

Choose the images size of each observation.

blockSize = [50,50];

Visualize using a histogram to identify any class imbalance in the box labels.

blds = boxLabelDatastore(boxLabels);
datasetCount = countEachLabel(blds);
figure;
h1 = histogram('Categories',datasetCount.Label,'BinCounts',datasetCount.Count)

h1 = 
  Histogram with properties:

              Data: [0x0 categorical]

3 Functions

3-108



            Values: [1 1 1 1 1 1 1 1 1 1 1 11]
    NumDisplayBins: 12
        Categories: {1x12 cell}
      DisplayOrder: 'manual'
     Normalization: 'count'
      DisplayStyle: 'bar'
         FaceColor: 'auto'
         EdgeColor: [0 0 0]

  Show all properties

Measure the distribution of box labels. If the coefficent of variation is more than 1, then there is class
imbalance.

cvBefore = std(datasetCount.Count)/mean(datasetCount.Count)

cvBefore = 1.5746

Choose a heuristic value for number of observations by finding the mean of the counts of each class,
multiplied by the number of classes.

numClasses = height(datasetCount);
numObservations = mean(datasetCount.Count) * numClasses;

Control the amount a box can be cut using OverlapThreshold. Using a lower threshold value will
cut objects more at the border of a block. Increase this value to reduce the amount an object can be
clipped at the border, at the expense of a less balanced box labels.

ThresholdValue = 0.5;

Balance boxLabels using the balanceBoxLabels function.

locationSet = balanceBoxLabels(boxLabels,blockedImages,blockSize,...
        numObservations,'OverlapThreshold',ThresholdValue);

[==================================================] 100%
Elaps[==================================================] 100%
Elapsed time: 00:00:00
Estimated time remaining: 00:00:00
Balancing box labels complete.

Count the labels that are contained within the image blocks.

bldsBalanced = boxLabelDatastore(boxLabels,locationSet);
balancedDatasetCount = countEachLabel(bldsBalanced);

Overlay another histogram against the original label count to see if the box labels are balanced. If the
labels appear to be not balanced by looking at the histograms, increase the value for
numObservations.

hold on;
balancedLabels = balancedDatasetCount.Label;
balancedCount  = balancedDatasetCount.Count;
h2 = histogram('Categories',balancedLabels,'BinCounts',balancedCount);
title(h2.Parent,"Balanced class labels (OverlapThreshold: " + ThresholdValue + ")" );
legend(h2.Parent,{'Before','After'});

 balanceBoxLabels

3-109



Measure the distribution of the new baanced box labels.

cvAfter = std(balancedCount)/mean(balancedCount)

cvAfter = 0.4588

Input Arguments
boxLabels — Labeled bounding box data
table with two columns

Labeled bounding box data, specified as a table with two columns.

• The first column contains bounding boxes and must be a cell vector. Each element in the cell
vector contains M-by-4 matrices in the format [x, y, width, height] for M boxes.

• The second column must be a cell vector that contains the label names corresponding to each
bounding box. Each element in the cell vector must be an M-by-1 categorical or string vector.

3 Functions

3-110



To create a box label table from ground truth data,

1 Use the Image Labeler or Video Labeler app to label your ground truth. Export the labeled
ground truth data to your workspace.

2 Create a bounding box label datastore using the objectDetectorTrainingData function.
3 You can obtain the boxLabels from the LabelData property of the box label datastore returned

by objectDetectorTrainingData, ( blds.LabelData).

blockedImages — Labeled blocked images
array of blockedImage objects

Labeled blocked images, specified as an array of blockedImage objects containing pixel label
images.

blockSize — Block size
two-element row vector of positive integers

Block size of read data, specified as a two-element row vector of positive integers,
[numrows,numcols]. The first element specifies the number of rows in the block. The second element
specifies the number of columns.

numObservations — Number of block locations
positive integer

Number of block locations to return, specified as a positive integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'OverlapThreshold','1'

Levels — Resolution level of each image
1 (default) | positive integer scalar | B-by-1 vector of positive integers

Resolution level of each image in the array of blockedImage objects, specified as a positive integer
scalar or a B-by-1 vector of positive integers, where B is the length of the array of blockedImage
objects.

OverlapThreshold — Overlap threshold
1 (default) | scalar in the range [0,1]

 balanceBoxLabels

3-111



Overlap threshold, specified as a positive scalar in the range [0,1]. When the overlap between a
bounding box and a cropping window is greater than the threshold, boxes in the boxLabels input
are clipped to the image block window border. When the overlap is less than the threshold, the boxes
are discarded. When you lower the threshold, part of an object can get discarded. To reduce the
amount an object can be clipped at the border, increase the threshold. Increasing the threshold can
also cause less-balanced box labels.

The amount of overlap between the bounding box and a cropping window is defined as.

area(bboxA∩window)/area(bboxA)

Verbose — Display progress information
true or 1 (default) | false or 0

Display progress information, specified as a numeric or logical 1 (true) or 0 (false). Set this
property to true to display information.

Output Arguments
locationSet — Balanced box labels
blockLocationSet object

Balanced box labels, returned as a blockLocationSet object. The object contains
numObservations number of locations of balanced blocks, each of size blockSize.

Algorithms
Balancing Box Labels

To balance box labels, the function over samples classes that are less represented in the blocked
image or big image. The box labels are counted across the dataset and sorted based on each class
count. Each image size is split into several quadrants, based on the blockSize input value. The
algorithm randomly picks several blocks within each quadrant with less-represented classes. The
blocks without any objects are discarded. The balancing stops once the specified number of blocks
are selected.

Checking for Balance

You can check the success of balancing by comparing the histograms of label count before and after
balancing. You can also check the coefficient of variation value. For best results, the value should be
less than the original value. For more information, see the National Institute of Standards and
Technology (NIST) website, see Coefficient of Variation for more information.

Compatibility Considerations
bigLabeledImages argument is not recommended
Not recommended starting in R2021a

The bigLabeledImages argument, which supports bigimage objects, is not recommended. Use the
blockedImages argument instead, which supports blockedImage objects. The blockedImage
object offers several advantages including extension to N-D processing, a simpler interface, and
custom support for reading and writing nonstandard image formats.

3 Functions

3-112

https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/coefvari.htm


Although there are no plans to remove the bigLabeledImages argument at this time, switch to the
blockedImages argument to take advantage of the additional capabilities and flexibility.

To update your code, follow these steps:

• Replace bigimage object input with blockedImage object input for the second argument of this
function.

• If you want to select blocks of any of the blocked images at a resolution level other than 1, then
specify the 'Levels' name-value argument. You can omit this argument when you want to select
blocks from all blocked images at resolution level 1.

The table gives an example of how to update your code.

Discouraged Usage Recommended Replacement
This example selects blocks at resolution level 1
from a bigimage object.

boxLabels = load('balanceBoxLabelsData.mat').BoxLabels;
bim = bigimage(zeros([500,500]));
blockSize = [50 50];
numObservations = 20;
locationSet = balanceBoxLabels(boxLabels,bim,1, ...
    blockSize,numObservations);

Here is equivalent code, replacing the input
bigimage object with a blockedImage object.

boxLabels = load('balanceBoxLabelsData.mat').BoxLabels;
bim = blockedImage(zeros([500,500]));
blockSize = [50 50];
numObservations = 20;
locationSet = balanceBoxLabels(boxLabels,bim, ...
    blockSize,numObservations);

See Also
Objects
blockLocationSet | blockedImage | blockedImageDatastore | boxLabelDatastore

Introduced in R2020a

 balanceBoxLabels

3-113



balancePixelLabels
Balance pixel labels by oversampling block locations in large images

Syntax
blockLocations = balancePixelLabels(blockedImages,blockSize,numObservations)
blockLocations = balancePixelLabels(blockedImages,blockSize,numObservations,
Name,Value)

Description
blockLocations = balancePixelLabels(blockedImages,blockSize,numObservations)
creates a list of block locations in the large labeled images, blockedImages, that result in a class
balanced data set by oversampling image regions that contain less-common labels.
numObservations is the required number of block locations, and blockSize specifies the block
size.

A balanced dataset can produce better results when used for training workflows such as semantic
segmentation in deep learning.

blockLocations = balancePixelLabels(blockedImages,blockSize,numObservations,
Name,Value) specifies additional aspects of the selected blocks using name-value arguments.

Examples

Balance Pixel Labels in Unbalanced Dataset

Specify the location of a labeled image dataset.

dataDir = fullfile(toolboxdir('vision'), 'visiondata');
labelDir = fullfile(dataDir, 'buildingPixelLabels');
fileSet = matlab.io.datastore.FileSet(labelDir, "FileExtensions", {'.png'});

Create an array of labeled images from the dataset.

blockedImages = blockedImage(fileSet);

Set block size of the images. Assume finest resolution level.

blockSize = [20 15];

Create a blockedImageDatastore from the image array.

blabelds = blockedImageDatastore(blockedImages, 'BlockSize', blockSize);

Count pixel label occurrences of each class. The classes in the pixel label images are not balanced.

pixelLabelID = [1 2 3 4];
classNames = ["sky" "grass" "building" "sidewalk"];
labelCounts = countEachLabel(blabelds,...
                 'Classes', classNames, 'PixelLabelIDs', pixelLabelID);

3 Functions

3-114



Speciy number of block locations to sample from the dataset.

numObservations = 2000;

Select block locations from the labeled images to achieve class.

locationSet = balancePixelLabels(blockedImages, blockSize, numObservations,...
                 'Classes', classNames, 'PixelLabelIDs', pixelLabelID);

Create a blockedImageDatastore using the block locations after balancing.

blabeldsBalanced = blockedImageDatastore(blockedImages, 'BlockLocationSet', locationSet);

Recalculate the pixel label occurrences for the balanced dataset.

labelCountsBalanced = countEachLabel(blabeldsBalanced,...
                     'Classes', classNames, 'PixelLabelIDs', pixelLabelID);

Compare the original unbalanced labels and labels after label balancing.

figure
h1 = histogram('Categories',labelCounts.Name,...
    'BinCounts',labelCounts.PixelCount)

h1 = 
  Histogram with properties:

              Data: [0x0 categorical]
            Values: [314849 159787 1031235 25313]
    NumDisplayBins: 4
        Categories: {'sky'  'grass'  'building'  'sidewalk'}
      DisplayOrder: 'manual'
     Normalization: 'count'
      DisplayStyle: 'bar'
         FaceColor: 'auto'
         EdgeColor: [0 0 0]

  Show all properties

title(h1.Parent,'Original dataset labels')

 balancePixelLabels

3-115



figure
h2 = histogram('Categories',labelCountsBalanced.Name,...
    'BinCounts',labelCountsBalanced.PixelCount)

h2 = 
  Histogram with properties:

              Data: [0x0 categorical]
            Values: [131906 241546 81006 143167]
    NumDisplayBins: 4
        Categories: {'sky'  'grass'  'building'  'sidewalk'}
      DisplayOrder: 'manual'
     Normalization: 'count'
      DisplayStyle: 'bar'
         FaceColor: 'auto'
         EdgeColor: [0 0 0]

  Show all properties

title(h2.Parent,'Balanced dataset labels')

3 Functions

3-116



Input Arguments
blockedImages — Labeled blocked images
blockedImage object | vector of blockedImage objects

Labeled blocked images, specified as a blockedImage object or a vector of blockedImage objects
containing pixel label images.

blockSize — Block size
two-element row vector of positive integers

Block size of read data, specified as a two-element row vector of positive integers,
[numrows,numcols]. The first element specifies the number of rows in the block. The second element
specifies the number of columns.

numObservations — Number of block locations
positive integer

Number of block locations to return, specified as a positive integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 balancePixelLabels

3-117



Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Classes',classNames,'PixelLabelIDs',pixelLabelID

Levels — Image resolution levels
1 (default) | numeric scalar | integer-valued vector

Image resolution levels, specified as a numeric scalar or an integer-valued vector of the same length
as the vector of blockedImages. If you specify a scalar value, then all blocked images supply blocks
at the specified resolution level.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Classes — Set of class names
{} (default) | string vector | cell array of char vectors

Set of class names, specified as a string vector or a cell array of character vectors.

You must specify this argument when blockedImages yields numeric data, such as when pixel label
data is stored as an RGB image. Do not specify this argument when blockedImages yields
categorical data.
Data Types: char | string

PixelLabelIDs — Numeric IDs that map labels to class names
[] (default) | numeric vector | M-by-3 numeric matrix

Numeric IDs that map labels to class names, specified as a vector of numeric IDs for each label or an
M-by-3 matrix where M is the number of class names. The length of the vector must equal the
number of class names. Each row is a three-element vector representing the RGB pixel value
associated with each class name.

You must specify this argument when blockedImages yields numeric data, such as when pixel label
data is stored as an RGB image. Do not specify this argument when blockedImages yields
categorical data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

UseParallel — Use new or existing pool
false or 0 (default) | true or 1

Use a new or existing parallel pool, specified as a numeric or logical 1 (true) or 0 (false). If no
parallel pool is active, then a new pool is opened based on the default parallel settings. The
DataSource property of all input blockedImage objects should be valid paths on each of the
parallel workers.

This syntax requires the Parallel Computing Toolbox.
Data Types: logical

Output Arguments
blockLocations — Block locations
blockLocationSet object

Block locations, returned as a blockLocationSet object. The object contains numObservations
number of locations of balanced blocks, each of size blockSize.

3 Functions

3-118



Algorithms
To balance pixel labels, the function oversamples the minority classes in the input images. The
minority class is determined by calculating the overall pixel label counts for the complete dataset.
The algorithm follows these steps.

1 The images in the input image array are divided into macro blocks, which is a multiple of the
blockSize input value.

2 The function counts pixel labels for all classes in each macro block. Then, it selects the macro
block with the greatest occurrences of minority classes using weighted random selection.

3 The algorithm uses a random block location within the selected macro block to perform
oversampling. The origin of the block location must always be fully within the limits of the macro
block.

4 The function updates the overall label counts based on the pixel label counts of the classes found
for the selected macro block.

5 The function includes the new (oversampled) classes to compute new minority class.
6 This process repeats until the number of block locations processed equals the value specified by

the numObservations input value.

Compatibility Considerations
bigLabeledImages argument is not recommended
Not recommended starting in R2021a

The bigLabeledImages argument, which supports bigimage objects, is not recommended. Use the
blockedImages argument instead, which supports blockedImage objects. The blockedImage
object offers several advantages including extension to N-D processing, a simpler interface, and
custom support for reading and writing nonstandard image formats.

Although there are no plans to remove the bigLabeledImages argument at this time, switch to the
blockedImages argument to take advantage of the additional capabilities and flexibility.

To update your code, follow these steps:

• Replace bigimage object input with blockedImage object input for the first argument of this
function.

• If you want to select blocks of any of the blocked images at a resolution level other than 1, then
specify the 'Levels' name-value argument. You can omit this argument when you want to select
blocks from all blocked images at resolution level 1.

• If the blocked images yield numeric data, such as representing pixel label data as an RGB image,
then specify the 'Classes' and 'PixelLabelsIDs' name-value arguments.

The table gives an example of how to update your code.

 balancePixelLabels

3-119



Discouraged Usage Recommended Replacement
This example selects blocks at resolution level 1
from a labeled bigimage object.

pixelLabelIDs = [1 2 3 4];
classNames = ["sky" "grass" "building" "sidewalk"];
labelDir = fullfile(toolboxdir('vision'), ...
    'visiondata','buildingPixelLabels');
filename = fullfile(labelDir,'Label_1.png')
bim = bigimage(imread(filename), ...
    'Classes',classNames,'PixelLabelIDs',pixelLabelIDs);
blockSize = [20 15];
numObservations = 2000;
locationSet = balancePixelLabels(bim,1, ...
    blockSize,numObservations);

Here is equivalent code, replacing the input
bigimage object with a blockedImage object.

pixelLabelIDs = [1 2 3 4];
classNames = ["sky" "grass" "building" "sidewalk"];
labelDir = fullfile(toolboxdir('vision'), ...
    'visiondata','buildingPixelLabels');
filename = fullfile(labelDir,'Label_1.png')
bim = blockedImage(filename);
blockSize = [20 15];
numObservations = 2000;
locationSet = balancePixelLabels(bim, ...
    blockSize,numObservations, ...
    'Classes',classNames,'PixelLabelIDs',pixelLabelIDs);

See Also
Objects
blockLocationSet | blockedImage | blockedImageDatastore | countEachLabel

Introduced in R2020a

3 Functions

3-120



showvipblockdatatypetable
Simulink Block Data Type Support Table

Syntax
showvipblockdatatypetable

Description
showvipblockdatatypetable returns a table that shows characteristics for the Simulink blocks in
Computer Vision Toolbox. The table provides details regarding capabilities and limitations pertaining
to code generation, variable-sizing, and supported data types for all Computer Vision Toolbox blocks.
An "X" in a cell indicates a given block supports the capability indicated by the column heading.
Numbered footnotes included in cells, "(#)", are described below the table.

Examples

Show Block Characteristics For Computer Vision Toolbox

You can use the showvipblockdatatypetable function to return a table of block characteristics
for the Computer Vision Toolbox.

To return the table of block characteristics, at the MATLAB® command line type:

showvipblockdatatypetable

Loading Computer Vision Toolbox Library.

The table opens in a separate window.

Introduced in R2008b

 showvipblockdatatypetable

3-121



read
Read data from a datastore

Syntax
C = read(ds)
[C,info] = read(ds)

Description
C = read(ds) returns data from a pixel label, pixel image label, or box label datastore. Subsequent
calls to the read function continue reading from the endpoint of the previous call.

[C,info] = read(ds) also returns information about the extracted data in info, including
metadata.

Input Arguments
ds — Input datastore
PixelLabelDatastore object | PixelImageLabelDatastore object | boxLabelDatastore
object

Input datastore, specified as a PixelLabelDatastore, pixelLabelImageDatastore, or a
boxLabelDatastore object.

Output Arguments
C — Output data
cell array of categorical matrices | M-by-2 cell array | table

Output data, returned as an M-by-2 cell array, cell array of categorical matrices, or a table.

Datastore Output Description
PixelLabelDatastore Table with MiniBatchSize number of rows. For the last batch of

data in the datastore, numObservations must be divisible by
MiniBatchSize or read returns a partial batch containing all
the remaining observations in the datastore.

PixelLabelImageDatastore

3 Functions

3-122



Datastore Output Description
boxLabelDatastore N-by-2 or N-by-3 cell matrix. N must be less than or equal to

ReadSize(ds).

The first column can contain data, such as point cloud data for
point cloud detectors, or images for object detectors.

The second column must be a cell vector that contains M-by-5
matrices of bounding boxes in the
format[xcenter,ycenter,width,height,yaw].

The third column must be a cell vector that contains the label
names corresponding to each bounding box. Label names are
represented as an M-by-1 categorical vector.

You can use the combine function to create a datastore to use for training.

• imageDatastore — Create a datastore containing images.
• PixelLabelDatastore — Create a datastore containing pixel data.
• boxLabelDatastore — Create a datastore containing bounding boxes and labels.
• combine(imds,blds) — Combine images, bounding boxes, and labels into one datastore.
• combine(pxds,blds) — Combine pixel data, bounding boxes, and labels into one datastore.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Datastore Field Name Description
PixelLabelDatastore Filename Fully resolved path containing the

path string, name of the file, and file
extension. For
PixelLabelDatastore objects
whose ReadSize property is
greater than 1, Filename is a cell
array of file names corresponding to
each image.

FileSize Total file size, in bytes. For MAT-
files, FileSize is the total number
of key-value pairs in the file. For
PixelLabelDatastore objects
whose ReadSize property is
greater than 1, FileSize is a
vector of file sizes corresponding to
each image.

 read

3-123



Datastore Field Name Description
PixelLabelImageDatastore ImageFilename Fully resolved path containing the

path string, name of the image file,
and file extension.

PixelLabelFilename Fully resolved path containing the
path string, name of the pixel label
file, and file extension.

boxLabelDatastore CurrentIndex Starting position of each read
operation of the label data.

ReadSize ReadSize property of the
datastore.

Tips
• read(ds) returns an error if there is no more data in the input datastore, ds. Use hasdata(ds)

with read(ds) to avoid the error.

See Also
datastore | pixelLabelDatastore | pixelLabelImageDatastore | read (Datastore) |
readByIndex | readall | boxLabelDatastore

Introduced in R2017b

3 Functions

3-124



shuffle
Return shuffled version of datastore

Syntax
shuffle(ds)

Description
shuffle(ds) returns a randomly shuffled version of the input datastore.

Examples

Create Randomly Shuffled Datastore

Set the location of the image and pixel label data.

dataDir = fullfile(toolboxdir('vision'), 'visiondata');
pxDir = fullfile(dataDir, 'buildingPixelLabels');

Create a pixel label datastore.

classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir, classNames, pixelLabelID);

Create a new randomly shuffled datastore.

shpxds = shuffle(pxds);

Input Arguments
ds — Datastore with labeled data
boxLabelDatastore object | pixelLabelDatastore | pixelLabelImageDatastore

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a boxLabelDatastore, pixelLabelDatastore, or a
pixelLabelImageDatastore object.

See Also
Functions
objectDetectorTrainingData

Objects
datastore | boxLabelDatastore | pixelLabelDatastore

 shuffle

3-125



Introduced in R2020a

3 Functions

3-126



preview
Read first row of data in datastore

Syntax
preview(ds)

Description
preview(ds) returns the first row of data in the input datastore.

Examples

Preview Data From Datastore

Load training data that contains bounding boxes with labels for a vehicles class.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Add the fullpath to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
trainingData.imageFilename = fullfile(dataDir,trainingData.imageFilename);
blds = boxLabelDatastore(trainingData(:,2:end));

Preview the data from the box label datastore.

preview(blds)

ans=1×2 cell array
    {[126 78 20 16]}    {[vehicle]}

Input Arguments
ds — Datastore with labeled data
boxLabelDatastore object | pixelLabelDatastore

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a boxLabelDatastore or a pixelLabelDatastore object.

See Also
Functions
objectDetectorTrainingData

Objects
datastore | boxLabelDatastore | pixelLabelDatastore

 preview

3-127



Introduced in R2020a

3 Functions

3-128



progress
Percentage of data read from a datastore

Syntax
progress(ds)

Description
progress(ds) returns a fraction between 0.0 and 1.0 to indicate the percentage of data read from
the datastore.

Examples

Read Datastore and Check Progress

Load training data that contains bounding boxes with labels for vehicles.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Add fullpath to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'), 'visiondata');
trainingData.imageFilename = fullfile(dataDir,...
                                       trainingData.imageFilename);
blds = boxLabelDatastore(trainingData(:,2:end));

Read a couple of times, before looking at the progress.

read(blds);
read(blds);

See the progress made by the boxLabelDatastore.

preview(blds)

ans=1×2 cell array
    {[126 78 20 16]}    {[vehicle]}

Input Arguments
ds — Datastore with labeled data
boxLabelDatastore object

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a boxLabelDatastore object.

 progress

3-129



See Also
Functions
objectDetectorTrainingData

Objects
datastore | boxLabelDatastore

Introduced in R2019b

3 Functions

3-130



estimateAnchorBoxes
Estimate anchor boxes for deep learning object detectors

Syntax
anchorBoxes = estimateAnchorBoxes(trainingData,numAnchors)
[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingData,numAnchors)

Description
anchorBoxes = estimateAnchorBoxes(trainingData,numAnchors) estimates the specified
number of anchor boxes using the training data.

[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingData,numAnchors) additionally
returns the mean intersection-over-union (IoU) value of the anchor boxes in each cluster.

Examples

Estimate Anchor Boxes for YOLO v2 Object Detection Network

This example shows how to estimate anchor boxes using a table containing the training data. The first
column contains the training images and the remaining columns contain the labeled bounding boxes.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Create a boxLabelDatastore object using the labeled bounding boxes from the training data.

blds = boxLabelDatastore(trainingData(:,2:end));

Estimate the anchor boxes using the boxLabelDatastore object.

numAnchors = 5;
anchorBoxes = estimateAnchorBoxes(blds,numAnchors);

Specify the image size.

inputImageSize = [128,228,3];

Specify the number of classes to detect.

numClasses = 1;

Use a pretrained ResNet-50 network as a base network for the YOLO v2 network.

network = resnet50();

Specify the network layer to use for feature extraction. You can use the analyzeNetwork function to
see all the layer names in a network.

featureLayer = 'activation_49_relu';

 estimateAnchorBoxes

3-131



Create the YOLO v2 object detection network.

lgraph = yolov2Layers(inputImageSize,numClasses,anchorBoxes,network, featureLayer)

lgraph = 
  LayerGraph with properties:

         Layers: [182×1 nnet.cnn.layer.Layer]
    Connections: [197×2 table]
     InputNames: {'input_1'}
    OutputNames: {'yolov2OutputLayer'}

Visualize the network using the network analyzer.

analyzeNetwork(lgraph)

Estimate Anchor Boxes From Training Data

Anchor boxes are important parameters of deep learning object detectors such as Faster R-CNN and
YOLO v2. The shape, scale, and number of anchor boxes impact the efficiency and accuracy of the
detectors.

For more information, see “Anchor Boxes for Object Detection”.

Load Training Data

Load the vehicle dataset, which contains 295 images and associated box labels.

data = load('vehicleTrainingData.mat');
vehicleDataset = data.vehicleTrainingData;

Add the full path to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
vehicleDataset.imageFilename = fullfile(dataDir,vehicleDataset.imageFilename);

Display the data set summary.

summary(vehicleDataset)

Variables:

    imageFilename: 295×1 cell array of character vectors

    vehicle: 295×1 cell

Visualize Ground Truth Box Distribution

Visualize the labeled boxes to better understand the range of object sizes present in the data set.

Combine all the ground truth boxes into one array.

allBoxes = vertcat(vehicleDataset.vehicle{:});

Plot the box area versus the box aspect ratio.

3 Functions

3-132



aspectRatio = allBoxes(:,3) ./ allBoxes(:,4);
area = prod(allBoxes(:,3:4),2);

figure
scatter(area,aspectRatio)
xlabel("Box Area")
ylabel("Aspect Ratio (width/height)");
title("Box Area vs. Aspect Ratio")

The plot shows a few groups of objects that are of similar size and shape, However, because the
groups are spread out, manually choosing anchor boxes is difficult. A better way to estimate anchor
boxes is to use a clustering algorithm that can group similar boxes together using a meaningful
metric.

Estimate Anchor Boxes

Estimate anchor boxes from training data using the estimateAnchorBoxes function, which uses the
intersection-over-union (IoU) distance metric.

A distance metric based on IoU is invariant to the size of boxes, unlike the Euclidean distance metric,
which produces larger errors as the box sizes increase [1]. In addition, using an IoU distance metric
leads to boxes of similar aspect ratios and sizes being clustered together, which results in anchor box
estimates that fit the data.

Create a boxLabelDatastore using the ground truth boxes in the vehicle data set. If the
preprocessing step for training an object detector involves resizing of the images, use transform

 estimateAnchorBoxes

3-133



and bboxresize to resize the bounding boxes in the boxLabelDatastore before estimating the
anchor boxes.

trainingData = boxLabelDatastore(vehicleDataset(:,2:end));

Select the number of anchors and estimate the anchor boxes using estimateAnchorBoxes function.

numAnchors = ;
[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingData,numAnchors);
anchorBoxes

anchorBoxes = 5×2

    21    27
    87   116
    67    92
    43    61
    86   105

Choosing the number of anchors is another training hyperparameter that requires careful selection
using empirical analysis. One quality measure for judging the estimated anchor boxes is the mean
IoU of the boxes in each cluster. The estimateAnchorBoxes function uses a k-means clustering
algorithm with the IoU distance metric to calculate the overlap using the equation, 1 -
bboxOverlapRatio(allBoxes,boxInCluster).

meanIoU

meanIoU = 0.8411

The mean IoU value greater than 0.5 ensures that the anchor boxes overlap well with the boxes in the
training data. Increasing the number of anchors can improve the mean IoU measure. However, using
more anchor boxes in an object detector can also increase the computation cost and lead to
overfitting, which results in poor detector performance.

Sweep over a range of values and plot the mean IoU versus number of anchor boxes to measure the
trade-off between number of anchors and mean IoU.

maxNumAnchors = 15;
meanIoU = zeros([maxNumAnchors,1]);
anchorBoxes = cell(maxNumAnchors, 1);
for k = 1:maxNumAnchors
    % Estimate anchors and mean IoU.
    [anchorBoxes{k},meanIoU(k)] = estimateAnchorBoxes(trainingData,k);    
end

figure
plot(1:maxNumAnchors,meanIoU,'-o')
ylabel("Mean IoU")
xlabel("Number of Anchors")
title("Number of Anchors vs. Mean IoU")

3 Functions

3-134



Using two anchor boxes results in a mean IoU value greater than 0.65, and using more than 7 anchor
boxes yields only marginal improvement in mean IoU value. Given these results, the next step is to
train and evaluate multiple object detectors using values between 2 and 6. This empirical analysis
helps determine the number of anchor boxes required to satisfy application performance
requirements, such as detection speed, or accuracy.

Input Arguments
trainingData — Training data
datastore

Training data, specified as a datastore that returns a cell array or table with two or more columns.
The bounding boxes must be in a cell array of M-by-4 matrices in the format [x,y,width,height].

The datastore must be one of the following:

• A boxLabelDatastore in the format [boxes,labels]
• {images,boxes,labels} — A combined datastore. For example, using combine(imds,blds).

numAnchors — Number of anchor boxes
integer

Number of anchor boxes for the function to return, specified as an integer.

 estimateAnchorBoxes

3-135



Output Arguments
anchorBoxes — Anchor boxes
N-by-2 matrix

Anchor boxes, returned as an N-by-2 matrix, where N is the number of anchor boxes and each entry
has the format [height, width]. Use numAnchors to specify the number of anchor boxes.

meanIoU — Distance metric
scalar

Distance metric, returned as a scalar value. The distance metric provides the mean intersection-over-
union (IoU) value of the anchor boxes in each cluster. To ensure anchor boxes overlap well with the
boxes in the training data, the meanIoU value must be greater than 0.5. The k-means clustering
algorithm uses the IoU distance metric to calculate the overlap using the equation 1-
bboxOverlapRatio(box1,box2).

See Also
Objects
boxLabelDatastore | fasterRCNNObjectDetector

Functions
yolov2Layers

Topics
“Anchor Boxes for Object Detection”
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Training Data for Object Detection and Semantic Segmentation”

Introduced in R2019b

3 Functions

3-136



deeplabv3plusLayers
Create DeepLab v3+ convolutional neural network for semantic image segmentation

Syntax
layerGraph = deeplabv3plusLayers(imageSize,numClasses,network)
layerGraph = deeplabv3plusLayers( ___ ,'DownsamplingFactor',value)

Description
layerGraph = deeplabv3plusLayers(imageSize,numClasses,network) returns a DeepLab
v3+ layer with the specified base network, number of classes, and image size.

layerGraph = deeplabv3plusLayers( ___ ,'DownsamplingFactor',value) additionally sets
the downsampling factor (output stride) [1] to either 8 or 16. The downsampling factor sets the
amount the encoder section of DeepLav v3+ downsamples the input image.

Examples

Create DeepLab v3+ Network Based on ResNet-18

Create a DeepLab v3+ network based on ResNet-18.

imageSize = [480 640 3];
numClasses = 5;
network = 'resnet18';
lgraph = deeplabv3plusLayers(imageSize,numClasses,network, ...
             'DownsamplingFactor',16);

Display the network.

analyzeNetwork(lgraph)

Train DeepLab v3+ Network

Load the triangle data set images using an image datastore. The datastore contains 200 grayscale
images of random triangles. Each image is 32-by-32.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
imds = imageDatastore(imageDir);

Load the triangle data set pixel labels using a pixel label datastore.

labelDir = fullfile(dataSetDir, 'trainingLabels');
classNames = ["triangle","background"];
labelIDs   = [255 0];
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

 deeplabv3plusLayers

3-137



Create a DeepLab v3+ network.

imageSize = [256 256];
numClasses = numel(classNames);
lgraph = deeplabv3plusLayers(imageSize,numClasses,'resnet18');

Combine image and pixel label data for training and apply a preprocessing transform to resize the
training images.

cds = combine(imds,pxds);
tds = transform(cds, @(data)preprocessTrainingData(data,imageSize));

Specify training options. Lower the mini-batch size to reduce memory usage.

opts = trainingOptions('sgdm',...
    'MiniBatchSize',8,...
    'MaxEpochs',3);

Train the network.

net = trainNetwork(tds,lgraph,opts);

Training on single GPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |       34.79% |       0.9817 |          0.0100 |
|       2 |          50 |       00:00:23 |       99.02% |       0.0261 |          0.0100 |
|       3 |          75 |       00:00:31 |       99.16% |       0.0211 |          0.0100 |
|========================================================================================|

Read a test image.

I = imread('triangleTest.jpg');

Resize the test image by a factor equal to the input image size divided by 32 so that the triangles in
the test image are roughly equal to the size of the triangles during training.

I = imresize(I,'Scale',imageSize./32);

Segment the image.

C = semanticseg(I,net);

Display the results.

B = labeloverlay(I,C);
figure
imshow(B)

3 Functions

3-138



Supporting Functions

function data = preprocessTrainingData(data, imageSize)
% Resize the training image and associated pixel label image.
data{1} = imresize(data{1},imageSize);
data{2} = imresize(data{2},imageSize);

% Convert grayscale input image into RGB for use with ResNet-18, which
% requires RGB image input.

 deeplabv3plusLayers

3-139



data{1} = repmat(data{1},1,1,3);
end

Input Arguments
imageSize — Network input image size
2-element vector | 3-element vector

Network input image size, specified as a:

• 2-element vector in the format [height, width].
• 3-element vector in the format [height, width, 3]. The third element, 3, corresponds to RGB.

numClasses — Number of classes
integer greater than 1

Number of classes for network to classify, specified as an integer greater than 1.

network — Base network
'resnet18' | 'resnet50' | | 'mobilenetv2' | 'xception' | 'inceptionresnetv2'

Base network, specified as resnet18, resnet50, mobilenetv2, xception, or
inceptionresnetv2. You must install the corresponding network add-on.

Output Arguments
layerGraph — DeepLab v3+ network
layer graph

DeepLab v3+ network, returned as a convolutional neural network for semantic image segmentation.
The network uses encoder-decoder architecture, dilated convolutions, and skip connections to
segment images. You must use the trainNetwork function (requires Deep Learning Toolbox) to train
the network before you can use the network for semantic segmentation.

Algorithms
• When you use either the xception or mobilenetv2 base networks to create a DeepLab v3+

network, depth separable convolutions are used in the atrous spatial pyramid pooling (ASPP) and
decoder subnetworks. For all other base networks, convolution layers are used.

• This implementation of DeepLab v3+ does not include a global average pooling layer in the ASPP.

References
[1] Chen, L., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. "Encoder-Decoder with Atrous

Separable Convolution for Semantic Image Segmentation." Computer Vision — ECCV 2018,
833-851. Munic, Germany: ECCV, 2018.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

3 Functions

3-140



Usage notes and limitations:

For code generation, you must first create a DeepLab v3+ network by using the
deeplabv3plusLayers function. Then, use the trainNetwork function on the resulting lgraph
object to train the network for segmentation. Once the network is trained and evaluated, you can
generate code for the deep learning network object using GPU Coder.

See Also
Objects
pixelClassificationLayer | layerGraph

Functions
fcnLayers | segnetLayers | unetLayers | trainNetwork | semanticseg

Topics
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2019b

 deeplabv3plusLayers

3-141



fasterRCNNLayers
Create a faster R-CNN object detection network

Syntax
lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes,network)
lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes,network,
featureLayer)
lgraph = fasterRCNNLayers( ___ ,Name,Value)

Description
lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes,network)
returns a Faster R-CNN network as a layerGraph object. A Faster R-CNN network is a convolutional
neural network based object detector. The detector predicts the coordinates of bounding boxes,
objectness scores, and classification scores for a set of anchor boxes. To train the created network,
use the trainFasterRCNNObjectDetector function. For more information, see “Getting Started
with R-CNN, Fast R-CNN, and Faster R-CNN”.

lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes,network,
featureLayer) returns the object detection network based on the specified featureLayer of the
network. Use this syntax when you specify the network as a SeriesNetwork, DAGNetwork, or
layerGraph. object.

lgraph = fasterRCNNLayers( ___ ,Name,Value) returns the object detection network with
optional input properties specified by one or more name-value pair arguments.

Using this function requires Deep Learning Toolbox.

Examples

Create a Faster R-CNN Object Detection Network

Specify the image size.

inputImageSize = [224 224 3];

Specify the number of objects to detect.

numClasses = 1;

Use a pretrained ResNet-50 network as the base network for the Faster R-CNN network. You must
download the resnet50 (Deep Learning Toolbox) support package.

network = 'resnet50';

Specify the network layer to use for feature extraction. You can use the analyzeNetwork (Deep
Learning Toolbox) function to see all the layer names in a network.

featureLayer = 'activation_40_relu';

3 Functions

3-142



Specify the anchor boxes. You can also use the estimateAnchorBoxes function to estimate anchor
boxes from your training data.

anchorBoxes = [64,64; 128,128; 192,192];

Create the Faster R-CNN object detection network.

lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes, ...
                          network,featureLayer)

lgraph = 
  LayerGraph with properties:

         Layers: [188x1 nnet.cnn.layer.Layer]
    Connections: [205x2 table]
     InputNames: {'input_1'}
    OutputNames: {1x4 cell}

Visualize the network using the network analyzer.

analyzeNetwork(lgraph)                      

Input Arguments
inputImageSize — Network input image size
3-element vector

Network input image size, specified as a 3-element vector in the format [height, width, depth]. depth
is the number of image channels. Set depth to 3 for RGB images, to 1 for grayscale images, or to the
number of channels for multispectral and hyperspectral images.

numClasses — Number of classes
integer greater than 0

Number of classes for the network to classify, specified as an integer greater than 0.

anchorBoxes — Anchor boxes
M-by-2 matrix

Anchor boxes, specified as an M-by-2 matrix of M anchor boxes in the format [height, width]. Anchor
boxes are determined based on the scale and aspect ratio of objects in the training data set. For
example, if an object is localized by a square window, then you can set the size of the anchor boxes to
[64 64;128 128].

network — Pretrained classification network
SeriesNetwork object | DAGNetwork object | LayerGraph object | 'alexnet' | 'vgg16' |
'vgg19' | 'resnet18' | 'resnet50' | 'resnet101' | 'inceptionv3' | 'googlenet' |
'inceptionresnetv2' | 'mobilenetv2' | 'squeezenet'

Pretrained classification network, specified as a SeriesNetwork, DAGNetwork, or layerGraph, or
as on of the following:

• 'alexnet'

 fasterRCNNLayers

3-143



• 'vgg16'
• 'vgg19'
• 'resnet18'
• 'resnet50'
• 'resnet101'
• 'inceptionv3'
• 'googlenet'
• 'inceptionresnetv2'
• 'squeezenet'
• 'mobilenetv2'

When you specify the network as a SeriesNetwork object, a DAGNetwork object, or by name, the
function transforms the network into a Faster R-CNN network. It transforms the network by adding a
region proposal network (RPN), and ROI max pooling layer, and new classification and regression
layers to support object detection.

featureLayer — Feature extraction layer
character vector | string scalar

Feature extraction layer, specified as a character vector or a string scalar. Use one of the deeper
layers in the network you specify. You can use the analyzeNetwork function to view the names of
the layers in the input network.

Note You can specify any network layer except the fully connected layer as the feature layer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ROIMaxPoolingLayer','auto'

ROIMaxPoolingLayer — ROI max pooling layer
'auto' (default) | 'insert' | 'replace'

ROI max pooling layer, specified as a 'auto', 'insert', or 'replace'. You can specify whether a
roiMaxPooling2dLayer replaces the pooling layer or follows the feature extraction layer.

If you select 'auto', the function:

• Inserts a new ROI max pooling layer after the feature extraction layer when the layer next to the
feature extraction layer is not a max pooling layer.

• Replaces the current pooling layer after the feature extraction layer with an ROI max pooling
layer.

ROIOutputSize — ROI max pooling layer output size
'auto' (default) | 2-element vector

3 Functions

3-144



ROI max pooling layer output size, specifed as 'auto' or a 2-element vector of positive integers.
When you set the value to 'auto', the function determines the output size based on the
ROIMaxPoolingLayer property. It uses the output size of the feature extraction layer or the pooling
layer following the feature extraction layer.

Output Arguments
lgraph — Object detection network
layerGraph object

Object detection network, returned as a layerGraph object. The output and base network
imageInputLayer normalization values are equal.

See Also
Apps
Deep Network Designer

Functions
trainFasterRCNNObjectDetector | fasterRCNNObjectDetector | estimateAnchorBoxes |
analyzeNetwork | yolov2Layers

Topics
“Estimate Anchor Boxes From Training Data”
“Anchor Boxes for Object Detection”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”

Introduced in R2019b

 fasterRCNNLayers

3-145



yolov2Layers
Create YOLO v2 object detection network

Syntax
lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,featureLayer)
lgraph = yolov2Layers( ___ ,'ReorgLayerSource',reorgLayer)

Description
lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,featureLayer)
creates a YOLO v2 object detection network and returns it as a LayerGraph object.

lgraph = yolov2Layers( ___ ,'ReorgLayerSource',reorgLayer) specifies the source of
reorganization layer by using a name-value pair. You can specify this name-value pair to add
reorganization layer to the YOLO v2 network architecture. Specify this argument in addition to the
input arguments in the previous syntax.

Examples

Create YOLO v2 Network for Object Detection

Specify the size of the input image for training the network.

imageSize = [224 224 3];

Specify the number of object classes the network has to detect.

numClasses = 1;

Define the anchor boxes.

anchorBoxes = [1 1;4 6;5 3;9 6];

Specify the pretrained ResNet -50 network as the base network for YOLO v2. To use this pretrained
network, you need to install the 'Deep Learning Toolbox Model for ResNet-50 Network' support
package.

network = resnet50();

Analyze the network architecture to view all the network layers.

analyzeNetwork(network)

3 Functions

3-146



Specify the network layer to be used for feature extraction. You can choose any layer except the fully
connected layer as feature layer.

featureLayer = 'activation_49_relu';

Create the YOLO v2 object detection network. The network is returned as a LayerGraph object.

lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,featureLayer);

Analyze the YOLO v2 network architecture. The layers succeeding the feature layer are removed. A
series of convolution, ReLU, and batch normalization layers along with the YOLO v2 transform and
YOLO v2 output layers are added to the feature layer of the base network.

analyzeNetwork(lgraph)

 yolov2Layers

3-147



Create YOLO v2 Network with Reorganization Layer

Specify the size of the input image for training the network.

imageSize = [224 224 3];

Specify the number of object classes the network has to detect.

numClasses = 1;

Define the anchor boxes.

anchorBoxes = [1 1;4 6;5 3;9 6];

Specify the pretrained ResNet -50 as base network for YOLO v2. To use this pretrained network, you
need to install the 'Deep Learning Toolbox Model for ResNet-50 Network' support package.

network = resnet50();

Analyze the network architecture to view all the network layers.

analyzeNetwork(network)

3 Functions

3-148



Specify the network layer to be used for feature extraction. You can choose any layer except the fully
connected layer as feature layer.

featureLayer = 'activation_49_relu';

Specify the network layer to be used as the source for reorganization layer.

reorgLayer = 'activation_47_relu';

Create the YOLO v2 object detection network. The network is returned as a LayerGraph object.

lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,featureLayer,'ReorglayerSource',reorgLayer);

Analyze the YOLO v2 network architecture. The layers succeeding the feature layer are removed. The
detection subnetwork along with the YOLO v2 transform and YOLO v2 output layers are added to the
feature layer of base network. The reorganization layer and the depth concatenation layer are also
added to the network. The YOLO v2 reorg layer reorganizes the dimension of output features from
activation_47_relu layer. The depth concatenation layer concatenates the output of the
reorganization layer with the output of a higher layer.

analyzeNetwork(lgraph)

 yolov2Layers

3-149



Input Arguments
imageSize — Size of input image
two-element vector | three-element vector

Size of input image, specified as one of these values:

• Two-element vector of form [H W] - For a grayscale image of size H-by-W
• Three-element vector of form [H W 3] - For an RGB color image of size H-by-W

numClasses — Number of object classes
positive integer

Number of object classes, specified as a positive integer.

anchorBoxes — Anchor boxes
M-by-2 matrix

3 Functions

3-150



Anchor boxes, specified as an M-by-2 matrix defining the size and the number of anchor boxes. Each
row in the M-by-2 matrix denotes the size of the anchor box in the form of [height width]. M denotes
the number of anchor boxes. This input sets the AnchorBoxes property of the output layer.

The size of each anchor box is determined based on the scale and aspect ratio of different object
classes present in input training data. Also, the size of each anchor box must be smaller than or equal
to the size of the input image. You can use the clustering approach for estimating anchor boxes from
the training data. For more information, see “Estimate Anchor Boxes From Training Data”.

network — Pretrained convolutional neural network
LayerGraph object | DAGNetwork object | SeriesNetwork object

Pretrained convolutional neural network, specified as an LayerGraph, DAGNetwork, or
SeriesNetwork object. This pretrained convolutional neural network is used as the base for the
YOLO v2 object detection network. For details on pretrained networks in MATLAB, see “Pretrained
Deep Neural Networks” (Deep Learning Toolbox).

featureLayer — Name of feature layer
character vector | string scalar

Name of feature layer, specified as a character vector or a string scalar. The name of one of the
deeper layers in the network to be used for feature extraction. The features extracted from this layer
are given as input to the YOLO v2 object detection subnetwork. You can use the analyzeNetwork
function to view the names of the layers in the input network.

Note You can specify any network layer except the fully connected layer as the feature layer.

reorgLayer — Name of reorganization layer
character vector | string scalar

Name of reorganization layer, specified as a character vector or a string scalar. The name of one of
the deeper layers in the network to be used as input to the reorganization layer. You can use the
analyzeNetwork function to view the names of the layers in the input network. The reorganization
layer is the pass-through layer that reorganizes the dimension of low layer features to facilitate
concatenation with high layer features.

Note The input to the reorganization layer must be from any one of the network layers that lie above
the feature layer.

Output Arguments
lgraph — YOLO v2 object detection network
LayerGraph object

YOLO v2 object detection network, returned as a LayerGraph object.

Note The default value for the Normalization property of the image input layer in the returned
lgraph object is set to the Normalization property of the base network specified in network.

 yolov2Layers

3-151



Algorithms
The yolov2Layers function creates a YOLO v2 network, which represents the network architecture
for YOLO v2 object detector. Use the trainYOLOv2ObjectDetector function to train the YOLO v2
network for object detection. The function returns an object that generates the network architecture
for YOLO v2 object detection network presented in [1] and [2].

yolov2Layers uses a pretrained neural network as the base network to which it adds a detection
subnetwork required for creating a YOLO v2 object detection network. Given a base network,
yolov2Layers removes all the layers succeeding the feature layer in the base network and adds the
detection subnetwork. The detection subnetwork comprises of groups of serially connected
convolution, ReLU, and batch normalization layers. The YOLO v2 transform layer and YOLO v2 output
layer are added to the detection subnetwork. If you specify the name-value pair
'ReorgLayerSource', the YOLO v2 network concatenates the output of reorganization layer with
the output of feature layer.

For information on creating a custom YOLO v2 network layer-by-layer, see “Create YOLO v2 Object
Detection Network”.

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-Time Object

Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. Honolulu, HI: CVPR,
2017.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you must first create a YOLO v2 network by using the yolov2Layers function.
Then, use the trainYOLOv2ObjectDetector function on the resulting lgraph object to train the
network for object detection. Once the network is trained and evaluated, you can generate code for
the yolov2ObjectDetector object using GPU Coder.

See Also
trainYOLOv2ObjectDetector | spaceToDepthLayer | yolov2OutputLayer |
yolov2TransformLayer | yolov2ObjectDetector | analyzeNetwork | resnet50

Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using YOLO v2”
“Getting Started with YOLO v2”
“Anchor Boxes for Object Detection”

3 Functions

3-152



Introduced in R2019a

 yolov2Layers

3-153



gatherLabelData
Gather label data from ground truth

Syntax
labelData = gatherLabelData(gTruth,typeOfLabel)
[labelData,timestamps] = gatherLabelData( ___ )
[ ___ ] = gatherLabelData( ___ ,Name,Value)

Description
labelData = gatherLabelData(gTruth,typeOfLabel) returns label data gathered from
ground truth data, gTruth. The function returns label data specified by typeOfLabel.

[labelData,timestamps] = gatherLabelData( ___ ) additionally returns the image
timestamps associated with the gathered label data, using the arguments from the previous syntax.

[ ___ ] = gatherLabelData( ___ ,Name,Value) uses Name,Value pair arguments to specify
how to gather data.

Examples

Gather Polygon Labels

Gather all of the polygon labels from the groundtruth image.

data = load('groundtruthVisionTeam.mat');
gtruth = data.groundtruthVisionTeam;

Gather all of the polygon objects.

labelData = gatherLabelData(gtruth, labelType('Polygon'), 'GroupLabelData', 'LabelType');
 
polygons = labelData{1}.PolygonData{1}(:,1);
polygonLabels = labelData{1}.PolygonData{1}(:,2);

Visualize the polygon labels.

im = imread('visionteam.jpg');
imshow(im);
showShape('polygon', polygons, 'Label', polygonLabels);

3 Functions

3-154



Input Arguments
gTruth — Ground truth data
groundTruth object | vector of groundTruth objects

Ground truth data, specified as a groundTruth object or vector of groundTruth objects.

typeOfLabel — Label types
vector of labelType objects

Label types from which to gather label data, specified as a vector of labelType objects. The
gatherLabelData function gathers label data from each groundTruth object specified by input
gTruth The label data is grouped in columns either by label name or by label type, specified by the
GroupLabelData name-value argument.

Valid Enumeration Types

You can specify one or more of these enumeration types.

• labelType.Rectangle — Rectangle ROI labels
• labelType.Cuboid — Cuboid ROI labels (point clouds)
• labelType.ProjectedCuboid — Projected cuboid ROI labels (images and video data)
• labelType.Line — Line ROI labels
• labelType.PixelLabel — Pixel ROI labels
• labelType.Polygon — Pixel ROI labels
• labelType.Scene — Scene labels

 gatherLabelData

3-155



To gather label data for scenes, you must specify labelTypes as the labelType.Scene
enumeration scalar. You cannot specify any other label types with labelType.Scene.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: SampleFactor=5 drops every 5th frame.

SampleFactor — Sample factor
1 (default) | positive integer

Sample factor to subsample label data, specified as a positive integer. A sample factor of K includes
every Kth frame. Increase the sample factor to drop redundant frames from signals with high sample
rates, such as video.

GroupLabelData — Group columns from label data
'LabelName' (default) | 'LabelType'

Group columns from label data, specified as 'LabelName' or 'LabelType'.

• 'LabelName' — Groups the label data by label definitions.
• 'LabelType' — Groups the label data by label type. This option can be used to gather label data

with the region-of-interest (ROI) stacking order retained by the label type.

Output Arguments
labelData — Label data
cell array of tables

Label data, returned as an M-by-1 cell array of tables, where, M is the number of groundTruth
objects in gTruth. The columns of the tables represent label data grouped by either label name or
labe type, specified by the GroupLabelData name-value argument.

For each cell in the table, the format of the returned label data depends on the type of label.

Label Type Storage Format for Labels at Each
Timestamp

labelType.Rectangle M-by-4 numeric matrix of the form [x, y, w,
h], where:

• M is the number of labels in the frame.
• x and y specify the upper-left corner of the

rectangle.
• w specifies the width of the rectangle, which is

its length along the x-axis.
• h specifies the height of the rectangle, which

is its length along the y-axis.

3 Functions

3-156



Label Type Storage Format for Labels at Each
Timestamp

labelType.Cuboid M-by-9 numeric matrix with rows of the form
[xctr, yctr, zctr, xlen, ylen, zlen,
xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of

the cuboid.
• xlen, ylen, and zlen specify the length of

the cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation has been applied.

• xrot, yrot, and zrot specify the rotation
angles for the cuboid along the x-axis, y-axis,
and z-axis, respectively. These angles are
clockwise-positive when looking in the
forward direction of their corresponding axes.

The figure shows how these values determine the
position of a cuboid.

 gatherLabelData

3-157



Label Type Storage Format for Labels at Each
Timestamp

labelType.ProjectedCuboid M-by-8 vector of the form [x1, y1, w1, h1,
x2, y2, w2, h2], where:

• M is the number of labels in the frame.
• x1, y1 specifies the x,y coordinates for the

upper-left location of the front-face of the
projected cuboid

• w1 specifies the width for the front-face of the
projected cuboid.

• h1 specifies the height for the front-face of the
projected cuboid.

• x2, y2 specifies the x,y coordinates for the
upper-left location of the back-face of the
projected cuboid.

• w2 specifies the width for the back-face of the
projected cuboid.

• h2 specifies the height for the back-face of the
projected cuboid.

The figure shows how these values determine the
position of a cuboid.

labelType.Line M-by-1 vector of cell arrays, where M is the
number of labels in the frame. Each cell array
contains an N-by-2 numeric matrix of the form
[x1 y1; x2 y2; ... ; xN yN] for N points
in the polyline.

3 Functions

3-158



Label Type Storage Format for Labels at Each
Timestamp

labelType.PixelLabel Label data for all pixel label definitions is stored
in a single M-by-1 PixelLabelData column for
M images or frames. Each element contains a
filename for a pixel label image. A pixel label
image describes the label or labels contained in
the corresponding image. The labels can be
described as a 1- or 3- channel label matrix. To
use PixelLabelData with any of the labeler
apps, you must use a single-channel label matrix,
where the values are of type uint8. You can
convert a 3-channel pixel label data matrix to a
single-channel label matrix programmatically to
use with the labeler apps.

labelType.Polygon M-by-1 vector of cell arrays, where M is the
number of labels. Each cell array contains an N-
by-2 numeric matrix of the form [x1 y1; x2
y2; ... ; xN yN] for N points in the polygon.

labelType.Scene Logical 1 (true) if the scene label is applied,
otherwise logical 0 (false)

timestamps — Timestamps
cell array of duration vectors

Timestamps, returned as an M-by-1 cell array of duration vectors, where:

• M is the number of groundTruth objects in gTruth.
• labelData{m} contains the timestamps that is in the mth groundTruth object of gTruth.

Limitations
• The gatherLabelData function does not gather label data for sublabels or attributes. If a label

contains sublabels or attributes, in the labelData output, the function returns the position of the
parent label only.

See Also
groundTruth | boxLabelDatastore

Topics
“Label Objects Using Polygons”

Introduced in R2021a

 gatherLabelData

3-159



selectLabelsByGroup
Select ground truth labels by label group

Syntax
gtLabel = selectLabelsByGroup(gTruth,labelGroups)

Description
gtLabel = selectLabelsByGroup(gTruth,labelGroups) selects labels belonging to the
groups specified by labelGroups from a groundTruth object, gTruth. The function returns a
corresponding groundTruth object, gtLabel, that contains only the selected labels. If gTruth is a
vector of groundTruth objects, then the function returns a vector of corresponding groundTruth
objects that contain only the selected labels.

Examples

Select Ground Truth Data By Group

Load data to create a ground truth object. Add the image folder to the path.

data = load('stopSignsAndCars.mat');
imageFilenames = data.stopSignsAndCars.imageFilename(1:2)

imageFilenames = 2x1 cell
    {'stopSignImages/image001.jpg'}
    {'stopSignImages/image002.jpg'}

imageFilenames = fullfile(toolboxdir('vision'),'visiondata',imageFilenames);
dataSource = groundTruthDataSource(imageFilenames);

Define labels for identifying ground truth data.

names = {'stopSign';'carRear'};
types = [
    labelType('Rectangle')
    labelType('Rectangle')
    ];
groups = {'TrafficSigns';'Vehicles'};

labelDefs = table(names,types,groups,'VariableNames', {'Name','Type','Group'})

labelDefs=2×3 table
        Name          Type            Group      
    ____________    _________    ________________

    {'stopSign'}    Rectangle    {'TrafficSigns'}
    {'carRear' }    Rectangle    {'Vehicles'    }

Initialize label data for rectangle ROIs.

3 Functions

3-160



numRows = numel(imageFilenames);
stopSignTruth = {[856   318    39    41]; [445   523  52    54]};
carRearTruth = {[398   378   315   210]; [332   633   691   287]};

Construct a table containing label data.

labelData = table(stopSignTruth,carRearTruth,'VariableNames',names)

labelData=2×2 table
        stopSign               carRear      
    _________________    ___________________

    {[856 318 39 41]}    {[398 378 315 210]}
    {[445 523 52 54]}    {[332 633 691 287]}

Create a groundTruth object.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth = 
  groundTruth with properties:

          DataSource: [1x1 groundTruthDataSource]
    LabelDefinitions: [2x3 table]
           LabelData: [2x2 table]

Select labels by group.

vehicleGroundTruth = selectLabelsByGroup(gTruth, 'Vehicles')

vehicleGroundTruth = 
  groundTruth with properties:

          DataSource: [1x1 groundTruthDataSource]
    LabelDefinitions: [1x3 table]
           LabelData: [2x1 table]

Input Arguments
gTruth — Ground truth
groundTruth object | vector of groundTruth objects

Ground truth, specified as a groundTruth object or vector of groundTruth objects.

labelGroups — Label groups
character vector | string scalar | cell array of character vectors | string vector

Label groups, specified as a character vector, string scalar, cell array of character vectors, or string
vector.

To view all label groups in a groundTruth object, gTruth, enter this command at the MATLAB
command prompt.

unique(gTruth.LabelDefinitions.Group)

 selectLabelsByGroup

3-161



Example: 'Vehicles'
Example: "Vehicles"
Example: {'Vehicles','Signs'}
Example: ["Vehicles" "Signs"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruth object | vector of groundTruth objects

Ground truth with only the selected labels, returned as a groundTruth object or vector of
groundTruth objects.

Each groundTruth object in gtLabel corresponds to a groundTruth object in the gTruth input.
The returned objects contain only the labels belonging to the groups specified by the labelGroups
input.

See Also
Objects
groundTruth

Functions
selectLabelsByType | selectLabelsByName

Introduced in R2019a

3 Functions

3-162



selectLabelsByType
Select ground truth labels by label type

Syntax
gtLabel = selectLabelsByType(gTruth,labelTypes)

Description
gtLabel = selectLabelsByType(gTruth,labelTypes) selects labels of the types specified by
labelTypes from a groundTruth object, gTruth. The function returns a corresponding
groundTruth object, gtLabel, that contains only the selected labels. If gTruth is a vector of
groundTruth objects, then the function returns a vector of corresponding groundTruth objects
that contain only the selected labels.

Examples

Select Ground Truth Data by Types

Add the image directory to the MATLAB path.

imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
    addpath(imageDir);

Load the groundTruth object.

load('stopSignsAndCarsGroundTruth.mat');

View the label definitions.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
        Name          Type        Group  
    ____________    _________    ________

    {'stopSign'}    Rectangle    {'None'}
    {'carRear' }    Rectangle    {'None'}
    {'carFront'}    Rectangle    {'None'}

Obtain the ground truth data for Rectangle labelType.

rectGroundTruth = selectLabelsByType(stopSignsAndCarsGroundTruth,labelType.Rectangle);

Remove the image directory from the path.

rmpath(imageDir);

 selectLabelsByType

3-163



Input Arguments
gTruth — Ground truth
groundTruth object | vector of groundTruth objects

Ground truth, specified as a groundTruth object or vector of groundTruth objects.

labelTypes — Label types
labelType enumeration | vector of labelType enumerations

Label types, specified as a labelType enumeration or vector of labelType enumerations.

To view all label types in a groundTruth object, gTruth, enter this command at the MATLAB
command prompt.

unique(gTruth.LabelDefinitions.Type)

Example: labelType.Rectangle
Example: [labelType.Rectangle labelType.Line]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruth object | vector of groundTruth objects

Ground truth with only the selected labels, returned as a groundTruth object or vector of
groundTruth objects.

Each groundTruth object in gtLabel corresponds to a groundTruth object in the gTruth input.
The returned objects contain only the labels that are of the types specified by the labelTypes input.

Limitations
• Selecting sublabels by type is not supported.

See Also
Objects
groundTruth

Functions
selectLabelsByName | selectLabelsByGroup

Introduced in R2019a

3 Functions

3-164



selectLabelsByName
Select ground truth labels by label name

Syntax
gtLabel = selectLabelsByName(gTruth,labelNames)

Description
gtLabel = selectLabelsByName(gTruth,labelNames) selects labels specified by labelNames
from a groundTruth object, gTruth. The function returns a corresponding groundTruth object,
gtLabel, that contains only the selected labels. If gTruth is a vector of groundTruth objects, then
the function returns a vector of corresponding groundTruth objects that contain only the selected
labels.

Examples

Select Ground Truth Data By Name

Add the image directory to the MATLAB path.

imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imageDir);

Load the groundTruth object.

load('stopSignsAndCarsGroundTruth.mat');

View the label definitions.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
        Name          Type        Group  
    ____________    _________    ________

    {'stopSign'}    Rectangle    {'None'}
    {'carRear' }    Rectangle    {'None'}
    {'carFront'}    Rectangle    {'None'}

Obtain the ground truth data for StopSign label name.

stopSignGroundTruth = selectLabelsByName(stopSignsAndCarsGroundTruth, ...
                                      'stopSign');

Obtain ground truth data for carRear and carFront.

carGroundTruth = selectLabels(stopSignsAndCarsGroundTruth, ...
                                  {'carRear','carFront'});

Remove the image directory from the path.

 selectLabelsByName

3-165



rmpath(imageDir);

Input Arguments
gTruth — Ground truth
groundTruth object | vector of groundTruth objects

Ground truth, specified as a groundTruth object or vector of groundTruth objects.

labelNames — Label names
character vector | string scalar | cell array of character vectors | string vector

Label names, specified as a character vector, string scalar, cell array of character vectors, or string
vector.

To view all label names in a groundTruth object, gTruth, enter this command at the MATLAB
command prompt.

gTruth.LabelDefinitions.Name

Example: 'car'
Example: "car"
Example: {'car','lane'}
Example: ["car" "lane"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruth object | vector of groundTruth objects

Ground truth with only the selected labels, returned as a groundTruth object or vector of
groundTruth objects.

Each groundTruth object in gtLabel corresponds to a groundTruth object in the gTruth input.
The returned objects contain only the labels with names specified by the labelNames input.

Limitations
• Selecting pixel labels by name is not supported. However, you can select all labels of type pixel.

Use the selectLabelsByType function, specifying the label type as a labelType.PixelLabel
enumeration.

• Selecting sublabels by name is not supported.

See Also
Objects
groundTruth

Functions
selectLabelsByGroup | selectLabelsByType

3 Functions

3-166



Introduced in R2019a

 selectLabelsByName

3-167



correct
Package: vision

Correction of measurement, state, and state estimation error covariance

Syntax
[z_corr,x_corr,P_corr] = correct(kalmanFilter,z)

Description
[z_corr,x_corr,P_corr] = correct(kalmanFilter,z) returns the correction of
measurement, state, and state estimation error covariance. The correction is based on the current
measurement z. The object overwrites the internal state and covariance of the Kalman filter with
corrected values.

Examples

Tracking Objects

Use the predict and correct functions based on detection results.

When the tracked object is detected, use the predict and correct functions with the Kalman filter
object and the detection measurement. Call the functions in the following order:

[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);

When the tracked object is not detected, call the predict function, but not the correct method.
When the tracked object is missing or occluded, no measurement is available. Set the functions up
with the following logic:

[...] = predict(kalmanFilter);
If measurement exists
    [...] = correct(kalmanFilter,measurement);
end

If the tracked object becomes available after missing for the past t-1 contiguous time steps, you can
call the predict function t times. This syntax is particularly useful to process asynchronous video..
For example,

for i = 1:k
  [...] = predict(kalmanFilter);
end
[...] = correct(kalmanFilter,measurement) 

Input Arguments
kalmanFilter — Kalman filter object
object

3 Functions

3-168



Kalman filter object.

z — Current measurement
N-element vector

Current measurement, specified as an N-element vector.

See Also
configureKalmanFilter | assignDetectionsToTracks

Introduced in R2012b

 correct

3-169



distance
Package: vision

Confidence value of measurement

Syntax
d = distance(kalmanFilter,zmatrix)

Description
d = distance(kalmanFilter,zmatrix) computes a distance between the location of a detected
object and the predicted location by the Kalman filter object. This distance computation takes into
account the covariance of the predicted state and the process noise. The distance function can only
be called after the predict function.

Use the distance function to find the best matches. The computed distance values describe how a
set of measurements matches the Kalman filter. You can thus select a measurement that best fits the
filter. This strategy can be used for matching object detections against object tracks in a multiobject
tracking problem. This distance computation takes into account the covariance of the predicted state
and the process noise.

Examples

Track Location of An Object

Track the location of a physical object moving in one direction.

Generate synthetic data which mimics the 1-D location of a physical object moving at a constant
speed.

detectedLocations = num2cell(2*randn(1,40) + (1:40));

Simulate missing detections by setting some elements to empty.

detectedLocations{1} = [];
  for idx = 16: 25 
      detectedLocations{idx} = []; 
  end

Create a figure to show the location of detections and the results of using the Kalman filter for
tracking.

figure;
hold on;
ylabel('Location');
ylim([0,50]); 
xlabel('Time');
xlim([0,length(detectedLocations)]);

3 Functions

3-170



Create a 1-D, constant speed Kalman filter when the physical object is first detected. Predict the
location of the object based on previous states. If the object is detected at the current time step, use
its location to correct the states.

kalman = []; 
for idx = 1: length(detectedLocations) 
   location = detectedLocations{idx}; 
   if isempty(kalman)
     if ~isempty(location) 
       
       stateModel = [1 1;0 1]; 
       measurementModel = [1 0]; 
       kalman = vision.KalmanFilter(stateModel,measurementModel,'ProcessNoise',1e-4,'MeasurementNoise',4);
      kalman.State = [location, 0]; 
     end 
   else
     trackedLocation = predict(kalman);
     if ~isempty(location) 
       plot(idx, location,'k+');
      d = distance(kalman,location); 
       title(sprintf('Distance:%f', d));
       trackedLocation = correct(kalman,location); 
     else 
       title('Missing detection'); 
     end 
     pause(0.2);
     plot(idx,trackedLocation,'ro'); 

 distance

3-171



   end 
 end 
legend('Detected locations','Predicted/corrected locations');

Remove Noise From a Signal

Use Kalman filter to remove noise from a random signal corrupted by a zero-mean Gaussian noise.

Synthesize a random signal that has value of 1 and is corrupted by a zero-mean Gaussian noise with
standard deviation of 0.1.

x = 1;
len = 100;
z = x + 0.1 * randn(1,len);

Remove noise from the signal by using a Kalman filter. The state is expected to be constant, and the
measurement is the same as state.

stateTransitionModel = 1;
measurementModel = 1;
obj = vision.KalmanFilter(stateTransitionModel,measurementModel,'StateCovariance',1,'ProcessNoise',1e-5,'MeasurementNoise',1e-2);

z_corr = zeros(1,len);
for idx = 1: len
 predict(obj);

3 Functions

3-172



 z_corr(idx) = correct(obj,z(idx));
end

Plot results.

figure, plot(x * ones(1,len),'g-'); 
hold on;
plot(1:len,z,'b+',1:len,z_corr,'r-');
legend('Original signal','Noisy signal','Filtered signal');

Input Arguments
kalmanFilter — Kalman filter object
object

Kalman filter object.

zmatrix — Location of a detected object
N-column matrix

Location of a detected object, specified as an N-column matrix. Each row matrix contains a
measurement vector. The distance function returns a row vector where each distance element
corresponds to the measurement input.

 distance

3-173



More About
Distance Equation

d(z) = (z − Hx)T∑−1 (z − Hx) + ln ∑
Where Σ = HPHT + R and Σ  is the determinant of Σ. You can then find the best matches by
examining the returned distance values.

See Also
configureKalmanFilter | assignDetectionsToTracks

Introduced in R2012b

3 Functions

3-174



vision.KalmanFilter.predict
Package: vision

Prediction of measurement

Syntax
[z_pred,x_pred,P_pred] = predict(kalmanFilter)
[z_pred,x_pred,P_pred] = predict(kalmanFilter,u)

Description
[z_pred,x_pred,P_pred] = predict(kalmanFilter) returns the prediction of measurement,
state, and state estimation error covariance at the next time step (e.g., the next video frame). The
object overwrites the internal state and covariance of the Kalman filter with the prediction results.

[z_pred,x_pred,P_pred] = predict(kalmanFilter,u) additionally lets you specify the
control input, u. This syntax applies when you set the control model, B.

Examples

Tracking Objects

Use the predict and correct functions based on detection results.

When the tracked object is detected, use the predict and correct functions with the Kalman filter
object and the detection measurement. Call the functions in the following order:

[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);

When the tracked object is not detected, call the predict function, but not the correct method.
When the tracked object is missing or occluded, no measurement is available. Set the functions up
with the following logic:

[...] = predict(kalmanFilter);
If measurement exists
    [...] = correct(kalmanFilter,measurement);
end

If the tracked object becomes available after missing for the past t-1 contiguous time steps, you can
call the predict function t times. This syntax is particularly useful to process asynchronous video..
For example,

for i = 1:k
  [...] = predict(kalmanFilter);

 vision.KalmanFilter.predict

3-175



end
[...] = correct(kalmanFilter,measurement) 

Input Arguments
kalmanFilter — Kalman filter object
object

Kalman filter object.

u — Control input
L-element vector

Control input, specified as an L-element vector.

See Also
configureKalmanFilter | assignDetectionsToTracks

Introduced in R2012b

3 Functions

3-176



pcregistercpd
Register two point clouds using CPD algorithm

Syntax
tform = pcregistercpd(moving,fixed)
[tform,movingReg] = pcregistercpd(moving,fixed)
[ ___ ,rmse] = pcregistercpd(moving,fixed)
[ ___ ] = pcregistercpd(moving,fixed,Name=Value)

Description
tform = pcregistercpd(moving,fixed) returns a transformation that registers a moving point
cloud with a fixed point cloud using the coherent point drift (CPD) algorithm [1].

Note Consider downsampling point clouds using pcdownsample before using pcregistercpd to
improve the efficiency of registration.

[tform,movingReg] = pcregistercpd(moving,fixed) also returns the transformed point
cloud that aligns with the fixed point cloud.

[ ___ ,rmse] = pcregistercpd(moving,fixed) also returns the root mean square error of the
Euclidean distance between the aligned point clouds, using any of the preceding syntaxes.

[ ___ ] = pcregistercpd(moving,fixed,Name=Value) specifies options using one or more
name-value arguments in addition to any combination of arguments from previous syntaxes. For
example, MaxIterations=20 stops the CPD algorithm after 20 iterations.

Examples

Align Two Point Clouds Using CPD Algorithm

Load point cloud data into the workspace. Extract the moving and the fixed point clouds from the
point cloud data in workspace.

handData = load('hand3d.mat');
moving = handData.moving;
fixed = handData.fixed;

To improve the efficiency and accuracy of the CPD registration algorithm, downsample the moving
and the fixed point clouds.

movingDownsampled = pcdownsample(moving,'gridAverage',0.03);
fixedDownsampled = pcdownsample(fixed,'gridAverage',0.03);

Display the downsampled point clouds before registration.

figure
pcshowpair(movingDownsampled,fixedDownsampled,'MarkerSize',50)

 pcregistercpd

3-177



xlabel('X')
ylabel('Y')
zlabel('Z')
title('Point clouds before registration')
legend({'Moving point cloud','Fixed point cloud'},'TextColor','w')
legend('Location','southoutside')

Perform non-rigid registration using the CPD algorithm.

tform = pcregistercpd(movingDownsampled,fixedDownsampled);
movingReg = pctransform(movingDownsampled,tform);

Display the downsampled point clouds after registration.

figure
pcshowpair(movingReg,fixedDownsampled,'MarkerSize',50)
xlabel('X')
ylabel('Y')
zlabel('Z')
title('Point clouds after registration')
legend({'Moving point cloud','Fixed point cloud'},'TextColor','w')
legend('Location','southoutside')

3 Functions

3-178



Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MaxIteration = 20 stops the CPD algorithm after 20 iterations.

Transform — Type of transformation
'Nonrigid' (default) | 'Rigid' | 'Affine'

 pcregistercpd

3-179



Type of transformation, specified as 'Nonrigid', 'Rigid', or 'Affine' character vectors or string
scalars.
Data Types: char | string

OutlierRatio — Expected percentage of outliers
0.1 (default) | scalar in the range [0, 1)

Expected percentage of outliers with respect to a normal distribution, specified as a scalar in the
range [0, 1). Increasing this value reduces the influence of outliers and noise.
Data Types: single | double

MaxIterations — Maximum number of iterations
20 (default) | positive integer

Maximum number of iterations before CPD stops, specified as a positive integer.
Data Types: single | double

Tolerance — Tolerance between consecutive CPD iterations
1e-5 (default) | scalar

Tolerance between consecutive CPD iterations, specified as a scalar. The algorithm stops when
absolute percentage change in the values of the log likelihood function measured between
consecutive iterations reaches or falls below the specified tolerance value. Decreasing this value
increases the likelihood of a better alignment.
Data Types: single | double

InteractionSigma — Interaction between points
2.0 (default) | positive scalar

Interaction between points, specified as positive scalar that represents standard deviation of a
Gaussian filter. Typical values are in the range [1.5,3]. Increasing this value increases interaction
between the points in point cloud. As a result, you can observe coherent motion in the point cloud and
every point undergoes the same displacement. Alternatively, decreasing this value reduces
interaction between the points in point cloud. As a result, you can observe localized displacement of
points and the output displacement field exhibits localized deformation.

Note To use this name-value pair, 'Transform' must be 'Nonrigid'.

Data Types: single | double

SmoothingWeight — Motion smoothing weight
3.0 (default) | positive scalar

Motion smoothing weight, specified as a positive scalar. Typical values are in the range [0.1,10].
Increase this value to produce a more coherent motion in the output displacement field.

Note To use this name-value pair, 'Transform' must be 'Nonrigid'.

Data Types: single | double

3 Functions

3-180



Verbose — Display progress information
false (default) | true

Display progress information, specified as a numeric or logical 0 (false) or 1 (true). To display the
progress information, set Verbose to true.

Both 'MaxIterations' and 'Tolerance' are used as stopping criteria. The algorithm stops when
it satisfies either of the stopping conditions, i.e., when the number of iteration reaches
MaxIterations or the absolute percentage change in log likelihood function is less than or equal to
Tolerance.

Output Arguments
tform — Transformation
rigid3d object | affine3d object | displacement field

Transformation, returned as a rigid3d, affine3d object, or a displacement field. tform is a 3-D
transformation that registers the moving point cloud, moving to the fixed point cloud, fixed. The
output type depends on the value of the Transform property.

Transform Property Value tform
'Rigid' rigid3d object
'Affine' affine3d object
'Nonrigid' Displacement field, a numeric matrix of same size

and datatype as the Location property of the
moving point cloud object, moving.

movingReg — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud is aligned
with the fixed point cloud, fixed.

rmse — Root mean square error
positive real number

Root mean square error, returned as a positive real number. rmse is the Euclidean distance between
the aligned point clouds.
Data Types: double

 pcregistercpd

3-181



Algorithms

3 Functions

3-182



References
[1] Myronenko, A., and X. Song. "Point Set Registration: Coherent Point Drift. "Proceedings of IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Vol 32, Number 12,
December 2010, pp. 2262–2275.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The name-value pair argument 'Transform' must be compile-time constant.

See Also
Functions
pcregistercorr | pcregistericp | pcregisterndt | pctransform | pcshow | pcshowpair |
pcdownsample | pcfitplane | pcdenoise | pcmerge

Objects
pointCloud | affine3d | rigid3d

Topics
“3-D Point Cloud Registration and Stitching”
“Implement Point Cloud SLAM in MATLAB”

Introduced in R2018b

 pcregistercpd

3-183



initializeObject
Set object to track

Syntax
initializeObject(hbtracker,I,R)
initializeObject(hbtracker,I,R,N)

Description
initializeObject(hbtracker,I,R) sets the object to track by extracting it from the [x y width
height] region R located in the 2-D input image, I. The input image, I, can be any 2-D feature map
that distinguishes the object from the background. For example, the image can be a hue channel of
the HSV color space. Typically, I will be the first frame in which the object appears. The region, R, is
also used for the initial search window, in the next call to the step method. For best results, the
object must occupy the majority of the region, R.

initializeObject(hbtracker,I,R,N) additionally, lets you specify N, the number of histogram
bins.

Examples

Track a Face

Track and display a face in each frame of an input video.

Create System objects for reading and displaying video and for drawing a bounding box of the object.

videoReader = VideoReader('vipcolorsegmentation.avi');
videoPlayer = vision.VideoPlayer();
shapeInserter = vision.ShapeInserter('BorderColor','Custom', ...
    'CustomBorderColor',[1 0 0]);

Read the first video frame, which contains the object. Convert the image to HSV color space. Then
define and display the object region.

objectFrame = im2single(readFrame(videoReader));
objectHSV = rgb2hsv(objectFrame);
objectRegion = [40, 45, 25, 25];
objectImage = shapeInserter(objectFrame, objectRegion);

figure
imshow(objectImage)
title('Red box shows object region')

3 Functions

3-184



(Optionally, you can select the object region using your mouse. The object must occupy the majority
of the region. Use the following command.)

figure; imshow(objectFrame); objectRegion=round(getPosition(imrect))

Set the object, based on the hue channel of the first video frame.

tracker = vision.HistogramBasedTracker;
initializeObject(tracker, objectHSV(:,:,1) , objectRegion);

Track and display the object in each video frame. The while loop reads each image frame, converts
the image to HSV color space, then tracks the object in the hue channel where it is distinct from the
background. Finally, the example draws a box around the object and displays the results.

while hasFrame(videoReader)
  frame = im2single(readFrame(videoReader));
  hsv = rgb2hsv(frame);
  bbox = tracker(hsv(:,:,1));

  out = shapeInserter(frame,bbox);
  videoPlayer(out);
end

 initializeObject

3-185



Release the video player.

release(videoPlayer);

3 Functions

3-186



Input Arguments
hbtracker — Histogram based tracker
vision.HistogramBasedTracker object

Histogram based tracker, specified as a vision.HistogramBasedTracker object.

I — Video frame
grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

R — Initial search window
[x y width height]

Initial search window, specified in the format [x y width height].

N — Number of histogram bins
16 (default) | integer

Number of histogram bins, specified as an integer. Increasing the number of bins enhances the ability
of the tracker to discriminate the object. However, this approach also narrows the range of changes
to the object's visual characteristics that the tracker can accommodate. Consequently, this narrow
range increases the likelihood of losing track.

 initializeObject

3-187



See Also
Objects
vision.HistogramBasedTracker

Introduced in R2012a

3 Functions

3-188



hide
Package: 

Hide player figure

Syntax
hide(player)

Description
hide(player) hides the figure. To redisplay the player, use show on page 3-192(player).

Examples

Hide and Show 3-D Point Cloud Figure

Load point cloud.

ptCloud = pcread('teapot.ply');

Create the player and customize player axis labels.

player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);

 hide

3-189



Hide figure.

hide(player)

Show figure.

show(player)
view(player,ptCloud);

3 Functions

3-190



Input Arguments
player — Player
player object

Player for data, specified as a pcplayer or vision.VideoPlayer object.

Introduced in R2015b

 hide

3-191



show
Package: 

Show player

Syntax
show(player)

Description
show(player) makes the player figure visible again after closing or hiding it.

Examples

Hide and Show 3-D Point Cloud Figure

Load point cloud.

ptCloud = pcread('teapot.ply');

Create the player and customize player axis labels.

player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);

3 Functions

3-192



Hide figure.

hide(player)

Show figure.

show(player)
view(player,ptCloud);

 show

3-193



Input Arguments
player — Player
object

Player for visualizing data streams, specified as a pcplayer or a vision.VideoPlayer object. Use
this method to view the figure after you have removed it from display. For example, after you x-out of
a figure and you want to view it again. This is particularly useful to use after a while loop that
contains display code ends.

Introduced in R2015b

3 Functions

3-194



initializeSearchWindow
Set initial search window

Syntax
initializeSearchWindow(hbtracker,R)

Description
initializeSearchWindow(hbtracker,R) sets the initial search window region,R. The tracker
uses this region as the initial window to search for the object. You can also use this function when the
tracker loses track of the object. Use the function to reinitialize an object's initial location and size.

Examples

Track a Face

Track and display a face in each frame of an input video.

Create System objects for reading and displaying video and for drawing a bounding box of the object.

videoReader = VideoReader('vipcolorsegmentation.avi');
videoPlayer = vision.VideoPlayer();
shapeInserter = vision.ShapeInserter('BorderColor','Custom', ...
    'CustomBorderColor',[1 0 0]);

Read the first video frame, which contains the object. Convert the image to HSV color space. Then
define and display the object region.

objectFrame = im2single(readFrame(videoReader));
objectHSV = rgb2hsv(objectFrame);
objectRegion = [40, 45, 25, 25];
objectImage = shapeInserter(objectFrame, objectRegion);

figure
imshow(objectImage)
title('Red box shows object region')

 initializeSearchWindow

3-195



(Optionally, you can select the object region using your mouse. The object must occupy the majority
of the region. Use the following command.)

figure; imshow(objectFrame); objectRegion=round(getPosition(imrect))

Set the object, based on the hue channel of the first video frame.

tracker = vision.HistogramBasedTracker;
initializeObject(tracker, objectHSV(:,:,1) , objectRegion);

Track and display the object in each video frame. The while loop reads each image frame, converts
the image to HSV color space, then tracks the object in the hue channel where it is distinct from the
background. Finally, the example draws a box around the object and displays the results.

while hasFrame(videoReader)
  frame = im2single(readFrame(videoReader));
  hsv = rgb2hsv(frame);
  bbox = tracker(hsv(:,:,1));

  out = shapeInserter(frame,bbox);
  videoPlayer(out);
end

Release the video player.

release(videoPlayer);

3 Functions

3-196



Input Arguments
hbtracker — Histogram based tracker
vision.HistogramBasedTracker object

Histogram based tracker, specified as a vision.HistogramBasedTracker object.

R — Initial search window
[x y width height]

Initial search window, specified in the format [x y width height].

Introduced in R2012a

 initializeSearchWindow

3-197



initialize
Initialize video frame and points to track

Syntax
initialize(pointTracker,points,I)

Description
initialize(pointTracker,points,I) initializes points to track and sets the initial video frame.
The function sets the M-by-2 points array of [x y] coordinates with the points to track, and sets the
initial video frame, I.

If you want to use the point tracker as a persistent variable, you must call initialize only during
creation. If you call initialize in a loop, the previous state is lost and therefore, the tracker cannot
maintain tracking.

Examples

Track a Face in Scene

Create System objects for reading and displaying video and for drawing a bounding box of the object.

videoReader = VideoReader('visionface.avi');
videoPlayer = vision.VideoPlayer('Position',[100,100,680,520]);

Read the first video frame, which contains the object, define the region.

objectFrame = readFrame(videoReader);
objectRegion = [264,122,93,93];

As an alternative, you can use the following commands to select the object region using a mouse. The
object must occupy the majority of the region:

figure; imshow(objectFrame);

objectRegion=round(getPosition(imrect))

Show initial frame with a red bounding box.

objectImage = insertShape(objectFrame,'Rectangle',objectRegion,'Color','red');
figure;
imshow(objectImage);
title('Red box shows object region');

3 Functions

3-198



Detect interest points in the object region.

points = detectMinEigenFeatures(im2gray(objectFrame),'ROI',objectRegion);

Display the detected points.

pointImage = insertMarker(objectFrame,points.Location,'+','Color','white');
figure;
imshow(pointImage);
title('Detected interest points');

 initialize

3-199



Create a tracker object.

tracker = vision.PointTracker('MaxBidirectionalError',1);

Initialize the tracker.

initialize(tracker,points.Location,objectFrame);

Read, track, display points, and results in each video frame.

while hasFrame(videoReader)
      frame = readFrame(videoReader);
      [points,validity] = tracker(frame);
      out = insertMarker(frame,points(validity, :),'+');
      videoPlayer(out);
end

3 Functions

3-200



Release the video player.

release(videoPlayer);

 initialize

3-201



Input Arguments
pointTracker — Point tracker
PointTracker object

Point tracker, specified as a vision.PointTracker object.

points — Points
M-by-2 array

Points, specified as an M-by-2 array of [x y] coordinates that correspond to the locations of the points
in the input frame, I.

3 Functions

3-202



I — Video frame
grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB) and must be the same size as the images read
into the tracker.

Introduced in R2012b

 initialize

3-203



fcnLayers
Create fully convolutional network layers for semantic segmentation

Syntax
lgraph = fcnLayers(imageSize,numClasses)
lgraph = fcnLayers(imageSize,numClasses,'Type',type)

Description
lgraph = fcnLayers(imageSize,numClasses) returns a fully convolutional network (FCN),
configured as FCN 8s, for semantic segmentation. The FCN is preinitialized using layers and weights
from the VGG-16 network.

fcnLayers includes a pixelClassificationLayer to predict the categorical label for every pixel
in an input image. The pixel classification layer only supports RGB images.

This function requires the Deep Learning Toolbox Model for VGG-16 Network support package. If this
support package is not installed, then the vgg16 function provides a download link.

lgraph = fcnLayers(imageSize,numClasses,'Type',type) returns an FCN configured as a
type specified by type.

Examples

Create Fully Convolutional Network 8s

Define the image size and number of classes, then create the network.

imageSize = [480 640];
numClasses = 5;
lgraph = fcnLayers(imageSize,numClasses)

Display the network.

plot(lgraph)

Create Fully Convolutional Network 16s

Create a FCN 16s.

imageSize = [480 640];
numClasses = 5;
lgraph = fcnLayers(imageSize,numClasses,'Type','16s')

Display the network.

3 Functions

3-204



plot(lgraph)

Input Arguments
imageSize — Network input image size
2-element vector

Network input image size, specified as a 2-element vector in the format [height, width]. The minimum
image size is [224 224] because an FCN is based on the VGG-16 network.

numClasses — Number of classes
integer greater than 1

Number of classes in the semantic segmentation, specified as an integer greater than 1.

type — Type of FCN model
'8s' (default) | '16s' | '32s'

Type of FCN model, specified as one of the following:

FCN Model Description
'32s' Upsamples the final feature map by a factor of 32. This option provides

coarse segmentation with a lower computational cost.
'16s' Upsamples the final feature map by a factor of 16 after fusing the feature

map from the fourth pooling layer. This additional information from earlier
layers provides medium-grain segmentation at the cost of additional
computation.

'8s' Upsamples the final feature map by a factor of 8 after fusing feature maps
from the third and fourth max pooling layers. This additional information
from earlier layers provides finer-grain segmentation at the cost of
additional computation.

Output Arguments
lgraph — Layers
LayerGraph object

Layers that represent the FCN network architecture, returned as a layerGraph object.

All transposed convolution layers are initialized using bilinear interpolation weights. All transposed
convolution layer bias terms are fixed to zero.

Tips
• Networks produced by fcnLayers support GPU code generation for deep learning once they are

trained with trainNetwork. See “Deep Learning Code Generation” (Deep Learning Toolbox) for
details and examples.

 fcnLayers

3-205



References
[1] Long, J., E. Shelhamer, and T. Darrell. "Fully Convolutional Networks for Semantic Segmentation."

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
3431–3440.

See Also
Objects
pixelClassificationLayer | layerGraph

Functions
fcnLayers | segnetLayers | unetLayers | trainNetwork | semanticseg |
deeplabv3plusLayers

Topics
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2017b

3 Functions

3-206



segnetLayers
Create SegNet layers for semantic segmentation

Syntax
lgraph = segnetLayers(imageSize,numClasses,model)
lgraph = segnetLayers(imageSize,numClasses,encoderDepth)
lgraph = segnetLayers(imageSize,numClasses,encoderDepth,Name,Value)

Description
lgraph = segnetLayers(imageSize,numClasses,model) returns SegNet layers, lgraph, that
is preinitialized with layers and weights from a pretrained model.

SegNet is a convolutional neural network for semantic image segmentation. The network uses a
pixelClassificationLayer to predict the categorical label for every pixel in an input image.

Use segnetLayers to create the network architecture for SegNet. You must train the network using
the Deep Learning Toolbox function trainNetwork.

lgraph = segnetLayers(imageSize,numClasses,encoderDepth) returns uninitialized
SegNet layers configured using the specified encoder depth.

lgraph = segnetLayers(imageSize,numClasses,encoderDepth,Name,Value) returns a
SegNet layer with additional options specified by one or more Name,Value pair arguments.

Examples

Train SegNet

Load training images and pixel labels.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an image datastore holding the training images.

imds = imageDatastore(imageDir);

Define the class names and their associated label IDs.

classNames = ["triangle", "background"];
labelIDs   = [255 0];

Create a pixel label datastore holding the ground truth pixel labels for the training images.

pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Create SegNet layers.

 segnetLayers

3-207



imageSize = [32 32];
numClasses = 2;
lgraph = segnetLayers(imageSize,numClasses,2)

lgraph = 
  LayerGraph with properties:

         Layers: [31x1 nnet.cnn.layer.Layer]
    Connections: [34x2 table]
     InputNames: {'inputImage'}
    OutputNames: {'pixelLabels'}

Combine image and pixel label data for training a semantic segmentation network.

ds = combine(imds,pxds);

Set up training options.

options = trainingOptions('sgdm','InitialLearnRate',1e-3, ...
      'MaxEpochs',20,'VerboseFrequency',10);

Train the network.

net = trainNetwork(ds,lgraph,options)

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:03 |       39.70% |       0.7665 |          0.0010 |
|      10 |          10 |       00:00:24 |       50.17% |       0.7384 |          0.0010 |
|      20 |          20 |       00:00:45 |       66.13% |       0.6920 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.

net = 
  DAGNetwork with properties:

         Layers: [31x1 nnet.cnn.layer.Layer]
    Connections: [34x2 table]
     InputNames: {'inputImage'}
    OutputNames: {'pixelLabels'}

Display the network.

plot(lgraph)

3 Functions

3-208



Create SegNet With Custom Encoder-Decoder Depth

Create SegNet layers with an encoder/decoder depth of 4.

imageSize = [480 640 3];
numClasses = 5;
encoderDepth = 4;
lgraph = segnetLayers(imageSize,numClasses,encoderDepth)

lgraph = 
  LayerGraph with properties:

         Layers: [59x1 nnet.cnn.layer.Layer]
    Connections: [66x2 table]
     InputNames: {'inputImage'}
    OutputNames: {'pixelLabels'}

Display network.

figure
plot(lgraph)

 segnetLayers

3-209



Input Arguments
imageSize — Network input image size
2-element vector | 3-element vector

Network input image size, specified as a:

• 2-element vector in the format [height, width].
• 3-element vector in the format [height, width, depth]. depth is the number of image channels. Set

depth to 3 for RGB images, 1 for grayscale images, or to the number of channels for multispectral
and hyperspectral images.

numClasses — Number of classes
integer greater than 1

Number of classes in the semantic segmentation, specified as an integer greater than 1.

model — Pretrained network model
'vgg16' | 'vgg19'

Pretrained network model, specified as 'vgg16' or 'vgg19'. These models have an encoder depth
of 5. When you use a 'vgg16' model, you must specify RGB inputs. You can convert grayscale
images to RGB using the im2gray function.

3 Functions

3-210



encoderDepth — Encoder depth
positive integer

Encoder depth, specified as a positive integer.

SegNet is composed of an encoder and corresponding decoder subnetwork. The depth of these
networks determines the number of times the input image is downsampled or upsampled as it is
processed. The encoder network downsamples the input image by a factor of 2D, where D is the value
of encoderDepth. The decoder network upsamples the encoder network output by a factor of 2D.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumConvolutionLayers',1

NumConvolutionLayers — Number of convolutional layer sections
2 (default) | positive integer | vector of positive integers

Number of convolutional layers in each encoder and decoder section, specified as a positive integer
or vector of positive integers.

NumConvolutionLayers Description
scalar The same number of layers is used for all encoder and decoder

sections.
vector The kth element of NumConvolutionLayers is the number of

convolution layers in the kth encoder section and
corresponding decoder section. Typical values are in the range
[1, 3].

NumOutputChannels — Number of output channels
64 (default) | positive integer | vector of positive integers

Number of output channels for each section in the SegNet encoder network, specified as a positive
integer or vector of positive integers. segnetLayers sets the number of output channels in the
decoder to match the corresponding encoder section.

NumOutputChannels Description
scalar The same number of output channels is used for all encoder

and decoder sections.
vector The kth element of NumOutputChannels is the number of

output channels of the kth encoder section and corresponding
decoder section.

FilterSize — Convolutional layer filter size
3 (default) | positive odd integer | 2-element row vector of positive odd integers

Convolutional layer filter size, specified as a positive odd integer or a 2-element row vector of positive
odd integers. Typical values are in the range [3, 7].

 segnetLayers

3-211



FilterSize Description
scalar The filter is square.
2-element row vector The filter has the size [height width].

Output Arguments
lgraph — Layers
LayerGraph object

Layers that represent the SegNet network architecture, returned as a layerGraph object.

Tips
• The sections within the SegNet encoder and decoder subnetworks are made up of convolutional,

batch normalization, and ReLU layers.
• All convolutional layers are configured such that the bias term is fixed to zero.
• Convolution layer weights in the encoder and decoder subnetworks are initialized using the 'MSRA'

weight initialization method. For 'vgg16' or 'vgg19' models, only the decoder subnetwork is
initialized using MSRA.[1]

• Networks produced by segnetLayers support GPU code generation for deep learning once they
are trained with trainNetwork. See “Deep Learning Code Generation” (Deep Learning Toolbox)
for details and examples.

References
[1] He, K., X. Zhang, S. Ren, and J. Sun. "Delving Deep Into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification." Proceedings of the IEEE International Conference
on Computer Vision. 2015, 1026–1034.

[2] Badrinarayanan, V., A. Kendall, and R. Cipolla. "Segnet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation." arXiv. Preprint arXiv: 1511.0051, 2015.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you must first create a SegNet network by using the segnetLayers function.
Then, use the trainNetwork function on the resulting lgraph object to train the network for
segmentation. Once the network is trained and evaluated, you can generate code for the
DAGNetwork object using GPU Coder.

See Also
Objects
pixelClassificationLayer | layerGraph | DAGNetwork

3 Functions

3-212



Functions
fcnLayers | segnetLayers | unetLayers | trainNetwork | semanticseg |
deeplabv3plusLayers | evaluateSemanticSegmentation

Topics
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2017b

 segnetLayers

3-213



unetLayers
Create U-Net layers for semantic segmentation

Syntax
lgraph = unetLayers(imageSize,numClasses)
[lgraph,outputSize] = unetLayers(imageSize,numClasses)
___  = unetLayers(imageSize,numClasses,Name,Value)

Description
lgraph = unetLayers(imageSize,numClasses) returns a U-Net network. unetLayers
includes a pixel classification layer in the network to predict the categorical label for every pixel in an
input image.

Use unetLayers to create the U-Net network architecture. You must train the network using the
Deep Learning Toolbox function trainNetwork.

[lgraph,outputSize] = unetLayers(imageSize,numClasses) also returns the size of the
output size from the U-Net network.

___  = unetLayers(imageSize,numClasses,Name,Value) specifies options using one or more
name-value pair arguments. Enclose each property name in quotes. For example,
unetLayers(imageSize,numClasses,'NumFirstEncoderFilters',64) additionally sets the
number of output channels to 64 for the first encoder stage.

Examples

Create U-Net Network with Custom Encoder-Decoder Depth

Create a U-Net network with an encoder-decoder depth of 3.

imageSize = [480 640 3];
numClasses = 5;
encoderDepth = 3;
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth)

lgraph = 
  LayerGraph with properties:

         Layers: [46x1 nnet.cnn.layer.Layer]
    Connections: [48x2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'Segmentation-Layer'}

Display the network.

plot(lgraph)

3 Functions

3-214



Train U-Net Network for Semantic Segmentation

Load training images and pixel labels into the workspace.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an imageDatastore object to store the training images.

imds = imageDatastore(imageDir);

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs   = [255 0];

Create a pixelLabelDatastore object to store the ground truth pixel labels for the training
images.

pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Create the U-Net network.

 unetLayers

3-215



imageSize = [32 32];
numClasses = 2;
lgraph = unetLayers(imageSize, numClasses)

lgraph = 
  LayerGraph with properties:

         Layers: [58×1 nnet.cnn.layer.Layer]
    Connections: [61×2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'Segmentation-Layer'}

Create a datastore for training the network.

ds = combine(imds,pxds);

Set training options.

options = trainingOptions('sgdm', ...
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',20, ...
    'VerboseFrequency',10);

Train the network.

net = trainNetwork(ds,lgraph,options)

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:04 |       75.57% |       2.4341 |          0.0010 |
|      10 |          10 |       00:00:36 |       96.02% |       0.4517 |          0.0010 |
|      20 |          20 |       00:01:13 |       97.62% |       0.2324 |          0.0010 |
|========================================================================================|

net = 
  DAGNetwork with properties:

         Layers: [58×1 nnet.cnn.layer.Layer]
    Connections: [61×2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'Segmentation-Layer'}

Input Arguments
imageSize — Network input image size
2-element vector | 3-element vector

Network input image size, specified as a:

• 2-element vector in the form [height, width].

3 Functions

3-216



• 3-element vector in the form [height, width, depth]. depth is the number of image channels. Set
depth to 3 for RGB images, to 1 for grayscale images, or to the number of channels for
multispectral and hyperspectral images.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numClasses — Number of classes
integer greater than 1

Number of classes in the semantic segmentation, specified as an integer greater than 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments
Example: 'EncoderDepth',3

EncoderDepth — Encoder depth
4 (default) | positive integer

Encoder depth, specified as a positive integer. U-Net is composed of an encoder subnetwork and a
corresponding decoder subnetwork. The depth of these networks determines the number of times the
input image is downsampled or upsampled during processing. The encoder network downsamples the
input image by a factor of 2D, where D is the value of EncoderDepth. The decoder network
upsamples the encoder network output by a factor of 2D.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumOutputChannels — Number of output channels
64 (default) | positive integer

Note NumOutputChannels is renamed to NumFirstEncoderFilters and will not be supported in
a future release. Use NumFirstEncoderFilters instead.

Number of output channels for the first encoder stage, specified as a positive integer or vector of
positive integers. In each subsequent encoder stage, the number of output channels doubles.
unetLayers sets the number of output channels in each decoder stage to match the number in the
corresponding encoder stage.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFirstEncoderFilters — Number of output channels for first encoder
32 (default) | positive integer

Number of output channels for the first encoder stage, specified as a positive integer or vector of
positive integers. In each subsequent encoder stage, the number of output channels doubles. The
unetLayers function sets the number of output channels in each decoder stage to match the number
in the corresponding encoder stage.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterSize — Convolutional layer filter size
3 (default) | positive odd integer | 2-element row vector of positive odd integers

Convolutional layer filter size, specified as a positive odd integer or a 2-element row vector of positive
odd integers. Typical values are in the range [3, 7].

 unetLayers

3-217



FilterSize Description
scalar The filter is square.
2-element row vector The filter has the size [height width].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ConvolutionPadding — Type of padding
'same' (default) | 'valid'

Type of padding, specified as 'same' or 'valid'. The type of padding specifies the padding style for
the convolution2dLayer in the encoder and the decoder subnetworks. The spatial size of the
output feature map depends on the type of padding. If you specify type of padding as:

• 'same' — Zero padding is applied to the inputs to convolution layers such that the output and
input feature maps are the same size.

• 'valid' — Zero padding is not applied to the inputs to convolution layers. The convolution layer
returns only values of the convolution that are computed without zero padding. The output feature
map is smaller than the input feature map.

Note  To ensure that the height and width of the inputs to max-pooling layers are even, choose the
network input image size to confirm to any one of these criteria:

• If you specify 'ConvolutionPadding' as 'same', then the height and width of the input image
must be a multiple of 2D.

• If you specify 'ConvolutionPadding' as 'valid', then the height and width of the input image

must be chosen such that height − ∑
i = 1

D
2i fh− 1  and width − ∑

i = 1

D
2i fw− 1  are multiples of 2D.

where fh and fw are the height and width of the two-dimensional convolution kernel, respectively. D
is the encoder depth.

Data Types: char | string

Output Arguments
lgraph — Layers
layerGraph object

Layers that represent the U-Net network architecture, returned as a layerGraph object.

outputSize — Network output image size
three-element vector

Network output image size, returned as a three-element vector of the form [height, width, channels].
channels is the number of output channels and it is equal to the number of classes specified at the
input. The height and width of the output image from the network depend on the type of padding
convolution.

• If you specify 'ConvolutionPadding' as 'same', then the height and width of the network
output image are the same as that of the network input image.

3 Functions

3-218



• If you specify 'ConvolutionPadding' as 'valid', then the height and width of the network
output image are less than that of the network input image.

Data Types: double

More About
U-Net Architecture

• The U-Net architecture consists of an encoder subnetwork and decoder subnetwork that are
connected by a bridge section.

• The encoder and decoder subnetworks in the U-Net architecture consists of multiple stages.
EncoderDepth, which specifies the depth of the encoder and decoder subnetworks, sets the
number of stages.

• The stages within the U-Net encoder subnetwork consist of two sets of convolutional and ReLU
layers, followed by a 2-by-2 max pooling layer. The decoder subnetwork consists of a transposed
convolution layer for upsampling, followed by two sets of convolutional and ReLU layers.

• The bridge section consists of two sets of convolution and ReLU layers.
• The bias term of all convolutional layers is initialized to zero.
• Convolution layer weights in the encoder and decoder subnetworks are initialized using the 'He'

weight initialization method [2].

Tips
• Use 'same' padding in convolution layers to maintain the same data size from input to output and

enable the use of a broad set of input image sizes.
• Use patch-based approaches for seamless segmentation of large images. You can extract image

patches by using the randomPatchExtractionDatastore function in Image Processing
Toolbox.

• Use 'valid' padding to prevent border artifacts while you use patch-based approaches for
segmentation.

• You can use the network created using unetLayers function for GPU code generation after
training with trainNetwork. For details and examples, see “Deep Learning Code Generation”
(Deep Learning Toolbox).

Compatibility Considerations
NumOutputChannels argument in unetLayers is renamed to NumFirstEncoderFilters
Not recommended starting in R2019b

unetLayers argument NumOutputChannels is renamed to NumFirstEncoderFilters.
NumOutputChannels will not be supported in a future release. Use NumFirstEncoderFilters
instead. To update your code, replace all instances of NumOutputChannels with
NumFirstEncoderFilters.

 unetLayers

3-219



References
[1] Ronneberger, O., P. Fischer, and T. Brox. "U-Net: Convolutional Networks for Biomedical Image

Segmentation." Medical Image Computing and Computer-Assisted Intervention (MICCAI). Vol.
9351, 2015, pp. 234–241.

[2] He, K., X. Zhang, S. Ren, and J. Sun. "Delving Deep Into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification." Proceedings of the IEEE International Conference
on Computer Vision. 2015, 1026–1034.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

You can use the U-Net network for code generation. First, create the network using the unetLayers
function. Then, use the trainNetwork function to train the network for segmentation. After training
and evaluating the network, you can generate code for the DAGNetwork object by using GPU Coder.

See Also
Objects
pixelClassificationLayer | layerGraph | DAGNetwork

Functions
fcnLayers | segnetLayers | trainNetwork | semanticseg | deeplabv3plusLayers |
evaluateSemanticSegmentation

Topics
“Semantic Segmentation of Multispectral Images Using Deep Learning”
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2018b

3 Functions

3-220



unet3dLayers
Create 3-D U-Net layers for semantic segmentation of volumetric images

Syntax
lgraph = unet3dLayers(inputSize,numClasses)
[lgraph,outputSize] = unet3dLayers(inputSize,numClasses)
[ ___ ] = unet3dLayers(inputSize,numClasses,Name,Value)

Description
lgraph = unet3dLayers(inputSize,numClasses) returns a 3-D U-Net network.
unet3dLayers includes a pixel classification layer in the network to predict the categorical label for
each pixel in an input volumetric image.

Use unet3dLayers to create the network architecture for 3-D U-Net. Train the network using the
Deep Learning Toolbox function trainNetwork.

[lgraph,outputSize] = unet3dLayers(inputSize,numClasses) also returns the size of an
output volumetric image from the 3-D U-Net network.

[ ___ ] = unet3dLayers(inputSize,numClasses,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in previous syntax.

Examples

Create 3-D U-Net Network with Custom Encoder-Decoder Depth

Create a 3-D U-Net network with an encoder-decoder depth of 2. Specify the number of output
channels for the first convolution layer as 16.

imageSize = [128 128 128 3];
numClasses = 5;
encoderDepth = 2;
lgraph = unet3dLayers(imageSize,numClasses,'EncoderDepth',encoderDepth,'NumFirstEncoderFilters',16) 

lgraph = 
  LayerGraph with properties:

         Layers: [40×1 nnet.cnn.layer.Layer]
    Connections: [41×2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'Segmentation-Layer'}

Display the network.

figure('Units','Normalized','Position',[0 0 0.5 0.55]);
plot(lgraph)

 unet3dLayers

3-221



Use the deep learning network analyzer to visualize the 3-D U-Net network.

analyzeNetwork(lgraph);

3 Functions

3-222



The visualization shows the number of output channels for each encoder stage. The first convolution
layers in encoder stages 1 and 2 have 16 and 32 output channels, respectively. The second
convolution layers in encoder stages 1 and 2 have 32 and 64 output channels, respectively.

Input Arguments
inputSize — Network input image size
three-element vector | four-element vector

Network input image size representing a volumetric image, specified as one of these values:

• Three-element vector of the form [height width depth]
• Four-element vector of the form [height width depth channel]. channel denotes the number of

image channels.

Note Network input image size must be chosen such that the dimension of the inputs to the max-
pooling layers must be even numbers.

 unet3dLayers

3-223



Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numClasses — Number of classes
scalar greater than 1

Number of classes to segment, specified as a scalar greater than 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: unet3dLayers(inputSize,numClasses,'EncoderDepth',4)

EncoderDepth — Encoder depth
3 (default) | positive integer

Encoder depth, specified as a positive integer. The 3-D U-Net network is composed of an encoder
subnetwork and a corresponding decoder subnetwork. The depth of the network determines the
number of times the input volumetric image is downsampled or upsampled during processing. The
encoder network downsamples the input volumetric image by a factor of 2D, where D is the value of
EncoderDepth. The decoder network upsamples the encoder network output by a factor of 2D. The
depth of the decoder subnetwork is same as that of the encoder subnetwork.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFirstEncoderFilters — Number of output channels for first convolution layer
32 (default) | positive integer

Number of output channels for the first convolution layer in the first encoder stage, specified as a
positive integer. The number of output channels for the second convolution layer and the convolution
layers in the subsequent encoder stages is set based on this value.

Given stage = {1, 2, …, EncoderDepth}, the number of output channels for the first convolution layer
in each encoder stage is equal to

2stage-1 NumFirstEncoderFilters

The number of output channels for the second convolution layer in each encoder stage is equal to
2stage NumFirstEncoderFilters

The unet3dLayers function sets the number of output channels for convolution layers in the
decoder stages to match the number in the corresponding encoder stage.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterSize — Size of 3-D convolution filter
3 (default) | positive scalar integer | three-element row vector of positive integers

Size of the 3-D convolution filter, specified as a positive scalar integer or a three-element row vector
of positive integers of the form [fh fw fd]. Typical values for filter dimensions are in the range [3, 7].

3 Functions

3-224



If you specify 'FilterSize' as a positive scalar integer of value a, then the convolution kernel is of
uniform size [a a a].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ConvolutionPadding — Type of padding
'same' (default) | 'valid'

Type of padding, specified as 'same' or 'valid'. The type of padding specifies the padding style for
the convolution3dLayer in the encoder and the decoder subnetworks. The spatial size of the
output feature map depends on the type of padding. Specify one of these options:

• 'same' — Zero padding is applied to the inputs to convolution layers such that the output and
input feature maps are the same size.

• 'valid' — Zero padding is not applied to the inputs to convolution layers. The convolution layer
returns only values of the convolution that are computed without zero padding. The output feature
map is smaller than the input feature map.

.

Note To ensure that the height, width, and depth values of the inputs to max-pooling layers are even,
choose the network input image size to confirm to any one of these criteria:

• If you specify 'ConvolutionPadding' as 'same', then the height, width, and depth of the input
volumetric image must be a multiple of 2D.

• If you specify 'ConvolutionPadding' as 'valid', then the height, width, and depth of the

input volumetric image must be chosen such that height − ∑
i = 1

D
2i fh− 1 , width − ∑

i = 1

D
2i fw− 1 ,

and depth − ∑
i = 1

D
2i fd− 1  are multiples of 2D.

where fh, fw and fd are the height, width, and depth of the three-dimensional convolution kernel,
respectively. D is the encoder depth.

Data Types: char | string

Output Arguments
lgraph — Layers
layerGraph object

Layers that represent the 3-D U-Net network architecture, returned as a layerGraph object.

outputSize — Network output image size
four-element vector

Network output image size, returned as a four-element vector of the form [height, width, depth,
channels]. channels is the number of output channels and is equal to the number of classes specified
at the input. The height, width, and depth of the output image from the network depend on the type
of padding convolution.

 unet3dLayers

3-225



• If you specify 'ConvolutionPadding' as 'same', then the height, width, and depth of the
network output image are the same as that of the network input image.

• If you specify 'ConvolutionPadding' as 'valid', then the height, width, and depth of the
network output image are less than that of the network input image.

Data Types: double

More About
3-D U-Net Architecture

• The 3-D U-Net architecture consists of an encoder subnetwork and decoder subnetwork that are
connected by a bridge section.

• The encoder and decoder subnetworks in the 3-D U-Net architecture consist of multiple stages.
EncoderDepth, which specifies the depth of the encoder and decoder subnetworks, sets the
number of stages.

• Each encoder stage in the 3-D U-Net network consists of two sets of convolutional, batch
normalization, and ReLU layers. The ReLU layer is followed by a 2-by-2-by-2 max pooling layer.
Likewise, each decoder stage consists of a transposed convolution layer for upsampling, followed
by two sets of convolutional, batch normalization, and ReLU layers.

• The bridge section consists of two sets of convolution, batch normalization, and ReLU layers.
• The bias term of all convolution layers is initialized to zero.
• Convolution layer weights in the encoder and decoder subnetworks are initialized using the 'He'

weight initialization method.

Tips
• Use 'same' padding in convolution layers to maintain the same data size from input to output and

enable the use of a broad set of input image sizes.
• Use patch-based approaches for seamless segmentation of large images. You can extract image

patches by using the randomPatchExtractionDatastore function in Image Processing
Toolbox.

• Use 'valid' padding in convolution layers to prevent border artifacts while you use patch-based
approaches for segmentation.

References
[1] Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. "3D U-Net: Learning Dense

Volumetric Segmentation from Sparse Annotation." Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science. Vol.
9901, pp. 424–432. Springer, Cham.

See Also
Objects
pixelClassificationLayer | layerGraph | DAGNetwork | dicePixelClassificationLayer

3 Functions

3-226



Functions
fcnLayers | segnetLayers | unetLayers | trainNetwork | semanticseg |
deeplabv3plusLayers | evaluateSemanticSegmentation

Topics
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2019b

 unet3dLayers

3-227



countEachLabel
Count occurrence of pixel or box labels

Syntax
counts = countEachLabel(ds)

Description
counts = countEachLabel(ds) returns a table containing information about the pixel or box
labels and count for the input datastore, ds.

Examples

Count Unique Labels in Datastore

Load a table that contains bounding boxes with labels for vehicles.

load('vehicleTrainingData.mat');

Load a table that contains bounding boxes with labels for stop signs and cars.

load('stopSignsAndCars.mat');

Combine ground truth boxes and labels, excluding the image filenames in the first column.

vehiclesTbl  = vehicleTrainingData(:,2:end);
stopSignsTbl = stopSignsAndCars(:,2:end);

Create a boxLabelDatastore using 2 tables, one with vehicle label data and the other with stop signs
label data.

blds = boxLabelDatastore(vehiclesTbl,stopSignsTbl);
tbl = countEachLabel(blds)

tbl=4×3 table
     Label      Count    ImageCount
    ________    _____    __________

    vehicle      336        295    
    stopSign      42         41    
    carRear       10          9    
    carFront       9          8    

Create a histogram plot using the labels and the respective label counts.

histogram('Categories',tbl.Label,'BinCounts',tbl.Count);

Create another histogram overlaying the respective image counts.

3 Functions

3-228



hold on;
histogram('Categories',tbl.Label,'BinCounts',tbl.ImageCount);

Pass Class Weights to Pixel Classification Layer

Set the location of image and pixel label data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');

Create a pixel label image datastore using the ground truth images in imds and the pixel labeled
images in pxds.

imds = imageDatastore(imDir);
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);

Tabulate pixel label counts in dataset.

tbl = countEachLabel(pxds)

tbl=4×3 table
        Name        PixelCount    ImagePixelCount

 countEachLabel

3-229



    ____________    __________    _______________

    {'sky'     }    3.1485e+05       1.536e+06   
    {'grass'   }    1.5979e+05       1.536e+06   
    {'building'}    1.0312e+06       1.536e+06   
    {'sidewalk'}         25313       9.216e+05   

Balance classes using uniform prior weighting.

prior = 1/numel(classNames);
uniformClassWeights = prior./tbl.PixelCount

uniformClassWeights = 4×1
10-5 ×

    0.0794
    0.1565
    0.0242
    0.9876

Balance classes using inverse frequency weighting.

totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
invFreqClassWeights = 1./frequency

invFreqClassWeights = 4×1

    4.8632
    9.5827
    1.4848
   60.4900

Balance classes using median frequency weighting.

freq = tbl.PixelCount ./ tbl.ImagePixelCount

freq = 4×1

    0.2050
    0.1040
    0.6714
    0.0275

medFreqClassWeights = median(freq) ./ freq

medFreqClassWeights = 4×1

    0.7538
    1.4852
    0.2301
    5.6252

Pass the class weights using median frequency weighting to the pixel classification layer.

3 Functions

3-230



layer = pixelClassificationLayer('Classes',tbl.Name, ...
  'ClassWeights', medFreqClassWeights)

layer = 
  PixelClassificationLayer with properties:

            Name: ''
         Classes: [sky    grass    building    sidewalk]
    ClassWeights: [4x1 double]
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Input Arguments
ds — Datastore with labeled data
PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore
object

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or
boxLabelDatastore object.

Output Arguments
counts — Label information
table

Label information, returned as a table. The labeled data table contain three variables.

For pixelLabelDatastore and pixelLabelImageDatastore inputs, the counts output contains:

Pixel Count Variables Description
Name Pixel label class name
PixelCount Number of pixels in class
ImagePixelCount Total number of pixels in images that had an

instance of the class

For boxLabelDatastore inputs, the counts output table contains:

Box Count Variables Description
Label Box label class name
Count Total number of labels of the class across all

images
ImageCount Total number of images that contain one or more

instances of the class

 countEachLabel

3-231



Tips
The output of countEachLabel can be used to calculate class weights for class balancing. For
example, for labeled pixel data information in tbl:

• Uniform class balancing weights each class such that each contains a uniform prior probability:

numClasses = height(tbl)
prior = 1/numClasses;
classWeights = prior./tbl.PixelCount

• Inverse frequency balancing weights each class such that underrepresented classes are given
higher weight:

totalNumberOfPixels = sum(tbl.PixelCount)
frequency = tbl.PixelCount / totalNumberOfPixels;
classWeights = 1./frequency

• Median frequency balancing weights each class using the median frequency. The weight for each
class is defined as median(imageFreq)/imageFreq(c), where imageFreq(c) represents the number
of pixels of the class divided by the total number of pixels in images that had an instance of the
class (c):

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount
classWeights = median(imageFreq) ./ imageFreq

The calculated class weights can be passed to the pixelClassificationLayer.

See Also
Functions
trainNetwork

Objects
pixelClassificationLayer | pixelLabelImageDatastore | boxLabelDatastore

Introduced in R2017b

3 Functions

3-232



reset
Reset datastore to initial state

Syntax
reset(ds)

Description
reset(ds) resets the label datastore specified by ds to the state where no data has been read from
it. Resetting the datastore enables you to read from it again.

Input Arguments
ds — Datastore with labeled data
PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore
object

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or
boxLabelDatastore object.

See Also
trainNetwork | pixelClassificationLayer | pixelLabelImageDatastore |
boxLabelDatastore

Introduced in R2017b

 reset

3-233



readimage
Read specified pixel label data file

Syntax
C = readimage(pxds,k)
[C,info] = readimage(pxds,k)

Description
C = readimage(pxds,k) returns the kth file in the pixel label datastore specified by pxds.

[C,info] = readimage(pxds,k) also returns information about the extracted data in info,
including metadata.

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

k — File number
positive integer

File number to read from the pixel label datastore, specified as a positive integer.

Output Arguments
C — Output data
categorical matrix

Output data, returned as a categorical matrix.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
Filename Fully resolved path containing the path string, name

of the file, and file extension.
FileSize Total file size, in bytes.

See Also
datastore

3 Functions

3-234



Introduced in R2017b

 readimage

3-235



readall
Read all data in datastore

Syntax
data = readall(ds)

Description
data = readall(ds) returns all the data contained in the label datastore specified by ds.

If all the data in the datastore does not fit in memory, then readall returns an error.

Input Arguments
ds — Datastore with labeled data
PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore
object

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or
boxLabelDatastore object.

Output Arguments
data — Output data
cell array of categorical matrices | M-by-2 cell array | table

Output data, returned as an M-by-2 cell array, cell array of categorical matrices, or a table.

Datastore Output Description
PixelLabelDatastore Table with MiniBatchSize number of rows. For the last batch of

data in the datastore, numObservations must be divisible by
MiniBatchSize or read returns a partial batch containing all
the remaining observations in the datastore.

PixelLabelImageDatastore

boxLabelDatastore N-by-2 cell matrix. N must be less than or equal to
ReadSize(ds).

The first column must be a cell vector that contains bounding
boxes. Each element in the cell vector contains M-by-4 matrices in
the format [x,y,width,height].

The second column must be a cell vector that contains the label
names corresponding to each bounding box. Label names are
represented as an M-by-1 categorical vector.
.

3 Functions

3-236



See Also
trainNetwork | pixelClassificationLayer | pixelLabelImageDatastore |
boxLabelDatastore

Introduced in R2017b

 readall

3-237



partition
Partition a label datastore

Syntax
subds = partition(ds,N,index)

subds = partition(ds,'Files',fileIndex)
subds = partition(ds,'Files',filename)

Description
subds = partition(ds,N,index) partitions a datastore ds into N parts and returns the partition
corresponding to index.

subds = partition(ds,'Files',fileIndex) partitions the PixelLabelDatastore or
pixelLabelImageDatastore by files. The partitioned datastore corresponds to the index in the
Files property of the datastore.

subds = partition(ds,'Files',filename) partitions the PixelLabelDatastore or
pixelLabelImageDatastore by files. The partitioned datastore corresponds to the file specified by
filename.

Examples

Partition a Datastore

Load training data that contains bounding boxes with labels for vehicles.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;
blds = boxLabelDatastore(trainingData(:,2:end));

Use the partition function to partition the box label datastore. The output contains the first 5 rows
of the training data.

subds = partition(blds,59,5);

Read the data. Use the hasdata function to check for data.

while hasdata(subds)
      % Read one row of box labels at a time
      bxLabels = read(subds);
end

3 Functions

3-238



Input Arguments
ds — Datastore with labeled data
PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore
object

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or
boxLabelDatastore object.

N — Number of partitions
positive integer

Number of partitions to divide datastore, specified as a positive integer. To obtain an estimate for a
reasonable number of partitions, use the numpartitions function.

numWorkers = 3;
p = parpool('local',numWorkers);
n = numpartitions(ds,p);

parfor ii=1:n
    subds = partition(ds,n,ii);
    while hasdata(subds)
        data = read(subds);
    end
end

Example: 3
Data Types: double

index — Index
positive integer

Index, specified as an integer. The index points to a partitioned datastore of the N number of
partitioned datastores.
Example: 1
Data Types: double

fileIndex — File index
positive integer

File index of a file stored within the Files property of a pixelLabelDatastore or
pixelLabelImageDatastore, specified as a positive integer.
Example: 1
Data Types: double

filename — file name
character vector

File name, specified as a character vector.
Example: 'file1.csv'
Example: '../dir/data/file1.csv'

 partition

3-239



Example: 'hdfs://myserver:7867/data/file1.txt'
Data Types: char

Output Arguments
subds — Output datastore
datastore object

Output datastore, returned as a datastore object. The output datastore is of the same type as the
input datastore, ds.

See Also
trainNetwork | pixelClassificationLayer | pixelLabelImageDatastore |
boxLabelDatastore

Introduced in R2017b

3 Functions

3-240



numpartitions
Number of partitions for a datastore

Syntax
N = numpartitions(ds)
N = numpartitions(ds,pool)

Description
N = numpartitions(ds) returns the default number of partitions for a label datastore ds.

N = numpartitions(ds,pool) returns the number of partitions needed to parallelize datastore
access over the parallel pool specified by pool. To parallelize datastore access, you must have
Parallel Computing Toolbox installed.

Input Arguments
ds — Datastore with labeled data
PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore
object

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or
boxLabelDatastore object.

pool — Parallel pool
parallel pool object

Parallel pool object.
Example: gcp

See Also
Functions
numpartitions | datastore

Objects
boxLabelDatastore | pixelLabelImageDatastore | pixelLabelDatastore

Introduced in R2017b

 numpartitions

3-241



hasdata
Determine if data is available to read from datastore

Syntax
tf = hasdata(ds)

Description
tf = hasdata(ds) returns logical 1 (true) if there is data available to read from the datastore
specified by ds. Otherwise, it returns logical 0 (false).

Examples

Determine Pixel Data Available to Read

Check if pixel label data can be read from a datastore.

Set the location of the image and pixel label data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');

Create an image and pixel label datastore.

imds = imageDatastore(imDir);
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);

While data is available in the datastore, read the data.

while hasdata(pxds)
    T = read(pxds);
end

Input Arguments
ds — Datastore with labeled data
PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore
object

Datastore with labeled data for training a semantic segmentation network or an object detection
network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or
boxLabelDatastore object.

3 Functions

3-242



Output Arguments
tf — Datastore data status
1 | 0

Datastore data status, returned as a logical 1 (true) if there is data available to read from the
datastore specified by ds. Otherwise, it returns logical 0 (false).

See Also
datastore | pixelLabelDatastore | boxLabelDatastore

Introduced in R2017b

 hasdata

3-243



semanticseg
Semantic image segmentation using deep learning

Syntax
C = semanticseg(I,network)
[C,score,allScores] = semanticseg(I,network)
[ ___ ] = semanticseg(I,network,roi)

pxds = semanticseg(ds,network)

[ ___ ] = semanticseg( ___ ,Name,Value)

Description
C = semanticseg(I,network) returns a semantic segmentation of the input image using deep
learning.

[C,score,allScores] = semanticseg(I,network) also returns the classification scores for
each categorical label in C. The function returns the scores in an array that corresponds to each pixel
or voxel in the input image.

[ ___ ] = semanticseg(I,network,roi) returns a semantic segmentation for a rectangular
subregion of the input image.

pxds = semanticseg(ds,network) returns the semantic segmentation for a collection of images
in ds, a datastore object.

The function supports parallel computing using multiple MATLAB workers. You can enable parallel
computing using the “Computer Vision Toolbox Preferences” dialog.

[ ___ ] = semanticseg( ___ ,Name,Value) returns semantic segmentation with additional
options specified by one or more name-value pair arguments.

Examples

Semantic Image Segmentation

Overlay segmentation results on an image and display the results.

Load a pretrained network.

data = load('triangleSegmentationNetwork');
net = data.net

net = 
  SeriesNetwork with properties:

         Layers: [10x1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}

3 Functions

3-244



    OutputNames: {'classoutput'}

List the network layers.

net.Layers

ans = 
  10x1 Layer array with layers:

     1   'imageinput'        Image Input                  32x32x1 images with 'zerocenter' normalization
     2   'conv_1'            Convolution                  64 3x3x1 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'relu_1'            ReLU                         ReLU
     4   'maxpool'           Max Pooling                  2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   'conv_2'            Convolution                  64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     6   'relu_2'            ReLU                         ReLU
     7   'transposed-conv'   Transposed Convolution       64 4x4x64 transposed convolutions with stride [2  2] and cropping [1  1  1  1]
     8   'conv_3'            Convolution                  2 1x1x64 convolutions with stride [1  1] and padding [0  0  0  0]
     9   'softmax'           Softmax                      softmax
    10   'classoutput'       Pixel Classification Layer   Class weighted cross-entropy loss with classes 'triangle' and 'background'

Read and display the test image.

I = imread('triangleTest.jpg');
figure
imshow(I)

Perform semantic image segmentation.

[C,scores] = semanticseg(I,net,'MiniBatchSize',32);

Overlay segmentation results on the image and display the results.

 semanticseg

3-245



B = labeloverlay(I, C);
figure
imshow(B)

Display the classification scores.

figure
imagesc(scores)
axis square
colorbar

3 Functions

3-246



Create a binary mask with only the triangles.

BW = C == 'triangle';
figure
imshow(BW)

 semanticseg

3-247



Evaluate Semantic Segmentation Test Set

Run semantic segmentation on a test set of images and compare the results against ground truth
data.

Load a pretrained network.

data = load('triangleSegmentationNetwork');
net = data.net;

Load test images using imageDatastore.

dataDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
testImageDir = fullfile(dataDir,'testImages');
imds = imageDatastore(testImageDir)

imds = 
  ImageDatastore with properties:

                       Files: {
                              ' ...\toolbox\vision\visiondata\triangleImages\testImages\image_001.jpg';
                              ' ...\toolbox\vision\visiondata\triangleImages\testImages\image_002.jpg';
                              ' ...\toolbox\vision\visiondata\triangleImages\testImages\image_003.jpg'
                               ... and 97 more
                              }
                     Folders: {
                              'B:\matlab\toolbox\vision\visiondata\triangleImages\testImages'
                              }
    AlternateFileSystemRoots: {}
                    ReadSize: 1
                      Labels: {}
      SupportedOutputFormats: ["png"    "jpg"    "jpeg"    "tif"    "tiff"]

3 Functions

3-248



         DefaultOutputFormat: "png"
                     ReadFcn: @readDatastoreImage

Load ground truth test labels.

testLabelDir = fullfile(dataDir,'testLabels');
classNames = ["triangle" "background"];
pixelLabelID = [255 0];
pxdsTruth = pixelLabelDatastore(testLabelDir,classNames,pixelLabelID);

Run semantic segmentation on all of the test images with a batch size of 4. You can increase the
batch size to increase throughput based on your systems memory resources.

pxdsResults = semanticseg(imds,net,'MiniBatchSize',4,'WriteLocation',tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 100 images.

Compare the results against the ground truth.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth)

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.90624          0.95085       0.61588      0.87529        0.40652  

metrics = 
  semanticSegmentationMetrics with properties:

              ConfusionMatrix: [2x2 table]
    NormalizedConfusionMatrix: [2x2 table]
               DataSetMetrics: [1x5 table]
                 ClassMetrics: [2x3 table]
                 ImageMetrics: [100x5 table]

Define Custom Pixel Classification Layer with Tversky Loss

This example shows how to define and create a custom pixel classification layer that uses Tversky
loss.

This layer can be used to train semantic segmentation networks. To learn more about creating custom
deep learning layers, see “Define Custom Deep Learning Layers” (Deep Learning Toolbox).

 semanticseg

3-249



Tversky Loss

The Tversky loss is based on the Tversky index for measuring overlap between two segmented images
[1 on page 3-0 ]. The Tversky index TIc between one image Y and the corresponding ground truth T
is given by

TIc =
∑m = 1

M YcmTcm
∑m = 1

M YcmTcm + α∑m = 1
M YcmTc‾m + β∑m = 1

M Yc‾mTcm

• c corresponds to the class and c‾ corresponds to not being in class c.
• M is the number of elements along the first two dimensions of Y.
• α and β are weighting factors that control the contribution that false positives and false negatives

for each class make to the loss.

The loss L over the number of classes C is given by

L = ∑
c = 1

C
1− TIc

Classification Layer Template

Copy the classification layer template into a new file in MATLAB®. This template outlines the
structure of a classification layer and includes the functions that define the layer behavior. The rest of
the example shows how to complete the tverskyPixelClassificationLayer.

classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer

   properties
      % Optional properties
   end

   methods

        function loss = forwardLoss(layer, Y, T)
            % Layer forward loss function goes here
        end
        
    end
end

Declare Layer Properties

By default, custom output layers have the following properties:

• Name – Layer name, specified as a character vector or a string scalar. To include this layer in a
layer graph, you must specify a nonempty unique layer name. If you train a series network with
this layer and Name is set to '', then the software automatically assigns a name at training time.

• Description – One-line description of the layer, specified as a character vector or a string scalar.
This description appears when the layer is displayed in a Layer array. If you do not specify a layer
description, then the software displays the layer class name.

• Type – Type of the layer, specified as a character vector or a string scalar. The value of Type
appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the
software displays 'Classification layer' or 'Regression layer'.

3 Functions

3-250



Custom classification layers also have the following property:

• Classes – Classes of the output layer, specified as a categorical vector, string array, cell array of
character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the
classes at training time. If you specify a string array or cell array of character vectors str, then
the software sets the classes of the output layer to categorical(str,str). The default value is
'auto'.

If the layer has no other properties, then you can omit the properties section.

The Tversky loss requires a small constant value to prevent division by zero. Specify the property,
Epsilon, to hold this value. It also requires two variable properties Alpha and Beta that control the
weighting of false positives and false negatives, respectively.

classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer

    properties(Constant)
       % Small constant to prevent division by zero. 
       Epsilon = 1e-8;
    end

    properties
       % Default weighting coefficients for false positives and false negatives 
       Alpha = 0.5;
       Beta = 0.5;  
    end

    ...
end

Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

function layer = tverskyPixelClassificationLayer(name, alpha, beta)
    % layer =  tverskyPixelClassificationLayer(name) creates a Tversky
    % pixel classification layer with the specified name.
           
    % Set layer name          
    layer.Name = name;

    % Set layer properties
    layer.Alpha = alpha;
    layer.Beta = beta;

    % Set layer description
    layer.Description = 'Tversky loss';
end

Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss between the
predictions made by the network and the training targets. The syntax for forwardLoss is loss =
forwardLoss(layer,Y,T), where Y is the output of the previous layer and T represents the
training targets.

 semanticseg

3-251



For semantic segmentation problems, the dimensions of T match the dimension of Y, where Y is a 4-D
array of size H-by-W-by-K-by-N, where K is the number of classes, and N is the mini-batch size.

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T, you
must include a layer that outputs the correct size before the output layer. For example, to ensure that
Y is a 4-D array of prediction scores for K classes, you can include a fully connected layer of size K or
a convolutional layer with K filters followed by a softmax layer before the output layer.

function loss = forwardLoss(layer, Y, T)
    % loss = forwardLoss(layer, Y, T) returns the Tversky loss between
    % the predictions Y and the training targets T.

    Pcnot = 1-Y;
    Gcnot = 1-T;
    TP = sum(sum(Y.*T,1),2);
    FP = sum(sum(Y.*Gcnot,1),2);
    FN = sum(sum(Pcnot.*T,1),2);

    numer = TP + layer.Epsilon;
    denom = TP + layer.Alpha*FP + layer.Beta*FN + layer.Epsilon;
    
    % Compute Tversky index
    lossTIc = 1 - numer./denom;
    lossTI = sum(lossTIc,3);
    
    % Return average Tversky index loss
    N = size(Y,4);
    loss = sum(lossTI)/N;

end

Backward Loss Function

As the forwardLoss function fully supports automatic differentiation, there is no need to create a
function for the backward loss.

For a list of functions that support automatic differentiation, see “List of Functions with dlarray
Support” (Deep Learning Toolbox).

Completed Layer

The completed layer is provided in tverskyPixelClassificationLayer.m.

classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer
    % This layer implements the Tversky loss function for training
    % semantic segmentation networks.
    
    % References
    % Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour.
    % "Tversky loss function for image segmentation using 3D fully
    % convolutional deep networks." International Workshop on Machine
    % Learning in Medical Imaging. Springer, Cham, 2017.
    % ----------
    
    
    properties(Constant)
        % Small constant to prevent division by zero.
        Epsilon = 1e-8;

3 Functions

3-252



    end
    
    properties
        % Default weighting coefficients for False Positives and False
        % Negatives
        Alpha = 0.5;
        Beta = 0.5;
    end

    
    methods
        
        function layer = tverskyPixelClassificationLayer(name, alpha, beta)
            % layer =  tverskyPixelClassificationLayer(name, alpha, beta) creates a Tversky
            % pixel classification layer with the specified name and properties alpha and beta.
            
            % Set layer name.          
            layer.Name = name;
            
            layer.Alpha = alpha;
            layer.Beta = beta;
            
            % Set layer description.
            layer.Description = 'Tversky loss';
        end
        
        
        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the Tversky loss between
            % the predictions Y and the training targets T.   

            Pcnot = 1-Y;
            Gcnot = 1-T;
            TP = sum(sum(Y.*T,1),2);
            FP = sum(sum(Y.*Gcnot,1),2);
            FN = sum(sum(Pcnot.*T,1),2); 
            
            numer = TP + layer.Epsilon;
            denom = TP + layer.Alpha*FP + layer.Beta*FN + layer.Epsilon;
            
            % Compute tversky index
            lossTIc = 1 - numer./denom;
            lossTI = sum(lossTIc,3);
            
            % Return average tversky index loss.
            N = size(Y,4);
            loss = sum(lossTI)/N;
            
        end     
    end
end

GPU Compatibility

The MATLAB functions used in forwardLoss in tverskyPixelClassificationLayer all support
gpuArray inputs, so the layer is GPU compatible.

 semanticseg

3-253



Check Output Layer Validity

Create an instance of the layer.

layer = tverskyPixelClassificationLayer('tversky',0.7,0.3);

Check the validity of the layer by using checkLayer (Deep Learning Toolbox). Specify the valid input
size to be the size of a single observation of typical input to the layer. The layer expects a H-by-W-by-K-
by-N array inputs, where K is the number of classes, and N is the number of observations in the mini-
batch.

numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestOutputLayerWithoutBackward
........
Done nnet.checklayer.TestOutputLayerWithoutBackward
__________

Test Summary:
     8 Passed, 0 Failed, 0 Incomplete, 2 Skipped.
     Time elapsed: 1.3687 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.

Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the tverskyPixelClassificationLayer.

layers = [
    imageInputLayer([32 32 1])
    convolution2dLayer(3,64,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,64,'Padding',1)
    reluLayer
    transposedConv2dLayer(4,64,'Stride',2,'Cropping',1)
    convolution2dLayer(1,2)
    softmaxLayer
    tverskyPixelClassificationLayer('tversky',0.3,0.7)];

Load training data for semantic segmentation using imageDatastore and pixelLabelDatastore.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

imds = imageDatastore(imageDir);

classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);

3 Functions

3-254



Associate the image and pixel label data by using datastore combine.

ds = combine(imds,pxds);

Set the training options and train the network.

options = trainingOptions('adam', ...
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',100, ...
    'LearnRateDropFactor',5e-1, ...
    'LearnRateDropPeriod',20, ...
    'LearnRateSchedule','piecewise', ...
    'MiniBatchSize',50);

net = trainNetwork(ds,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:05 |       50.32% |       1.2933 |          0.0010 |
|      13 |          50 |       00:01:02 |       98.82% |       0.0985 |          0.0010 |
|      25 |         100 |       00:01:50 |       99.32% |       0.0545 |          0.0005 |
|      38 |         150 |       00:02:49 |       99.37% |       0.0472 |          0.0005 |
|      50 |         200 |       00:03:57 |       99.48% |       0.0401 |          0.0003 |
|      63 |         250 |       00:05:05 |       99.48% |       0.0379 |          0.0001 |
|      75 |         300 |       00:06:16 |       99.54% |       0.0348 |          0.0001 |
|      88 |         350 |       00:07:53 |       99.51% |       0.0351 |      6.2500e-05 |
|     100 |         400 |       00:09:16 |       99.56% |       0.0330 |      6.2500e-05 |
|========================================================================================|
Training finished: Max epochs completed.

Evaluate the trained network by segmenting a test image and displaying the segmentation result.

I = imread('triangleTest.jpg');
[C,scores] = semanticseg(I,net);

B = labeloverlay(I,C);
montage({I,B})

 semanticseg

3-255



References

[1] Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. "Tversky loss function for
image segmentation using 3D fully convolutional deep networks." International Workshop on Machine
Learning in Medical Imaging. Springer, Cham, 2017.

Semantic Segmentation Using Dilated Convolutions

Train a semantic segmentation network using dilated convolutions.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see “Getting
Started with Semantic Segmentation Using Deep Learning”.

Semantic segmentation networks like DeepLab [1] make extensive use of dilated convolutions (also
known as atrous convolutions) because they can increase the receptive field of the layer (the area of
the input which the layers can see) without increasing the number of parameters or computations.

Load Training Data

The example uses a simple dataset of 32-by-32 triangle images for illustration purposes. The dataset
includes accompanying pixel label ground truth data. Load the training data using an
imageDatastore and a pixelLabelDatastore.

dataFolder = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageFolderTrain = fullfile(dataFolder,'trainingImages');
labelFolderTrain = fullfile(dataFolder,'trainingLabels');

Create an imageDatastore for the images.

3 Functions

3-256



imdsTrain = imageDatastore(imageFolderTrain);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixelLabelDatastore(labelFolderTrain,classNames,labels)

pxdsTrain = 
  PixelLabelDatastore with properties:

                       Files: {200x1 cell}
                  ClassNames: {2x1 cell}
                    ReadSize: 1
                     ReadFcn: @readDatastoreImage
    AlternateFileSystemRoots: {}

Create Semantic Segmentation Network

This example uses a simple semantic segmentation network based on dilated convolutions.

Create a data source for training data and get the pixel counts for each label.

ds = combine(imdsTrain,pxdsTrain);
tbl = countEachLabel(pxdsTrain)

tbl=2×3 table
         Name         PixelCount    ImagePixelCount
    ______________    __________    _______________

    {'triangle'  }         10326       2.048e+05   
    {'background'}    1.9447e+05       2.048e+05   

The majority of pixel labels are for background. This class imbalance biases the learning process in
favor of the dominant class. To fix this, use class weighting to balance the classes. You can use several
methods to compute class weights. One common method is inverse frequency weighting where the
class weights are the inverse of the class frequencies. This method increases the weight given to
under represented classes. Calculate the class weights using inverse frequency weighting.

numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;

Create a network for pixel classification by using an image input layer with an input size
corresponding to the size of the input images. Next, specify three blocks of convolution, batch
normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3 filters with increasing
dilation factors and pad the inputs so they are the same size as the outputs by setting the 'Padding'
option to 'same'. To classify the pixels, include a convolutional layer with K 1-by-1 convolutions,
where K is the number of classes, followed by a softmax layer and a pixelClassificationLayer
with the inverse class weights.

inputSize = [32 32 1];
filterSize = 3;
numFilters = 32;
numClasses = numel(classNames);

 semanticseg

3-257



layers = [
    imageInputLayer(inputSize)
    
    convolution2dLayer(filterSize,numFilters,'DilationFactor',1,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(filterSize,numFilters,'DilationFactor',2,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(filterSize,numFilters,'DilationFactor',4,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(1,numClasses)
    softmaxLayer
    pixelClassificationLayer('Classes',classNames,'ClassWeights',classWeights)];

Train Network

Specify the training options.

options = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 64, ... 
    'InitialLearnRate', 1e-3);

Train the network using trainNetwork.

net = trainNetwork(ds,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:02 |       91.62% |       1.6825 |          0.0010 |
|      17 |          50 |       00:00:35 |       88.56% |       0.2393 |          0.0010 |
|      34 |         100 |       00:01:08 |       92.08% |       0.1672 |          0.0010 |
|      50 |         150 |       00:01:48 |       93.17% |       0.1472 |          0.0010 |
|      67 |         200 |       00:02:27 |       94.15% |       0.1313 |          0.0010 |
|      84 |         250 |       00:03:06 |       94.47% |       0.1167 |          0.0010 |
|     100 |         300 |       00:03:44 |       95.04% |       0.1100 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.

Test Network

Load the test data. Create an imageDatastore for the images. Create a pixelLabelDatastore for
the ground truth pixel labels.

imageFolderTest = fullfile(dataFolder,'testImages');
imdsTest = imageDatastore(imageFolderTest);
labelFolderTest = fullfile(dataFolder,'testLabels');
pxdsTest = pixelLabelDatastore(labelFolderTest,classNames,labels);

Make predictions using the test data and trained network.

3 Functions

3-258



pxdsPred = semanticseg(imdsTest,net,'MiniBatchSize',32,'WriteLocation',tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 100 images.

Evaluate the prediction accuracy using evaluateSemanticSegmentation.

metrics = evaluateSemanticSegmentation(pxdsPred,pxdsTest);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.95237          0.97352       0.72081      0.92889        0.46416  

For more information on evaluating semantic segmentation networks, see
evaluateSemanticSegmentation.

Segment New Image

Read and display the test image triangleTest.jpg.

imgTest = imread('triangleTest.jpg');
figure
imshow(imgTest)

Segment the test image using semanticseg and display the results using labeloverlay.

 semanticseg

3-259



C = semanticseg(imgTest,net);
B = labeloverlay(imgTest,C);
figure
imshow(B)

Input Arguments
I — Input image
numeric array

Input image, specified as one of the following.

Image Type Data Format
Single 2-D grayscale image 2-D matrix of size H-by-W
Single 2-D color image or 2-D
multispectral image

3-D array of size H-by-W-by-C. The number of color channels C is 3
for color images.

Series of P 2-D images 4-D array of size H-by-W-by-C-by-P. The number of color channels
C is 1 for grayscale images and 3 for color images.

Single 3-D grayscale image with
depth D

3-D array of size H-by-W-by-D

Single 3-D color image or 3-D
multispectral image

4-D array of size H-by-W-by-D-by-C. The number of color channels
C is 3 for color images.

Series of P 3-D images 5-D array of size H-by-W-by-D-by-C-by-P

The input image can also be a gpuArray containing one of the preceding image types (requires
Parallel Computing Toolbox).
Data Types: uint8 | uint16 | int16 | double | single | logical

3 Functions

3-260



network — Network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Network, specified as a SeriesNetwork, DAGNetwork, or dlnetwork object.

roi — Region of interest
4-element numeric vector | 6-element vector

Region of interest, specified as one of the following.

Image Type ROI Format
2-D image 4-element vector of the form [x,y,width,height]
3-D image 6-element vector of the form [x,y,z,width,height,depth]

The vector defines a rectangular or cuboidal region of interest fully contained in the input image.
Image pixels outside the region of interest are assigned the <undefined> categorical label. If the
input image consists of a series of images, then semanticseg applies the same roi to all images in
the series.

ds — Collection of images
datastore object

Collection of images, specified as a datastore. The read function of the datastore must return a
numeric array, cell array, or table. For cell arrays or tables with multiple columns, the function
processes only the first column.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExecutionEnvironment','gpu'

OutputType — Returned segmentation type
'categorical' (default) | 'double' | 'uint8'

Returned segmentation type, specified as 'categorical', 'double', or 'uint8'. When you
specify 'double' or 'uint8', the function returns the segmentation results as a label array
containing label IDs. The IDs are integer values that correspond to the class names defined in the
classification layer used in the input network.

You cannot use the OutputType property with an ImageDatastore object input.

MiniBatchSize — Group of images
128 (default) | integer

Group of images, specified as an integer. Images are grouped and processed together as a batch.
Batches are used for processing a large collection of images and they improve computational
efficiency. Increasing the 'MiniBatchSize' value increases the efficiency, but it also takes up more
memory.

 semanticseg

3-261



ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource for processing images with a network, specified as 'auto', 'gpu', or 'cpu'.

ExecutionEnvironment Description
'auto' Use a GPU if available. Otherwise, use the CPU. The use of

GPU requires Parallel Computing Toolbox and a CUDA
enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

'gpu' Use the GPU. If a suitable GPU is not available, the function
returns an error message.

'cpu' Use the CPU.

Acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as 'auto', 'mex', or 'none'.

Acceleration Description
'auto' Automatically apply a number of optimizations suitable for

the input network and hardware resource.
'mex' Compile and execute a MEX function. This option is available

when using a GPU only. You must also have a C/C++ compiler
installed. For setup instructions, see “MEX Setup” (GPU
Coder).

'none' Disable all acceleration.

The default option is 'auto'. If you use the 'auto' option, then MATLAB does not ever generate a
MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available when you are using a GPU. Using a GPU requires Parallel
Computing Toolbox and a CUDA enabled NVIDIA GPU. For information about the supported compute
capabilities, see “GPU Support by Release” (Parallel Computing Toolbox). If Parallel Computing
Toolbox or a suitable GPU is not available, then the function returns an error.

'mex' acceleration does not support all layers. For a list of supported layers, see “Supported Layers”
(GPU Coder).

Classes — Classes into which pixels or voxels are classified
'auto' (default) | cell array of character vectors | string vector | categorical vector

3 Functions

3-262



Classes into which pixels or voxels are classified, specified as 'auto', a cell array of character
vectors, a string vector, or a categorical vector. If the value is a categorical vector Y, then the
elements of the vector are sorted and ordered according to categories(Y).

If the network is a dlnetwork object, then the number of classes specified by 'Classes' must match
the number of channels in the output of the network predictions. By default, when 'Classes' has the
value 'auto', the classes are numbered from 1 through C, where C is the number of channels in the
output layer of the network.

If the network is a SeriesNetwork or DAGNetwork object, then the number of classes specified by
'Classes' must match the number of classes in the classification output layer. By default, when
'Classes' has the value 'auto', the classes are automatically set using the classification output
layer.

WriteLocation — Folder location
pwd (current working folder) (default) | string scalar | character vector

Folder location, specified as pwd (your current working folder), a string scalar, or a character vector.
The specified folder must exist and have write permissions.

This property applies only when using an ImageDatastore object input.

NamePrefix — Prefix applied to output file names
'pixelLabel' (default) | string scalar | character vector

Prefix applied to output file names, specified as a string scalar or character vector. The image files
are named as follows:

• prefix_N.png, where N corresponds to the index of the input image file, imds.Files(N).

This property applies only when using an ImageDatastore object input.

Verbose — Display progress information
'true' (default) | 'false'

Display progress information, specified as 'true' or 'false'.

This property applies only when using an ImageDatastore object input.

Output Arguments
C — Categorical labels
categorical array

Categorical labels, returned as a categorical array. The categorical array relates a label to each pixel
or voxel in the input image. The images returned by readall(datastore) have a one-to-one
correspondence with the categorical matrices returned by readall(pixelLabelDatastore). The
elements of the label array correspond to the pixel or voxel elements of the input image. If you select
an ROI, then the labels are limited to the area within the ROI. Image pixels and voxels outside the
region of interest are assigned the <undefined> categorical label.

 semanticseg

3-263



Image Type Categorical Label Format
Single 2-D image 2-D matrix of size H-by-W. Element C(i,j) is the categorical label

assigned to the pixel I(i,j).
Series of P 2-D images 3-D array of size H-by-W-by-P. Element C(i,j,p) is the categorical

label assigned to the pixel I(i,j,p).
Single 3-D image 3-D array of size H-by-W-by-D. Element C(i,j,k) is the categorical

label assigned to the voxel I(i,j,k).
Series of P 3-D images 4-D array of size H-by-W-by-D-by-P. Element C(i,j,k,p) is the

categorical label assigned to the voxel I(i,j,k,p).

score — Confidence scores
categorical array

Confidence scores for each categorical label in C, returned as an array of values between 0 and 1.
The scores represents the confidence in the predicted labels C. Higher score values indicate a higher
confidence in the predicted label.

Image Type Score Format
Single 2-D image 2-D matrix of size H-by-W. Element score(i,j) is the classification

score of the pixel I(i,j).
Series of P 2-D images 3-D array of size H-by-W-by-P. Element score(i,j,p) is the

classification score of the pixel I(i,j,p).
Single 3-D image 3-D array of size H-by-W-by-D. Element score(i,j,k) is the

classification score of the voxel I(i,j,k).
Series of P 3-D images 4-D array of size H-by-W-by-D-by-P. Element score(i,j,k,p) is the

classification score of the voxel I(i,j,k,p).

allScores — Scores for all label categories
numeric array

Scores for all label categories that the input network can classify, returned as a numeric array. The
format of the array is described in the following table. L represents the total number of label
categories.

Image Type All Scores Format
Single 2-D image 3-D array of size H-by-W-by-L. Element allScores(i,j,q) is the

score of the qth label at the pixel I(i,j).
Series of P 2-D images 4-D array of size H-by-W-by-L-by-P. Element allScores(i,j,q,p) is

the score of the qth label at the pixel I(i,j,p).
Single 3-D image 4-D array of size H-by-W-by-D-by-L. Element allScores(i,j,k,q) is

the score of the qth label at the voxel I(i,j,k).
Series of P 3-D images 5-D array of size H-by-W-by-D-by-L-by-P. Element

allScores(i,j,k,q,p) is the score of the qth label at the voxel
I(i,j,k,p).

pxds — Semantic segmentation results
PixelLabelDatastore object

3 Functions

3-264



Semantic segmentation results, returned as a pixelLabelDatastore object. The object contains
the semantic segmentation results for all the images contained in the ds input object. The result for
each image is saved as separate uint8 label matrices of PNG images. You can use read(pxds) to
return the categorical labels assigned to the images in ds.

The images in the output of readall(ds) have a one-to-one correspondence with the categorical
matrices in the output of readall(pxds).

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
Functions
trainNetwork | labeloverlay | evaluateSemanticSegmentation

Apps
Image Labeler | Video Labeler

Objects
ImageDatastore | pixelLabelDatastore | dlnetwork

Topics
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Datastores for Deep Learning” (Deep Learning Toolbox)

External Websites
What is Semantic Segmentation?

Introduced in R2017b

 semanticseg

3-265

https://www.mathworks.com/solutions/deep-learning/semantic-segmentation.html?s_tid=srchtitle


detectKAZEFeatures
Detect KAZE features and return KAZEPoints object

Syntax
points = detectKAZEFeatures(I)
points = detectKAZEFeatures(I,Name,Value)

Description
points = detectKAZEFeatures(I) returns a KAZEPoints object containing information about
KAZE keypoints detected in a 2-D grayscale image. The function uses nonlinear diffusion to construct
a scale space for the given image. It then detects multiscale corner features from the scale space.

points = detectKAZEFeatures(I,Name,Value) returns a KAZEPoints object with additional
options specified by one or more Name,Value pair arguments

Examples

Detect KAZE Feature Points in Image

Detect and plot KAZE feature points.

Read an image.

I = imread('cameraman.tif');

Detect KAZE points in the image.

points = detectKAZEFeatures(I);

Plot the 20 strongest points.

imshow(I)
hold on
plot(selectStrongest(points,20))
hold off

3 Functions

3-266



Detect KAZE Features and Display Specific Points

Detect KAZE features and display set the specific KAZE points you want to plot.

Read an image.

I = imread('cameraman.tif');

Detect KAZE features in the image.

points = detectKAZEFeatures(I);

Select and display the last 5 points detected.

imshow(I);
hold on;
plot(points(end-4:end));
hold off;

 detectKAZEFeatures

3-267



Input Arguments
I — Input image
2-D grayscale image

Input image, specified as a 2-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Diffusion','region'

Diffusion — Method to compute conductivity
'region' (default) | 'sharpedge' | 'edge'

Method to compute conductivity, specified as 'region', 'sharpedge', or 'edge'. The computation
is based on first-order derivatives of a layer in scale space.

Method Selected Features
'region' Large regions. Uses the Perona and Malik conductivity coefficient,

1/(1 + dL^2/k^2).

3 Functions

3-268



Method Selected Features
'sharpedge' High-contrast edges. Uses the Perona and Malik conductivity

coefficient, exp(-|dL|^2/k^2).
'edge' Smoothing on both sides of an edge rather than across it. Uses the

Weickert conductivity coefficient.

Threshold — Local extrema
0.0001 (default) | scalar

Local extrema, specified as a scalar greater than or equal to 0. Increase this value to exclude less
significant local extrema.

NumOctaves — Multiscale detection factor
3 (default) | positive integer

Multiscale detection factor, specified as a positive integer. Increase this value to detect larger
features. To disable multiscale detection, set NumOctaves to 1. When you set the value to 1, the
function detects the scale of the input image. Recommended values are between 1 and 4.

NumScaleLevels — Scale levels
4 (default) | integer

Scale levels, specified as an integer in the range [3,10]. Increase this value to achieve smoother scale
changes. Increasing this value also provides additional intermediate scales between octaves.

ROI — Rectangular region size
[1 1 size(I,2) size(I,1)] (default) | 4-element vector

Rectangular region size for corner detection, specified as a 4-element vector in the format [y x width
height]. The [y x ] values are measured from the upper left corner of the rectangle.

Output Arguments
points — KAZE points object
KAZEpoints object

KAZE points, returned as a KAZEPoints object. The object contains information about the feature
points detected in the 2-D grayscale input image.

References
[1] Alcantarilla, P.F., A. Bartoli, and A.J. Davison. "KAZE Features." ECCV 2012, Part VI, LNCS 7577.

2012, p. 214

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 detectKAZEFeatures

3-269



• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectBRISKFeatures |
detectFASTFeatures | detectMSERFeatures | detectORBFeatures | extractFeatures |
extractHOGFeatures | detectHarrisFeatures | detectFASTFeatures | matchFeatures

Objects
MSERRegions | SURFPoints | BRISKPoints | cornerPoints | binaryFeatures

Introduced in R2017b

3 Functions

3-270



selectUniform
Select uniformly distributed subset of feature points

Syntax
pointsOut = selectUniform(points,N,imageSize)

Description
pointsOut = selectUniform(points,N,imageSize) returns N uniformly distributed points
from pointsIn points of an image of size imageSize.

Examples

Select Uniformly Distributed Subset of KAZE Features

Detect and plot a subset of uniformly distributed KAZE features from an image.

Read an image.

im = imread('yellowstone_left.png');

Detect and display KAZE features.

points1 = detectKAZEFeatures(im2gray(im))

points1 = 
  6712x1 KAZEPoints array with properties:

       Location: [6712x2 single]
         Metric: [6712x1 single]
          Count: 6712
          Scale: [6712x1 single]
    Orientation: [6712x1 single]

subplot(1,2,1)
imshow(im)
hold on
plot(points1)
hold off
title('Original Points')

Select a uniformly distributed subset of points.

numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im))

points2 = 
  100x1 KAZEPoints array with properties:

       Location: [100x2 single]

 selectUniform

3-271



         Metric: [100x1 single]
          Count: 100
          Scale: [100x1 single]
    Orientation: [100x1 single]

subplot(1,2,2)
imshow(im)
hold on
plot(points2)
hold off
title('Uniformly Distributed Points')

Select Uniformly Distributed Subset of Features from Image

Load an image.

im = imread('yellowstone_left.png');

Detect many corners by reducing the quality threshold.

points1 = detectHarrisFeatures(im2gray(im), 'MinQuality', 0.05);

Plot image with detected corners.

3 Functions

3-272



subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');

Select a uniformly distributed subset of points.

numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));

Plot images showing original and subset of points.

subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');

Select A Uniformly Distributed Subset of Features From an Image

Load an image into the workspace.

im = imread('yellowstone_left.png');

 selectUniform

3-273



Detect many corners by reducing the quality threshold.

points1 = detectBRISKFeatures(im2gray(im), 'MinQuality', 0.05);

Plot image with detected corners.

subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');

Select a uniformly distributed subset of points.

numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));

Plot images showing original and subset of points.

subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');

3 Functions

3-274



Select Uniformly Distributed Subset Features from an Image

Load an image.

im = imread('yellowstone_left.png');

Detect and display SURF features.

points1 = detectSURFFeatures(im2gray(im));
subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');

Select a uniformly distributed subset of points.

numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));

Plot images showing original and subset of points.

subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');

 selectUniform

3-275



Input Arguments
points — Points object
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object |
ORBPoints object | SIFTPoints

Points object, specified as a points object. The object contains information about the feature points
detected in the input image. To obtain points, use the appropriate detect function.

N — Number of points
integer

Number of uniformly distributed points to select, specified as an integer.

imageSize — Size of image
2-element vector | 3-element vector

Size of image, specified as a 2-element vector for grayscale images or a 3-element vector for
truecolor images.

See Also
Functions
detectKAZEFeatures | detectBRISKFeatures | detectFASTFeatures |
detectMinEigenFeatures | detectHarrisFeatures | detectORBFeatures |
detectSIFTFeatures | extractFeatures | matchFeatures | detectSURFFeatures

Objects
MSERRegions | SURFPoints | BRISKPoints | KAZEPoints | cornerPoints | ORBPoints |
SIFTPoints

Introduced in R2012a

3 Functions

3-276



size
Return size of points object

Syntax
size(points)
sz = size(points)
sz = size(points,1)
sz = size(points,dimension)
[M,N] = size(points)

Description
size(points) returns the size of the points object.

sz = size(points) returns the vector [length(points), 1].

sz = size(points,1) returns the length of points.

sz = size(points,dimension) returns the length of the dimension.

[M,N] = size(points) returns length(points) for M and 1 for N

Examples

Find Size of Points Object

Read an image.

I = imread('cameraman.tif');

Detect corner features.

featurePoints = detectHarrisFeatures(I);

Find the size of the feature points object.

sz = size(featurePoints)

sz = 1×2

   184     1

Plot feature image with detected features.

imshow(I); hold on;
plot(featurePoints);

 size

3-277



Input Arguments
points — Points object
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object |
MSERRegions object | ORBPoints object | SIFTPoints object

Points object, specified as a points object. The object contains information about the feature points
detected in the input image. To obtain points, use the appropriate detect function.

dimension — Dimension
integer

Dimension, returned as an integer. For dim >= 2, the object returns 1.

See Also
binaryFeatures | MSERRegions | SURFPoints | BRISKPoints | KAZEPoints | cornerPoints |
ORBPoints | SIFTPoints

Introduced in R2012a

3 Functions

3-278



selectStrongest
Select points with strongest metrics

Syntax
strongestPoints = selectStrongest(points,N)

Description
strongestPoints = selectStrongest(points,N) returns N number of points that have the
strongest metrics.

Examples

Select Strongest KAZE Features

Create a KAZEPoints object holding 50 points.

points = KAZEPoints(ones(50,2),'Metric',1:50);

Keep the two strongest features.

points = selectStrongest(points,2)   

points = 
  2x1 KAZEPoints array with properties:

       Location: [2x2 single]
         Metric: [2x1 single]
          Count: 2
          Scale: [2x1 single]
    Orientation: [2x1 single]

Input Arguments
points — Points
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object |
ORBPoints object | SIFTPoints

Points, specified as a points object. The object contains information about the feature points detected
in the 2-D grayscale input image.

N — Number of points
integer

Number of strongest points to select, specified as an integer.

 selectStrongest

3-279



See Also
binaryFeatures | MSERRegions | SURFPoints | BRISKPoints | KAZEPoints | cornerPoints |
ORBPoints | SIFTPoints

Introduced in R2017b

3 Functions

3-280



plot
Plot points

Syntax
plot(points)
plot(points,ax)
plot(points,ax,Name=Value)

Description
plot(points) plots points in the current axis.

plot(points,ax) plots points in the specified axis.

plot(points,ax,Name=Value) specifies options using one or more name-value arguments in
addition to any combination of arguments from previous syntaxes. For example,
plot(ShowOrientation=true) renders the orientation in the display plot.

Examples

Plot KAZE Points

Detect, extract, and plot KAZE points, including their orientation.

Read an image.

I = imread('cameraman.tif');

Detect KAZE points from the image.

points = detectKAZEFeatures(I);

Extract KAZE features from the detected points.

[features,valid_points] = extractFeatures(I,points);

Plot the 10 strongest points and show their orientations.

imshow(I)
hold on
strongestPoints = selectStrongest(valid_points,10);
plot(strongestPoints,'showOrientation',true)
hold off

 plot

3-281



Plot SURF features

Extract SURF features from an image.

I = imread('cameraman.tif');
points = detectSURFFeatures(I);
[features, valid_points] = extractFeatures(I,points);

Visualize 10 strongest SURF features, including their scales and orientation which were determined
during the descriptor extraction process.

imshow(I); 
hold on;
strongestPoints = valid_points.selectStrongest(10);
strongestPoints.plot('showOrientation',true);

3 Functions

3-282



Plot Corner Features

Read an image.

 I = imread('cameraman.tif');

Detect corner features.

 featurePoints = detectHarrisFeatures(I);

Plot feature image with detected features.

 imshow(I); hold on;
 plot(featurePoints);

 plot

3-283



Input Arguments
points — Points
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object |
MSERRegions object | ORBPoints object | SIFTPoints object

Points, specified as a points object. The object contains information about the feature points detected
in the 2-D grayscale input image.

ax — Axes handle
handle

Handle to use for display. You can set the handle using gca.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plot(ShowOrientation=true) renders the orientation in the display plot.

ShowScale — Display scaled circle
true (default) | false

Display scaled circle, specified as true or false. When you set this value to true, the object draws
a circle proportional to the scale of the detected feature, with the feature point located at its center.
When you set this value to false, the object turns the display of the circle off.

3 Functions

3-284



The algorithm represents the scale of the feature with a circle of 6*Scale radius. The algorithm uses
this equivalent size of circular area to compute the orientation of the feature.

ShowOrientation — Display orientation line
true (default) | false

Display feature point orientation, specified as true or false. When you set this value to true, the
object draws a line corresponding to the point's orientation. The object draws the line from the
feature point location to the edge of the circle, indicating the scale.

See Also
binaryFeatures | KAZEPoints | MSERRegions | SURFPoints | BRISKPoints | KAZEPoints |
cornerPoints | ORBPoints | SIFTPoints

Introduced in R2011b

 plot

3-285



plot
Plot parametric model

Syntax
plot(model)
plot(model,Name=Value)
H = plot( ___ )

Description
plot(model) plots a model within the axis limits of the current figure. H is the handle to surf, a 3-D
shaded surface plot or patch, a filled polygon region.

plot(model,Name=Value) specifies options using one or more name-value arguments in addition
to argument from previous syntax. For example, plot(model,Color="r") sets the color of the plot
to red.

H = plot( ___ ) specifies options using one or more name-value arguments. For example,
plot(model,Color="r") sets the color of the plot to red.

Examples

Detect Cylinder in Point Cloud

Load a MAT file containing a point cloud into the workspace.

load("object3d.mat");

Display the point cloud.

figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")
zlabel("Z(m)")
title("Detect a Cylinder in a Point Cloud")

Set the maximum point-to-cylinder distance for cylinder fitting to 5mm.

maxDistance = 0.005;

Specify a region of interest (ROI) to constrain the fitting function.

roi = [0.4 0.6; -inf 0.2; 0.1 inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Set the orientation constraint for the fitting function

referenceVector = [0 0 1];

3 Functions

3-286



Detect the cylinder in the specified ROI of the point cloud and extract it.

model = pcfitcylinder(ptCloud,maxDistance,referenceVector, ...
        SampleIndices=sampleIndices);

Plot the model of the detected cylinder.

hold on
plot(model)

Detect Plane in Point Cloud

Load a MAT file containing a point cloud.

load("object3d.mat");

Display the point cloud into the workspace.

figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")
zlabel("Z(m)")
title("Detect a Plane in a Point Cloud")

Set the maximum point-to-plane distance for plane fitting to 2cm.

 plot

3-287



maxDistance = 0.02;

Specify the normal vector plane for the fitted plane.

referenceVector = [0 0 1];

Set the maximum angular distance for the fitted plane to 5 degrees.

maxAngularDistance = 5;

Detect the plane, the table, in the point cloud and extract it.

model = pcfitplane(ptCloud,maxDistance,referenceVector,maxAngularDistance);

Plot the plane.

hold on
plot(model)

Detect Sphere in Point Cloud

Load point cloud.

load("object3d.mat");

Display point cloud.

3 Functions

3-288



figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")
zlabel("Z(m)")
title("Detect a sphere in a point cloud")

Set the maximum point-to-sphere distance (1cm), for sphere fitting.

maxDistance = 0.01;

Set the region of interest to constrain the search.

roi = [-inf,0.5;0.2,0.4;0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Detect the globe in the point cloud and extract it.

model = pcfitsphere(ptCloud,maxDistance,SampleIndices=sampleIndices);

Plot the sphere.

hold on
plot(model)

 plot

3-289



Input Arguments
model — Parametric model
cylinder model object | plane model object | sphere model object

Parametric model returned by the cylinderModel, planeModel, or the sphereModel object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: plot(model,Color="r") sets the color of the plot to red.

Parent — Output axes
gca (default) | axes

Output axes, specified as the current axes for displaying the visualization.

Color — Color of the plane
'red' (default) | 1-by-3 RGB vector | short name of color | long name of color

Color of the plane, specified as a 1-by-3 RGB vector or a short or long color name.

3 Functions

3-290



Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Output Arguments
H — Handle to plot
handle

Handle to a plot, returned as a surf 3-D shaded surface plot or as a patch filled polygon region.

See Also
Objects
cylinderModel | sphereModel | sphereModel

Functions
pcfitcylinder | pcfitplane | pcfitsphere

Introduced in R2015b

 plot

3-291



length
Number of stored points

Syntax
length(points)

Description
length(points) returns the number of stored points in the points object.

Examples

Check Number of Stored Points

Read an image.

I = imread('cameraman.tif');

Detect KAZE points from the image.

points = detectKAZEFeatures(I);

Find number of stored points.

numPoints = length(points)

numPoints = 631

Extract KAZE features from the detected points.

[features,validPoints] = extractFeatures(I,points);

Plot the ten strongest valid extracted points and show their orientations.

imshow(I)
hold on
strongestPoints = selectStrongest(validPoints,10);
plot(strongestPoints,'showOrientation',true)
hold off

3 Functions

3-292



Input Arguments
points — Points object
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object |
MSERRegions object | ORBPoints object | SIFTPoints object

Points object, specified as a points object. The object contains information about the feature points
detected in the input image. To obtain points, use the appropriate detect function.

See Also
detectKAZEFeatures | detectBRISKFeatures | detectMSERFeatures | detectFASTFeatures
| detectMinEigenFeatures | detectORBFeatures | detectSIFTFeatures |
detectHarrisFeatures | extractFeatures | matchFeatures | detectSURFFeatures |
MSERRegions | SURFPoints | BRISKPoints | KAZEPoints | cornerPoints | ORBPoints |
SIFTPoints

Introduced in R2017b

 length

3-293



isempty
Determine if points object is empty

Syntax
isempty(points)

Description
isempty(points) returns a true value, if the points object is empty.

Examples

Check if Points Object is Empty

Read an image.

I = imread('cameraman.tif');

Detect KAZE points from the image.

points = detectKAZEFeatures(I);

Check for points.

if isempty(points)
    return;
end

Extract KAZE features from the detected points.

[features,validPoints] = extractFeatures(I,points);

Plot the ten strongest valid extracted points and show their orientations.

imshow(I)
hold on
strongestPoints = selectStrongest(validPoints,10);
plot(strongestPoints,'showOrientation',true)
hold off

3 Functions

3-294



Input Arguments
points — Points object
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object |
MSERRegions object | ORBPoints object | SIFTPoints object

Points object, specified as a points object. The object contains information about the feature points
detected in the input image. To obtain points, use the appropriate detect function.

See Also
detectKAZEFeatures | detectBRISKFeatures | detectMSERFeatures | detectFASTFeatures
| detectMinEigenFeatures | detectORBFeatures | detectSIFTFeatures |
detectHarrisFeatures | extractFeatures | matchFeatures | detectSURFFeatures |
MSERRegions | SURFPoints | BRISKPoints | KAZEPoints | cornerPoints | ORBPoints |
SIFTPoints

Introduced in R2017b

 isempty

3-295



gather
Retrieve cornerPoints from the GPU

Syntax
pointsCPU = gather(pointsGPU)

Description
pointsCPU = gather(pointsGPU) returns a cornerPoints object with data gathered from the
GPU for the Location and Metric properties.

Examples

Find and Plot Corner Points in Image

Read an image.

I = imread('cameraman.tif')

I = 256×256 uint8 matrix

   156   159   158   155   158   156   159   158   157   158   158   159   160   160   160   158   163   161   162   160   164   160   165   163   161   163   161   164   165   162   161   165   165   164   166   165   164   166   167   165   165   164   170   166   167   167   170   168   169   166
   160   154   157   158   157   159   158   158   158   160   155   156   159   158   160   157   165   159   161   158   162   162   161   163   159   162   164   163   164   165   169   164   163   165   161   163   165   168   167   165   164   163   169   169   169   170   170   169   170   170
   156   159   158   155   158   156   159   158   157   158   158   159   160   160   160   158   163   161   162   160   164   160   165   163   161   163   161   164   165   162   161   165   165   164   166   165   164   166   167   165   165   164   170   166   167   167   170   168   169   166
   160   154   157   158   157   159   158   158   158   160   155   156   159   158   160   157   165   159   161   158   162   162   161   163   159   162   164   163   164   165   169   164   163   165   161   163   165   168   167   165   164   163   169   169   169   170   170   169   170   170
   156   153   155   159   159   155   156   155   155   157   155   154   154   158   162   157   157   158   157   159   161   160   161   157   157   156   159   160   161   164   158   161   163   158   164   165   165   162   160   160   166   169   166   164   164   167   167   164   168   164
   155   155   155   157   156   159   152   158   156   158   152   153   159   156   157   161   160   158   161   159   159   159   161   162   162   160   165   160   162   159   164   163   165   164   167   167   167   164   169   166   166   172   165   166   169   170   169   169   170   170
   156   153   157   156   153   155   154   155   157   156   155   156   155   157   158   160   157   160   161   162   162   159   161   158   155   159   160   162   161   158   163   166   165   161   164   167   165   168   168   170   165   166   168   169   168   169   169   170   170   166
   159   159   156   158   156   159   157   161   162   157   157   159   161   156   163   158   159   161   158   163   163   163   157   162   159   166   163   159   168   167   165   162   168   168   167   171   170   169   167   170   170   171   172   172   172   170   174   172   172   176
   158   155   158   154   156   160   162   155   159   161   156   161   160   155   158   161   162   162   161   163   158   156   165   160   164   160   164   161   167   167   167   168   167   170   167   171   174   169   170   171   175   170   171   168   168   168   171   171   174   170
   155   154   157   158   160   160   159   160   158   161   160   160   158   161   158   160   162   159   163   161   156   159   158   159   159   161   161   162   165   163   165   167   167   169   164   169   167   168   166   166   168   165   166   168   167   169   169   171   168   171
      ⋮

Create a GPU array object.

I = gpuArray(I);

Find and display Harris features in the image.

pointsGPU = detectHarrisFeatures(I);
imshow(I); 
hold on;
plot(pointsGPU.selectStrongest(50));

3 Functions

3-296



Copy the corner points to the CPU for further processing.

pointsCPU = gather(pointsGPU);

Input Arguments
pointsGPU — GPU points
points object (default)

GPU points, specified as a points object.

See Also
cornerPoints

Introduced in R2012a

 gather

3-297



plot
Plot MSER regions

Syntax
plot(points)
plot(points,ax)
plot(points,ax,Name,Value)

Description
plot(points) plots points in the current axis.

plot(points,ax) plots points in the specified axis.

plot(points,ax,Name,Value) sets properties using one or more name-value pairs. Enclose each
property name in quotes. For example, plot('ShowOrientation',true)

Examples

Plot MSER Regions

Extract MSER features and plot the regions.

Read image and extract MSER features.

I = imread('cameraman.tif');
regions = detectMSERFeatures(I);
imshow(I); hold on;
plot(regions);

3 Functions

3-298



Plot MSER Regions.

figure; imshow(I); hold on;
plot(regions,'showPixelList',true,'showEllipses',false);
hold off;

 plot

3-299



Input Arguments
points — Points
MSERRegions object

Points, specified as a points object. The object contains information about the feature points detected
in the 2-D grayscale input image.

ax — Axes handle
handle

Handle to use for display. You can set the handle using gca.

Name-Value Pair Arguments
Example: 'ShowOrientation','true'

showEllipses — Display ellipsis
true (default) | false

Display ellipsis around feature, specified as true or false. When you set this value to true, the
object draws an ellipse with the same 2nd order moments as the region. When you set this value to
false, only the ellipses centers are plotted.

ShowOrientation — Display orientation line
true (default) | false

Display feature point orientation, specified as true or false. When you set this value to true, the
object draws a line corresponding to the point's orientation. The object draws the line from the
feature point location to the edge of the circle, indicating the scale.

showPixelList — Display regions using JET colormap
true (default) | false

Display regions using JET colormap, specified as true or false.

See Also
detectMSERFeatures

Introduced in R2012a

3 Functions

3-300



assignDetectionsToTracks
Assign detections to tracks for multiobject tracking

Syntax
[assignments,unassignedTracks,unassignedDetections] =
assignDetectionsToTracks(costMatrix,costOfNonAssignment)
[assignments,unassignedTracks,unassignedDetections] =
assignDetectionsToTracks(costMatrix, unassignedTrackCost,
unassignedDetectionCost)

Description
[assignments,unassignedTracks,unassignedDetections] =
assignDetectionsToTracks(costMatrix,costOfNonAssignment) assigns detections to tracks
in the context of multiple object tracking using the James Munkres's variant of the Hungarian
assignment algorithm. It also determines which tracks are missing and which detections should begin
new tracks. It returns the indices of assigned and unassigned tracks, and unassigned detections. The
costMatrix must be an M-by-N matrix. In this matrix, M represents the number of tracks, and N is
the number of detections. Each value represents the cost of assigning the Nth detection to the Mth

track. The lower the cost, the more likely that a detection gets assigned to a track. The
costOfNonAssignment scalar input represents the cost of a track or a detection remaining
unassigned.

[assignments,unassignedTracks,unassignedDetections] =
assignDetectionsToTracks(costMatrix, unassignedTrackCost,
unassignedDetectionCost) specifies the cost of unassigned tracks and detections separately. The
unassignedTrackCost must be a scalar value, or an M-element vector, where M represents the
number of tracks. For the M-element vector, each element represents the cost of not assigning any
detection to that track. The unassignedDetectionCost must be a scalar value or an N-element
vector, where N represents the number of detections.

Examples

Assign Detections to Tracks in a Single Video Frame

This example shows you how to assign a detection to a track for a single video frame.

Set the predicted locations of objects in the current frame. Obtain predictions using the Kalman filter
System object.

predictions = [1,1;2,2];

Set the locations of the objects detected in the current frame. For this example, there are 2 tracks
and 3 new detections. Thus, at least one of the detections is unmatched, which can indicate a new
track.

detections = [1.1,1.1;2.1,2.1;1.5,3];

 assignDetectionsToTracks

3-301



Preallocate a cost matrix.

cost = zeros(size(predictions,1),size(detections,1));

Compute the cost of each prediction matching a detection. The cost here, is defined as the Euclidean
distance between the prediction and the detection.

for i = 1:size(predictions, 1)
      diff = detections - repmat(predictions(i,:),[size(detections,1),1]);
      cost(i, :) = sqrt(sum(diff .^ 2,2));
end

Associate detections with predictions. Detection 1 should match to track 1, and detection 2 should
match to track 2. Detection 3 should be unmatched.

[assignment,unassignedTracks,unassignedDetections] = ...
            assignDetectionsToTracks(cost,0.2);
  figure;
  plot(predictions(:,1),predictions(:,2),'*',detections(:,1),...
            detections(:,2),'ro');
  hold on;
  legend('predictions','detections');
  for i = 1:size(assignment,1)
    text(predictions(assignment(i, 1),1)+0.1,...
            predictions(assignment(i,1),2)-0.1,num2str(i));
    text(detections(assignment(i, 2),1)+0.1,...
            detections(assignment(i,2),2)-0.1,num2str(i));
  end
  for i = 1:length(unassignedDetections)
    text(detections(unassignedDetections(i),1)+0.1,...
            detections(unassignedDetections(i),2)+0.1,'unassigned');
  end
  xlim([0,4]);
  ylim([0,4]);

3 Functions

3-302



Input Arguments
costMatrix — Cost of assigning detection to track
M-by-N matrix

Cost of assigning a detection to a track, specified as an M-by-N matrix, where M represents the
number of tracks, and N is the number of detections. The cost matrix value must be real, nonsparse,
and numeric. The lower the cost, the more likely that a detection gets assigned to a track. Each value
represents the cost of assigning the Nth detection to the Mth track. If there is no likelihood of an
assignment between a detection and a track, the costMatrix input is set to Inf. Internally, this
function pads the cost matrix with dummy rows and columns to account for the possibility of
unassigned tracks and detections. The padded rows represent detections not assigned to any tracks.
The padded columns represent tracks not associated with any detections. The function applies the
Hungarian assignment algorithm to the padded matrix.

 assignDetectionsToTracks

3-303



Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double

costOfNonAssignment — Cost of not assigning detection to any track or track to any
detection
scalar | finite

Cost of not assigning detection to any track or track to detection. You can specify this value as a
scalar value representing the cost of a track or a detection remaining unassigned. An unassigned
detection may become the start of a new track. If a track is unassigned, the object does not appear.
The higher the costOfNonAssignment value, the higher the likelihood that every track will be
assigned a detection.

Internally, this function pads the cost matrix with dummy rows and columns to account for the
possibility of unassigned tracks and detections. The padded rows represent detections not assigned to
any tracks. The padded columns represent tracks not associated with any detections. To apply the
same value to all elements in both the rows and columns, use the syntax with the
costOfNonAssignment input. To vary the values for different detections or tracks, use the syntax
with the unassignedTrackCost and unassignedDetectionCost inputs.

3 Functions

3-304



Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double

unassignedTrackCost — Cost or likelihood of an unassigned track
M-element vector | scalar | finite

Cost or likelihood of an unassigned track. You can specify this value as a scalar value, or an M-
element vector, where M represents the number of tracks. For the M-element vector, each element
represents the cost of not assigning any detection to that track. A scalar input represents the same
cost of being unassigned for all tracks. The cost may vary depending on what you know about each
track and the scene. For example, if an object is about to leave the field of view, the cost of the
corresponding track being unassigned should be low.

Internally, this function pads the cost matrix with dummy rows and columns to account for the
possibility of unassigned tracks and detections. The padded rows represent detections not assigned to
any tracks. The padded columns represent tracks not associated with any detections. To vary the
values for different detections or tracks, use the syntax with the unassignedTrackCost and
unassignedDetectionCost inputs. To apply the same value to all elements in both the rows and
columns, use the syntax with the costOfNonAssignment input.

 assignDetectionsToTracks

3-305



Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double

unassignedDetectionCost — Cost of unassigned detection
N-element vector | scalar | finite

Cost of unassigned detection, specified as a scalar value or an N-element vector, where N represents
the number of detections. For the N- element vector, each element represents the cost of starting a
new track for that detection. A scalar input represents the same cost of being unassigned for all
tracks. The cost may vary depending on what you know about each detection and the scene. For
example, if a detection appears close to the edge of the image, it is more likely to be a new object.

Internally, this function pads the cost matrix with dummy rows and columns to account for the
possibility of unassigned tracks and detections. The padded rows represent detections not assigned to
any tracks. The padded columns represent tracks not associated with any detections. To vary the
values for different detections or tracks, use the syntax with the unassignedTrackCost and
unassignedDetectionCost inputs. To apply the same value to all elements in both the rows and
columns, use the syntax with the costOfNonAssignment input.

3 Functions

3-306



Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double

Output Arguments
assignments — Index pairs of tracks and corresponding detections
L-by-2 matrix

 assignDetectionsToTracks

3-307



Index pairs of tracks and corresponding detections. This value is returned as an L-by-2 matrix of
index pairs, with L number of pairs. The first column represents the track index and the second
column represents the detection index.
Data Types: uint32

unassignedTracks — Unassigned tracks
P-element vector

Unassigned tracks, returned as a P-element vector. P represents the number of unassigned tracks.
Each element represents a track to which no detections are assigned.
Data Types: uint32

unassignedDetections — Unassigned detections
Q-element vector

Unassigned detections, returned as a Q-element vector, where Q represents the number of
unassigned detections. Each element represents a detection that was not assigned to any tracks.
These detections can begin new tracks.
Data Types: uint32

References
[1] Miller, Matt L., Harold S. Stone, and Ingemar J. Cox, “Optimizing Murty's Ranked Assignment

Method,” IEEE Transactions on Aerospace and Electronic Systems, 33(3), 1997.

[2] Munkres, James, “Algorithms for Assignment and Transportation Problems,” Journal of the Society
for Industrial and Applied Mathematics, Volume 5, Number 1, March, 1957.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
vision.KalmanFilter | configureKalmanFilter

Topics
“Multiple Object Tracking”

External Websites
Munkres' Assignment Algorithm Modified for Rectangular Matrices

Introduced in R2012b

3 Functions

3-308

https://brc2.com/the-algorithm-workshop/


bbox2points
Convert rectangle to corner points list

Syntax
points = bbox2points(rectangle)

Description
points = bbox2points(rectangle) converts the input rectangle, specified as [x y width height]
into a list of four [x y] corner points. The rectangle input must be either a single bounding box or a
set of bounding boxes.

Examples

Convert Bounding Box to List of Points and Apply Rotation

Define a bounding box.

bbox = [10,20,50,60];

Convert the bounding box to a list of four points.

points = bbox2points(bbox);

Define a rotation transformation.

theta = 10;
tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);

Apply the rotation.

points2 = transformPointsForward(tform,points);

Close the polygon for display.

points2(end+1,:) = points2(1,:);

Plot the rotated box.

plot(points2(:,1),points2(:,2), '*-');

 bbox2points

3-309



Input Arguments
rectangle — Bounding box
4-element vector | M-by-4 matrix

Bounding box, specified as a 4-element vector, [x y width height], or a set of bounding boxes,
specified as an M-by-4 matrix.
Data Types: single | double | int16 | int32 | uint16 | uint32

Output Arguments
points — Rectangle corner coordinates
4-by-2 matrix | 4-by-2-by-M array

List of rectangle corners, returned as a 4-by-2 matrix of [x,y] coordinates, or a 4-by-2-by-M array of
[x,y] coordinates. The output points for the rectangle are listed counterclockwise starting from the
upper-left corner.

• For a single input bounding box, the function returns the 4-by-2 matrix.
• For multiple input bounding boxes, the function returns the 4-by-2-M array for M bounding boxes.

Data Types: single | double | int16 | int32 | uint16 | uint32

3 Functions

3-310



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
affine2d | projective2d

Introduced in R2014b

 bbox2points

3-311



bboxcrop
Crop bounding boxes

Syntax
bboxB = bboxcrop(bboxA,window)
[bboxB,indices] = bboxcrop(bboxA,window)
[ ___ ] = bboxcrop( ___ ,Name=Value)

Description
bboxB = bboxcrop(bboxA,window) crops bounding boxes from a set of input bounding boxes,
bboxA, located in the cropping area, window. bboxB contains the cropped bounding boxes. This
function supports 2-D and 3-D bounding boxes.

[bboxB,indices] = bboxcrop(bboxA,window) additionally returns a vector of indices that
indicate which bounding boxes in bboxA are within the cropping window, window.

[ ___ ] = bboxcrop( ___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from previous syntaxes. For example,
OverlapThreshold=1, sets the positive overlap threshold to 1.

Examples

Center Crop Image and Corresponding Bounding Boxes

Read an image.

I = imread('peppers.png');

Define bounding boxes and labels.

bboxA = [
    410 230 100 90
    186 78  80  60
    ]

bboxA = 2×4

   410   230   100    90
   186    78    80    60

labelsA = [
    "garlic"
    "onion"
    ];

Create a center cropping window.

3 Functions

3-312



targetSize = [256 256];
win = centerCropWindow2d(size(I),targetSize);

Center crop the image.

[r,c] = deal(win.YLimits(1):win.YLimits(2),win.XLimits(1):win.XLimits(2));
J = I(r,c,:);

Center crop boxes and labels. Boxes outside the cropping window are removed.

[bboxB,indices] = bboxcrop(bboxA,win);
labelsB = labelsA(indices);

Display the results.

figure
I = insertObjectAnnotation(I,'Rectangle',bboxA,labelsA);
J = insertObjectAnnotation(J,'Rectangle',bboxB,labelsB);
imshowpair(I,J,'montage')

Input Arguments
bboxA — Bounding boxes
M-by-4 matrix | M-by-5 matrix | M-by-9 matrix

Bounding boxes, specified as an M-by-4, M-by-5, or M-by-9 nonsparse numeric matrix. M is the
number of bounding boxes. Each row of the matrix defines a bounding box as either an axis-aligned
rectangle, a rotated rectangle, or a cuboid. This table describes the format for each bounding box.

 bboxcrop

3-313



Bounding Box Description
Axis-aligned rectangle Defined in spatial coordinates as an M-by-4

numeric matrix with rows of the form [x y w h],
where:

• M is the number of axis-aligned rectangles.
• x and y specify the upper-left corner of the

rectangle.
• w specifies the width of the rectangle, which

is its length along the x-axis.
• h specifies the height of the rectangle, which

is its length along the y-axis.

3 Functions

3-314



Bounding Box Description
Rotated rectangle Defined in spatial coordinates as an M-by-5

numeric matrix with rows of the form [xctr yctr
xlen ylen yaw], where:

• M is the number of rotated rectangles.
• xctr and yctr specify the center of the

rectangle.
• xlen specifies the width of the rectangle,

which is its length along the x-axis before
rotation.

• ylen specifies the height of the rectangle,
which is its length along the y-axis before
rotation.

• yaw specifies the rotation angle in degrees.
The rotation is clockwise-positive around the
center of the bounding box.

 bboxcrop

3-315



Bounding Box Description
Cuboid Defined in spatial coordinates as an M-by-9

numeric matrix with rows of the form [xctr yctr
zctr xlen ylen zlen xrot yrot zrot], where:

• M is the number of cuboids.
• xctr, yctr, and zctr specify the center of the

cuboid.
• xlen, ylen, and zlen specify the length of the

cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation.

• xrot, yrot, and zrot specify the rotation angles
of the cuboid around the x-axis, y-axis, and z-
axis, respectively. The xrot, yrot, and zrot
rotation angles are in degrees about the
cuboid center. Each rotation is clockwise-
positive with respect to the positive direction
of the associated spatial axis. The function
computes rotation matrices assuming ZYX
order Euler angles [xrot yrot zrot].

The figure shows how these values determine the
position of a cuboid.

3 Functions

3-316



window — Cropping window
four-element vector (default) | images.spatialref.Rectangle | six-element vector |
images.spatialref.Cuboid | numeric | image

Cropping window, specified as a four-element vector, a six-element vector, or a Cuboid object. The
output bounding box positions are relative to the location of the cropping window.

When you specify bboxA as a rectangular input, the cropping window must be a four-element vector
in the format [x,y,width,height], or a Rectangle object.

When you specify bboxA as a cuboid, the cropping window must be a six-element vector in the format
[x,y,zwidth,height,depth], or a Cuboid object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OverlapThreshold=1, sets the positive overlap threshold to 1.

OverlapThreshold — Overlap threshold
1 (default) | positive scalar less than or equal to 1

Overlap threshold, specified as a positive scalar less than or equal to 1. The amount of overlap
between the input boxes, bboxA, and the cropping area, window, is defined as:

area(intersect (bboxA,window))/area(union(bboxB,window)).

If the computed overlap value is greater than the value of the threshold property, then the boxes
are clipped to the bounding rectangle border. Otherwise, the boxes are discarded. Lowering the
threshold can result in parts of the object getting discarded.

Output Arguments
bboxB — Cropped bounding boxes
M2-by-N matrix | nonsparse numeric

Cropped bounding boxes, returned as an M2-by-N matrix of M2 bounding boxes. The number of
bounding boxes returned is less than the number of bounding boxes in the input. Each row, M2, of the
matrix defines one bounding box of the same type as the input bboxA. The output bounding box
positions are relative to the location of the cropping window.

indices — Indices
vector of integers

Indices, returned as a vector of integers. The indices indicate which bounding boxes in the input,
bboxA, are within the cropping window.

 bboxcrop

3-317



Compatibility Considerations
Bounding Box Coordinates: Data augmentation for object detection using spatial
coordinates
Behavior changed in R2022a

The bboxresize, bboxcrop, bboxwarp, and showShape functions assume the input bounding box
coordinates for axis-aligned rectangles are specified in spatial coordinates and return the
transformed bounding boxes in spatial coordinates.

See Also
imcrop | bboxresize | bboxwarp | bboxerase

Introduced in R2019b

3 Functions

3-318



bboxresize
Resize bounding boxes

Syntax
bboxB = bboxresize(bboxA,scale)

Description
bboxB = bboxresize(bboxA,scale) resizes bounding boxes in bboxA by the amount specified by
scale. This function supports 2-D and 3-D bounding boxes.

Examples

Resize Image and Corresponding Bounding Boxes

Read an image.

I = imread('peppers.png');

Define bounding boxes and labels.

bboxA = [
    410 230 100 90
    186 78  80  60
    ]

bboxA = 2×4

   410   230   100    90
   186    78    80    60

labelsA = [
    "garlic"
    "onion"
    ];

Resize the image and the bounding boxes.

scale = 1.5; 
J = imresize(I,scale); 
bboxB = bboxresize(bboxA,scale); 

Display the results.

figure
I = insertObjectAnnotation(I,'Rectangle',bboxA,labelsA);
J = insertObjectAnnotation(J,'Rectangle',bboxB,labelsA);
imshowpair(I,J,'montage')

 bboxresize

3-319



Input Arguments
bboxA — Bounding boxes
M-by-4 matrix | M-by-5 matrix | M-by-9 matrix | nonsparse numeric

Bounding boxes, specified as an M-by-4, M-by-5, or M-by-9 nonsparse numeric matrix of M bounding
boxes. Each row, M, of the matrix defines a bounding box as either an axis-aligned rectangle, a rotate
rectangle, or a cuboid. The table below describes the format of the bounding boxes.

Bounding Box Description
Axis-aligned rectangle Defined in spatial coordinates as an M-by-4

numeric matrix with rows of the form [x y w h],
where:

• M is the number of axis-aligned rectangles.
• x and y specify the upper-left corner of the

rectangle.
• w specifies the width of the rectangle, which

is its length along the x-axis.
• h specifies the height of the rectangle, which

is its length along the y-axis.

3 Functions

3-320



Bounding Box Description
Rotated rectangle Defined in spatial coordinates as an M-by-5

numeric matrix with rows of the form [xctr yctr
xlen ylen yaw], where:

• M is the number of rotated rectangles.
• xctr and yctr specify the center of the

rectangle.
• xlen specifies the width of the rectangle,

which is its length along the x-axis before
rotation.

• ylen specifies the height of the rectangle,
which is its length along the y-axis before
rotation.

• yaw specifies the rotation angle in degrees.
The rotation is clockwise-positive around the
center of the bounding box.

 bboxresize

3-321



Bounding Box Description
Cuboid Defined in spatial coordinates as an M-by-9

numeric matrix with rows of the form [xctr yctr
zctr xlen ylen zlen xrot yrot zrot], where:

• M is the number of cuboids.
• xctr, yctr, and zctr specify the center of the

cuboid.
• xlen, ylen, and zlen specify the length of the

cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation.

• xrot, yrot, and zrot specify the rotation angles
of the cuboid around the x-axis, y-axis, and z-
axis, respectively. The xrot, yrot, and zrot
rotation angles are in degrees about the
cuboid center. Each rotation is clockwise-
positive with respect to the positive direction
of the associated spatial axis. The function
computes rotation matrices assuming ZYX
order Euler angles [xrot yrot zrot].

The figure shows how these values determine the
position of a cuboid.

3 Functions

3-322



scale — Scale
scalar (default) | row vector

Scale, specified as a scalar or a row vector. When you specify a scalar, the function applies the same
scale factor to the height and width of the bounding boxes in bboxA. When you specify a row vector,
the function applies the factor in the first element of the vector to resize the height and the second
element to resize the width of the bounding boxes.

Output Arguments
bboxB — Warped bounding boxes
M2-by-N matrix | nonsparse numeric

Warped bounding boxes, returned as an M2-by-N matrix of M2 bounding boxes. The number of
bounding boxes returned is less than the number of bounding boxes in the input. Each row, M2, of the
matrix defines one bounding box of the same type as the input bboxA. When bboxB contains floating
point data, the function returns it with the same type as bboxA. Otherwise, the function returns
bboxB as type single.

Compatibility Considerations
Bounding Box Coordinates: Data augmentation for object detection using spatial
coordinates
Behavior changed in R2022a

The bboxresize, bboxcrop, bboxwarp, and showShape functions assume the input bounding box
coordinates for axis-aligned rectangles are specified in spatial coordinates and return the
transformed bounding boxes in spatial coordinates.

See Also
bboxcrop | bboxwarp | bboxerase | imresize

Introduced in R2019b

 bboxresize

3-323



bboxwarp
Apply geometric transformation to bounding boxes

Syntax
bboxB = bboxwarp(bboxA,tform,ref)
[bboxB,indices] = bboxwarp(bboxA,tform,ref)
[ ___ ] = bboxcrop( ___ ,Name=Value)

Description
bboxB = bboxwarp(bboxA,tform,ref) transforms bounding boxes in bboxA according to the
geometric transformation defined by tform. Bounding boxes can be axis-aligned rectangles, rotated
rectangles, or cuboids. The spatial reference object, ref, defines the output view into which the
boxes are transformed. This function supports 2-D and 3-D bounding boxes.

[bboxB,indices] = bboxwarp(bboxA,tform,ref) additionally returns a vector of indices that
indicate which bounding boxes in bboxA correspond to the warped versions in the output, bboxB.

[ ___ ] = bboxcrop( ___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from previous syntaxes. For example,
OverlapThreshold=1, sets the positive overlap threshold to 1.

Examples

Transform Images and Corresponding Bounding Boxes

Read an image.

I = imread('peppers.png');

Define bounding boxes and labels.

bboxA = [
    410 230 100 90
    186 78  80  60
    ]

bboxA = 2×4

   410   230   100    90
   186    78    80    60

labelsA = [
    "garlic"
    "onion"
    ];

Define a transform to horizontally flip and translate the image.

3 Functions

3-324



tform = affine2d([-1 0 0; 0 1 0; 50 50 1]);

Create an output view for imwarp.

rout = affineOutputView(size(I),tform);

Warp the image.

J = imwarp(I,tform,'OutputView',rout);

Warp the boxes.

[bboxB,indices] = bboxwarp(bboxA,tform,rout);
labelsB = labelsA(indices);

Display the results.

annotatedI = insertObjectAnnotation(I,'Rectangle',bboxA,labelsA);
annotatedJ = insertObjectAnnotation(J,'Rectangle',bboxB,labelsB);
figure
montage({annotatedI, annotatedJ})

Input Arguments
bboxA — Bounding boxes
M-by-4 matrix | M-by-5 matrix | M-by-9 matrix | nonsparse numeric

Bounding boxes, specified as an M-by-4, M-by-5, or M-by-9 nonsparse numeric matrix of M bounding
boxes. Each row, M, of the matrix defines a bounding box as either an axis-aligned rectangle, a rotate
rectangle, or a cuboid. The table below describes the format of the bounding boxes.

 bboxwarp

3-325



Bounding Box Description
Axis-aligned rectangle Defined in spatial coordinates as an M-by-4

numeric matrix with rows of the form [x y w h],
where:

• M is the number of axis-aligned rectangles.
• x and y specify the upper-left corner of the

rectangle.
• w specifies the width of the rectangle, which

is its length along the x-axis.
• h specifies the height of the rectangle, which

is its length along the y-axis.

3 Functions

3-326



Bounding Box Description
Rotated rectangle Defined in spatial coordinates as an M-by-5

numeric matrix with rows of the form [xctr yctr
xlen ylen yaw], where:

• M is the number of rotated rectangles.
• xctr and yctr specify the center of the

rectangle.
• xlen specifies the width of the rectangle,

which is its length along the x-axis before
rotation.

• ylen specifies the height of the rectangle,
which is its length along the y-axis before
rotation.

• yaw specifies the rotation angle in degrees.
The rotation is clockwise-positive around the
center of the bounding box.

 bboxwarp

3-327



Bounding Box Description
Cuboid Defined in spatial coordinates as an M-by-9

numeric matrix with rows of the form [xctr yctr
zctr xlen ylen zlen xrot yrot zrot], where:

• M is the number of cuboids.
• xctr, yctr, and zctr specify the center of the

cuboid.
• xlen, ylen, and zlen specify the length of the

cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation.

• xrot, yrot, and zrot specify the rotation angles
of the cuboid around the x-axis, y-axis, and z-
axis, respectively. The xrot, yrot, and zrot
rotation angles are in degrees about the
cuboid center. Each rotation is clockwise-
positive with respect to the positive direction
of the associated spatial axis. The function
computes rotation matrices assuming ZYX
order Euler angles [xrot yrot zrot].

The figure shows how these values determine the
position of a cuboid.

3 Functions

3-328



tform — Geometric transformation
affine2d object | affine3d object

Geometric transformation, specified in an affine2d or affine3d object. bboxwarp function
supports only scale, rotation, and translation affine transformations. For rectangular inputs, tform
must be an affine2d object. For cuboid inputs, tform must be an affine3d object.

ref — Spatial reference
imref2d object | imref3d object

Spatial reference, specified as an imref2d or imref3d object. To obtain one of these objects, you
can use the imwarp or the affineOutputView function. For cuboid inputs, ref must be a imref3d
object. The object defines the output view to transform boxes. Boxes that are transformed completely
outside of the output view defined by ref are discarded.

[J,rout] = imwarp(I,tform);
[bboxB,indices] = bboxwarp(bboxA,tform,rout);

rout = affineOutputView(size(I),tform)
J = imwarp(I,tform,'OutputView',rout);
[bboxB,indices] = bboxwarp(bboxA,tform,rout);

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OverlapThreshold=1, sets the positive overlap threshold to 1.

OverlapThreshold — Overlap threshold
1 (default) | positive scalar less than or equal to 1

Overlap threshold, specified as a positive scalar less than or equal to 1. The amount of overlap
between transformed boxes and the region W, defined by the output view, is defined as:

area(intersect(bboxA,W))/area(bboxB,W).

If the computed overlap value is greater than the value of the threshold property, then the
transformed boxes are clipped to the bounding rectangle border. Otherwise, the boxes are discarded.
Lowering the threshold can result in parts of the object getting discarded.

Output Arguments
bboxB — Warped bounding boxes
M2-by-N matrix | nonsparse numeric

Warped bounding boxes, returned as an M2-by-N matrix of M2 bounding boxes. The number of
bounding boxes returned is less than the number of bounding boxes in the input. Each row, M2, of the
matrix defines one bounding box of the same type as the input bboxA. When bboxB contains floating
point data, the function returns it with the same type as bboxA. Otherwise, the function returns
bboxB as type single.

 bboxwarp

3-329



indices — Indices
vector of integers

Indices, returned as a vector of integers. The indices indicate which bounding boxes in the input,
bboxA, that correspond to the warped versions in the output, bboxB.

Compatibility Considerations
Bounding Box Coordinates: Data augmentation for object detection using spatial
coordinates
Behavior changed in R2022a

The bboxresize, bboxcrop, bboxwarp, and showShape functions assume the input bounding box
coordinates for axis-aligned rectangles are specified in spatial coordinates and return the
transformed bounding boxes in spatial coordinates.

See Also
imcrop | bboxcrop | bboxresize | imwarp | bboxerase

Introduced in R2019b

3 Functions

3-330



bboxOverlapRatio
Compute bounding box overlap ratio

Syntax
overlapRatio = bboxOverlapRatio(bboxA,bboxB)
overlapRatio = bboxOverlapRatio(bboxA,bboxB,ratioType)

Description
overlapRatio = bboxOverlapRatio(bboxA,bboxB) returns the overlap ratio between each pair
of bounding boxes bboxA and bboxB. The function returns the overlapRatio value between 0 and
1, where 1 implies a perfect overlap.

overlapRatio = bboxOverlapRatio(bboxA,bboxB,ratioType) additionally lets you specify
the method to use for computing the ratio. You must set the ratioType to either 'Union' or 'Min'.

Examples

Compute the Overlap Ratio Between Two Bounding Boxes

Define two bounding boxes in the format [x y width height].

bboxA = [150,80,100,100]; 
bboxB = bboxA + 50;

Display the bounding boxes on an image.

I = imread('peppers.png');
RGB = insertShape(I,'FilledRectangle',bboxA,'Color','green');
RGB = insertShape(RGB,'FilledRectangle',bboxB,'Color','yellow');
imshow(RGB)

 bboxOverlapRatio

3-331



Compute the overlap ratio between the two bounding boxes.

overlapRatio = bboxOverlapRatio(bboxA,bboxB)

overlapRatio = 0.0833

Compute Overlap Ratio Between Each Pair of Bounding Boxes

Randomly generate two sets of bounding boxes.

bboxA = 10*rand(5,4); 
bboxB = 10*rand(10,4);

Ensure that the width and height of the boxes are positive.

bboxA(:,3:4) = bboxA(:,3:4) + 10;
bboxB(:,3:4) = bboxB(:,3:4) + 10;

Compute the overlap ratio between each pair.

overlapRatio = bboxOverlapRatio(bboxA,bboxB)

3 Functions

3-332



overlapRatio = 5×10

    0.2431    0.2329    0.3418    0.5117    0.7972    0.1567    0.1789    0.4339    0.0906    0.5766
    0.3420    0.1655    0.7375    0.5188    0.2786    0.3050    0.2969    0.4350    0.2477    0.2530
    0.4844    0.3290    0.3448    0.1500    0.1854    0.4976    0.5629    0.4430    0.5027    0.2685
    0.3681    0.0825    0.3499    0.0840    0.0658    0.5921    0.6498    0.1930    0.7433    0.0676
    0.3752    0.1114    0.3114    0.0696    0.0654    0.5408    0.6234    0.2046    0.7557    0.0717

Input Arguments
bboxA — Bounding box
M-by-4 matrix | M-by-5 matrix

Bounding boxes, specified as an M-by-4 or M-by-5 nonsparse numeric matrix. M is the number of
bounding boxes. Each row of the matrix defines a bounding box as either an axis-aligned rectangle or
a rotated rectangle. This table describes the format for each bounding box.

Bounding Box Row Description
Axis-aligned rectangle [xmin, ymin, width, height] This type of bounding box is

defined in pixel coordinates as
an M-by-4 matrix representing
M bounding boxes

Rotated rectangle [xcenter, ycenter, width, height,
yaw]

This type of bounding box is
defined in spatial coordinates as
an M-by-5 matrix representing
M bounding boxes. The xcenter
and ycenter coordinates represent
the center of the bounding box.
The width and height elements
represent the length of the box
along the x and y axes,
respectively. The yaw represents
the rotation angle in degrees.
The amount of rotation about
the center of the bounding box
is measured in the clockwise
direction.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

bboxB — Bounding box
M-by-4 matrix | M-by-5 matrix

Bounding boxes, specified as an M-by-4 or M-by-5 nonsparse numeric matrix. M is the number of
bounding boxes. Each row, M, of the matrix defines a bounding box as either an axis-aligned
rectangle or a rotated rectangle. This table describes the format for each bounding box.

 bboxOverlapRatio

3-333



Bounding Box Row Description
Axis-aligned rectangle [xmin, ymin, width, height] This type of bounding box is

defined in pixel coordinates as
an M-by-4 matrix representing
M bounding boxes

Rotated rectangle [xcenter, ycenter, width, height,
yaw]

This type of bounding box is
defined in spatial coordinates as
an M-by-5 matrix representing
M bounding boxes. The xcenter
and ycenter coordinates represent
the center of the bounding box.
The width and height elements
represent the length of the box
along the x and y axes,
respectively. The yaw represents
the rotation angle in degrees.
The amount of rotation about
the center of the bounding box
is measured in the clockwise
direction.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ratioType — Ratio type
'Union' (default) | 'Min'

Ratio type, specified as the character vector 'Union' or 'Min'.

• Set the ratio type to 'Union' to compute the ratio as the area of intersection between bboxA and
bboxB, divided by the area of the union of the two.

• Set the ratio type to 'Min' to compute the ratio as the area of intersection between bboxA and
bboxB, divided by the minimum area of the two bounding boxes.

Data Types: char

Output Arguments
overlapRatio — Overlap ratio between two bounding boxes
M-by-N matrix

Overlap ratio between two bounding boxes, returned as an M-by-N matrix. Each (I, J) element in the
output matrix corresponds to the overlap ratio between row I in bboxA and row J in bboxB. The
function returns overlapRatio in the between 0 and 1, where 1 implies a perfect overlap. If either

3 Functions

3-334



bboxA or bboxB is double, then the function returns overlapRatio as double. Otherwise, the
function returns it as single.

The function computes the overlap ratio based on the ratio type. You can set ratioType to 'Union'
or 'Min':

Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
selectStrongestBbox | selectStrongestBboxMulticlass | bboxPrecisionRecall

Topics
“Multiple Object Tracking”

Introduced in R2014b

 bboxOverlapRatio

3-335



bboxPrecisionRecall
Compute bounding box precision and recall against ground truth

Syntax
[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes)
[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes,threshold)

Description
[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes) measures the
accuracy of bounding box overlap between bboxes and groundTruthBboxes. Precision is a ratio of
true positive instances to all positive instances of objects in the detector, based on the ground truth.
Recall is a ratio of true positive instances to the sum of true positives and false negatives in the
detector, based on the ground truth.

If the bounding box is associated with a class label, precision and recall contain metrics for each
class. If the bounding box is also associated with a confidence score for ranking, use the
evaluateDetectionPrecision function.

[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes,threshold)
specifies the overlap threshold for assigning a given box to a ground truth box.

Examples

Evaluate Bounding Box Overlap Accuracy

Create two ground truth boxes.

groundTruthBoxes = [2 2 10 20; 80 80 30 40];

Create three boxes for evaluation.

boundingBoxes = [4 4 10 20; 50 50 30 10; 90 90 40 50];

Plot the boxes.

figure
hold on
for i=1:2
    rectangle('Position',groundTruthBoxes(i,:),'EdgeColor','r');
end
for i=1:3
    rectangle('Position',boundingBoxes(i,:),'EdgeColor','b');
end   

3 Functions

3-336



Evaluate the overlap accuracy against the ground truth data.

[precision,recall] = bboxPrecisionRecall(boundingBoxes,groundTruthBoxes)

precision = 0.3333

recall = 0.5000

Evaluate Bounding Box Overlap For Three Classes

Define class names.

classNames = ["A","B","C"];

Create bounding boxes for evaluation.

predictedLabels = {...
    categorical("A",classNames); ...
    categorical(["C";"B"],classNames)};
bboxes = {...
    [10 10 20 30]; ...
    [60 18 20 10; 120 120 5 10]};
boundingBoxes = table(bboxes,predictedLabels,'VariableNames',...
    {'PredictedBoxes','PredictedLabels'});

Create ground truth boxes.

 bboxPrecisionRecall

3-337



A = {[10 10 20 28]; []};
B = {[]; [118 120 5 10]};
C = {[]; [59 19 20 10]};
groundTruthData = table(A,B,C);

Evaluate overlap accuracy against ground truth data.

[precision,recall] = bboxPrecisionRecall(boundingBoxes,groundTruthData)

precision = 3×1

     1
     0
     1

recall = 3×1

     1
     0
     1

Input Arguments
bboxes — Bounding boxes
M-by-4 matrix | table with M rows

Bounding boxes, specified as one of the following. M is the number of bounding boxes.

• For single-class bounding boxes, bboxes can be an M-by-4 matrix, or a table with M rows and one
column. Each row of the matrix or element in the table represents a bounding box, specified in the
format [x y width height], where x and y correspond to the upper left corner of the bounding box.

• For multi-class bounding boxes, bboxes is a table with M rows and two columns. Each element in
the first column represents a bounding box, specified in the format [x y width height]. The second
column contains the predicted label for each box. The label must be a categorical type defined by
the variable (column) names of the groundTruthBboxes table.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

groundTruthBboxes — Ground truth bounding boxes
M-by-4 matrix | table with M rows

Ground truth bounding boxes, specified as one of the following. M is the number of ground truth
bounding boxes.

• For single-class bounding boxes, groundTruthBboxes can be an M-by-4 matrix, or a table with M
rows and one column. Each row of the matrix or element in the table represents a bounding box,
specified in the format [x y width height], where x and y correspond to the upper left corner of the
bounding box.

• For multi-class bounding boxes, groundTruthBboxes is a table with M rows and multiple
columns. Each column represents a different class, and the column name specifies the class label.
Each element in the table has the format [x y width height].

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

3 Functions

3-338



threshold — Overlap threshold
0.5 | numeric scalar

Overlap threshold for assigned a detection to a ground truth box, specified as a numeric scalar. The
overlap ratio is computed as the intersection over union.

Output Arguments
precision — Precision values from each detection
numeric scalar | numeric vector

Precision values from each detection, returned as a numeric scalar for single-class bounding boxes.
For multi-class bounding boxes, precision is returned as a numeric vector consisting of metrics for
each class. The class order follows the same column order as the groundTruthBboxes table.

recall — Recall values from each detection
numeric scalar | numeric vector

Recall values from each detection, returned as a numeric scalar for single-class bounding boxes. For
multi-class bounding boxes, recall is returned as a numeric vector consisting of metrics for each
class. The class order follows the same column order as the groundTruthBboxes table.

See Also
bboxOverlapRatio | evaluateDetectionPrecision

Introduced in R2018a

 bboxPrecisionRecall

3-339



bundleAdjustment
Adjust collection of 3-D points and camera poses

Syntax
[xyzRefinedPoints,refinedPoses] = bundleAdjustment(xyzPoints,pointTracks,
cameraPoses,intrinsics)
[wpSetRefined,vSetRefined,pointIndex] = bundleAdjustment(wpSet,vSet,viewIDs,
intrinsics)
[ ___ ,reprojectionErrors] = bundleAdjustment( ___ )
[ ___ ] = bundleAdjustment( ___ ,Name=Value)

Description
[xyzRefinedPoints,refinedPoses] = bundleAdjustment(xyzPoints,pointTracks,
cameraPoses,intrinsics) refines 3-D points and camera poses to minimize reprojection errors.
The refinement procedure is a variant of the Levenberg-Marquardt algorithm. The function uses the
same global reference coordinate system to return both the 3-D points and camera poses.

[wpSetRefined,vSetRefined,pointIndex] = bundleAdjustment(wpSet,vSet,viewIDs,
intrinsics) refines 3-D points from the world point set, wpSet, and refines camera poses from the
image view set, vSet. viewIDs specify the camera poses in vSet to refine.

[ ___ ,reprojectionErrors] = bundleAdjustment( ___ ) returns the mean reprojection error
for each 3-D world point, in addition to the arguments from the previous syntax.

[ ___ ] = bundleAdjustment( ___ ,Name=Value) specifies options using one or more name-
value arguments in addition to any combination of arguments from previous syntaxes. For example,
MaxIterations=50 sets the number of iterations to 50. Unspecified arguments have default values.

Examples

Refine 3-D points and camera poses From Single Camera

Load data for initialization.

data = load('sfmGlobe');

Refine the camera poses and points.

[xyzRefinedPoints,refinedPoses] = ...
    bundleAdjustment(data.xyzPoints,data.pointTracks,data.cameraPoses,data.intrinsics);

Display the refined 3-D points and camera poses.

pcshow(xyzRefinedPoints,'VerticalAxis','y','VerticalAxisDir', ...
    'down','MarkerSize',45)
hold on
plotCamera(refinedPoses,'Size',0.1)

3 Functions

3-340



hold off
grid on

Input Arguments
xyzPoints — Unrefined 3-D points
M-by-3 matrix

Unrefined 3-D points, specified as an M-by-3 matrix of [x y z] locations.

pointTracks — Matching points across multiple images
N-element array of pointTrack objects

Matching points across multiple images, specified as an N-element array of pointTrack objects.
Each element contains two or more matching points across multiple images.

cameraPoses — Camera pose information
two-column table

Camera pose ViewId and AbsolutePose information, specified as a two-column table. The view IDs
relate to the IDs of the objects in the pointTracks argument. You can use the poses object function
to obtain the cameraPoses table.

intrinsics — Camera intrinsics
cameraIntrinsics object | N-element array of cameraIntrinsics objects

 bundleAdjustment

3-341



Camera intrinsics, specified as a cameraIntrinsics object or an N-element array of
cameraIntrinsics objects. N is the number of camera poses or the number of IDs in viewIDs. Use
a single cameraIntrinsics object when images are captured using the same camera. Use a vector
cameraIntrinsics objects when images are captured by different cameras.

wpSet — 3-D world points
worldpointset object

3-D world points, specified as a worldpointset object.

vSet — Camera poses
imageviewset object

Camera poses, specified as an imageviewset object.

viewIDs — View identifiers
N-element array

View identifiers, specified as an N-element array. The viewIDs represent which camera poses to
refine specifying their related views in imageviewset.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MaxIterations=50 sets the number of iterations to 50.

MaxIterations — Maximum number of iterations
50 (default) | positive integer

Maximum number of iterations before the Levenberg-Marquardt algorithm stops, specified as a
positive integer.

AbsoluteTolerance — Absolute termination tolerance
1.0 (default) | positive scalar

Absolute termination tolerance of the mean squared reprojection error in pixels, specified as positive
scalar.

RelativeTolerance — Relative termination tolerance
1e-5 (default) | positive scalar

Relative termination tolerance of the reduction in reprojection error between iterations, specified as
positive scalar.

PointsUndistorted — Flag to indicate lens distortion
false (default) | true

Flag to indicate lens distortion, specified as false or true. When you set PointsUndistorted to
false, the 2-D points in pointTracks or in vSetmust be from images with lens distortion. To use
undistorted points, first use the undistortImage function to remove distortions from the images,
then set PointsUndistorted.

3 Functions

3-342



FixedViewIDs — View IDs for fixed camera pose
[] (default) | vector of nonnegative integers

View IDs for fixed camera pose, specified as a vector of nonnegative integers. Each ID corresponds to
the ViewId of a fixed camera pose in cameraPoses. An empty value for FixedViewIDs means that
all camera poses are optimized.

Solver — Solver
'sparse-linear-algebra' (default) | 'preconditioned-conjugate-gradient'

Solver, specified as 'sparse-linear-algebra' or 'preconditioned-conjugate-gradient'.
Use the 'sparse-linear-algebra' solver for low sparsity images. Low sparsity indicates that
many camera views observe some of the same world points. Use the 'preconditioned-
conjugate-gradient' (PCG) solver, from the general graphic optimization (g2o) library, for high
sparsity images. High sparsity indicates that each camera view observes, only a small portion of the
world points, specified by xyzPoints.

Verbose — Display progress information
false (default) | true

Display progress information, specified as false or true.

Output Arguments
xyzRefinedPoints — 3-D locations of refined world points
M-by-3 matrix

3-D locations of refined world points, returned as an M-by-3 matrix of [x y z] locations.
Data Types: single | double

refinedPoses — Refined camera poses
three-column table

Refined camera poses, returned as a three-column table. The table contains columns for ViewId,
Orientation, and Location.

wpSetRefined — Refined 3-D world points
worldpointset object

Refined 3-D world points, returned as a worldpointset object.

vSetRefined — Refined camera poses
imageviewset object

Refined camera poses, specified as an imageviewset object.

pointIndex — Indices of refined 3-D world points
M-element array

Indices to wpSetRefined of refined 3-D world points, returned as an M-element array.

reprojectionErrors — Reprojection errors
M-element vector

 bundleAdjustment

3-343



Reprojection errors, returned as an M-element vector. The function projects each world point back
into each camera. Then, in each image, the function calculates the reprojection error as the distance
between the detected and the reprojected point. The reprojectionErrors vector contains the
average reprojection error for each world point.

References
[1] Lourakis, Manolis I. A., and Antonis A. Argyros. "SBA: A Software Package for Generic Sparse

Bundle Adjustment." ACM Transactions on Mathematical Software 36, no. 1 (March 2009):
2:1–2:30.

[2] Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd ed.
Cambridge, UK ; New York: Cambridge University Press, 2003.

[3] Triggs, Bill, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. "Bundle
Adjustment — A Modern Synthesis." In Proceedings of the International Workshop on Vision
Algorithms, 298–372. Springer-Verlag, 1999.

See Also
Functions
bundleAdjustmentMotion | bundleAdjustmentStructure | relativeCameraPose |
undistortImage | undistortPoints | cameraMatrix | triangulateMultiview

Objects
cameraIntrinsics | pointTrack | viewSet | cameraParameters | worldpointset |
imageviewset

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Code Generation for Depth Estimation From Stereo Video”
“Structure from Motion Overview”

Introduced in R2016a

3 Functions

3-344



bundleAdjustmentMotion
Adjust collection of 3-D points and camera poses using motion-only bundle adjustment

Syntax
refinedPose = bundleAdjustmentMotion(xyzPoints,imagePoints,absolutePose,
intrinsics)
[refinedPose,reprojectionErrors] = bundleAdjustmentMotion( ___ )
[ ___ ] = bundleAdjustmentMotion( ___ ,Name,Value)

Description
refinedPose = bundleAdjustmentMotion(xyzPoints,imagePoints,absolutePose,
intrinsics) returns the refined absolute camera pose that minimizes reprojection errors.

The motion-only refinement procedure is a special case of the Levenberg-Marquardt algorithm for
bundle adjustment with 3-D points fixed during optimization. The 3-D points and the camera pose are
placed in the same world coordinate system.

[refinedPose,reprojectionErrors] = bundleAdjustmentMotion( ___ ) additionally
returns an N-element vector containing the mean reprojection error for each 3-D world point using
the arguments from the previous syntax.

[ ___ ] = bundleAdjustmentMotion( ___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments. Unspecified properties have default values.

Examples

Refine Absolute Camera Pose

Load data for initialization into the workspace.

data = load('motionOnlyBA.mat');

Refine the absolute camera poses.

refinedPose = bundleAdjustmentMotion(data.xyzPoints,data.imagePoints,data.absPose,data.intrinsics);

Display the 3-D world points.

pcshow(data.xyzPoints,'VerticalAxis','y','VerticalAxisDir','down','MarkerSize',45);
hold on

Plot the absolute camera poses before and after refinement.

plotCamera('AbsolutePose',data.absPose,'Color','r','Size',2);
plotCamera('AbsolutePose',refinedPose,'Color','m','Size',2);

 bundleAdjustmentMotion

3-345



Input Arguments
xyzPoints — Unrefined 3-D points
M-by-3 matrix

Unrefined 3-D points, specified as an M-by-3 matrix of [x,y,z] locations.
Data Types: single | double

imagePoints — Image points
M-by-2 matrix | M-element feature point array

Image points, specified as an M-by-2 matrix or an M-element “Point Feature Types” array.

absolutePose — Absolute camera pose
scalar rigid3d object

Absolute camera pose, specified as a scalar rigid3d object.

intrinsics — Camera intrinsics
cameraIntrinsics object

Camera intrinsics, specified as a cameraIntrinsics object.

3 Functions

3-346



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxIterations', '50'

MaxIterations — Maximum number of iterations
50 (default) | positive integer

Maximum number of iterations before the Levenberg-Marquardt algorithm stops, specified as the
comma-separated pair consisting of 'MaxIterations' and a positive integer.

AbsoluteTolerance — Absolute termination tolerance
1.0 (default) | positive scalar

Absolute termination tolerance of the mean squared reprojection error in pixels, specified as the
comma-separated pair consisting of 'AbsoluteTolerance' and a positive scalar.

RelativeTolerance — Relative termination tolerance
1e-5 (default) | positive scalar

Relative termination tolerance of the reduction in reprojection error between iterations, specified as
the comma-separated pair consisting of 'RelativeTolerance' and a positive scalar.

PointsUndistorted — Flag to indicate lens distortion
false (default) | true

Flag to indicate lens distortion, specified as the comma-separated pair consisting of
'PointsUndistorted' and either false or true. When you set PointsUndistorted to false, the
2-D points in pointTracks must be from images with lens distortion. To use undistorted points, use
the undistortImage function first, then set PointsUndistorted to true.

Verbose — Display progress information
False (default) | true

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and
either false or true.

Output Arguments
refinedPose — Refined absolute pose
scalar rigid3d object

Refined absolute pose of the camera, returned as a rigid3d object.

reprojectionErrors — Reprojection errors
M-element vector

Reprojection errors, returned as an M-elment vector. The function projects each world point back into
each camera. Then in each image, the function calculates the reprojection error as the distance

 bundleAdjustmentMotion

3-347



between the detected and the reprojected point. The reprojectionErrors vector contains the
average reprojection error for each world point.

References
[1] Lourakis, M.I.A. and A.A. Argyros. "SBA: A Software Package for Generic Sparse Bundle

Adjustment". ACM Transactions on Mathematical Software. Volume 36, Issue 1. March 2009.

[2] Hartley, R. and A. Zisserman. "Multiple View Geometry in Computer Vision". Cambridge
University Press. 2003

[3] Triggs, B., P. McLauchlan, R. Hartley, and A. Fitzgibbon. "Bundle Adjustment: A Modern
Synthesis". Proceedings of the International Workshop on Vision Algorithms: Theory and
Practice. Pages 298 — 372. Springer-Verlag. 1999.

See Also
Objects
rigid3d | imageviewset | cameraParameters | cameraIntrinsics

Functions
bundleAdjustment | bundleAdjustmentStructure

Topics
“Point Feature Types”

Introduced in R2020a

3 Functions

3-348



bundleAdjustmentStructure
Refine 3-D points using structure-only bundle adjustment

Syntax
xyzRefinedPoints = bundleAdjustmentStructure(xyzPoints,pointTracks,
cameraPoses,intrinsics)
[wpSetRefined,vSetRefined,pointIndex] = bundleAdjustmentStructure(wpSet,vSet,
viewID,intrinsics)
[xyzRefinedPoints,reprojectionErrors] = bundleAdjustmentStructure( ___ )
[ ___ ] = bundleAdjustmentStructure( ___ ,Name,Value)

Description
xyzRefinedPoints = bundleAdjustmentStructure(xyzPoints,pointTracks,
cameraPoses,intrinsics) returns the refined 3-D points that minimize reprojection errors.

The structure-only refinement procedure is a special case of bundle adjustment with camera poses
fixed during optimization. The 3-D points and the camera poses are placed in the same world
coordinate system.

[wpSetRefined,vSetRefined,pointIndex] = bundleAdjustmentStructure(wpSet,vSet,
viewID,intrinsics) refines 3-D points from the world point set, wpSet, and refines camera poses
from the image view set, vSet. viewID specifies the IDs if the views in vSet.

[xyzRefinedPoints,reprojectionErrors] = bundleAdjustmentStructure( ___ )
additionally returns an N-element vector containing the mean reprojection error for each 3-D world
point using the arguments from the previous syntax.

[ ___ ] = bundleAdjustmentStructure( ___ ,Name,Value) uses additional options specified
by one or more Name,Value pair arguments. Unspecified properties have default values.

Examples

Refine 3-D Points From Single Camera

Load data for initialization.

data = load('sfmGlobe');

Refine the 3-D world points.

xyzRefinedPoints = bundleAdjustmentStructure(data.xyzPoints,data.pointTracks,data.cameraPoses,data.intrinsics);

Display the refined 3-D world points.

pcshow(xyzRefinedPoints,'VerticalAxis','y','VerticalAxisDir','down','MarkerSize',45);

Display the cameras.

 bundleAdjustmentStructure

3-349



hold on
plotCamera(data.cameraPoses,'Size',0.2);
hold off
grid on

Input Arguments
xyzPoints — Unrefined 3-D points
M-by-3 matrix

Unrefined 3-D points, specified as an M-by-3 matrix of [x,y,z] locations.
Data Types: single | double

pointTracks — Matched points
N-element array of pointTracks objects

Matched points across multiple images, specified as an N-element array of pointTracks objects.

cameraPoses — Camera poses
table

Camera poses, specified as a table containing two columns for 'ViewId' and 'AbsolutePose'. You
can get the cameraPoses table using the imageviewset poses object function.

3 Functions

3-350



wpSet — 3-D world points
worldpointset object

3-D world points, specified as a worldpointset object.

vSet — Camera poses
imageviewset object

Camera poses, specified as an imageviewset object.

viewID — View identifiers of the views in vSet
N-element array

View identifiers of the views in vSet, specified as an N-element array. The viewIDs represent which
camera poses to refine specifying their related views in imageviewset.

intrinsics — Camera intrinsics
scalar | N-element array of cameraIntrinsics objects

Camera intrinsics, specified as a cameraIntrinsics object or an N-element array of
cameraIntrinsics objects. N is the number of camera poses or the number of IDs in viewIDs. Use
a single cameraIntrinsics object when images are captured using the same camera. Use a vector
cameraIntrinsics objects when images are captured by different cameras.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MaxIterations=50 sets the number of iterations to 50.

MaxIterations — Maximum number of iterations
50 (default) | positive integer

Maximum number of iterations before the Levenberg-Marquardt algorithm stops, specified as the
comma-separated pair consisting of 'MaxIterations' and a positive integer.

AbsoluteTolerance — Absolute termination tolerance
1.0 (default) | positive scalar

Absolute termination tolerance of the mean squared reprojection error in pixels, specified as the
comma-separated pair consisting of 'AbsoluteTolerance' and a positive scalar.

RelativeTolerance — Relative termination tolerance
1e-5 (default) | positive scalar

Relative termination tolerance of the reduction in reprojection error between iterations, specified as
the comma-separated pair consisting of 'RelativeTolerance' and a positive scalar.

PointsUndistorted — Flag to indicate lens distortion
false (default) | true

Flag to indicate lens distortion, specified as false or true. When you set PointsUndistorted to
false, the 2-D points in pointTracks or in vSetmust be from images with lens distortion. To use

 bundleAdjustmentStructure

3-351



undistorted points, first use the undistortImage function to remove distortions from the images,
then set PointsUndistorted.

Verbose — Display progress information
False (default) | true

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and
either false or true.

Output Arguments
xyzRefinedPoints — 3-D locations of refined world points
M-by-3 matrix

3-D locations of refined world points, returned as an M-by-3 matrix of [x,y, z] locations.
Data Types: single | double

wpSetRefined — Refined 3-D world points
worldpointset object

Refined 3-D world points, returned as a worldpointset object.

vSetRefined — Refined camera poses
imageviewset object

Refined camera poses, returned as a imageviewset object.

pointIndex — Indices of refined 3-D world points
M-element array

Indices to wpSetRefined of refined 3-D world points, returned as an M-element array.

reprojectionErrors — Reprojection errors
M-element vector

Reprojection errors, returned as an M-elment vector. The function projects each world point back into
each camera. Then in each image, the function calculates the reprojection error as the distance
between the detected and the reprojected point. The reprojectionErrors vector contains the
average reprojection error for each world point.

References
[1] Lourakis, M.I.A. and A.A. Argyros. "SBA: A Software Package for Generic Sparse Bundle

Adjustment". ACM Transactions on Mathematical Software. Volume 36, Issue 1. March 2009.

3 Functions

3-352



[2] Hartley, R. and A. Zisserman. "Multiple View Geometry in Computer Vision". Cambridge
University Press. 2003

[3] Triggs, B., P. McLauchlan, R. Hartley, and A. Fitzgibbon. "Bundle Adjustment: A Modern
Synthesis". Proceedings of the International Workshop on Vision Algorithms: Theory and
Practice. Pages 298 — 372. Springer-Verlag. 1999.

See Also
Objects
rigid3d | imageviewset | cameraParameters | cameraIntrinsics | imageviewset |
worldpointset

Functions
bundleAdjustment | bundleAdjustmentMotion

Introduced in R2020a

 bundleAdjustmentStructure

3-353



OCR Trainer
Train an optical character recognition model to recognize a specific set of characters

Description
The OCR Trainer app allows you to label character data for OCR training interactively and to
generate an OCR language data file for use with the ocr function.

Open the OCR Trainer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter ocrTrainer.

Programmatic Use
ocrTrainer opens the OCR Trainer app.

ocrTrainer(sessionFile) opens the app and loads a saved OCR training session. sessionFile
is the path to the MAT file containing the saved session.

See Also
ocr

Topics
“Train Optical Character Recognition for Custom Fonts”

3 Functions

3-354



Introduced in R2016a

 OCR Trainer

3-355



listTrueTypeFonts
List available TrueType fonts

Syntax
fontNames = listTrueTypeFonts

Description
fontNames = listTrueTypeFonts returns a cell array of sorted TrueType font names installed on
the system.

Use listTrueTypeFonts function with the insertText function.

Note To display fonts that are available with MATLAB graphics, use the listfonts function.

Examples

List Available TrueType Fonts
listTrueTypeFonts

ans = 372x1 cell
    {'Agency FB'               }
    {'Agency FB Bold'          }
    {'Algerian'                }
    {'Arial'                   }
    {'Arial Black'             }
    {'Arial Bold'              }
    {'Arial Bold Italic'       }
    {'Arial Italic'            }
    {'Arial Narrow'            }
    {'Arial Narrow Bold'       }
    {'Arial Narrow Bold Italic'}
    {'Arial Narrow Italic'     }
    {'Arial Rounded MT Bold'   }
    {'Bahnschrift'             }
    {'Baskerville Old Face'    }
    {'Bauhaus 93'              }
    {'Bell MT'                 }
    {'Bell MT Bold'            }
    {'Bell MT Italic'          }
    {'Berlin Sans FB'          }
    {'Berlin Sans FB Bold'     }
    {'Berlin Sans FB Demi Bold'}
    {'Bernard MT Condensed'    }
    {'Blackadder ITC'          }
    {'Bodoni MT'               }
    {'Bodoni MT Black'         }
    {'Bodoni MT Black Italic'  }

3 Functions

3-356



    {'Bodoni MT Bold'          }
    {'Bodoni MT Bold Italic'   }
    {'Bodoni MT Condensed'     }
      ⋮

List All TrueType 'Lucida' Fonts

fontNames = listTrueTypeFonts;
LucidaFonts = fontNames(~cellfun(@isempty,regexp(fontNames,'^Lucida')))

LucidaFonts = 21x1 cell
    {'Lucida Bright'                      }
    {'Lucida Bright Demibold'             }
    {'Lucida Bright Demibold Italic'      }
    {'Lucida Bright Italic'               }
    {'Lucida Calligraphy Italic'          }
    {'Lucida Console'                     }
    {'Lucida Fax Demibold'                }
    {'Lucida Fax Demibold Italic'         }
    {'Lucida Fax Italic'                  }
    {'Lucida Fax Regular'                 }
    {'Lucida Handwriting Italic'          }
    {'Lucida Sans Demibold Italic'        }
    {'Lucida Sans Demibold Roman'         }
    {'Lucida Sans Italic'                 }
    {'Lucida Sans Regular'                }
    {'Lucida Sans Typewriter Bold'        }
    {'Lucida Sans Typewriter Bold Oblique'}
    {'Lucida Sans Typewriter Oblique'     }
    {'Lucida Sans Typewriter Regular'     }
    {'Lucida Sans Unicode'                }
    {'LucidaSansRegular'                  }

Output Arguments
fontNames — Available TrueType fonts on system
cell array

Available TrueType fonts on system, returned as a cell array of sorted TrueType font names.

See Also
insertObjectAnnotation | insertText | listfonts

Introduced in R2015b

 listTrueTypeFonts

3-357



pcfromkinect
Point cloud from Kinect for Windows

Syntax
ptCloud = pcfromkinect(depthDevice,depthImage)
ptCloud = pcfromkinect(depthDevice,depthImage,colorImage)
ptCloud = pcfromkinect(depthDevice,depthImage,colorImage,alignment)

Description
ptCloud = pcfromkinect(depthDevice,depthImage) returns a point cloud from a Kinect
depth image. The depthDevice input can be either a videoinput object or an imaq.VideoDevice
object configured for Kinect (Versions 1 and 2) for Windows.

This function requires the Image Acquisition Toolbox™ software, which supports Kinect for Windows.

ptCloud = pcfromkinect(depthDevice,depthImage,colorImage) adds color to the returned
point cloud, specified by the colorImage input.

The Kinect for Windows system, designed for gaming, produces depthImage and colorImage as
mirror images of the scene. The returned point cloud is corrected to match the actual scene.

ptCloud = pcfromkinect(depthDevice,depthImage,colorImage,alignment) additionally
returns the color point cloud with the origin specified at the center of the depth camera.

Examples

Plot Color Point Cloud from Kinect for Windows

Plot a color point cloud from Kinect images. This example requires the Image Acquisition Toolbox
software and the Kinect camera and a connection to the camera.

Create a System object for the color device.

colorDevice = imaq.VideoDevice('kinect',1)

Create a System object for the depth device.

depthDevice = imaq.VideoDevice('kinect',2)

Initialize the camera.

step(colorDevice);
step(depthDevice);

Load one frame from the device.

colorImage = step(colorDevice);
depthImage = step(depthDevice);

3 Functions

3-358



Extract the point cloud.

ptCloud = pcfromkinect(depthDevice,depthImage,colorImage);

Initialize a point cloud player to visualize 3-D point cloud data. The axis is set appropriately to
visualize the point cloud from Kinect.

player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits,...
    'VerticalAxis','y','VerticalAxisDir','down');

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

Acquire and view 500 frames of live Kinect point cloud data.

for i = 1:500    
   colorImage = step(colorDevice);  
   depthImage = step(depthDevice);
 
   ptCloud = pcfromkinect(depthDevice,depthImage,colorImage);
 
   view(player,ptCloud);
end

 pcfromkinect

3-359



Release the objects.

3 Functions

3-360



release(colorDevice);
release(depthDevice);

Input Arguments
depthDevice — Input video object
videoinput object | imaq.VideoDevice object

Input video object, specified as either a videoinput object or an imaq.VideoDevice object
configured for Kinect for Windows.

depthImage — Depth image
M-by-N matrix

Depth image, specified as an M-by-N pixel matrix. The original images, depthImage and
colorImage, from Kinect are mirror images of the scene.

The Kinect depth camera has limited range. The limited range of the Kinect depth camera can cause
pixel values in the depth image to not have corresponding 3-D coordinates. These missing pixel
values are set to NaN in the Location property of the returned point cloud.
Data Types: uint16

colorImage — Color image
M-by-N-by-3 RGB truecolor image

Color image, specified as an M-by-N-by-3 RGB truecolor image that the Kinect returns. The original
images, depthImage and colorImage, from Kinect are mirror images of the scene.
Data Types: uint8

alignment — Direction of the image coordinate system
'colorCentric' (default) | 'depthCentric'

Direction of the image coordinate system, specified as the character vector 'colorCentric' or
'depthCentric'. Set this value to 'colorCentric' to align depthImage with colorImage. Set
alignment to 'depthCentric' to align colorImage with depthImage.

The origin of a right-handed world coordinate system is at the center of the depth camera. The x-axis
of the coordinate system points to the right, the y-axis points downward, and the z-axis points from
the camera.

 pcfromkinect

3-361



Note For consistency across Computer Vision Toolbox use of coordinates systems, the coordinate
system defined by this function is different from the one defined by Kinect Skeletal metadata.

Output Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object. The origin of the coordinate system of the returned
point cloud is at the center of the depth camera.

See Also
pointCloud | pcplayer | planeModel | plot3 | pcwrite | pcread | pcshow | pcmerge |
scatter3 | reconstructScene | triangulate | pcdownsample | pcfitplane | pcdenoise |
pcregistericp

Topics
“Structure From Motion From Two Views”
“Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2015b

3 Functions

3-362



Camera Calibrator
Estimate geometric parameters of a single camera

Description
The Camera Calibrator app allows you to estimate camera intrinsics, extrinsics, and lens distortion
parameters. You can use these camera parameters for various computer vision applications. These
applications include removing the effects of lens distortion from an image, measuring planar objects,
or reconstructing 3-D scenes from multiple cameras.

Open the Camera Calibrator App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter cameraCalibrator.

Examples

 Camera Calibrator

3-363



Open Camera Calibrator App

This example shows you the two ways to open the Camera Calibrator app.

Type cameraCalibrator on the MATLAB command line or select it from the MATLAB desktop Apps
tab.

• “Evaluating the Accuracy of Single Camera Calibration”
• “Measuring Planar Objects with a Calibrated Camera”
• “Structure From Motion From Two Views”
• “Structure From Motion From Multiple Views”
• “Depth Estimation From Stereo Video”

Programmatic Use
cameraCalibrator opens the Camera Calibrator app, which enables you to compute parameters
needed to remove the effects of lens distortion from an image.

cameraCalibrator(imageFolder,squareSize) opens the app and loads calibration images from
a specified folder and specifies the size of the checkerboard squares contained in the images. The
squareSize input must be a scalar in millimeters.

cameraCalibrator(imageFolder,squareSize,squareSizeUnits) opens the app, loads
calibration images, specifies the checkerboard square size, and the square size units. The
squareSizeUnits input must be specified as 'millimeters' (default), 'centimeters', or
'inches'.

cameraCalibrator( ___ ,highDistortion) opens the app as described by previous syntaxes and
additionally specifies a high distortion logical highDistortion. Set highDistortion to true
when the images contain a high level of distortion, which is typical of a wide field of view camera. Set
highDistortion to false (default) when the images do not contain a high level of distortion.

cameraCalibrator(sessionFile) opens the app and loads a saved camera calibration session.
Set the sessionFile to the name of the saved session file. The name must include the path to the
MAT file containing the saved session.

See Also
Apps
Stereo Camera Calibrator

Classes
cameraParameters | stereoParameters

Functions
estimateCameraParameters | showExtrinsics | showReprojectionErrors |
undistortImage | detectCheckerboardPoints | generateCheckerboardPoints |
rectifyStereoImages | extrinsics | triangulate

Topics
“Evaluating the Accuracy of Single Camera Calibration”

3 Functions

3-364



“Measuring Planar Objects with a Calibrated Camera”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Depth Estimation From Stereo Video”
“What Is Camera Calibration?”
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”

Introduced in R2013b

 Camera Calibrator

3-365



Stereo Camera Calibrator
Estimate geometric parameters of a stereo camera

Description
The Stereo Camera Calibrator app allows you to estimate the intrinsic and extrinsic parameters of
each camera in a stereo pair. You can also use the app to estimate the translation and rotation
between the two cameras.

Open the Stereo Camera Calibrator App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter stereoCameraCalibrator.

Examples

3 Functions

3-366



Open Stereo Camera Calibrator App

This example shows you the two ways to open the Stereo Camera Calibrator app.

Type stereoCameraCalibrator on the MATLAB command line or select it from the MATLAB
desktop Apps tab.

• “Evaluating the Accuracy of Single Camera Calibration”
• “Measuring Planar Objects with a Calibrated Camera”
• “Structure From Motion From Two Views”
• “Structure From Motion From Multiple Views”
• “Depth Estimation From Stereo Video”

Programmatic Use
stereoCameraCalibrator opens the Stereo Camera Calibrator app. You can use this app to
estimate the intrinsic and extrinsic parameters of each camera in a stereo pair. You can also use the
app to estimate the translation and rotation between the two cameras.

stereoCameraCalibrator(folder1,folder2,squareSize) opens the Stereo Camera
Calibrator app and loads the stereo calibration images. The app uses the checkerboard square size
specified by the squareSize input. It also uses folder1 images for camera 1 and folder2 for
camera 2.

stereoCameraCalibrator(folder1,folder2,squareSize,squareSizeUnits) additionally
specifies the units of the square size. If you do not specify units, the app sets squareSizeUnits to
'millimeters'. Units can be 'millimeters', 'centimeters', or 'inches'.

stereoCameraCalibrator(sessionFile) opens the app and loads a saved stereo calibration
session. Set the sessionFile to the name of the saved session MAT-file.

See Also
Camera Calibrator | estimateCameraParameters | showExtrinsics |
showReprojectionErrors | undistortImage | detectCheckerboardPoints |
generateCheckerboardPoints | cameraParameters | stereoParameters

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Measuring Planar Objects with a Calibrated Camera”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Depth Estimation From Stereo Video”
“What Is Camera Calibration?”
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”

Introduced in R2014b

 Stereo Camera Calibrator

3-367



cameraMatrix
Camera projection matrix

Syntax
camMatrix = cameraMatrix(cameraParams,tform)
camMatrix = cameraMatrix(cameraParams,rotationMatrix,translationVector)

Description
camMatrix = cameraMatrix(cameraParams,tform) returns a 4-by-3 camera projection matrix
camMatrix, which can be used to project a 3-D world point in homogeneous coordinates into an
image. cameraParams can be a cameraParameters object or a cameraIntrinsics object.

camMatrix = cameraMatrix(cameraParams,rotationMatrix,translationVector) returns
a 4-by-3 camera projection matrix. You can use this matrix to project 3-D world points in
homogeneous coordinates into an image.

Examples

Compute Camera Matrix

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','slr'));

Detect the checkerboard corners in the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system,
with the upper-left corner at (0,0). The square size is in millimeters.

squareSize = 29; 
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I,1),size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
                                       'ImageSize',imageSize);

Load image at new location.

imOrig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ...
      'calibration','slr','image9.jpg'));
figure; imshow(imOrig);
title('Input Image');

3 Functions

3-368



Undistort image.

im = undistortImage(imOrig,cameraParams);

Find reference object in new image.

[imagePoints,boardSize] = detectCheckerboardPoints(im);

Compute new extrinsics.

[rotationMatrix,translationVector] = extrinsics(...
    imagePoints,worldPoints,cameraParams);

Calculate camera matrix

P = cameraMatrix(cameraParams,rotationMatrix,translationVector)

P = 4×3
105 ×

    0.0157   -0.0271    0.0000
    0.0404   -0.0046   -0.0000
    0.0199    0.0387    0.0000
    8.9399    9.4399    0.0072

 cameraMatrix

3-369



Input Arguments
cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can
return the cameraParameters object using the estimateCameraParameters function. The
cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

tform — Transformation
rigid3d object

Transformation from world coordinates to camera coordinates, specified as a rigid3d object. You
can use the extrinsics function to obtain the rotation and translation to create the tform object.

rotationMatrix — Rotation of camera
3-by-3 matrix

Rotation of camera, specified as a 3-by-3 matrix. You can obtain this matrix using the extrinsics
function. You can also obtain the matrix using the relativeCameraPose function by transposing its
orientation output. The rotationMatrix and translationVector inputs must be real,
nonsparse, and of the same class.

translationVector — Translation of camera
1-by-3 vector

Translation of camera, specified as a 1-by-3 vector. The translation vector describes the
transformation from the world coordinates to the camera coordinates. You can obtain this vector
using the extrinsics function. You can also obtain the vector using the location and
orientation outputs of the relativeCameraPose function:

• translationVector = -relativeLocation * relativeOrientation'

The translationVector inputs must be real, nonsparse, and of the same class.

Output Arguments
camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, returned as a 4-by-3 matrix. The matrix contains the 3-D world points in
homogenous coordinates that are projected into the image. When you set rotationMatrix and
translationVector to double, the function returns camMatrix as double. Otherwise it returns
camMatrix as single.

The function computes camMatrix as follows:

camMatrix = [rotationMatrix; translationVector] × K.
K: the intrinsic matrix

Then, using the camera matrix and homogeneous coordinates, you can project a world point onto the
image.

3 Functions

3-370



w × [x,y,1] = [X,Y,Z,1] × camMatrix.

(X,Y,Z): world coordinates of a point
(x,y): coordinates of the corresponding image point
w: arbitrary scale factor
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
extrinsics | triangulate | estimateCameraParameters | relativeCameraPose |
estimateCameraMatrix

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Depth Estimation From Stereo Video”
“Code Generation for Depth Estimation From Stereo Video”
“What Is Camera Calibration?”
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”

Introduced in R2014b

 cameraMatrix

3-371



cameraPose
Compute relative rotation and translation between camera poses

Syntax
cameraPose

Description
cameraPose returns the camera extrinsics.

Note cameraPose was renamed to relativeCameraPose. Please use the new function in place of
cameraPose.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

Introduced in R2015b

3 Functions

3-372



relativeCameraPose
Compute relative rotation and translation between camera poses

Syntax
[relativeOrientation,relativeLocation] = relativeCameraPose(M,cameraParams,
inlierPoints1,inlierPoints2)
[relativeOrientation,relativeLocation] = relativeCameraPose(M,cameraParams1,
cameraParams2,inlierPoints1,inlierPoints2)
[relativeOrientation,relativeLocation,validPointsFraction] =
relativeCameraPose(M, ___ )

Description
[relativeOrientation,relativeLocation] = relativeCameraPose(M,cameraParams,
inlierPoints1,inlierPoints2) returns the orientation and location of a calibrated camera
relative to its previous pose. The two poses are related by M, which must be a fundamental, essential,
affine2d, or projective2d matrix. The function computes the camera location up to scale and
returns relativeLocation as a unit vector.

[relativeOrientation,relativeLocation] = relativeCameraPose(M,cameraParams1,
cameraParams2,inlierPoints1,inlierPoints2) returns the orientation and location of the
second camera relative to the first one.

[relativeOrientation,relativeLocation,validPointsFraction] =
relativeCameraPose(M, ___ ) additionally returns the fraction of the inlier points that project in
front of both cameras.

Input Arguments
M — Fundamental, essential, or homography matrix
3-by-3 matrix

Fundamental, essential matrix, or a homography matrix, specified as a 3-by-3 matrix, an affine2d
object, or a projective2d object containing a homography matrix. You can obtain the 3-by-3 matrix
using one of the following functions:

• estimateFundamentalMatrix for the fundamental matrix.
• estimateEssentialMatrix for the essential matrix
• estimateGeometricTransform for the projective or affine 2-D object.

Data Types: single | double

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can
return the cameraParameters object using the estimateCameraParameters function. The

 relativeCameraPose

3-373



cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

cameraParams1 — Camera parameters for camera 1
cameraParameters object | cameraIntrinsics object

Camera parameters for camera 1, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters function.
The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

cameraParams2 — Camera parameters for camera 2
cameraParameters object | cameraIntrinsics object

Camera parameters for camera 2, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters function.
The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

inlierPoints1 — Coordinates of corresponding points in view 1
SIFTPoints | SURFPoints | cornerPoints | MSERRegions | M-by-2 matrix of [x,y] coordinates

Coordinates of corresponding points in view 1, specified as an M-by-2 matrix of M number of [x,y]
coordinates, or as a SIFTPoints, SURFPoints, MSERRegions, or cornerPoints object. You can
obtain these points using the estimateFundamentalMatrix function or the
estimateEssentialMatrix.

inlierPoints2 — Coordinates of corresponding points in view 2
SIFTPoints | SURFPoints | cornerPoints | MSERRegions | M-by-2 matrix of [x,y] coordinates

Coordinates of corresponding points in view 2, specified as an M-by-2 matrix of M number of [x,y]
coordinates, or as a SIFTPoints, SURFPoints, MSERRegions, or cornerPoints object. You can
obtain these points using the estimateFundamentalMatrix function or the
estimateEssentialMatrix.

Output Arguments
relativeOrientation — Orientation of camera
3-by-3 matrix

Orientation of camera, returned as a 3-by-3 matrix. If you use only one camera, the matrix describes
the orientation of the second camera pose relative to the first camera pose. If you use two cameras,
the matrix describes the orientation of camera 2 relative to camera 1.
Data Types: single | double

relativeLocation — Location of camera
1-by-3 vector

Location of camera, returned as a 1-by-3 unit vector. If you use only one camera, the vector describes
the location of the second camera pose relative to the first camera pose. If you use two cameras, the
vector describes the location of camera 2 relative to camera 1.
Data Types: single | double

3 Functions

3-374



validPointsFraction — Fraction of valid inlier points
scalar

Fraction of valid inlier points that project in front of both cameras, returned as a scalar. If
validPointsFraction is too small, e.g. less than 0.9, it can indicate that the fundamental matrix is
incorrect.

Tips
• You can compute the camera extrinsics, rotationMatrix and translationVector,

corresponding to the camera pose, from relativeOrientation and relativeLocation:

[rotationMatrix,translationVector] = cameraPoseToExtrinsics(relativeOrientation,relativeLocation)

The orientation of the previous camera pose is the identity matrix, eye(3), and its location is,
[0,0,0].

• You can then use rotationMatrix and translationVector as inputs to the cameraMatrix
function.

• You can compute four possible combinations of orientation and location from the input
fundamental matrix. Three of the combinations are not physically realizable, because they project
3-D points behind one or both cameras. The relativeCameraPose function uses
inlierPoints1 and inlierPoints2 to determine the realizable combination.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Apps
Camera Calibrator

Functions
estimateWorldCameraPose | estimateCameraParameters | estimateEssentialMatrix |
estimateFundamentalMatrix | cameraMatrix | plotCamera | triangulate |
triangulateMultiview | cameraPoseToExtrinsics

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Point Feature Types”
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”
“Structure from Motion Overview”

Introduced in R2016b

 relativeCameraPose

3-375



estimateCameraMatrix
Estimate camera projection matrix from world-to-image point correspondences

Syntax
camMatrix = estimateCameraMatrix(imagePoints,worldPoints)
[camMatrix,reprojectionErrors] = estimateCameraMatrix(imagePoints,
worldPoints)

Description
camMatrix = estimateCameraMatrix(imagePoints,worldPoints) returns the camera
projection matrix determined from known world points and their corresponding image projections by
using the direct linear transformation (DLT) approach.

[camMatrix,reprojectionErrors] = estimateCameraMatrix(imagePoints,
worldPoints) also returns the reprojection error that quantifies the accuracy of the projected
image coordinates.

Examples

Estimate Camera Projection Matrix

Load a 3-D point cloud data captured by an RGB-D sensor into the workspace.

ld = load('object3d.mat');
ptCloud = ld.ptCloud;

Remove points with Inf or NaN coordinates from the point cloud.

[validPtCloud,validIndices] = removeInvalidPoints(ptCloud);

Read the valid world point coordinates. Each entry specifies the x, y, z coordinates of a point in the
point cloud.

worldPoints = validPtCloud.Location;

Define the corresponding image point coordinates as a orthographic projection of point cloud data
onto the yz-plane.

indices = 1:ptCloud.Count;
[y,z] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [y(validIndices)' z(validIndices)'];

Generate the 2-D image projection by using the image point coordinates and their color values.

projImage = zeros(max(imagePoints(:,1)),max(imagePoints(:,2)),3);
rgb = validPtCloud.Color;
for j = 1:length(rgb)
projImage(imagePoints(j,1),imagePoints(j,2),:) = rgb(j,:);
end

3 Functions

3-376



Display the point cloud data and the corresponding 2-D image projection.

figure
subplot(1,2,1)
pcshow(ptCloud)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Point Cloud Data','Color',[1 1 1])
subplot(1,2,2)
imshow(uint8(projImage))
title('2-D Image Projection','Color',[1 1 1])

Estimate the camera projection matrix and reprojection error by using the known world points and
the image points.

[camMatrix,reprojectionErrors] = estimateCameraMatrix(imagePoints,worldPoints);

Use the estimated camera projection matrix as input to the findNearestNeighbors function and
find the nearest neighbors of a query point.

point = [0.4 0.3 0.2];  % Specify the query point
K = 50;    % Specify the number of nearest neighbors to be determined
[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix);  % Get the indices and distances of nearest neighbors

Use the select function to get the point cloud data of nearest neighbors.

ptCloudB = select(ptCloud,indices); 

 estimateCameraMatrix

3-377



Display the input point cloud and its nearest neighbors.

figure,
pcshow(ptCloud)
hold on
pcshow(ptCloudB.Location,'ob')
hold off
legend('Point Cloud','Nearest Neighbors','Location','southoutside','Color',[1 1 1])

Input Arguments
imagePoints — Coordinates of image projection points
M-by-2 matrix of (x, y) coordinates

Coordinates of image projection points, specified as an M-by-2 matrix of (x, y) coordinates. M is the
number of points and it must be greater than or equal to 6.

Note

• The input image points must correspond to an undistorted image plane.

Data Types: single | double

3 Functions

3-378



worldPoints — 3-D world points
M-by-3 matrix of (x, y, z) coordinates

3-D world points, specified as an M-by-3 matrix of (x, y, z) coordinates. M is the number of points and
it must be greater than or equal to 6.

Note

• The input world coordinates must be non-coplanar points.

Data Types: single | double

Output Arguments
camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, returned as a 4-by-3 matrix. The matrix maps the 3-D world points, in
homogenous coordinates to the 2-D image coordinates of the projections onto the image plane.
Data Types: double

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as a M-by-1 vector. The reprojection error is the error between the
reprojected image points and the input image points. For more information on the computation of
reprojection errors, see “Algorithms” on page 3-379.
Data Types: double

Tips
You can use the estimateCameraMatrix function to estimate a camera projection matrix:

• If the world-to-image point correspondences are known, and the camera intrinsics and extrinsics
parameters are not known, you can use the cameraMatrix function.

• To compute 2-D image points from 3-D world points, refer to the equations in camMatrix.
• For use with the findNearestNeighbors object function of the pointCloud object. The use of

a camera projection matrix speeds up the nearest neighbors search in a point cloud generated by
an RGB-D sensor, such as Microsoft Kinect.

Algorithms
Given the world points X and the image points x, the camera projection matrix C, is obtained by
solving the equation

λx = CX.
The equation is solved using the direct linear transformation (DLT) approach [1]. This approach
formulates a homogeneous linear system of equations, and the solution is obtained through
generalized eigenvalue decomposition.

 estimateCameraMatrix

3-379



Because the image point coordinates are given in pixel values, the approach for computing the
camera projection matrix is sensitive to numerical errors. To avoid numerical errors, the input image
point coordinates are normalized, so that their centroid is at the origin. Also, the root mean squared
distance of the image points from the origin is 2. These steps summarize the process for estimating
the camera projection matrix.

1 Normalize the input image point coordinates with transform T.
2 Estimate camera projection matrix CN from the normalized input image points.
3 Compute the denormalized camera projection matrix C as CNT-1.
4 Compute the reprojected image point coordinates xE as CX.
5 Compute the reprojection errors as

reprojectionErrors = |x− xE|.

References
[1] Richard, H. and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge:

Cambridge University Press, 2000.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Objects
stereoParameters | cameraCalibrationErrors | intrinsicsEstimationErrors |
extrinsicsEstimationErrors | cameraIntrinsics

Functions
estimateCameraParameters | showReprojectionErrors | showExtrinsics |
undistortImage | detectCheckerboardPoints | generateCheckerboardPoints |
cameraMatrix | estimateWorldCameraPose | estimateEssentialMatrix |
estimateFundamentalMatrix | findNearestNeighbors

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Depth Estimation From Stereo Video”
“Code Generation for Depth Estimation From Stereo Video”
“What Is Camera Calibration?”
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”

Introduced in R2019a

3 Functions

3-380



extractLBPFeatures
Extract local binary pattern (LBP) features

Syntax
features = extractLBPFeatures(I)
features = extractLBPFeatures(I,Name,Value)

Description
features = extractLBPFeatures(I) returns extracted uniform local binary pattern (LBP) from
a grayscale image. The LBP features encode local texture information.

features = extractLBPFeatures(I,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Using LBP Features to Differentiate Images by Texture

Read images that contain different textures.

brickWall = imread('bricks.jpg');
rotatedBrickWall = imread('bricksRotated.jpg');
carpet = imread('carpet.jpg');

Display the images.

figure
imshow(brickWall)
title('Bricks')

 extractLBPFeatures

3-381



figure
imshow(rotatedBrickWall)
title('Rotated Bricks')

3 Functions

3-382



figure
imshow(carpet)
title('Carpet')

 extractLBPFeatures

3-383



Extract LBP features from the images to encode their texture information.

lbpBricks1 = extractLBPFeatures(brickWall,'Upright',false);
lbpBricks2 = extractLBPFeatures(rotatedBrickWall,'Upright',false);
lbpCarpet = extractLBPFeatures(carpet,'Upright',false);

Gauge the similarity between the LBP features by computing the squared error between them.

brickVsBrick = (lbpBricks1 - lbpBricks2).^2;
brickVsCarpet = (lbpBricks1 - lbpCarpet).^2;

Visualize the squared error to compare bricks versus bricks and bricks versus carpet. The squared
error is smaller when images have similar texture.

figure
bar([brickVsBrick; brickVsCarpet]','grouped')
title('Squared Error of LBP Histograms')
xlabel('LBP Histogram Bins')
legend('Bricks vs Rotated Bricks','Bricks vs Carpet')

3 Functions

3-384



Apply L1 Normalization to LBP Features

Read in a sample image and convert it to grayscale.

I = imread('gantrycrane.png');
I = im2gray(I);

Extract unnormalized LBP features so that you can apply a custom normalization.

lbpFeatures = extractLBPFeatures(I,'CellSize',[32 32],'Normalization','None');

Reshape the LBP features into a number of neighbors -by- number of cells array to access histograms
for each individual cell.

numNeighbors = 8;
numBins = numNeighbors*(numNeighbors-1)+3;
lbpCellHists = reshape(lbpFeatures,numBins,[]);

Normalize each LBP cell histogram using L1 norm.

lbpCellHists = bsxfun(@rdivide,lbpCellHists,sum(lbpCellHists));

Reshape the LBP features vector back to 1-by- N feature vector.

lbpFeatures = reshape(lbpCellHists,1,[]);

 extractLBPFeatures

3-385



Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified as an M-by-N 2-D grayscale image that is real, and non-sparse.
Data Types: logical | single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumNeighbors',8

Algorithm Parameters
The LBP algorithm parameters control how local binary patterns are computed for each pixel in the
input image.

NumNeighbors — Number of neighbors
8 (default) | positive integer

Number of neighbors used to compute the LBP for each pixel in the input image, specified as the
comma-separated pair consisting of 'NumNeighbors' and a positive integer. The set of neighbors is
selected from a circularly symmetric pattern around each pixel. Increase the number of neighbors to
encode greater detail around each pixel. Typical values range from 4 to 24.

Radius — Radius of circular pattern to select neighbors
1 (default) | positive integer

Radius of circular pattern used to select neighbors for each pixel in the input image, specified as the
comma-separated pair consisting of 'Radius' and a positive integer. To capture detail over a larger
spatial scale, increase the radius. Typical values range from 1 to 5.

Upright — Rotation invariance flag
true | logical scalar

Rotation invariance flag, specified as the comma-separated pair consisting of 'Upright' and a logical
scalar. When you set this property to true, the LBP features do not encode rotation information. Set
'Upright' to false when rotationally invariant features are required.

Interpolation — Interpolation method
'Linear' (default) | 'Nearest'

Interpolation method used to compute pixel neighbors, specified as the comma-separated pair
consisting of 'Interpolation' and either 'Linear' or 'Nearest'. Use 'Nearest' for faster
computation, but with less accuracy.

Histogram Parameters
The histogram parameters determine how the distribution of binary patterns is aggregated over the
image to produce the output features.

3 Functions

3-386



CellSize — Cell size
size(I) (default) | 2-element vector

Cell size, specified as the comma-separated pair consisting of 'CellSize' and a 2-element vector. The
number of cells is calculated as floor(size(I)/CellSize).

Normalization — Type of normalization
'L2' (default) | 'None'

Type of normalization applied to each LBP cell histogram, specified as the comma-separated pair
consisting of 'Normalization' and either 'L2' or 'None'. To apply a custom normalization method
as a post-processing step, set this value to 'None'.

Output Arguments
features — LBP feature vector
1-by-N vector

LBP feature vector, returned as a 1-by-N vector of length N representing the number of features. LBP
features encode local texture information, which you can use for tasks such as classification,
detection, and recognition. The function partitions the input image into non-overlapping cells. To
collect information over larger regions, select larger cell sizes . However, when you increase the cell
size, you lose local detail. N, depends on the number of cells in the image, numCells, the number of
neighbors, P, and the Upright parameter.

The number of cells is calculated as:
numCells = prod(floor(size(I)/CellSize))

The figure shows an image with nine cell histograms. Each histogram describes an LBP feature.

The size of the histogram in each cell is [1,B], where B is the number of bins in the histogram. The
number of bins depends on the Upright property and the number of neighbors, P.

Upright Number of Bins
true (P x P–1) + 3)
false (P + 2)

The overall LBP feature length, N, depends on the number of cells and the number of bins, B:
N = numCells x B

 extractLBPFeatures

3-387



References
[1] Ojala, T., M. Pietikainen, and T. Maenpaa. “Multiresolution Gray Scale and Rotation Invariant

Texture Classification With Local Binary Patterns.” IEEE Transactions on Pattern Analysis and
Machine Intelligence. Vol. 24, Issue 7, July 2002, pp. 971-987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not generate a platform-dependent library.

See Also
extractHOGFeatures | extractFeatures | detectBRISKFeatures | detectMSERFeatures |
matchFeatures | detectSURFFeatures | SURFPoints | MSERRegions |
detectHarrisFeatures | detectFASTFeatures | detectMinEigenFeatures

Topics
“Local Feature Detection and Extraction”

Introduced in R2015b

3 Functions

3-388



configureKalmanFilter
Create Kalman filter for object tracking

Syntax
kalmanFilter = configureKalmanFilter(MotionModel,InitialLocation,
InitialEstimateError,MotionNoise,MeasurementNoise)

Description
kalmanFilter = configureKalmanFilter(MotionModel,InitialLocation,
InitialEstimateError,MotionNoise,MeasurementNoise) returns a vision.KalmanFilter
object configured to track a physical object. This object moves with constant velocity or constant
acceleration in an M-dimensional Cartesian space. The function determines the number of
dimensions, M, from the length of the InitialLocation vector.

This function provides a simple approach for configuring the vision.KalmanFilter object for
tracking a physical object in a Cartesian coordinate system. The tracked object may move with either
constant velocity or constant acceleration. The statistics are the same along all dimensions. If you
need to configure a Kalman filter with different assumptions, use the vision.KalmanFilter object
directly.

Examples

Track an Occluded Object

Detect and track a ball using Kalman filtering, foreground detection, and blob analysis.

Create System objects to read the video frames, detect foreground physical objects, and display
results.

videoReader = VideoReader('singleball.mp4');
videoPlayer = vision.VideoPlayer('Position',[100,100,500,400]);
foregroundDetector = vision.ForegroundDetector('NumTrainingFrames',10,...
                'InitialVariance',0.05);
blobAnalyzer = vision.BlobAnalysis('AreaOutputPort',false,...
                'MinimumBlobArea',70);

Process each video frame to detect and track the ball. After reading the current video frame, the
example searches for the ball by using background subtraction and blob analysis. When the ball is
first detected, the example creates a Kalman filter. The Kalman filter determines the ball?s location,
whether it is detected or not. If the ball is detected, the Kalman filter first predicts its state at the
current video frame. The filter then uses the newly detected location to correct the state, producing a
filtered location. If the ball is missing, the Kalman filter solely relies on its previous state to predict
the ball's current location.

  kalmanFilter = []; isTrackInitialized = false;
   while hasFrame(videoReader)
     colorImage  = readFrame(videoReader);

 configureKalmanFilter

3-389



     foregroundMask = step(foregroundDetector,im2gray(im2single(colorImage)));
     detectedLocation = step(blobAnalyzer,foregroundMask);
     isObjectDetected = size(detectedLocation, 1) > 0;

     if ~isTrackInitialized
       if isObjectDetected
         kalmanFilter = configureKalmanFilter('ConstantAcceleration',...
                  detectedLocation(1,:), [1 1 1]*1e5, [25, 10, 10], 25);
         isTrackInitialized = true;
       end
       label = ''; circle = zeros(0,3);
     else
       if isObjectDetected
         predict(kalmanFilter);
         trackedLocation = correct(kalmanFilter, detectedLocation(1,:));
         label = 'Corrected';
       else
         trackedLocation = predict(kalmanFilter);
         label = 'Predicted';
       end
       circle = [trackedLocation, 5];
     end

     colorImage = insertObjectAnnotation(colorImage,'circle',...
                circle,label,'Color','red');
     step(videoPlayer,colorImage);
     pause(0.1);
   end

3 Functions

3-390



Release resources.

release(videoPlayer);

 configureKalmanFilter

3-391



Input Arguments
MotionModel — Motion model
'ConstantVelocity' | 'ConstantAcceleration'

Motion model, specified as 'ConstantVelocity' or 'ConstantAcceleration'. The motion
model you select applies to all dimensions. For example, for the 2-D Cartesian coordinate system.
This mode applies to both X and Y directions.
Data Types: char

InitialLocation — Initial location of object
vector

Initial location of object, specified as a numeric vector. This argument also determines the number of
dimensions for the coordinate system. For example, if you specify the initial location as a two-element
vector, [x0, y0], then a 2-D coordinate system is assumed.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialEstimateError — Initial estimate uncertainty variance
2-element vector | 3-element vector

3 Functions

3-392



Initial estimate uncertainty variance, specified as a two- or three-element vector. The initial estimate
error specifies the variance of the initial estimates of location, velocity, and acceleration of the
tracked object. The function assumes a zero initial velocity and acceleration for the object, at the
location you set with the InitialLocation property. You can set the InitialEstimateError to
an approximated value:
(assumed values – actual values)2 + the variance of the values

The value of this property affects the Kalman filter for the first few detections. Later, the estimate
error is determined by the noise and input data. A larger value for the initial estimate error helps the
Kalman filter to adapt to the detection results faster. However, a larger value also prevents the
Kalman filter from removing noise from the first few detections.

Specify the initial estimate error as a two-element vector for constant velocity or a three-element
vector for constant acceleration:

MotionModel InitialEstimateError
ConstantVelocity [LocationVariance, VelocityVariance]
ConstantAcceleration [LocationVariance, VelocityVariance, AccelerationVariance]

Data Types: double | single

MotionNoise — Deviation of selected and actual model
2-element vector | 3-element vector

Deviation of selected and actual model, specified as a two- or three-element vector. The motion noise
specifies the tolerance of the Kalman filter for the deviation from the chosen model. This tolerance
compensates for the difference between the object's actual motion and that of the model you choose.
Increasing this value may cause the Kalman filter to change its state to fit the detections. Such an
increase may prevent the Kalman filter from removing enough noise from the detections. The values
of this property stay constant and therefore may affect the long-term performance of the Kalman
filter.

MotionModel InitialEstimateError
ConstantVelocity [LocationVariance, VelocityVariance]
ConstantAcceleration [LocationVariance, VelocityVariance, AccelerationVariance]

Data Types: double | single

MeasurementNoise — Variance inaccuracy of detected location
scalar

Variance inaccuracy of detected location, specified as a scalar. It is directly related to the technique
used to detect the physical objects. Increasing the MeasurementNoise value enables the Kalman
filter to remove more noise from the detections. However, it may also cause the Kalman filter to
adhere too closely to the motion model you chose, putting less emphasis on the detections. The values
of this property stay constant, and therefore may affect the long-term performance of the Kalman
filter.
Data Types: double | single

 configureKalmanFilter

3-393



Output Arguments
kalmanFilter — Configured Kalman filter tracking
object

Configured Kalman filter, returned as a vision.KalmanFilter object for tracking.

Algorithms
This function provides a simple approach for configuring the vision.KalmanFilter object for tracking.
The Kalman filter implements a discrete time, linear State-Space System. The
configureKalmanFilter function sets the vision.KalmanFilter object properties.

The InitialLocation property corresponds to the measurement vector used in the Kalman filter
state-space model. This table relates the measurement vector, M, to the state-space model for the
Kalman filter.
State transition model, A, and Measurement model, H
The state transition model, A, and the measurement model, H of the state-space model, are set to
block diagonal matrices made from M identical submatrices As and Hs, respectively:

A = blkdiag(As _1, As _2, ..., As _M)

H = blkdiag(Hs _1, Hs _2, ..., Hs _M)
The submatrices As and Hs are described below:
MotionModel As Hs
'ConstantVelocity' [1 1; 0 1] [1 0]
'ConstantAcceleration' [1 1 0.5; 0 1 1; 0 0 1] [1 0 0]
 
The Initial State, x:
MotionModel Initial state, x
'ConstantVelocity' [InitialLocation(1), 0, ..., InitialLocation(M), 0]
'ConstantAcceleration' [InitialLocation(1), 0, 0, ..., InitialLocation(M), 0, 0]
 
The initial state estimation error covariance matrix, P:
P = diag(repmat(InitialError, [1, M]))
 
The process noise covariance, Q:
Q = diag(repmat(MotionNoise, [1, M]))
 
The measurement noise covariance, R:
R = diag(repmat(MeasurementNoise, [1, M])).

See Also
vision.BlobAnalysis | vision.ForegroundDetector | vision.KalmanFilter

3 Functions

3-394



Topics
“Use Kalman Filter for Object Tracking”
“Multiple Object Tracking”

Introduced in R2012b

 configureKalmanFilter

3-395



detectBRISKFeatures
Detect BRISK features and return BRISKPoints object

Syntax
points = detectBRISKFeatures(I)
points = detectBRISKFeatures(I,Name,Value)

Description
points = detectBRISKFeatures(I) returns a BRISKPoints object, points. The object
contains information about BRISK features detected in a 2-D grayscale input image, I. The
detectBRISKFeatures function uses a Binary Robust Invariant Scalable Keypoints (BRISK)
algorithm to detect multiscale corner features.

points = detectBRISKFeatures(I,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Detect BRISK Points in an Image and Mark Their Locations

Read the image.

  I = imread('cameraman.tif');

Find the BRISK points.

  points = detectBRISKFeatures(I);

Display the results.

  imshow(I); hold on;
  plot(points.selectStrongest(20));

3 Functions

3-396



Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified in 2-D grayscale. The input image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MinQuality',0.1,'ROI', [50,150,100,200] specifies that the detector must use a
10% minimum accepted quality of corners within the designated region of interest. This region of
interest is located at x=50, y=150. The ROI has a width of 100 pixels and a height of 200 pixels.

MinContrast — Minimum intensity difference
0.2 (default) | scalar

Minimum intensity difference between a corner and its surrounding region, specified as the comma-
separated pair consisting of 'MinContrast' and a scalar in the range (0 1). The minimum contrast
value represents a fraction of the maximum value of the image class. Increase this value to reduce
the number of detected corners.

MinQuality — Minimum accepted quality of corners
0.1 (default) | scalar

 detectBRISKFeatures

3-397



Minimum accepted quality of corners, specified as the comma-separated pair consisting of
'MinQuality' and a scalar value in the range [0,1]. The minimum accepted quality of corners
represents a fraction of the maximum corner metric value in the image. Increase this value to remove
erroneous corners.

NumOctaves — Number of octaves
4 (default) | scalar

Number of octaves to implement, specified as a comma-separated pair consisting of 'NumOctaves'
and an integer scalar, greater than or equal to 0. Increase this value to detect larger blobs.
Recommended values are between 1 and 4. When you set NumOctaves to 0, the function disables
multiscale detection. It performs the detection at the scale of the input image, I.

ROI — Rectangular region
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region for corner detection, specified as a comma-separated pair consisting of 'ROI' and
a vector of the format [x y width height]. The first two integer values [x y] represent the location of
the upper-left corner of the region of interest. The last two integer values represent the width and
height.

Output Arguments
points — Brisk points
BRISKPoints object

Brisk points, returned as a BRISKPoints object. The object contains information about the feature
points detected in the 2-D grayscale input image.

References
[1] Leutenegger, S., M. Chli and R. Siegwart. “BRISK: Binary Robust Invariant Scalable Keypoints”,

Proceedings of the IEEE International Conference, ICCV, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectFASTFeatures |
detectHarrisFeatures | detectMSERFeatures | detectKAZEFeatures | detectORBFeatures
| extractFeatures | extractHOGFeatures | detectFASTFeatures | matchFeatures

3 Functions

3-398



Objects
MSERRegions | SURFPoints | BRISKPoints | cornerPoints | binaryFeatures

Topics
“Point Feature Types”

Introduced in R2014a

 detectBRISKFeatures

3-399



detectCheckerboardPoints
Detect checkerboard pattern in image

Syntax
[imagePoints,boardSize] = detectCheckerboardPoints(I)

[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(imageFileNames)
[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(images)

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(imageFileNames1,
imageFileNames2)
[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(images1,images2)

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints( ___ ,Name,Value)

Description
[imagePoints,boardSize] = detectCheckerboardPoints(I) detects a black and white
checkerboard of size greater than 4-by-4 squares in a 2-D truecolor or grayscale image. The function
returns the detected points and dimensions of the checkerboard.

[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(imageFileNames)
detects a checkerboard pattern in a set of input images, provided as an array of file names.

[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(images) detects a
checkerboard pattern in a set of input images, provided as an array of grayscale or truecolor images.

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(imageFileNames1,
imageFileNames2) detects a checkerboard pattern in stereo pairs of images, provided as cell
arrays of file names.

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(images1,images2)
detects a checkerboard pattern in stereo pairs of images, provided as arrays of grayscale or truecolor
images.

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints( ___ ,Name,Value)
uses additional options specified by one or more Name,Value pair arguments. Unspecified properties
have default values.

Examples

Detect Checkerboard in Images with High Distortion

Create an imageDatastore containing calibration images from a GoPro camera.

imds = imageDatastore(fullfile(toolboxdir('vision'),'visiondata','calibration','gopro'));

Detect calibration pattern using the 'HighDistortion' option, which is good to use with fisheye
lens images.

3 Functions

3-400



[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(imds.Files(1:4),'HighDistortion',true);

Display detected points.

for i = 1:4
  % Read image
  I = readimage(imds, i);

  % Insert markers at detected point locations
  I = insertMarker(I, imagePoints(:,:,i), 'o', 'Color', 'red', 'Size', 10);

  % Display image
  subplot(2, 2, i);
  imshow(I);
end

Detect Checkerboard in Image

Load an image containing a checkerboard pattern.

imageFileName = fullfile(toolboxdir('vision'),'visiondata','calibration','webcam','image4.tif');
I = imread(imageFileName);

Detect the checkerboard points.

[imagePoints,boardSize] = detectCheckerboardPoints(I);

 detectCheckerboardPoints

3-401



Display detected points.

J = insertText(I,imagePoints,1:size(imagePoints,1));
J = insertMarker(J,imagePoints,'o','Color','red','Size',5);
imshow(J);
title(sprintf('Detected a %d x %d Checkerboard',boardSize));

Detect Checkerboard in a Set of Image Files

Create a cell array of file names of calibration images.

for i = 1:5
  imageFileName = sprintf('image%d.tif', i);
  imageFileNames{i} = fullfile(matlabroot,'toolbox','vision',...
       'visiondata','calibration','webcam',imageFileName);
end

Detect calibration pattern in the images.

[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(imageFileNames, 'PartialDetections', false);

3 Functions

3-402



Display the detected points.

imageFileNames = imageFileNames(imagesUsed);
for i = 1:numel(imageFileNames)
  I = imread(imageFileNames{i});
  subplot(2, 2, i);
  imshow(I);
  hold on;
  plot(imagePoints(:,1,i),imagePoints(:,2,i),'ro');
end

Detect Checkerboard in Stereo Images

Read in stereo images.

numImages = 4;
images1 = cell(1, numImages);
images2 = cell(1, numImages);
for i = 1:numImages
    images1{i} = fullfile(matlabroot,'toolbox','vision',...
        'visiondata','calibration','stereo','left',sprintf('left%02d.png',i));
    images2{i} = fullfile(matlabroot,'toolbox','vision',...
        'visiondata','calibration','stereo','right',sprintf('right%02d.png',i));
end

Detect the checkerboards in the images.

 detectCheckerboardPoints

3-403



[imagePoints,boardSize,pairsUsed] = ...
    detectCheckerboardPoints(images1,images2);

Display points from images1.

images1 = images1(pairsUsed);
figure;
for i = 1:numel(images1)
      I = imread(images1{i});
      subplot(2,2,i);
      imshow(I); 
      hold on; 
      plot(imagePoints(:,1,i,1),imagePoints(:,2,i,1),'ro');
end 
annotation('textbox',[0 0.9 1 0.1],'String','Camera 1',...
    'EdgeColor','none','HorizontalAlignment','center')

Display points from images2.

images2 = images2(pairsUsed);
figure;
for i = 1:numel(images2)
      I = imread(images2{i});
      subplot(2, 2, i);
      imshow(I);
      hold on; 
      plot(imagePoints(:,1,i,2),imagePoints(:,2,i,2),'ro');
end 

3 Functions

3-404



annotation('textbox',[0 0.9 1 0.1],'String','Camera 2',...
    'EdgeColor','none','HorizontalAlignment','center')

Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified as either an M-by-N-by-3 truecolor or M-by-N 2-D grayscale. The input image
must be real and nonsparse. The function can detect checkerboards with a minimum size of 4-by-4
squares.
Data Types: single | double | int16 | uint8 | uint16 | logical

imageFileNames — Image file names
N-element cell array

Image file names, specified as an N-element cell array of N file names.

imageFileNames1 — File names for camera 1 images
N-element cell array

File names for camera 1 images, specified as an N-element cell array of N file names. The images
contained in this array must be in the same order as images contained in imageFileNames2,
forming stereo pairs.

 detectCheckerboardPoints

3-405



imageFileNames2 — File names for camera 2 images
N-element cell array

File names for camera 2 images, specified as an N-element cell array of N file names. The images
contained in this array must be in the same order as images contained in imageFileNames1,
forming stereo pairs.

images — Images
height-by-width-by-color channel-by-number of frames array

Images, specified as an H-by-W-by-B-by-F array containing a set of grayscale or truecolor images. The
input dimensions are:
H represents the image height.
W represents the image width.
B represents the color channel. A value of 1 indicates a grayscale image, and a value of 3 indicates a
truecolor image.
F represents the number of image frames.

images1 — Stereo pair images from camera 1
height-by-width-by-color channel-by-number of frames array

Stereo pair images from camera 1, specified as an H-by-W-by-B-by-F array containing a set of
grayscale or truecolor images. The input dimensions are:
H represents the image height.
W represents the image width.
B represents the color channel. A value of 1 indicates a grayscale image, and a value of 3 indicates a
truecolor image.
F represents the number of image frames.

images2 — Stereo pair images from camera 2
height-by-width-by-color channel-by-number of frames array

Stereo pair images from camera 2, specified as an H-by-W-by-B-by-F array containing a set of
grayscale or truecolor images. The input dimensions are:
H represents the image height.
W represents the image width.
B represents the color channel. A value of 1 indicates a grayscale image, and a value of 3 indicates a
truecolor image.
F represents the number of image frames.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MinCornerMetric', '0.15'

MinCornerMetric — Minimum corner metric threshold
0.15 | 0.12 | nonnegative scalar

Minimum corner metric threshold, specified as a nonnegative scalar. When the image is noisy or
highly textured, increase this value to reduce the number of false corner detections. When you set the

3 Functions

3-406



'HighDistortion' property to false the function sets the default value to 0.15. When you set the
'HighDistortion' property to true the function sets the default value to 0.12. Decreasing the
value results in an increase of corner detections.

HighDistortion — High distortion
false (default) | true

High distortion, specified as false or true. Set 'HighDistortion' to true when the images
contain a high level of distortion, which is typical of a wide field of view camera, such as a fisheye
camera. Set 'HighDistortion' to false when the images do not contain a high level of distortion.
Setting 'HighDistortion' to true can increase the resiliency to image distortion but decreases
the processing speed.

PartialDetections — Partial detections
true (default) | false

Partial detections, specified as true or false. Set 'PartialDetections' to true to return
partially detected checkerboards. The function fills missing keypoint detections with [NaN,NaN]
coordinates. Set 'PartialDetections' to false to discard partially detected checkerboards. This
property is ignored for stereo image pairs.

Output Arguments
imagePoints — Detected checkerboard corner coordinates
M-by-2 matrix | M-by-2-by- number of images array | M-by-2-by-number of pairs of images-by-number
of cameras array

Detected checkerboard corner coordinates, returned as an M-by-2 matrix for one image. For multiple
images, points are returned as an M-by-2-by-number of images array, and for stereo pairs of images,
the function returns points as an M-by-2-by-number of pairs-by-number of cameras array.

For stereo pairs, imagePoints(:,:,:,1) are the points from the first set of images, and
imagePoints(:,:,:,2) are the points from the second set of images. The output contains M number of
[x y] coordinates. Each coordinate represents a point where square corners are detected on the
checkerboard. The number of points the function returns depends on the value of boardSize, which
indicates the number of squares detected. The function detects the points with sub-pixel accuracy.

The function calculates the number of points, M, as follows:
M = prod(boardSize-1).
If the checkerboard cannot be detected:
imagePoints = []
boardSize = [0,0]

When you specify the imageFileNames input, the function can return imagePoints as an M-by-2-
by-N array. In this array, N represents the number of images in which a checkerboard is detected. If a
checkerboard cannot be detected, the function sets imagePoints to [].

 detectCheckerboardPoints

3-407



For single camera images only:

• If the complete checkerboard cannot be detected, the function returns a partially detected
checkerboard with [NaN,NaN] as the x-y coordinates for missing corners in imagePoints. This
default behavior can be modified using the 'PartialDetections' name-value argument.

• When possible, the function orients the partially detected checkerboard such that the location of
the origin and the arrangement of the corners is consistent with the completely visible
checkerboard. If the function cannot detect a complete checkerboard in any of the input images,
the largest detected checkerboard is used as the reference checkerboard.

boardSize — Checkerboard dimensions
2-element [height, width] vector

Checkerboard dimensions, returned as a 2-element [height, width] vector. The dimensions of the
checkerboard are expressed in terms of the number of squares.

If a checkerboard cannot be detected, the function sets boardSize to [0,0].

3 Functions

3-408



imagesUsed — Pattern detection flag
N-by-1 logical vector

Pattern detection flag, returned as an N-by-1 logical vector of N logicals. The function outputs the
same number of logicals as there are input images. A true value indicates that the pattern was
detected in the corresponding image. A false value indicates that the function did not detect a
pattern.

pairsUsed — Stereo pair pattern detection flag
N-by-1 logical vector

Stereo pair pattern detection flag, returned as an N-by-1 logical vector of N logicals. The function
outputs the same number of logicals as there are input images. A true value indicates that the
pattern is detected in the corresponding stereo image pair. A false value indicates that the function
does not detect a pattern.

For stereo pair pattern detection, the checkerboard needs to be fully visible in both images for it to
be detected. Unlike single camera calibration, partially detected checkerboards are rejected for
stereo image pairs.

References
[1] Geiger, A., F. Moosmann, O. Car, and B. Schuster. "Automatic Camera and Range Sensor

Calibration using a Single Shot," International Conference on Robotics and Automation
(ICRA), St. Paul, USA, May 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation will not support specifying images as file names or cell arrays of file names. It
supports only checkerboard detection in a single image or stereo pair of images. For example,
these syntaxes are supported:

• detectCheckerboardPoints(I1)
• detectCheckerobarPoints(I1,I2)

I1 and I2 are single grayscale or RGB images.

See Also
estimateCameraParameters | generateCheckerboardPoints | cameraParameters |
stereoParameters | Camera Calibrator

Topics
“Using the Single Camera Calibrator App”

Introduced in R2014a

 detectCheckerboardPoints

3-409



detectFASTFeatures
Detect corners using FAST algorithm and return cornerPoints object

Syntax
points = detectFASTFeatures(I)
points = detectFASTFeatures(I,Name,Value)

Description
points = detectFASTFeatures(I) returns a cornerPoints object, points. The object
contains information about the feature points detected in a 2-D grayscale input image, I. The
detectFASTFeatures function uses the Features from Accelerated Segment Test (FAST) algorithm
to find feature points.

points = detectFASTFeatures(I,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Find Corner Points in an Image Using the FAST Algorithm

Read the image.

I = imread('cameraman.tif');

Find the corners.

corners = detectFASTFeatures(I);

Display the results.

imshow(I); hold on;
plot(corners.selectStrongest(50));

3 Functions

3-410



Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified in 2-D grayscale. The input image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MinQuality','0.01','ROI', [50,150,100,200] specifies that the detector must use a
1% minimum accepted quality of corners within the designated region of interest. This region of
interest is located at x=50, y=150. The ROI has a width of 100 pixels, and a height of 200 pixels.

MinQuality — Minimum accepted quality of corners
0.1 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting of
'MinQuality' and a scalar value in the range [0,1].

The minimum accepted quality of corners represents a fraction of the maximum corner metric value
in the image. Larger values can be used to remove erroneous corners.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 detectFASTFeatures

3-411



MinContrast — Minimum intensity
0.2 (default)

Minimum intensity difference between corner and surrounding region, specified as the comma-
separated pair consisting of 'MinContrast' and a scalar value in the range (0,1).

The minimum intensity represents a fraction of the maximum value of the image class. Increasing the
value reduces the number of detected corners.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ROI — Rectangular region
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region for corner detection, specified as a comma-separated pair consisting of 'ROI' and
a vector of the format [x y width height]. The first two integer values [x y] represent the location of
the upper-left corner of the region of interest. The last two integer values represent the width and
height.
Example: 'ROI', [50,150,100,200]

Output Arguments
points — Corner points
cornerPoints object

Corner points object, returned as a cornerPoints object. The object contains information about the
feature points detected in the 2-D grayscale input image.

Compatibility Considerations
GPU Use Being Removed for detectFASTFeatures function
Errors starting in R2022a

The detectFASTFeatures function no longer supports GPU. You can use the
detectHarrisFeatures on the GPU to detect corner points instead. Although, it won't provide
identical results, it might be suitable based on the application.

References
[1] Rosten, E., and T. Drummond. "Fusing Points and Lines for High Performance Tracking,"

Proceedings of the IEEE International Conference on Computer Vision, Vol. 2 (October 2005):
pp. 1508–1511.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

3 Functions

3-412



See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectBRISKFeatures |
detectHarrisFeatures | detectMSERFeatures | detectKAZEFeatures | detectORBFeatures
| extractFeatures | extractHOGFeatures | detectFASTFeatures | matchFeatures

Objects
MSERRegions | SURFPoints | BRISKPoints | cornerPoints | binaryFeatures

Topics
“Find Corner Points Using the Eigenvalue Algorithm” on page 3-418
“Find Corner Points Using the Harris-Stephens Algorithm” on page 3-414
“Point Feature Types”

Introduced in R2013a

 detectFASTFeatures

3-413



detectHarrisFeatures
Detect corners using Harris–Stephens algorithm and return cornerPoints object

Syntax
points = detectHarrisFeatures(I)
points = detectHarrisFeatures(I,Name,Value)

Description
points = detectHarrisFeatures(I) returns a cornerPoints object, points. The object
contains information about the feature points detected in a 2-D input image, I. The
detectHarrisFeatures function uses the Harris–Stephens algorithm to find these feature points.

points = detectHarrisFeatures(I,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Find Corner Points Using the Harris-Stephens Algorithm

Read the image.

I = checkerboard;

Find the corners.

corners = detectHarrisFeatures(I);

Display the results.

imshow(I); hold on;
plot(corners.selectStrongest(50));

3 Functions

3-414



Input Arguments
I — Input image
M-by-N 2-D image

Input image, specified is an M-by-N 2-D image. The input image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MinQuality','0.01','ROI', [50,150,100,200] specifies that the detector must use a
1% minimum accepted quality of corners within the designated region of interest. This region of
interest is located at x=50, y=150. The ROI has a width of 100 pixels and a height of 200 pixels.

MinQuality — Minimum accepted quality of corners
0.01 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting of
'MinQuality' and a scalar value in the range [0,1].

The minimum accepted quality of corners represents a fraction of the maximum corner metric value
in the image. Larger values can be used to remove erroneous corners.
Example: 'MinQuality', 0.01
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterSize — Gaussian filter dimension
5 (default)

Gaussian filter dimension, specified as the comma-separated pair consisting of 'FilterSize' and an
odd integer value in the range [3, min(size(I))].

The Gaussian filter smooths the gradient of the input image.

The function uses the FilterSize value to calculate the filter’s dimensions, FilterSize-by-
FilterSize. It also defines the standard deviation of the Gaussian filter as FilterSize/3.

 detectHarrisFeatures

3-415



Example: 'FilterSize', 5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ROI — Rectangular region
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region for corner detection, specified as a comma-separated pair consisting of 'ROI' and
a vector of the format [x y width height]. The first two integer values [x y] represent the location of
the upper-left corner of the region of interest. The last two integer values represent the width and
height.
Example: 'ROI', [50,150,100,200]

Output Arguments
points — Corner points
cornerPoints object

Corner points object, returned as a cornerPoints object. The object contains information about the
feature points detected in the 2-D input image.

References
[1] Harris, C., and M. Stephens, "A Combined Corner and Edge Detector," Proceedings of the 4th

Alvey Vision Conference, August 1988, pp. 147-151.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• 'FilterSize' must be a compile-time constant.
• Generated code for this function uses a precompiled platform-specific shared library.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectBRISKFeatures |
detectFASTFeatures | detectMSERFeatures | detectKAZEFeatures | detectORBFeatures |
extractFeatures | extractHOGFeatures | detectFASTFeatures | matchFeatures

Objects
MSERRegions | SURFPoints | BRISKPoints | cornerPoints | binaryFeatures

3 Functions

3-416

https://www.mathworks.com/support/requirements/matlab-system-requirements.html


Topics
“Find Corner Points Using the Eigenvalue Algorithm” on page 3-418
“Find Corner Points in an Image Using the FAST Algorithm” on page 3-410
“Point Feature Types”

Introduced in R2013a

 detectHarrisFeatures

3-417



detectMinEigenFeatures
Detect corners using minimum eigenvalue algorithm and return cornerPoints object

Syntax
points = detectMinEigenFeatures(I)
points = detectMinEigenFeatures(I,Name,Value)

Description
points = detectMinEigenFeatures(I) returns a cornerPoints object, points. The object
contains information about the feature points detected in a 2-D grayscale input image, I. The
detectMinEigenFeatures function uses the minimum eigenvalue algorithm developed by Shi and
Tomasi to find feature points.

points = detectMinEigenFeatures(I,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

Examples

Find Corner Points Using the Eigenvalue Algorithm

Read the image.

I = checkerboard;

Find the corners.

corners = detectMinEigenFeatures(I);

Display the results.

imshow(I); hold on;
plot(corners.selectStrongest(50));

3 Functions

3-418



Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified in 2-D grayscale. The input image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MinQuality','0.01','ROI', [50,150,100,200] specifies that the detector must use a
1% minimum accepted quality of corners within the designated region of interest. This region of
interest is located at x=50, y=150. The ROI has a width of 100 pixels, and a height of 200 pixels.

MinQuality — Minimum accepted quality of corners
0.01 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting of
'MinQuality' and a scalar value in the range [0,1].

The minimum accepted quality of corners represents a fraction of the maximum corner metric value
in the image. Larger values can be used to remove erroneous corners.
Example: 'MinQuality', 0.01
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterSize — Gaussian filter dimension
5 (default)

Gaussian filter dimension, specified as the comma-separated pair consisting of 'FilterSize' and an
odd integer value in the range [3, inf).

The Gaussian filter smooths the gradient of the input image.

The function uses the FilterSize value to calculate the filter’s dimensions, FilterSize-by-
FilterSize. It also defines the standard deviation as FilterSize/3.

 detectMinEigenFeatures

3-419



Example: 'FilterSize', 5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ROI — Rectangular region
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region for corner detection, specified as a comma-separated pair consisting of 'ROI' and
a vector of the format [x y width height]. The first two integer values [x y] represent the location of
the upper-left corner of the region of interest. The last two integer values represent the width and
height.
Example: 'ROI', [50,150,100,200]

Output Arguments
points — Corner points
cornerPoints object

Corner points, returned as a cornerPoints object. The object contains information about the
feature points detected in the 2-D grayscale input image.

References
[1] Shi, J., and C. Tomasi, "Good Features to Track," Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, June 1994, pp. 593–600.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• 'FilterSize' must be a compile-time constant.
• Generated code for this function uses a precompiled platform-specific shared library.

See Also
Functions
detectSURFFeatures | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectMSERFeatures | detectKAZEFeatures | detectORBFeatures
| extractFeatures | extractHOGFeatures | detectFASTFeatures | matchFeatures

Objects
MSERRegions | SURFPoints | BRISKPoints | cornerPoints | binaryFeatures

Topics
“Find Corner Points Using the Harris-Stephens Algorithm” on page 3-414
“Find Corner Points in an Image Using the FAST Algorithm” on page 3-410
“Point Feature Types”

3 Functions

3-420

https://www.mathworks.com/support/requirements/matlab-system-requirements.html


Introduced in R2013a

 detectMinEigenFeatures

3-421



detectMSERFeatures
Detect MSER features and return MSERRegions object

Syntax
regions = detectMSERFeatures(I)
[regions,cc] = detectMSERFeatures(I)
[ ___ ] = detectMSERFeatures(I,Name,Value)

Description
regions = detectMSERFeatures(I) returns an MSERRegions object, regions, containing
information about MSER features detected in the 2-D grayscale input image, I. This object uses
Maximally Stable Extremal Regions (MSER) algorithm to find regions.

Note For Simulink support using this function, you must enable the model configuration settings. To
display the dialog box, in the Simulink Editor, select the Modeling tab and then select Model
Settings > Model Properties. In the Configuration Parameters dialog box, select Simulation
Target > Advanced Parameters > Dynamic Memory allocation in MATLAB functions.

[regions,cc] = detectMSERFeatures(I)optionally returns MSER regions in a connected
component structure.

[ ___ ] = detectMSERFeatures(I,Name,Value) sets additional options specified by one or more
Name,Value pair arguments.

Examples

Find MSER Regions in an Image

Read image and detect MSER regions.

I = imread('cameraman.tif');
regions = detectMSERFeatures(I);

Visualize MSER regions which are described by pixel lists stored inside the returned 'regions' object.

figure; imshow(I); hold on;
plot(regions,'showPixelList',true,'showEllipses',false);

3 Functions

3-422



Display ellipses and centroids fit into the regions. By default, plot displays ellipses and centroids.

figure; imshow(I); 
hold on;
plot(regions);

 detectMSERFeatures

3-423



Find circular MSER regions

Detect MSER regions.

I = imread('coins.png');
[regions,mserCC] = detectMSERFeatures(I);

Show all detected MSER Regions.

figure
imshow(I)
hold on
plot(regions,'showPixelList',true,'showEllipses',false)

Measure the MSER region eccentricity to gauge region circularity.

stats = regionprops('table',mserCC,'Eccentricity');

Threshold eccentricity values to only keep the circular regions. (Circular regions have low
eccentricity.)

eccentricityIdx = stats.Eccentricity < 0.55;
circularRegions = regions(eccentricityIdx);

Show the circular regions.

figure
imshow(I)
hold on
plot(circularRegions,'showPixelList',true,'showEllipses',false)

3 Functions

3-424



Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified in grayscale. It must be real and nonsparse. The function internally converts
input images to uint8 that are not uint8 before looking for MSER regions.
Data Types: uint8 | int16 | uint16 | single | double | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RegionAreaRange',[30 14000], specifies the size of the region in pixels.

ThresholdDelta — Step size between intensity threshold levels
2 (default) | percent numeric value

Step size between intensity threshold levels, specified as the comma-separated pair consisting of
'ThresholdDelta' and a numeric value in the range (0,100]. This value is expressed as a percentage
of the input data type range used in selecting extremal regions while testing for their stability.
Decrease this value to return more regions. Typical values range from 0.8 to 4.

RegionAreaRange — Size of the region
[30 14000] (default) | two-element vector

 detectMSERFeatures

3-425



Size of the region in pixels, specified as the comma-separated pair consisting of 'RegionAreaRange'
and a two-element vector. The vector, [minArea maxArea], allows the selection of regions containing
pixels to be between minArea and maxArea, inclusive.

MaxAreaVariation — Maximum area variation between extremal regions
0.25 (default) | positive scalar

Maximum area variation between extremal regions at varying intensity thresholds, specified as the
comma-separated pair consisting of 'MaxAreaVariation' and a positive scalar value. Increasing this
value returns a greater number of regions, but they may be less stable. Stable regions are very
similar in size over varying intensity thresholds. Typical values range from 0.1 to 1.0.

ROI — Rectangular region of interest
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region of interest, specified as a vector. The vector must be in the format [x y width
height]. When you specify an ROI, the function detects corners within the area located at [x y] of size
specified by [width height] . The [x y] elements specify the upper left corner of the region.

Output Arguments
regions — MSER regions object
MSERRegions object (default)

MSER regions object, returned as a MSERRegions object. The object contains information about
MSER features detected in the grayscale input image.

cc — Connected component structure
structure

Connected component structure, returned as a structure with four fields. The connected component
structure is useful for measuring region properties using the regionprops function. The four fields:

Field Description
Connectivity Connectivity of the MSER regions.

Default: 8
ImageSize Size of I.
NumObjects Number of MSER regions in I.
PixelIdxList 1-by-NumObjects cell array containing NumObjects vectors. Each vector

represents the linear indices of the pixels in the element’s corresponding MSER
region.

Algorithms
Intensity Threshold Levels

The MSER detector incrementally steps through the intensity range of the input image to detect
stable regions. The ThresholdDelta parameter determines the number of increments the detector
tests for stability. You can think of the threshold delta value as the size of a cup to fill a bucket with
water. The smaller the cup, the more number of increments it takes to fill up the bucket. The bucket
can be thought of as the intensity profile of the region.

3 Functions

3-426



The MSER object checks the variation of the region area size between different intensity thresholds.
The variation must be less than the value of the MaxAreaVariation parameter to be considered
stable.

Note MSER feature detection is not suitable for use in images with extreme intensity value changes.

At a high level, MSER can be explained, by thinking of the intensity profile of an image representing a
series of buckets. Imagine the tops of the buckets flush with the ground, and a hose turned on at one
of the buckets. As the water fills into the bucket, it overflows and the next bucket starts filling up.
Smaller regions of water join and become bigger bodies of water, and finally the whole area gets
filled. As water is filling up into a bucket, it is checked against the MSER stability criterion. Regions
appear, grow and merge at different intensity thresholds.

References
[1] Nister, D., and H. Stewenius, "Linear Time Maximally Stable Extremal Regions", Lecture Notes in

Computer Science. 10th European Conference on Computer Vision, Marseille, France: 2008,
no. 5303, pp. 183–196.

[2] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide baseline stereo from maximally stable
extremal regions." Proceedings of British Machine Vision Conference, pages 384-396, 2002.

[3] Obdrzalek D., S. Basovnik, L. Mach, and A. Mikulik. "Detecting Scene Elements Using Maximally
Stable Colour Regions," Communications in Computer and Information Science, La Ferte-
Bernard, France; 2009, vol. 82 CCIS (2010 12 01), pp 107–115.

[4] Mikolajczyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir, and L. Van Gool, "A Comparison
of Affine Region Detectors"; International Journal of Computer Vision, Volume 65, Numbers 1–
2 / November, 2005, pp 43–72 .

 detectMSERFeatures

3-427



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

• For code generation, the function outputs regions.PixelList as an array. The region sizes are
defined in regions.Lengths.

• For embedded real-time code generation support, you must enable the variable-size signals. Code
Generation > Interface from the Configuration Parameters dialog box.

See Also
Functions
detectSURFFeatures | detectMinEigenFeatures | detectBRISKFeatures |
detectFASTFeatures | detectHarrisFeatures | detectKAZEFeatures | extractFeatures |
extractHOGFeatures | detectFASTFeatures | matchFeatures

Objects
MSERRegions | SURFPoints | BRISKPoints | cornerPoints | binaryFeatures

Topics
“Automatically Detect and Recognize Text Using MSER and OCR”
“Point Feature Types”

Introduced in R2012a

3 Functions

3-428



detectPeopleACF
Detect people using aggregate channel features (ACF)

Note detectPeopleACF will be removed in a future release. Use peopleDetectorACF instead.

Syntax
bboxes = detectPeopleACF(I)
[bboxes,scores] = detectPeopleACF(I)
[ ___ ] = detectPeopleACF(I,roi)
[ ___ ] = detectPeopleACF(Name,Value)

Description
bboxes = detectPeopleACF(I) returns a matrix, bboxes, that contains the locations of detected
upright people in the input image, I. The locations are represented as bounding boxes. The function
uses the aggregate channel features (ACF) algorithm.

[bboxes,scores] = detectPeopleACF(I) also returns the detection scores for each bounding
box.

[ ___ ] = detectPeopleACF(I,roi) detects people within the rectangular search region
specified by roi, using either of the previous syntaxes.

[ ___ ] = detectPeopleACF(Name,Value) uses additional options specified by one or more
Name,Value pair arguments. Unspecified properties have default values.

Code Generation Support:
Supports Code Generation: No
Supports MATLAB Function block: No
Code Generation Support, Usage Notes, and Limitations

Examples

Detect People Using Aggregated Channel Features

Read an image.

I = imread('visionteam1.jpg');

Detect people in the image and store results as bounding boxes and score.

[bboxes,scores] = detectPeopleACF(I);

Annotate the detected upright people in the image.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);

Display the results with annotation.

 detectPeopleACF

3-429



figure
imshow(I)
title('Detected people and detection scores')

Input Arguments
I — Input image
truecolor image

Input image, specified as a truecolor image. The image must be real and nonsparse.
Data Types: uint8 | uint16 | int16 | double | single

roi — Rectangular search region
four-element vector

Rectangular search region, specified as a four-element vector, [x,y,width,height]. The roi must be
fully contained in I.

3 Functions

3-430



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Threshold',-1

Model — ACF classification model
'inria-100x41' (default) | 'caltech-50x21'

ACF classification model, specified as the comma-separated pair consisting of 'Model' and either
'inria-100x41' or 'caltech-50x21'. The 'inria-100x41' model was trained using the INRIA
Person dataset. The 'caltech-50x21' model was trained using the Caltech Pedestrian dataset.

NumScaleLevels — Number of scale levels per octave
8 (default) | integer

Number of scale levels per octave, specified as the comma-separated pair consisting of
'NumScaleLevels', and an integer. Each octave is a power-of-two downscaling of the image. Increase
this number to detect people at finer scale increments. Recommended values are in the range [4,8].

WindowStride — Window stride for sliding window
4 (default) | integer

Window stride for sliding window, specified as the comma-separated pair consisting of
'WindowStride', and an integer. Set this value to the amount you want to move the window, in the x
and y directions. The sliding window scans the images for object detection. The function uses the
same stride for the x and y directions.

SelectStrongest — Select strongest bounding box
true (default) | false

Select strongest bounding box, specified as the comma-separated pair consisting of
'SelectStrongest' and either true or false. The process, often referred to as nonmaximum
suppression, eliminates overlapping bounding boxes based on their scores. Set this property to true
to use the selectStrongestBbox function to select the strongest bounding box. Set this property to
false, to perform a custom selection operation. Setting this property to false returns detected
bounding boxes.

MinSize — Minimum region size
two-element vector [height width] | [50 21] | [100 41]

Minimum region size in pixels, specified as the comma-separated pair consisting of 'MinSize', and a
two-element vector [height width]. You can set this property to [50 21] for the 'caltech-50x21'
model or [100 41] for the 'inria-100x41' model. You can reduce computation time by setting
this value to the known minimum region size for detecting a person. By default, MinSize is set to the
smallest region size possible to detect an upright person for the classification model selected.

MaxSize — Maximum region size
size(I) (default) | two-element vector [height width]

Maximum region size in pixels, specified as the comma-separated pair consisting of 'MaxSize', and a
two-element vector, [height width]. You can reduce computation time by setting this value to the

 detectPeopleACF

3-431



known region size for detecting a person. If you do not set this value, by default the function
determines the height and width of the image using the size of I.

Threshold — Classification accuracy threshold
–1 (default) | numeric value

Classification accuracy threshold, specified as the comma-separated pair consisting of 'Threshold'
and a numerical value. Typical values are in the range [–1,1]. During multiscale object detection, the
threshold value controls the person or nonperson classification accuracy and speed. Increase this
threshold to speed up the performance at the risk of missing true detections.

Output Arguments
bboxes — Locations of detected people
M-by-4 matrix

Locations of people detected using the aggregate channel features (ACF) algorithm, returned as an
M-by-4 matrix. The locations are represented as bounding boxes. Each row in bboxes contains a
four-element vector, [x,y,width,height]. This vector specifies the upper-left corner and size of a
bounding box, in pixels, for a detected person.

scores — Confidence value
M-by-1 vector

Confidence value for the detections, returned as an M-by-1 vector. The vector contains a value for
each bounding box in bboxes. The score for each detection is the output of a soft-cascade classifier.
The range of score values is [-inf inf]. Greater scores indicate a higher confidence in the detection.

References
[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast feature pyramids for object detection."

Pattern Analysis and Machine Intelligence, IEEE Transactions. Vol. 36, Issue 8, 2014, pp.
1532–1545.

[2] Dollar, C. Wojeck, B. Shiele, and P. Perona. "Pedestrian detection: An evaluation of the state of the
art." Pattern Analysis and Machine Intelligence, IEEE Transactions.Vol. 34, Issue 4, 2012, pp.
743–761.

[3] Dollar, C., Wojeck, B. Shiele, and P. Perona. "Pedestrian detection: A benchmark." IEEE
Conference on Computer Vision and Pattern Recognition. 2009.

See Also
Objects
vision.CascadeObjectDetector | vision.PeopleDetector

Functions
selectStrongestBbox | peopleDetectorACF

Topics
“Tracking Pedestrians from a Moving Car”
“Point Feature Types”

3 Functions

3-432



Introduced in R2016a

 detectPeopleACF

3-433



detectSURFFeatures
Detect SURF features and return SURFPoints object

Syntax
points = detectSURFFeatures(I)
points = detectSURFFeatures(I,Name,Value)

Description
points = detectSURFFeatures(I) returns a SURFPoints object, points, containing
information about SURF features detected in the 2-D grayscale input image I. The
detectSURFFeatures function implements the Speeded-Up Robust Features (SURF) algorithm to
find blob features.

points = detectSURFFeatures(I,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax.

Examples

Detect SURF Interest Points in a Grayscale Image

Read image and detect interest points.

I = imread('cameraman.tif');
points = detectSURFFeatures(I);

Display locations of interest in image.

imshow(I); hold on;
plot(points.selectStrongest(10));

3 Functions

3-434



Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified as an M-by-N 2-D grayscale. The input image must be a real non-sparse value.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: detectSURFFeatures(I,'MetricThreshold',100)

MetricThreshold — Strongest feature threshold
1000.0 (default) | non-negative scalar

Strongest feature threshold, specified as a non-negative scalar. To return more blobs, decrease the
value of this threshold.

NumOctaves — Number of octaves
3 (default) | scalar (greater than or equal to 1)

Number of octaves, specified as an integer scalar, greater than or equal to 1. Increase this value to
detect larger blobs. Recommended values are between 1 and 4.

 detectSURFFeatures

3-435



Each octave spans a number of scales that are analyzed using varying size filters:

Octave Filter Sizes
1 9-by-9, 15-by-15, 21-by-21, 27-by-27, ...
2 15-by-15, 27-by-27, 39-by-39, 51-by-51, ...
3 27-by-27, 51-by-51, 75-by-75, 99-by-99, ...
4 ....

Higher octaves use larger filters and subsample the image data. Larger number of octaves result in
finding larger size blobs. Set the NumOctaves parameter appropriately for the image size. For
example, a 50-by-50 image require you to set the NumOctaves parameter, less than or equal to 2. The
NumScaleLevels parameter controls the number of filters used per octave. At least three levels are
required to analyze the data in a single octave.

NumScaleLevels — Number of scale levels per octave
4 (default) | integer scalar, greater than or equal to 3

Number of scale levels per octave to compute, specified as an integer scalar, greater than or equal to
3. Increase this number to detect more blobs at finer scale increments. Recommended values are
between 3 and 6.

ROI — Rectangular region of interest
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region of interest, specified as a vector. The vector must be in the format [x y width
height]. When you specify an ROI, the function detects corners within the area at [x y] of size
specified by [width height]. The [x y] elements specify the upper left corner of the region.

Output Arguments
points — SURF features
SURFPoints object

SURF features, returned as a SURFPoints object. This object contains information about SURF
features detected in a grayscale image.

References
[1] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. “SURF:Speeded Up Robust Features.” Computer

Vision and Image Understanding (CVIU).Vol. 110, No. 3, pp. 346–359, 2008.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.
See “Portable C Code Generation for Functions That Use OpenCV Library”.

3 Functions

3-436



See Also
detectBRISKFeatures | detectFASTFeatures | detectORBFeatures |
detectMinEigenFeatures | detectHarrisFeatures | detectMSERFeatures |
extractFeatures | matchFeatures | SURFPoints | ORBPoints

Introduced in R2011b

 detectSURFFeatures

3-437



detectORBFeatures
Detect ORB keypoints and return an ORBPoints object

Syntax
points = detectORBFeatures(I)
points = detectORBFeatures(I,Name,Value)

Description
points = detectORBFeatures(I) returns an ORBPoints object that contains information about
ORB keypoints. The ORB keypoints are detected from the input image by using the Oriented FAST
and rotated BRIEF (ORB) feature detection method.

points = detectORBFeatures(I,Name,Value) specifies options using one or more name-value
pair arguments.

Examples

Detect ORB Keypoints in Grayscale Image

Read an image into the workspace.

I = imread('businessCard.png');

Convert the image into a grayscale image.

I = im2gray(I);

Display the grayscale image.

figure
imshow(I)

3 Functions

3-438



Detect and store ORB keypoints.

points = detectORBFeatures(I);

Display the grayscale image and plot the detected ORB keypoints. Suppress the display of circles
around the detected keypoints. The ORB keypoints are detected in regions with high intensity
variance.

figure
imshow(I)
hold on
plot(points,'ShowScale',false)
hold off

 detectORBFeatures

3-439



Detect ORB Keypoints In Binary Shape Image

Read a binary image into the workspace.

I = imread('star.png');

Display the image.

figure
imshow(I)

3 Functions

3-440



Detect and store ORB keypoints. Specify the scale factor for image decomposition as 1.01 and the
number of decomposition levels as 3.

points = detectORBFeatures(I,'ScaleFactor',1.01,'NumLevels',3);

Display the image and plot the detected ORB keypoints. The inflection points in the binary shape
image are detected as the ORB keypoints.

figure
imshow(I)
hold on
plot(points)
hold off

 detectORBFeatures

3-441



Input Arguments
I — Input image
M-by-N grayscale image

Input image, specified as an M-by-N grayscale image. The input image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: detectORBFeatures(I,'NumLevels',4)

ScaleFactor — Scale factor for image decomposition
1.2 (default) | scalar greater than 1

3 Functions

3-442



Scale factor for image decomposition, specified as the comma-separated pair consisting of
'ScaleFactor' and a scalar greater than 1. The scale value at each level of decomposition is
ScaleFactor(level-1), where level is any value in the range [0, Numlevels-1]. Given the input image of
size M-by-N, the image size at each level of decomposition is

M
ScaleFactor(level − 1) ‐by‐ N

ScaleFactor(level − 1) .

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint64 | uint32

NumLevels — Number of decomposition levels
8 (default) | scalar greater than or equal to 1

Number of decomposition levels, specified as the comma-separated pair consisting of 'NumLevels'
and a scalar greater than or equal to 1. Increase this value to extract keypoints from the image at
more levels of decomposition.

The number of decomposition levels for extracting keypoints is limited by the image size at that level.
The image size at a level of decomposition must be at least 63-by-63 for detecting keypoints. The
maximum level of decomposition is calculated as

levelmax = floor log min M, N − log 63
log ScaleFactor + 1

If either the default value or the specified value of 'NumLevels' is greater than levelmax, the function
modifies NumLevels to levelmax and returns a warning.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint64 | uint32

ROI — Region of interest
[1 1 M N] (default) | four-element vector

Region of interest for keypoint detection, specified as the comma-separated pair consisting of 'ROI'
and a vector of the format [x y width height]. The first two elements represent the location of the
upper left corner of the region of interest. The last two elements represent the width and the height
of the region of interest. The width and height of the region of interest must each be a value greater
than or equal to 63.

Output Arguments
points — ORB keypoints
ORBPoints object

ORB keypoints, returned as an ORBPoints object. The object contains information about keypoints
detected in the input image.

Algorithms
The function detects keypoints from the input image by using the ORB feature detection method in
[1].

 detectORBFeatures

3-443



References
[1] Rublee, E., V. Rabaud, K. Konolige, and G. Bradski. "ORB: An Efficient Alternative to SIFT or

SURF." In Proceedings of the 2011 International Conference on Computer Vision, 2564–2571.
Barcelona, Spain: IEEE, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
detectBRISKFeatures | detectHarrisFeatures | detectMinEigenFeatures |
detectFASTFeatures | detectSURFFeatures | detectMSERFeatures | detectKAZEFeatures |
ORBPoints | extractFeatures | matchFeatures

Topics
“Point Feature Types”
“Local Feature Detection and Extraction”

Introduced in R2019a

3 Functions

3-444



disparity
(Not recommended) Disparity map between stereo images

Note disparity is not recommended. Use disparityBM or disparitySGM instead. For more
information, see “Compatibility Considerations”

Syntax
disparityMap = disparity(I1,I2)
disparityMap = disparity(I1,I2,Name,Value)

Description
disparityMap = disparity(I1,I2) returns the disparity map, disparityMap, for a pair of
stereo images, I1 and I2.

disparityMap = disparity(I1,I2,Name,Value) provides additional control for the disparity
algorithm by using one or more Name,Value pair arguments.

Examples

Compute Disparity Map for a Pair of Stereo Images

Load the images and convert them to grayscale.

I1 = imread('scene_left.png');
I2 = imread('scene_right.png');

Show stereo anaglyph. Use red-cyan stereo glasses to view image in 3-D.

figure
imshow(stereoAnaglyph(I1,I2));
title('Red-cyan composite view of the stereo images');

 disparity

3-445



Compute the disparity map.

disparityRange = [-6 10];
disparityMap = disparity(rgb2gray(I1),rgb2gray(I2),'BlockSize',...
    15,'DisparityRange',disparityRange);

Display the disparity map. For better visualization, use the disparity range as the display range for
imshow.

figure 
imshow(disparityMap,disparityRange);
title('Disparity Map');
colormap(gca,jet) 
colorbar

3 Functions

3-446



Input Arguments
I1 — Input image 1
M-by-N 2-D grayscale image

Input image referenced as I1 corresponding to camera 1, specified in 2-D grayscale. The stereo
images, I1 and I2, must be rectified such that the corresponding points are located on the same
rows. You can perform this rectification with the rectifyStereoImages function.

You can improve the speed of the function by setting the class of I1 and I2 to uint8, and the
number of columns to be divisible by 4. Input images I1 and I2 must be real, finite, and nonsparse.
They must be the same class.
Data Types: uint8 | uint16 | int16 | single | double

I2 — Input image 2
M-by-N 2-D grayscale image

Input image referenced as I2 corresponding to camera 2, specified in 2-D grayscale. The input
images must be rectified such that the corresponding points are located on the same rows. You can
improve the speed of the function by setting the class of I1 and I2 to uint8, and the number of
columns to be divisible by 4. Input images I1 and I2 must be real, finite, and nonsparse. They must
be the same class.
Data Types: uint8 | uint16 | int16 | single | double

 disparity

3-447



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Method','BlockMatching', specifies the 'Method' property be set to
'BlockMatching'.

Method — Disparity estimation algorithm
'SemiGlobal' (default) | 'BlockMatching'

Disparity estimation algorithm, specified as the comma-separated pair consisting of 'Method' and
either 'BlockMatching' or 'SemiGlobal'. The disparity function implements the basic Block
Matching [1] and the Semi-Global Block Matching [3] algorithms. In the 'BlockMatching' method,
the function computes disparity by comparing the sum of absolute differences (SAD) of each block of
pixels in the image. In the 'SemiGlobal' matching method, the function additionally forces similar
disparity on neighboring blocks. This additional constraint results in a more complete disparity
estimate than in the 'BlockMatching' method.

The algorithms perform these steps:

1 Compute a measure of contrast of the image by using the Sobel filter.
2 Compute the disparity for each pixel in I1.
3 Mark elements of the disparity map, disparityMap, that were not computed reliably. The

function uses –realmax('single') to mark these elements.

DisparityRange — Range of disparity
[0 64] (default) | two-element vector

Range of disparity, specified as the comma-separated pair consisting of 'DisparityRange' and a
two-element vector. The two-element vector must be in the format [MinDisparity, MaxDisparity]. Both
elements must be an integer and can be negative. MinDisparity and MaxDisparity must be in the
range [-image width, image width]. The difference between MaxDisparity and MinDisparity must be
divisible by 16. DisparityRange must be real, finite, and nonsparse. If the camera used to take I1
was to the right of the camera used to take I2, then MinDisparity must be negative.

The disparity range depends on the distance between the two cameras and the distance between the
cameras and the object of interest. Increase the DisparityRange when the cameras are far apart or
the objects are close to the cameras. To determine a reasonable disparity for your configuration,
display the stereo anaglyph of the input images in the Image Viewer app and use the Distance tool
to measure distances between pairs of corresponding points. Modify the MaxDisparity to correspond
to the measurement.

3 Functions

3-448



BlockSize — Square block size
15 (default) | odd integer

Square block size, specified as the comma-separated pair consisting of 'BlockSize' and an odd
integer in the range [5,255]. This value sets the width for the square block size. The function uses the
square block of pixels for comparisons between I1 and I2. BlockSize must be real, finite, and
nonsparse.

ContrastThreshold — Contrast threshold range
0.5 (default) | scalar value

Contrast threshold range, specified as the comma-separated pair consisting of
'ContrastThreshold' and a scalar value in the range (0,1]. The contrast threshold defines an
acceptable range of contrast values. Increasing this parameter results in fewer pixels being marked
as unreliable.ContrastThreshold must be real, finite, and nonsparse.

UniquenessThreshold — Minimum value of uniqueness
15 (default) | non-negative integer

 disparity

3-449



Minimum value of uniqueness, specified as the comma-separated pair consisting of
'UniquenessThreshold' and a nonnegative integer. Increasing this parameter results in the
function marking more pixels unreliable. When the uniqueness value for a pixel is low, the disparity
computed for it is less reliable. Setting the threshold to 0 disables uniqueness thresholding.
UniquenessThreshold must be real, finite, and nonsparse.

The function defines uniqueness as a ratio of the optimal disparity estimation and the less optimal
disparity estimation. For example:
Let K be the best estimated disparity, and let V be the corresponding SAD (Sum of Absolute
Difference) value.
Consider V as the smallest SAD value over the whole disparity range, and v as the smallest SAD value
over the whole disparity range, excluding K, K-1, and K+1.
If v < V * (1+0.01*UniquenessThreshold), then the function marks the disparity for the pixel as
unreliable.

DistanceThreshold — Maximum distance for left-to-right image checking
[] (disabled) (default) | non-negative integer

Maximum distance for left-to-right image checking between two points, specified as the comma-
separated pair consisting of 'DistanceThreshold' and a nonnegative integer. Increasing this
parameter results in fewer pixels being marked as unreliable. Conversely, when you decrease the
value of the distance threshold, you increase the reliability of the disparity map. You can set this
parameter to an empty matrix [] to disable it. DistanceThreshold must be real, finite, and
nonsparse.

The distance threshold specifies the maximum distance between a point in I1 and the same point
found from I2. The function finds the distance and marks the pixel in the following way:
Let p1 be a point in image I1.
Step 1: The function searches for point p1’s best match in image I2 (left-to-right check) and finds point
p2.
Step 2: The function searches for p2’s best match in image I1 (right-to-left check) and finds point p3.
If the search returns a distance between p1 and p3 greater than DistanceThreshold, the function
marks the disparity for the point p1 as unreliable.

TextureThreshold — Minimum texture threshold
0.0002 (default) | scalar value

Minimum texture threshold, specified as the comma-separated pair consisting of
'TextureThreshold' and a scalar value in the range [0, 1). The texture threshold defines the
minimum texture value for a pixel to be reliable. The lower the texture for a block of pixels, the less
reliable the computed disparity is for the pixels. Increasing this parameter results in more pixels
being marked as unreliable. You can set this parameter to 0 to disable it. This parameter applies only
when you set Method to 'BlockMatching'.

The texture of a pixel is defined as the sum of the saturated contrast computed over the BlockSize-
by-BlockSize window around the pixel. The function considers the disparity computed for the pixel
unreliable and marks it, when the texture falls below the value defined by:

Texture < X* TextureThreshold * BlockSize2

X represents the maximum value supported by the class of the input images, I1 and I2.

TextureThreshold must be real, finite, and nonsparse.

3 Functions

3-450



Output Arguments
disparityMap — Disparity map
M-by-N 2-D grayscale image

Disparity map for a pair of stereo images, returned as an M-by-N 2-D grayscale image. The function
returns the disparity map with the same size as the input images, I1 and I2. Each element of the
output specifies the disparity for the corresponding pixel in the image references as I1. The returned
disparity values are rounded to 1 16th pixel.

The function computes the disparity map in three steps:

1 Compute a measure of contrast of the image by using the Sobel filter.
2 Compute the disparity for each of the pixels by using block matching and the sum of absolute

differences (SAD).
3 Optionally, mark the pixels which contain unreliable disparity values. The function sets the pixel

to the value returned by -realmax('single').

Tips
If your resulting disparity map looks noisy, try modifying the DisparityRange. The disparity range
depends on the distance between the two cameras and the distance between the cameras and the
object of interest. Increase the DisparityRange when the cameras are far apart or the objects are
close to the cameras. To determine a reasonable disparity for your configuration, display the stereo
anaglyph of the input images in the Image Viewer app and use the Distance tool to measure
distances between pairs of corresponding points. Modify the MaxDisparity to correspond to the
measurement.

 disparity

3-451



Compatibility Considerations
disparity function will be removed
Not recommended starting in R2019a

The disparity function will be removed in a future release. Use disparityBM or disparitySGM
instead. Use disparityBM to compute disparity map using block matching method. Use
disparitySGM to compute disparity map using semi-global matching method.

References
[1] Konolige, K., Small Vision Systems: Hardware and Implementation, Proceedings of the 8th

International Symposium in Robotic Research, pages 203-212, 1997.

[2] Bradski, G. and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library,
O'Reilly, Sebastopol, CA, 2008.

3 Functions

3-452



[3] Hirschmuller, H., Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual
Information, International Conference on Computer Vision and Pattern Recognition, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Method' must be a compile-time constant.
• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries.

See “Portable C Code Generation for Functions That Use OpenCV Library”.

See Also
Stereo Camera Calibrator | reconstructScene | estimateUncalibratedRectification |
rectifyStereoImages | estimateCameraParameters

Topics
“Depth Estimation From Stereo Video”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Uncalibrated Stereo Image Rectification”

Introduced in R2011b

 disparity

3-453



disparityBM
Compute disparity map using block matching

Syntax
disparityMap = disparityBM(I1,I2)
disparityMap = disparityBM(I1,I2,Name,Value)

Description
disparityMap = disparityBM(I1,I2) computes disparity map from a pair of rectified stereo
images I1 and I2, by using the block matching method. To know more about rectifying stereo
images, see “Image Rectification” on page 3-459.

disparityMap = disparityBM(I1,I2,Name,Value) specifies options using one or more name-
value pair arguments.

Examples

Compute Disparity Map by Using Block Matching Method

Load a rectified stereo pair image.

I1 = imread('rectified_left.png');
I2 = imread('rectified_right.png');

Create the stereo anaglyph of the rectified stereo pair image and display it. You can view the image in
3-D by using red-cyan stereo glasses.

A = stereoAnaglyph(I1,I2);
figure
imshow(A)
title('Red-Cyan composite view of the rectified stereo pair image')

3 Functions

3-454



Convert the rectified input color images to grayscale images.

J1 = im2gray(I1);
J2 = im2gray(I2);

Compute the disparity map. Specify the range of disparity as [0, 48], and the minimum value of
uniqueness as 20.

disparityRange = [0 48];
disparityMap = disparityBM(J1,J2,'DisparityRange',disparityRange,'UniquenessThreshold',20);

Display the disparity map. Set the display range to the same value as the disparity range.

figure
imshow(disparityMap,disparityRange)
title('Disparity Map')
colormap jet
colorbar

 disparityBM

3-455



Input Arguments
I1 — Input image 1
2-D grayscale image | gpuArray object

Input image referenced as I1 corresponding to camera 1, specified as a 2-D grayscale image or a
gpuArray object. The function uses this image as the reference image for computing the disparity
map. The input images I1 and I2 must be real, finite, and nonsparse. Also, I1 and I2 must be of the
same size and same data type.
Data Types: single | double | int16 | uint8 | uint16

I2 — Input image 2
2-D grayscale image | gpuArray object

Input image referenced as I2 corresponding to camera 2, specified as a 2-D grayscale image or a
gpuArray object. The input images I1 and I2 must be real, finite, and nonsparse. I1 and I2 must be
of the same size and same data type.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: disparityBM(I1,I2,'DisparityRange',[0 64])

3 Functions

3-456



DisparityRange — Range of disparity
[0 64] (default) | two-element vector

Range of disparity, specified as the comma-separated pair consisting of 'DisparityRange' and a
two-element vector of the form [MinDisparity MaxDisparity]. MinDisparity is the minimum disparity
and MaxDisparity is the maximum disparity. The conditions this range must satisfy depend on the
type of input images.

If the input images are grayscale images of width N, then:

• MinDisparity and MaxDisparity must be integers in the range (–N, N).
• The difference between the MaxDisparity and MinDisparity values must be divisible by 16 and less

than the width of the input images.

If the input images are gpuArray objects of width N, then:

• The value of MinDisparity must be equal to zero.

The value of MaxDisparity must be in the range (16, N). If N is greater than 256, then the
MaxDisparity must be chosen as less than or equal to 256.

The difference between the MaxDisparity and MinDisparity values must be divisible by 16.

The default value for the range of disparity is [0 64]. For more information on choosing the range of
disparity, see “Choosing Range of Disparity” on page 3-459.

BlockSize — Size of squared block
15 (default) | odd integer

Size of the squared block, specified as the comma-separated pair consisting of 'BlockSize' and an
odd integer. This value specifies the width of the search window used for block matching pixels in the
rectified stereo pair image. The range for the size squared block depend on the type of input images.

If the input images are grayscale images, the 'BlockSize' value must be an odd integer in the
range [5, 255].

If the input images are gpuArray objects, the 'BlockSize' value must be an odd integer in the
range [5, 51].

The default value is 15.

ContrastThreshold — Range of contrast threshold
0.5 (default) | scalar in the range (0, 1]

Range of contrast threshold, specified as the comma-separated pair consisting of
'ContrastThreshold' and a scalar value in the range (0, 1]. The contrast threshold defines an
acceptable range of contrast values. If the contrast value of a pixel in the reference image is below
the contrast threshold, then the disparity computed for that pixel is considered unreliable. Increasing
this parameter results in disparity for fewer pixels being marked as unreliable.

UniquenessThreshold — Minimum value of uniqueness
15 (default) | nonnegative integer

Minimum value of uniqueness, specified as the comma-separated pair consisting of
'UniquenessThreshold' and a nonnegative integer.

 disparityBM

3-457



The function marks the estimated disparity value K for a pixel as unreliable, if:
v < V×(1+0.01×UniquenessThreshold),

where V is the sum of absolute difference (SAD) corresponding to the disparity value K. v is the
smallest SAD value over the whole disparity range, excluding K, K–1, and K+1.

Increasing the value of UniquenessThreshold results in disparity values for more pixels being
marked as unreliable. To disable the use of uniqueness threshold, set this value to [].

Note If the input images are gpuArray objects, then the 'UniquenessThreshold' name-value
pair argument does not apply.

DistanceThreshold — Maximum distance between conjugate pixels in stereo pair image
[] (disabled) (default) | nonnegative integer

Maximum distance between conjugate pixels in stereo pair image, specified as the comma-separated
pair consisting of 'DistanceThreshold' and a nonnegative integer. The distance threshold
specifies the maximum distance between a pixel in I1 and the same pixel found in I2.

For pixel p1 in the reference image I1, the function performs a left-to-right check to find its best
matching pixel p2 in image I2. For pixel p2, the function performs a right-to-left check to find its best
matching pixel p3 in the reference image I1. If the distance between p1 and p3 is greater than the
DistanceThreshold, the function marks the disparity for the pixel p1 in the reference image I1 as
unreliable.

Increasing the value of DistanceThreshold results in disparity values for fewer pixels being
marked as unreliable. Conversely, decreasing the value of DistanceThreshold, increases the
reliability of the disparity map. To disable the use of distance threshold, set this value to [].

Note If the input images are gpuArray objects, then the 'DistanceThreshold' name-value pair
argument does not apply.

TextureThreshold — Minimum texture threshold
0.0002 (default) | scalar value in the range [0, 1)

Minimum texture threshold, specified as the comma-separated pair consisting of
'TextureThreshold' and a scalar value in the range [0, 1).

The texture of a pixel is defined as the sum of the saturated contrast computed over the BlockSize-
by-BlockSize window around the pixel. The texture threshold defines the minimum texture value for
a pixel to have reliable disparity value. The function considers the disparity for a pixel as unreliable,
if:

texture < intensitymax×TextureThreshold×BlockSize2,
where texture is the texture of a pixel. intensitymax is the maximum value supported by the data type
of input images I1 and I2.

Increasing the value of 'TextureThreshold' results in disparity values for more pixels being
marked as unreliable. To disable the use of texture threshold, set this value to [].

3 Functions

3-458



Output Arguments
disparityMap — Disparity map
2-D grayscale image | gpuArray object

Disparity map for rectified stereo pair image, returned as a 2-D grayscale image or a gpuArray
object. The function returns the disparity map with the same size as input images I1 and I2. Each
value in this output refers to the displacement between conjugate pixels in the stereo pair image. For
details about computing the disparity map, see “Computing Disparity Map Using Block Matching” on
page 3-460.
Data Types: single

More About
Image Rectification

The input images I1 and I2 must be rectified before computing the disparity map. The rectification
ensures that the corresponding points in the stereo pair image are on the same rows. You can rectify
the input stereo pair image by using the rectifyStereoImages function. The reference image must
be the same for rectification and disparity map computation.

Algorithms
Choosing Range of Disparity

The range of disparity must be chosen to cover the minimum and the maximum amount of horizontal
shift between the corresponding pixels in the rectified stereo pair image. You can determine the
approximate horizontal shift values from the stereo anaglyph of the stereo pair image. Compute the
stereo anaglyph of the rectified images by using the stereoAnaglyph function. Display the stereo
anaglyph in the Image Viewer app. To measure the amount of horizontal shift between the
corresponding points in the stereo pair image, select Measure Distance from the Tools menu in
Image Viewer. Choose the minimum and maximum disparity values for the range of disparity based
on this measurement.

For example, this figure displays the stereo anaglyph of a rectified stereo pair image and the
horizontal shift values measured between the corresponding points in the stereo pair image. The
minimum and maximum shift values are computed as 8 and 31 respectively. Based on these values,
the range of disparity can be chosen as [0, 48].

 disparityBM

3-459



Computing Disparity Map Using Block Matching

The function computes the disparity map by following these steps:

1 Compute the disparity for each pixel by using the block matching method given in [1].

• For CPU — The sum of absolute difference (SAD) is used as the cost function in block
matching. The cost function estimates the displacement between pixels in the rectified stereo
pair image.

2 Optionally, mark the pixels for unreliability based on the ContrastThreshold,
UniquenessThreshold, DistanceThreshold, and TextureThreshold name-value pairs.
The function sets the unreliable disparity values to NaN.

3 Functions

3-460



Compatibility Considerations
GPU Use Being Removed for disparityBM function
Errors starting in R2022a

The disparityBM function no longer supports GPU. You can use the enhanced disparitySGM on
the GPU instead. Results will not be identical using the disparitySGM function, but the semi-global
algorithm used in the disparitySGM is normally recommended over the block matching algorithm in
the disparityBM function .

References
[1] Konolige, K. "Small Vision Systems: Hardware and Implementation." In Proceedings of the 8th

International Symposium in Robotic Research, pp. 203–212. 1997.

[2] Bradski, G. and A. Kaehler. Learning OpenCV : Computer Vision with the OpenCV Library.
Sebastopol, CA: O'Reilly Media, Inc. 2008.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• Supports code generation only in generic MATLAB Host Computer target platform.

See Also
Apps
Stereo Camera Calibrator

Functions
disparitySGM | reconstructScene | estimateUncalibratedRectification |
rectifyStereoImages | estimateCameraParameters

Introduced in R2019a

 disparityBM

3-461



disparitySGM
Compute disparity map through semi-global matching

Syntax
disparityMap = disparitySGM(I1,I2)
disparityMap = disparitySGM(I1,I2,Name,Value)

Description
disparityMap = disparitySGM(I1,I2) computes disparity map from a pair of rectified stereo
images I1 and I2, by using semi-global matching (SGM) method. To know more about rectifying
stereo images, see “Image Rectification” on page 3-465.

disparityMap = disparitySGM(I1,I2,Name,Value) specifies options using one or more name-
value pair arguments.

Examples

Compute Disparity Map by Using Semi-Global Matching Method

Load a rectified stereo pair image.

I1 = imread('rectified_left.png');
I2 = imread('rectified_right.png');

Create the stereo anaglyph of the rectified stereo pair image and display it. You can view the image in
3-D by using red-cyan stereo glasses.

A = stereoAnaglyph(I1,I2);
figure
imshow(A)
title('Red-Cyan composite view of the rectified stereo pair image')

3 Functions

3-462



Convert the rectified input color images to grayscale images.

J1 = rgb2gray(I1);
J2 = rgb2gray(I2);

Compute the disparity map through semi-global matching. Specify the range of disparity as [0, 48],
and the minimum value of uniqueness as 20.

disparityRange = [0 48];
disparityMap = disparitySGM(J1,J2,'DisparityRange',disparityRange,'UniquenessThreshold',20);

Display the disparity map. Set the display range to the same value as the disparity range.

figure
imshow(disparityMap,disparityRange)
title('Disparity Map')
colormap jet
colorbar

 disparitySGM

3-463



Input Arguments
I1 — Input image 1
2-D grayscale image | gpuArray object

Input image referenced as I1 corresponding to camera 1, specified as a 2-D grayscale image or a
gpuArray object. The function uses this image as the reference image for computing the disparity
map. The input images I1 and I2 must be real, finite, and nonsparse. Also, I1 and I2 must be of the
same size and same data type.
Data Types: single | double | int16 | uint8 | uint16

I2 — Input image 2
2-D grayscale image | gpuArray object

Input image referenced as I2 corresponding to camera 2, specified as a 2-D grayscale image or a
gpuArray object. The input images I1 and I2 must be real, finite, and nonsparse. I1 and I2 must be
of the same size and same data type.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: disparitySGM(I1,I2,'DisparityRange',[0 64])

3 Functions

3-464



DisparityRange — Range of disparity
[0 128] (default) | two-element vector

Range of disparity, specified as the comma-separated pair consisting of 'DisparityRange' and a
two-element vector of the form [MinDisparity MaxDisparity]. MinDisparity is the minimum disparity
and MaxDisparity is the maximum disparity.

For input images of width N, the MinDisparity and MaxDisparity must be integers in the range (–N,
N). The difference between the MaxDisparity and MinDisparity values must be divisible by 8 and
must be less than or equal to 128.

The default value for the range of disparity is [0 128]. For more information on choosing the range
of disparity, see “Choosing Range of Disparity” on page 3-466.
Data Types: integers

UniquenessThreshold — Minimum value of uniqueness
15 (default) | non-negative integer

Minimum value of uniqueness, specified as the comma-separated pair consisting of
'UniquenessThreshold' and a nonnegative integer.

The function marks the estimated disparity value K for a pixel as unreliable, if:
v < V×(1+0.01×UniquenessThreshold),

where V is the Hamming distance corresponding to the disparity value K. v is the smallest Hamming
distance value over the whole disparity range, excluding K, K–1, and K+1.

Increasing the value of UniquenessThreshold results in disparity values for more pixels being
marked as unreliable. To disable the use of uniqueness threshold, set this value to 0.

Output Arguments
disparityMap — Disparity map
2-D grayscale image | gpuArray object

Disparity map for rectified stereo pair image, returned as a 2-D grayscale image or a gpuArray
object. The function returns the disparity map with the same size as input images I1 and I2. Each
value in this output refers to the displacement between conjugate pixels in the stereo pair image. For
details about computing the disparity map, see “Computing Disparity Map Using Semi-Global
Matching” on page 3-467.
Data Types: single

More About
Image Rectification

The input images I1 and I2 must be rectified before computing the disparity map. The rectification
ensures that the corresponding points in the stereo pair image are on the same rows. You can rectify
the input stereo pair image by using the rectifyStereoImages function. The reference image must
be the same for rectification and disparity map computation.

 disparitySGM

3-465



Algorithms
Choosing Range of Disparity

The range of disparity must be chosen to cover the minimum and the maximum amount of horizontal
shift between the corresponding pixels in the rectified stereo pair image. You can determine the
approximate horizontal shift values from the stereo anaglyph of the stereo pair image. Compute the
stereo anaglyph of the rectified images by using the stereoAnaglyph function. Display the stereo
anaglyph in the Image Viewer app. To measure the amount of horizontal shift between the
corresponding points in the stereo pair image, select Measure Distance from the Tools menu in
Image Viewer. Choose the minimum and maximum disparity values for the range of disparity based
on this measurement.

For example, this figure displays the stereo anaglyph of a rectified stereo pair image and the
horizontal shift values measured between the corresponding points in the stereo pair image. The
minimum and maximum shift values are computed as 8 and 31 respectively. Based on these values,
the range of disparity can be chosen as [0, 48].

3 Functions

3-466



Computing Disparity Map Using Semi-Global Matching

1 Compute Census transform of the rectified stereo pair image.
2 Compute Hamming distance between pixels in the census-transformed image to obtain the

matching cost matrix.
3 Compute the pixel-wise disparity from matching cost matrix by using the semi-global matching

method given in [1].
4 Optionally, mark the pixels for unreliability based on the UniquenessThreshold name-value

pair. The function sets the disparity values of the unreliable pixels to NaN.

 disparitySGM

3-467



References
[1] Hirschmuller, H. "Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual

Information." In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 807-814. San Diego, CA: IEEE, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

• The name-value pair arguments, 'DisparityRange' and 'UniquenessThreshold' must be
compile-time constants.

• Supports code generation only in generic MATLAB Host Computer target platform.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input images I1 and I2 must be rectified, same size, and of same data type.
• GPU code generation supports the 'UniquenessThreshold' and 'disparityMap' name-value

pairs.
• For very large inputs, the memory requirements of the algorithm may exceed the GPU device

limits. In such cases, consider reducing the input size to proceed with code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Stereo Camera Calibrator

Functions
disparityBM | reconstructScene | estimateUncalibratedRectification |
rectifyStereoImages | estimateCameraParameters

Introduced in R2019a

3 Functions

3-468



epipolarLine
Compute epipolar lines for stereo images

Syntax
lines = epipolarLine(F,points)
lines = epipolarLine(F',points)

Description
lines = epipolarLine(F,points) returns an M-by-3 matrix, lines. The matrix represents the
computed epipolar lines in image I2 corresponding to the points in image I1. The input F
represents the fundamental matrix that maps points in I1 to epipolar lines in image I2.

lines = epipolarLine(F',points) The matrix represents the computed epipolar lines in image
I1 corresponding to the points in image I2.

Examples

Compute Fundamental Matrix

This example shows you how to compute the fundamental matrix. It uses the least median of squares
method to find the inliers.

The points, matched_points1 and matched_points2, have been putatively matched.

load stereoPointPairs
[fLMedS,inliers] = estimateFundamentalMatrix(matchedPoints1,...
    matchedPoints2,'NumTrials',4000);

Show the inliers in the first image.

I1 = imread('viprectification_deskLeft.png');
figure; 
subplot(121);
imshow(I1); 
title('Inliers and Epipolar Lines in First Image'); hold on;
plot(matchedPoints1(inliers,1),matchedPoints1(inliers,2),'go')

 epipolarLine

3-469



Compute the epipolar lines in the first image.

epiLines = epipolarLine(fLMedS',matchedPoints2(inliers,:));

Compute the intersection points of the lines and the image border.

points = lineToBorderPoints(epiLines,size(I1));

Show the epipolar lines in the first image

line(points(:,[1,3])',points(:,[2,4])');

3 Functions

3-470



Show the inliers in the second image.

I2 = imread('viprectification_deskRight.png');
subplot(122); 
imshow(I2);
title('Inliers and Epipolar Lines in Second Image'); hold on;
plot(matchedPoints2(inliers,1),matchedPoints2(inliers,2),'go')

 epipolarLine

3-471



Compute and show the epipolar lines in the second image.

epiLines = epipolarLine(fLMedS,matchedPoints1(inliers,:));
points = lineToBorderPoints(epiLines,size(I2));
line(points(:,[1,3])',points(:,[2,4])');
truesize;

3 Functions

3-472



Input Arguments
F — Fundamental matrix
3-by-3 matrix (default)

Fundamental matrix, specified as a 3-by-3 matrix. F must be double or single. If P1 represents a point
in the first image I1 that corresponds to P2, a point in the second image I2, then:
[P2,1] * F * [P1,1]' = 0

In computer vision, the fundamental matrix is a 3-by-3 matrix which relates corresponding points in
stereo images. When two cameras view a 3-D scene from two distinct positions, there are a number of
geometric relations between the 3-D points and their projections onto the 2-D images that lead to
constraints between the image points. Two images of the same scene are related by epipolar
geometry.

F' — Fundamental matrix
3-by-3 matrix (default)

Fundamental matrix, specified as a 3-by-3 matrix. The F' fundamental matrix maps points in image
I2 to epipolar lines in image I1.

points — Coordinates of points
M

Coordinates of points, specified as an M-by-2 matrix. Each row contains the (x,y) coordinates of a
point. M is the number of points.

Output Arguments
lines — Lines
M-by-3 matrix

An M-by-3 matrix, where each row must be in the format, [A,B,C]. This corresponds to the definition
of the line:
A * x + B * y + C = 0.
M represents the number of lines.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insertShape | size | line | isEpipoleInImage | lineToBorderPoints |
estimateFundamentalMatrix

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2011a

 epipolarLine

3-473



estimateCameraParameters
Calibrate a single or stereo camera

Syntax
[cameraParams,imagesUsed,estimationErrors] = estimateCameraParameters(
imagePoints,worldPoints)

[stereoParams,pairsUsed,estimationErrors] = estimateCameraParameters(
imagePoints,worldPoints)

cameraParams = estimateCameraParameters( ___ ,Name,Value)

Description
[cameraParams,imagesUsed,estimationErrors] = estimateCameraParameters(
imagePoints,worldPoints) returns cameraParams, a cameraParameters object containing
estimates for the intrinsic and extrinsic parameters and the distortion coefficients of a single camera.
The function also returns the images you used to estimate the camera parameters and the standard
estimation errors for the single camera calibration. The estimateCameraParameters function
estimates extrinsics and intrinsics parameters.

[stereoParams,pairsUsed,estimationErrors] = estimateCameraParameters(
imagePoints,worldPoints) returns stereoParams, a stereoParameters object containing the
parameters of the stereo camera. The function also returns the images you used to estimate the
stereo parameters and the standard estimation errors for the stereo camera calibration.

cameraParams = estimateCameraParameters( ___ ,Name,Value) configures the
cameraParams object properties specified by one or more Name,Value pair arguments, using any of
the preceding syntaxes. Unspecified properties have their default values.

Examples

Single Camera Calibration

Create a set of calibration images.

images = imageSet(fullfile(toolboxdir('vision'),'visiondata',...
            'calibration','mono'));
imageFileNames = images.ImageLocation;

Detect the calibration pattern.

[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

Generate the world coordinates of the corners of the squares.

squareSizeInMM = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSizeInMM);

3 Functions

3-474



Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I, 1),size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Visualize the calibration accuracy.

showReprojectionErrors(params);

Visualize camera extrinsics.

figure;
showExtrinsics(params);

 estimateCameraParameters

3-475



drawnow;

Plot detected and reprojected points.

figure; 
imshow(imageFileNames{1}); 
hold on;
plot(imagePoints(:,1,1), imagePoints(:,2,1),'go');
plot(params.ReprojectedPoints(:,1,1),params.ReprojectedPoints(:,2,1),'r+');
legend('Detected Points','ReprojectedPoints');
hold off;

3 Functions

3-476



Stereo Camera Calibration

Specify calibration images.

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo','right'));

Detect the checkerboards.

[imagePoints,boardSize] = ...
  detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify the world coordinates of the checkerboard keypoints. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1); 
imageSize = [size(I,1),size(I,2)];

 estimateCameraParameters

3-477



params = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Visualize the calibration accuracy.

  showReprojectionErrors(params);

Visualize camera extrinsics.

figure;
showExtrinsics(params);

3 Functions

3-478



Estimate Camera Parameters Using Circle Grid

Create a set of calibration images.

imds = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
                        'calibration','circleGrid','mono'));
calibrationImages = readall(imds);
calibrationImages = cat(4,calibrationImages{:});

Define the circle grid pattern dimensions.

patternDims = [8 11];

Detect the pattern in the calibration images.

imagePoints = detectCircleGridPoints(calibrationImages, patternDims,...
                        'PatternType','symmetric');

Specify the world coordinates for the circle grid keypoints. Center distance is in millimeters.

centerDistance = 18;
worldPoints = generateCircleGridPoints(patternDims,centerDistance,...
                        'PatternType','symmetric');

Calibrate the camera using the calibration images.

 estimateCameraParameters

3-479



imageSize = size(calibrationImages,1:2);
params = estimateCameraParameters(imagePoints,worldPoints,...
                        'ImageSize',imageSize);

Plot the detected pattern grid and the reprojected points.

figure
imshow(calibrationImages(:,:,:,1))
hold on
plot(imagePoints(:,1,1), imagePoints(:,2,1),'gx','MarkerSize',8)
plot(params.ReprojectedPoints(:,1,1),params.ReprojectedPoints(:,2,1),'r+','MarkerSize',8)
legend('Detected Points','ReprojectedPoints')
hold off

Input Arguments
imagePoints — Key points of calibration pattern
M-by-2-by-numImages | M-by-2-by-numPairs-by-2 array

Key points of calibration pattern, specified as an array of [x,y] intrinsic image coordinates.

3 Functions

3-480



Calibration Input Array of [x,y] Key Points
Single Camera M-by-2-by-numImages array of [x,y] points.

• The number of images, numImages, must be greater than or equal to 2.
• The number of keypoint coordinates in each pattern, M, must be greater

than 3.

Partially detected patterns are only supported for single camera calibration. To
include partially detected patterns in the estimate, use [NaN,NaN] as x-y
coordinates for missing keypoints.

Stereo Camera M-by-2-by-numPairs-by-2 array of [x,y] points.

• numPairs is the number of stereo image pairs containing the calibration
pattern.

• The number of keypoint coordinates in each pattern, M, must be greater
than 3.

• imagePoints(:,:,:,1) are the points from camera 1.
• imagePoints(:,:,:,2) are the points from camera 2.

Data Types: single | double

worldPoints — Key points of calibration pattern in world coordinates
M-by-2 array

Key points of calibration pattern in world coordinates, specified as an M-by-2 array of M number of
[x,y] world coordinates. The pattern must be planar; therefore, z-coordinates are zero.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'WorldUnits','mm' sets the world point units to millimeters.

WorldUnits — World points units
'mm' (default) | character vector | string scalar

World points units, specified as the comma-separated pair consisting of 'WorldUnits' and a
character vector or string scalar.

EstimateSkew — Estimate skew
false (default) | logical scalar

Estimate skew, specified as the comma-separated pair consisting of 'EstimateSkew' and a logical
scalar. When you set this property to true, the function estimates the image axes skew. When set to
false, the image axes are exactly perpendicular and the function sets the skew to zero.

NumRadialDistortionCoefficients — Number of radial distortion coefficients
2 (default) | 3

 estimateCameraParameters

3-481



Number of radial distortion coefficients to estimate, specified as the comma-separated pair consisting
of 'NumRadialDistortionCoefficients' and the value 2 or 3.

Radial distortion is the displacement of image points along radial lines extending from the principal
point.

• As image points move away from the principal point (positive radial displacement), image
magnification decreases and a pincushion-shaped distortion occurs on the image.

• As image points move toward the principal point (negative radial displacement), image
magnification increases and a barrel-shaped distortion occurs on the image.

The radial distortion coefficients model this type of distortion. The distorted points are denoted as
(xdistorted, ydistorted):

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6)

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• k1, k2, and k3 — Radial distortion coefficients of the lens.
• r2 = x2 + y2

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in wide-angle
lenses, you can select three coefficients to include k3.

EstimateTangentialDistortion — Tangential distortion flag
false (default) | logical scalar

Tangential distortion flag, specified as the comma-separated pair consisting of,
'EstimateTangentialDistortion' and a logical scalar. When you set this property to true, the
function estimates the tangential distortion. When you set it to false, the tangential distortion is
negligible.

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential
distortion coefficients model this type of distortion.

3 Functions

3-482



The distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)]

ydistorted = y + [p1 * (r2 + 2 *y2) + 2 * p2 * x * y]

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• p1 and p2 — Tangential distortion coefficients of the lens.
• r2 = x2 + y2

InitialIntrinsicMatrix — Initial guess for camera intrinsics
[] (default) | 3-by-3 matrix

Initial guess for camera intrinsics, specified as the comma-separated pair consisting of
'InitialIntrinsicMatrix' and a 3-by-3 matrix. If you do not provide an initial value, the
function computes the initial intrinsic matrix using linear least squares.

InitialRadialDistortion — Initial guess for radial distortion coefficients
[] (default) | 2-element vector | 3-element vector

Initial guess for radial distortion coefficients, specified as the comma-separated pair consisting of
'InitialRadialDistortion' and a 2- or 3-element vector. If you do not provide an initial value,
the function uses 0 as the initial value for all the coefficients.

ImageSize — Image size produced by camera
1-by-2 [mrows, ncols] vector | []

Image size produced by camera, specified as the comma-separated pair consisting of 'ImageSize'
and as 1-by-2 [mrows, ncols] vector.

Output Arguments
cameraParams — Camera parameters
cameraParameters object

 estimateCameraParameters

3-483



Camera parameters, returned as a cameraParameters object.

imagesUsed — Images used to estimate camera parameters
P-by-1 logical array

Images you use to estimate camera parameters, returned as a P-by-1 logical array. P corresponds to
the number of images. The array indicates which images you used to estimate the camera
parameters. A logical true value in the array indicates which images you used to estimate the
camera parameters.

The function computes a homography between the world points and the points detected in each
image. If the homography computation fails for an image, the function issues a warning. The points
for that image are not used for estimating the camera parameters. The function also sets the
corresponding element of imagesUsed to false.

estimationErrors — Standard errors of estimated parameters
cameraCalibrationErrors object | stereoCalibrationErrors object

Standard errors of estimated parameters, returned as a cameraCalibrationErrors object or a
stereoCalibrationErrors object.

stereoParams — Camera parameters for stereo system
stereoParameters object

Camera parameters for stereo system, returned as a stereoParameters object. The object contains
the intrinsic, extrinsic, and lens distortion parameters of the stereo camera system.

pairsUsed — Image pairs used to estimate camera parameters
P-by-1 logical array

Image pairs used to estimate camera parameters, returned as a P-by-1 logical array. P corresponds to
the number of image pairs. A logical true value in the array indicates which image pairs you used to
estimate the camera parameters.

Algorithms
Calibration Algorithm

You can use the Camera Calibrator app with cameras up to a field of view (FOV) of 95 degrees.

The calibration algorithm assumes a pinhole camera model:

w x y 1 = X Y Z 1
R
t

K

(X,Y,Z): world coordinates of a point
(x,y): coordinates of the corresponding image point
w: arbitrary scale factor
K: camera intrinsic matrix
R: matrix representing the 3-D rotation of the camera
t: translation of the camera relative to the world coordinate system

Camera calibration estimates the values of the intrinsic parameters, the extrinsic parameters, and the
distortion coefficients. There are two steps involved in camera calibration:

3 Functions

3-484



1 Solve for the intrinsics and extrinsics in closed form, assuming that lens distortion is zero. [1]
2 Estimate all parameters simultaneously including the distortion coefficients using nonlinear

least-squares minimization (Levenberg–Marquardt algorithm). Use the closed form solution from
the preceding step as the initial estimate of the intrinsics and extrinsics. Then set the initial
estimate of the distortion coefficients to zero. [1][2]

References
[1] Zhang, Z. “A Flexible New Technique for Camera Calibration”. IEEE Transactions on Pattern

Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330–1334.

[2] Heikkila, J, and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction”, IEEE International Conference on Computer Vision and Pattern Recognition,
1997.

[3] Bouguet, J.Y. “Camera Calibration Toolbox for Matlab”, Computational Vision at the California
Institute of Technology. Camera Calibration Toolbox for MATLAB

[4] Bradski, G., and A. Kaehler. Learning OpenCV : Computer Vision with the OpenCV Library.
Sebastopol, CA: O'Reilly, 2008.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Objects
cameraCalibrationErrors | stereoCalibrationErrors | stereoParameters |
cameraParameters

Functions
showReprojectionErrors | showExtrinsics | undistortImage | undistortPoints |
detectCheckerboardPoints | generateCheckerboardPoints | reconstructScene |
rectifyStereoImages | disparityBM | disparitySGM |
estimateUncalibratedRectification | estimateFundamentalMatrix |
estimateStereoBaseline

Topics
“What Is Camera Calibration?”
“Using the Single Camera Calibrator App”
“Coordinate Systems”
“Evaluating the Accuracy of Single Camera Calibration”

Introduced in R2014b

 estimateCameraParameters

3-485

http://www.vision.caltech.edu/bouguetj/calib_doc/


estimateFundamentalMatrix
Estimate fundamental matrix from corresponding points in stereo images

Syntax
estimateFundamentalMatrix
F = estimateFundamentalMatrix(matchedPoints1,matchedPoints2)
[F,inliersIndex] = estimateFundamentalMatrix(matchedPoints1,matchedPoints2)
[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2)
[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2,Name=Value)

Description
estimateFundamentalMatrix estimates the fundamental matrix from corresponding points in
stereo images. This function can be configured to use all corresponding points or to exclude outliers.
You can exclude outliers by using a robust estimation technique such as random-sample consensus
(RANSAC). When you use robust estimation, results may not be identical between runs because of the
randomized nature of the algorithm.

F = estimateFundamentalMatrix(matchedPoints1,matchedPoints2) returns the 3-by-3
fundamental matrix, F, using the least median of squares (LMedS) method. The input points can be
M-by-2 matrices of M number of [x y] coordinates, or KAZEPoints, SIFTPoints, SURFPoints,
MSERRegions, ORBPoints, or cornerPoints object.

[F,inliersIndex] = estimateFundamentalMatrix(matchedPoints1,matchedPoints2)
additionally returns logical indices, inliersIndex, for the inliers used to compute the fundamental
matrix. The inliersIndex output is an M-by-1 vector. The function sets the elements of the vector
to true when the corresponding point was used to compute the fundamental matrix. The elements
are set to false if they are not used.

[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2) additionally returns a status code.

[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2,Name=Value) specifies options using one or more name-value arguments in
addition to any combination of arguments from previous syntaxes. For example,
estimateFundamentalMatrix(matchedPoints1,matchedPoints2,Method="MSAC") specifies
MSAC as the method to compute the fundamental matrix.

Examples

Compute Fundamental Matrix

Use the random sample consensus (RANSAC) method to compute the fundamental matrix. The
RANSAC method requires that the input points are putatively matched. You can use the
matchFeatures function to return these matched points. Outlier points which may still be contained
within putatively matched points are further eliminated by using the RANSAC algorithm.

3 Functions

3-486



Load stereo points into the workspace.

load stereoPointPairs

Estimate the fundamental matrix.

fRANSAC = estimateFundamentalMatrix(matchedPoints1, ...
    matchedPoints2,Method="RANSAC", ...
    NumTrials=2000,DistanceThreshold=1e-4)

fRANSAC = 3×3

    0.0000   -0.0004    0.0348
    0.0004    0.0000   -0.0937
   -0.0426    0.0993    0.9892

Use Least Median of Squares Method to Find Inliers

Load the putatively matched points into the workspace.

load stereoPointPairs
[fLMedS,inliers] = estimateFundamentalMatrix(matchedPoints1,matchedPoints2,NumTrials=2000)

fLMedS = 3×3

    0.0000   -0.0004    0.0349
    0.0004    0.0000   -0.0938
   -0.0426    0.0994    0.9892

inliers = 18x1 logical array

   1
   1
   1
   1
   1
   1
   0
   1
   0
   0
      ⋮

Load the stereo images.

I1 = imread('viprectification_deskLeft.png');
I2 = imread('viprectification_deskRight.png');

Show the putatively matched points.

figure;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'montage','PlotOptions',{'ro','go','y--'});
title('Putative Point Matches');

 estimateFundamentalMatrix

3-487



Show the inlier points.

figure;
showMatchedFeatures(I1,I2,matchedPoints1(inliers,:),matchedPoints2(inliers,:),'montage','PlotOptions',{'ro','go','y--'});
title('Point Matches After Outliers Are Removed');

Use Normalized Eight-Point Algorithm to Compute Fundamental Matrix

Load the stereo point pairs into the workspace.

load stereoPointPairs

Compute the fundamental matrix for input points which do not contain any outliers.

3 Functions

3-488



inlierPts1 = matchedPoints1(knownInliers,:);
inlierPts2 = matchedPoints2(knownInliers,:);
fNorm8Point = estimateFundamentalMatrix(inlierPts1,inlierPts2,Method="Norm8Point")

fNorm8Point = 3×3

    0.0000   -0.0004    0.0348
    0.0004    0.0000   -0.0937
   -0.0426    0.0993    0.9892

Input Arguments
matchedPoints1 — Coordinates of corresponding points
KAZEPoints | SIFTPoints | SURFPoints | cornerPoints | MSERRegions | ORBPoints object |
M-by-2 matrix of [x,y] coordinates

Coordinates of corresponding points in image one, specified as an M-by-2 matrix of M number of [x y]
coordinates, or as a KAZEPoints, SIFTPoints, SURFPoints, MSERRegions, ORBPoints, or
cornerPoints object. The matchedPoints1 input must contain points which do not lie on a single
planar surface, (e.g., a wall, table, or book) and are putatively matched by using a function such as
matchFeatures.

matchedPoints2 — Coordinates of corresponding points
KAZEPoints | SIFTPoints | SURFPoints | cornerPoints | MSERRegions | ORBPoints object |
M-by-2 matrix of [x,y] coordinates

Coordinates of corresponding points in image two, specified as an M-by-2 matrix of M number of [x y]
coordinates, or as a KAZEPoints, SIFTPoints, SURFPoints, MSERRegions, ORBPoints, or
cornerPoints object. The matchedPoints1 input must contain points which do not lie on a single
planar surface, (e.g., a wall, table, or book) and are putatively matched by using a function such as
matchFeatures.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: estimateFundamentalMatrix(matchedPoints1,matchedPoints2,Method="MSAC")
specifies MSAC as the method to compute the fundamental matrix.

Method — Method used to compute the fundamental matrix
LMedS (default) | MSAC | Norm8Point

Method used to compute the fundamental matrix, specified as one of the following:

"LMedS" Least Median of Squares. Use this method if at least 50% of the points in
matchedPoints1 and matchedPoints2 are inliers. The function stops the
search for inliers and the estimation of the fundamental matrix after 50% of the
inliers are found.

 estimateFundamentalMatrix

3-489



"MSAC" M-estimator SAmple Consensus. Select the M-estimator SAmple Consensus
method if you would like to set the distance threshold for the inliers. Generally,
the MSAC method converges more quickly than the RANSAC method.

"Norm8Point" Normalized eight-point algorithm [1] . To produce reliable results, the inputs,
matchedPoints1 and matchedPoints2 must match precisely.

To produce reliable results using the Norm8Point algorithm, the inputs, matchedPoints1 and
matchedPoints2, must match precisely. The other methods can tolerate outliers and therefore only
require putatively matched input points. You can obtain putatively matched points by using the
matchFeatures function.

OutputClass — Fundamental matrix class
"double" (default) | "single"

Fundamental matrix class, specified as "double" or "single". Use this property to specify the class
for the fundamental matrix and for the function's internal computations.

NumTrials — Number of random trials for finding outliers
500 (default) | integer

Number of random trials for finding the outliers, specified as an integer. This argument applies when
you set the Method to LMedS or MSAC.

• LMedS — The function uses the actual number of trials as the parameter value.
• MSAC — The function uses the maximum number of trials as the parameter value.

The actual number of trials depends on matchedPoints1, matchedPoints2, and the value of the
Confidence parameter. Select the number of random trials to optimize speed and accuracy.

DistanceThreshold — Distance threshold for finding outliers
0.01 (default)

Distance threshold for finding outliers, specified as a positive scalar. This parameter applies when you
set the Method to MSAC.

Confidence — Desired confidence for finding maximum number of inliers
99 (default) | scalar

Desired confidence for finding maximum number of inliers, specified as a percentage scalar in the
range (0 100). This argument applies when you set Method to MSAC.

ReportRuntimeError — Report runtime error
true (default) | false

Report runtime error, specified as a logical value. Set this parameter to true to report run-time
errors when the function cannot compute the fundamental matrix from matchedPoints1 and
matchedPoints2. When you set this parameter to false, you can check the status output to verify
validity of the fundamental matrix.

Output Arguments
F — Fundamental matrix
3-by-3 matrix

3 Functions

3-490



Fundamental matrix, returned as a 3-by-3 matrix that is computed from the points in the inputs
matchedPoints1 and matchedPoints2.

P2 1 * FundamentalMatrix * P1 1 ′ = 0

P1, the point in matchedPoints1 of image 1 in pixels, corresponds to the point, P2, the point in
matchedPoints2 in image 2.

In computer vision, the fundamental matrix is a 3-by-3 matrix which relates corresponding points in
stereo images. When two cameras view a 3-D scene from two distinct positions, there are a number of
geometric relations between the 3-D points and their projections onto the 2-D images that lead to
constraints between the image points. Two images of the same scene are related by epipolar
geometry.

inliersIndex — Inliers index
M-by-1 logical vector

Inliers index, returned as an M-by-1 logical index vector. An element set to true means that the
corresponding indexed matched points in matchedPoints1 and matchedPoints2 were used to
compute the fundamental matrix. An element set to false means the indexed points were not used
for the computation.
Data Types: logical

status — Status code
0 | 1 | 2

Status code, returned as one of the following possible values:

status Value
0: No error.
1: matchedPoints1 and matchedPoints2 do not contain enough points. The

Norm8Point and MSAC methods require at least 8 points, and the LMedS method
requires 16 points.

2: Not enough inliers found.

Data Types: int32

Tips
Use estimateEssentialMatrix when you know the camera intrinsics. You can obtain the intrinsics
using the Camera Calibrator app. Otherwise, you can use the estimateFundamentalMatrix
function that does not require camera intrinsics. Note that the fundamental matrix cannot be
estimated from coplanar world points.

Algorithms
Computing the Fundamental Matrix

When you choose the Norm8Point method, the function uses all points in matchedPoints1 and
matchedPoints2 to compute the fundamental matrix. When you choose any other method, the
function uses the following algorithm to exclude outliers and compute the fundamental matrix from
inliers:

 estimateFundamentalMatrix

3-491



1 Initialize the fundamental matrix, F, to a 3-by-3 matrix of zeros.
2 Set the loop counter n, to zero, and the number of loops N, to the number of random trials

specified.
3 Loop through the following steps while n < N:

a Randomly select 8 pairs of points from matchedPoints1 and matchedPoints2.
b Use the selected 8 points to compute a fundamental matrix, f, by using the normalized 8-

point algorithm.
c Compute the fitness of f for all points in matchedPoints1 and matchedPoints2.
d If the fitness of f is better than F, replace F with f.

For the MSAC method, update N.
e n = n + 1

Number of Random Samplings for the MSAC Method

The MSAC method updates the number of random trials N for every iteration in the algorithm loop.
The function resets N, according to the following:
N = min( N, log(1− p)

log(1− r8)
).

Where, p represents the confidence parameter you specified, and r is calculated as follows:

∑
i

N
sgn(dui, vi), t)/N, where sgn(a, b) = 1 if a ≤ b and 0 otherwise.

When you use the MSAC method, results may not be identical between runs because of the
randomized nature of the algorithm.

Sampson Distance

The function uses the Sampson distance to measure the distance of a pair of points according to a
fundamental matrix. The equation below can be used to calculate the Sampson distance. In the
equation, u represents matchedPoints1 and v represents matchedPoints2.

d(ui, vi) = (viFui
T)2 1

(Fui
T)1

2 + (Fui
T)2

2 + 1
(viF)12 + (viF)22

where i represents the index of the corresponding points, and Fui
T

j
2, the square of the j-th entry of

the vector Fui
T.

Fitness of Fundamental Matrix for Corresponding Points

The following table summarizes how each method determines the fitness of the computed
fundamental matrix:

Method Measure of Fitness
LMedS median(d ui, vi); i = 1:N , the number of input points. The smaller the value, the better the fitness.
MSAC

∑
i

N
min(d(ui, vi), t). The smaller the value, the better the fitness.

3 Functions

3-492



References
[1] Hartley, R., A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University

Press, 2003.

[2] Rousseeuw, P., A. Leroy, Robust Regression and Outlier Detection, John Wiley & Sons, 1987.

[3] Torr, P. H. S., and A. Zisserman, MLESAC: A New Robust Estimator with Application to Estimating
Image Geometry, Computer Vision and Image Understanding, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Method', 'OutputClass', 'DistanceType', and 'ReportRuntimeError' must be compile-
time constants.

See Also
Functions
epipolarLine | extractFeatures | matchFeatures | estimateUncalibratedRectification
| detectSURFFeatures | detectHarrisFeatures | detectMSERFeatures |
detectMinEigenFeatures | detectORBFeatures | detectFASTFeatures |
relativeCameraPose

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Point Feature Types”
“Structure from Motion Overview”
“Coordinate Systems”

Introduced in R2012b

 estimateFundamentalMatrix

3-493



estimateEssentialMatrix
Estimate essential matrix from corresponding points in a pair of images

Syntax
E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,cameraParams)
E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,cameraParams1,
cameraParams2)

[E,inliersIndex] = estimateEssentialMatrix( ___ )
[E,inliersIndex,status] = estimateEssentialMatrix( ___ )

[ ___ ] = estimateEssentialMatrix( ___ ,Name,Value)

Description
E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,cameraParams) returns
the 3-by-3 essential matrix, E, using the M-estimator sample consensus (MSAC) algorithm. The input
points can be M-by-2 matrices of M number of [x,y] coordinates, or a KAZEPoints ,
SIFTPoints,SURFPoints, MSERRegions, BRISKPoints, or cornerPoints object. The
cameraParams object contains the parameters of the camera used to take the images.

E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,cameraParams1,
cameraParams2) returns the essential matrix relating two images taken by different cameras.
cameraParams1 and cameraParams2 are cameraParameters objects containing the parameters of
camera 1 and camera 2 respectively.

[E,inliersIndex] = estimateEssentialMatrix( ___ ) additionally returns an M-by-1 logical
vector, inliersIndex, used to compute the essential matrix. The function sets the elements of the
vector to true when the corresponding point was used to compute the fundamental matrix. The
elements are set to false if they are not used.

[E,inliersIndex,status] = estimateEssentialMatrix( ___ ) additionally returns a status
code to indicate the validity of points.

[ ___ ] = estimateEssentialMatrix( ___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

Examples

Estimate Essential Matrix from Pair of Images

Load precomputed camera parameters.

load upToScaleReconstructionCameraParameters.mat

Read and undistort two images.

imageDir = fullfile(toolboxdir('vision'),'visiondata',...
    'upToScaleReconstructionImages');

3 Functions

3-494



images = imageDatastore(imageDir);
I1 = undistortImage(readimage(images,1),cameraParams);
I2 = undistortImage(readimage(images,2),cameraParams);
I1gray = im2gray(I1);
I2gray = im2gray(I2);

Detect feature points each image.

imagePoints1 = detectSURFFeatures(I1gray);
imagePoints2 = detectSURFFeatures(I2gray);

Extract feature descriptors from each image.

features1 = extractFeatures(I1gray,imagePoints1,'Upright',true);
features2 = extractFeatures(I2gray,imagePoints2,'Upright',true);

Match features across the images.

indexPairs = matchFeatures(features1,features2);
matchedPoints1 = imagePoints1(indexPairs(:,1));
matchedPoints2 = imagePoints2(indexPairs(:,2));
figure
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);
title('Putative Matches')

 estimateEssentialMatrix

3-495



Estimate the essential matrix.

[E,inliers] = estimateEssentialMatrix(matchedPoints1,matchedPoints2,...
 cameraParams);

Display the inlier matches.

inlierPoints1 = matchedPoints1(inliers);
inlierPoints2 = matchedPoints2(inliers);
figure
showMatchedFeatures(I1,I2,inlierPoints1,inlierPoints2);
title('Inlier Matches')

Input Arguments
matchedPoints1 — Coordinates of corresponding points
M-by-2 matrix of [x,y] coordinates | KAZEPoints | SIFTPoints | SURFPoints | BRISKPoints |
MSERRegions | cornerPoints

Coordinates of corresponding points in image 1, specified as an M-by-2 matrix of M of [x,y]
coordinates, or as a KAZEPoints, SIFTPoints, SURFPoints, BRISKPoints, MSERRegions, or

3 Functions

3-496



cornerPoints object. The matchedPoints1 input must contain at least five points, which are
putatively matched by using a function such as matchFeatures.

matchedPoints2 — Coordinates of corresponding points
SIFTPoints | SURFPoints | cornerPoints | MSERRegions | BRISKPoints | M-by-2 matrix of [x,y]
coordinates

Coordinates of corresponding points in image 1, specified as an M-by-2 matrix of M of [x,y]
coordinates, or as a KAZEPoints, SIFTPoints, SURFPoints, MSERRegions, BRISKPoints,or
cornerPoints object. The matchedPoints2 input must contain at least five points, which are
putatively matched by using a function such as matchFeatures.

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can
return the cameraParameters object using the estimateCameraParameters function. The
cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

cameraParams1 — Camera parameters for camera 1
cameraParameters object | cameraIntrinsics object

Camera parameters for camera 1, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters function.
The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

cameraParams2 — Camera parameters for camera 2
cameraParameters object | cameraIntrinsics object

Camera parameters for camera 2, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters function.
The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxNumTrials', 500

MaxNumTrials — Maximum number of random trials for finding the outliers
500 (default) | positive integer

Maximum number of random trials for finding outliers, specified as the comma-separated pair
consisting of 'MaxNumTrials' and a positive integer. The actual number of trials depends on
matchedPoints1, matchedPoints2, and the value of the Confidence parameter. To optimize
speed and accuracy, select the number of random trials.

Confidence — Desired confidence for finding maximum number of inliers
99 (default) | scalar

 estimateEssentialMatrix

3-497



Desired confidence for finding the maximum number of inliers, specified as the comma-separated pair
consisting of 'Confidence' and a percentage scalar value in the range (0,100). Increasing this value
improves the robustness of the output but increases the amount of computations.

MaxDistance — Sampson distance threshold
0.1 (default) | scalar

Sampson distance threshold, specified as the comma-separated pair consisting of 'MaxDistance' and
a scalar value. The function uses the threshold to find outliers returned in pixels squared. The
Sampson distance is a first-order approximation of the squared geometric distance between a point
and the epipolar line. Increase this value to make the algorithm converge faster, but this can also
adversely affect the accuracy of the result.

Output Arguments
E — Essential matrix
3-by-3 matrix

Essential matrix, returned as a 3-by-3 matrix that is computed from the points in the
matchedPoints1 and matchedPoints2 inputs with known camera intrinsics.

P2 1 * EssentialMatrix * P1 1 ′ = 0

The P1 point in image 1, in normalized image coordinates, corresponds to the , P2 point in image 2.

In computer vision, the essential matrix is a 3-by-3 matrix which relates corresponding points in
stereo images which are in normalized image coordinates. When two cameras view a 3-D scene from
two distinct positions, the geometric relations between the 3-D points and their projections onto the
2-D images lead to constraints between image points. The two images of the same scene are related
by epipolar geometry.
Data Types: double

inliersIndex — Inliers index
M-by-1 logical vector

Inliers index, returned as an M-by-1 logical index vector. An element set to true indicates that the
corresponding indexed matched points in matchedPoints1 and matchedPoints2 were used to
compute the essential matrix. An element set to false means the indexed points were not used for
the computation.
Data Types: logical

status — Status code
0 | 1 | 2

Status code, returned as one of the following possible values:

status Value
0: No error.
1: matchedPoints1 and matchedPoints2 do not contain enough points. At least
five points are required.

2: Not enough inliers found. A least five inliers are required.

3 Functions

3-498



Data Types: int32

Tips
Use estimateEssentialMatrix when you know the camera intrinsics. You can obtain the intrinsics
using the Camera Calibrator app. Otherwise, you can use the estimateFundamentalMatrix
function that does not require camera intrinsics. The fundamental matrix cannot be estimated from
coplanar world points.

References
[1] Kukelova, Z., M. Bujnak, and T. Pajdla Polynomial Eigenvalue Solutions to the 5-pt and 6-pt

Relative Pose Problems. Leeds, UK: BMVC, 2008.

[2] Nister, D.. “An Efficient Solution to the Five-Point Relative Pose Problem.” IEEE Transactions on
Pattern Analysis and Machine Intelligence.Volume 26, Issue 6, June 2004.

[3] Torr, P. H. S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application to
Estimating Image Geometry.” Computer Vision and Image Understanding. Volume 78, Issue 1,
April 2000, pp. 138-156.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Apps
Camera Calibrator

Functions
estimateFundamentalMatrix | relativeCameraPose | estimateCameraParameters |
estimateWorldCameraPose

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Point Feature Types”
“Structure from Motion Overview”
“Coordinate Systems”

Introduced in R2016b

 estimateEssentialMatrix

3-499



estimateStereoBaseline
Estimate baseline of stereo camera

Syntax
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(
imagePoints,worldPoints,intrinsics1,intrinsics2)
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(
imagePoints,worldPoints,intrinsics1,intrinsics2,'WorldUnits',units)

Description
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(
imagePoints,worldPoints,intrinsics1,intrinsics2) estimates the translation and
orientation between two cameras of the same resolution.

The estimateStereoBaseline function is best used for a stereo system with a wide baseline when
the cameras are so far apart that you cannot capture the complete calibration pattern in the field-of-
view of each camera. This function estimates extrinsic parameters using fixed camera intrinsics that
have been estimated independently for each camera. Calibrating each camera independently results
in more precise estimates of the intrinsics.

.

[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(
imagePoints,worldPoints,intrinsics1,intrinsics2,'WorldUnits',units) specifies the
units in which worldPoints are measured.

Examples

Estimate Baseline of a Stereo System

Load camera intrinsic parameters.

ld = load('wideBaselineStereo');

Specify stereo calibration images.

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','wideBaseline','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','wideBaseline','right'));

Detect the checkerboards.

[imagePoints, boardSize] = ...
    detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints.

3 Functions

3-500



squareSize = 29; % in millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the baseline and extrinsic parameters.

params = estimateStereoBaseline(imagePoints,worldPoints, ...
    ld.intrinsics1,ld.intrinsics2)

params = 
  stereoParameters with properties:

   Parameters of Two Cameras
        CameraParameters1: [1x1 cameraParameters]
        CameraParameters2: [1x1 cameraParameters]

   Inter-camera Geometry
        RotationOfCamera2: [3x3 double]
     TranslationOfCamera2: [-965.4305 70.7497 488.3447]
        FundamentalMatrix: [3x3 double]
          EssentialMatrix: [3x3 double]

   Accuracy of Estimation
    MeanReprojectionError: 0.2586

   Calibration Settings
              NumPatterns: 6
              WorldPoints: [54x2 double]
               WorldUnits: 'mm'

Visualize calibration accuracy.

figure
showReprojectionErrors(params)

 estimateStereoBaseline

3-501



Visualize camera extrinsics.

figure
showExtrinsics(params)

3 Functions

3-502



Input Arguments
imagePoints — Key points of calibration pattern
M-by-2-by-numPairs-by-2 array

Key points of calibration pattern, specified as an M-by-2-by-numPairs-by-2 array. The array contains
the [x,y] intrinsic image coordinates of key points in the calibration pattern.

• numPairs is the number of stereo image pairs containing the calibration pattern.
• The number of keypoint coordinates in each pattern, M, must be greater than 3.
• imagePoints(:,:,:,1) are the points from camera 1.
• imagePoints(:,:,:,2) are the points from camera 2.

Data Types: single | double

worldPoints — Key points of calibration pattern in world coordinates
M-by-2 array

Key points of calibration pattern in world coordinates, specified as an M-by-2 array of M number of
[x,y] world coordinates. The pattern must be planar; therefore, z-coordinates are zero.
Data Types: single | double

 estimateStereoBaseline

3-503



intrinsics1 — Intrinsic parameters of camera 1
cameraIntrinsics object

Intrinsic parameters of camera 1, specified as a cameraIntrinsics object. The intrinsics object
stores information about a camera’s intrinsic calibration parameters, including lens distortion.

intrinsics2 — Intrinsic parameters of camera 2
cameraIntrinsics object

Intrinsic parameters of camera 2, specified as a cameraIntrinsics object. The intrinsics object
stores information about a camera’s intrinsic calibration parameters, including lens distortion.

units — World points units
'mm' (default) | string

World points units, specified as a string representing units.

Output Arguments
stereoParams — Camera parameters for stereo system
stereoParameters object

Camera parameters for stereo system, returned as a stereoParameters object. The object contains
the intrinsic, extrinsic, and lens distortion parameters of the stereo camera system.

pairsUsed — Image pairs used to estimate camera parameters
numPairs-by-1 logical vector

Image pairs used to estimate camera parameters, returned as a numPairs-by-1 logical array. A logical
true value in the vector indicates which that the image pairs was used to estimate the camera
parameters. An image pair will not be used for estimation if the algorithm fails to estimate a
homography between the world points and the points detected in that pair of images.

estimationErrors — Standard errors of estimated parameters
stereoCalibrationErrors object

Standard errors of estimated parameters, returned as a stereoCalibrationErrors object.

See Also
Apps
Stereo Camera Calibrator

Classes
stereoParameters | cameraParameters | cameraIntrinsics | cameraCalibrationErrors |
stereoCalibrationErrors

Functions
estimateCameraParameters | detectCheckerboardPoints | generateCheckerboardPoints
| showExtrinsics | showReprojectionErrors | undistortImage

Introduced in R2018a

3 Functions

3-504



estimateWorldCameraPose
Estimate camera pose from 3-D to 2-D point correspondences

Syntax
[worldOrientation,worldLocation] = estimateWorldCameraPose(imagePoints,
worldPoints,cameraParams)
[ ___ ,inlierIdx] = estimateWorldCameraPose(imagePoints,worldPoints,
cameraParams)
[ ___ ,status] = estimateWorldCameraPose(imagePoints,worldPoints,cameraParams)
[ ___ ] = estimateWorldCameraPose( ___ ,Name,Value)

Description
[worldOrientation,worldLocation] = estimateWorldCameraPose(imagePoints,
worldPoints,cameraParams) returns the orientation and location of a calibrated camera in a
world coordinate system. The input worldPoints must be defined in the world coordinate system.

This function solves the perspective-n-point (PnP) problem using the perspective-three-point (P3P)
algorithm [1]. The function eliminates spurious outlier correspondences using the M-estimator
sample consensus (MSAC) algorithm. The inliers are the correspondences between image points and
world points that are used to compute the camera pose.

[ ___ ,inlierIdx] = estimateWorldCameraPose(imagePoints,worldPoints,
cameraParams) returns the indices of the inliers used to compute the camera pose, in addition to
the arguments from the previous syntax.

[ ___ ,status] = estimateWorldCameraPose(imagePoints,worldPoints,cameraParams)
additionally returns a status code to indicate whether there were enough points.

[ ___ ] = estimateWorldCameraPose( ___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments, using any of the preceding syntaxes.

Examples

Determine Camera Pose from World-to-Image Correspondences

Load previously calculated world-to-image correspondences.

data = load('worldToImageCorrespondences.mat');

Estimate the world camera pose.

[worldOrientation,worldLocation] = estimateWorldCameraPose(...
     data.imagePoints,data.worldPoints,data.cameraParams);

Plot the world points.

 pcshow(data.worldPoints,'VerticalAxis','Y','VerticalAxisDir','down', ...
     'MarkerSize',30);

 estimateWorldCameraPose

3-505



 hold on
 plotCamera('Size',10,'Orientation',worldOrientation,'Location',...
     worldLocation);
 hold off

Input Arguments
imagePoints — Coordinates of undistorted image points
M-by-2 array

Coordinates of undistorted image points, specified as an M-by-2 array of [x,y] coordinates. The
number of image points, M, must be at least four.

The function does not account for lens distortion. You can either undistort the images using the
undistortImage function before detecting the image points, or you can undistort the image points
themselves using the undistortPoints function.
Data Types: single | double

worldPoints — Coordinates of world points
M-by-3 array

Coordinates of world points, specified as an M-by-3 array of [x,y,z] coordinates.
Data Types: single | double

3 Functions

3-506



cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can
return the cameraParameters object using the estimateCameraParameters function. The
cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxNumTrials',1000

MaxNumTrials — Maximum number of random trials
1000 (default) | positive integer scalar

Maximum number of random trials, specified as the comma-separated pair consisting of
'MaxNumTrials' and a positive integer scalar. The actual number of trials depends on the number of
image and world points, and the values for the MaxReprojectionError and Confidence
properties. Increasing the number of trials improves the robustness of the output at the expense of
additional computation.

Confidence — Confidence for finding maximum number of inliers
99 (default) | scalar in the range (0,100)

Confidence for finding maximum number of inliers, specified as the comma-separated pair consisting
of 'Confidence' and a scalar in the range (0,100). Increasing this value improves the robustness of
the output at the expense of additional computation.

MaxReprojectionError — Reprojection error threshold
1 (default) | positive numeric scalar

Reprojection error threshold for finding outliers, specified as the comma-separated pair consisting of
'MaxReprojectionError' and a positive numeric scalar in pixels. Increasing this value makes the
algorithm converge faster, but can reduce the accuracy of the result. Correspondences with a
reprojection error larger than the MaxReprojectionError are considered outliers, and are not
used to compute the camera pose.

Output Arguments
worldOrientation — Orientation of camera in world coordinates
3-by-3 matrix

Orientation of camera in world coordinates, returned as a 3-by-3 matrix.
Data Types: double

worldLocation — Location of camera
1-by-3 vector

 estimateWorldCameraPose

3-507



Location of camera, returned as a 1-by-3 unit vector.
Data Types: double

inlierIdx — Indices of inlier points
M-by-1 logical vector

Indices of inlier points, returned as an M-by-1 logical vector. A logical true value in the vector
corresponds to inliers represented in imagePoints and worldPoints.

status — Status code
integer value

Status code, returned as 0, 1, or 2.

Status code Status
0 No error
1 imagePoints and worldPoints do not contain enough points. A

minimum of four points are required.
2 Not enough inliers found. A minimum of 4 inliers are required.

References
[1] Gao, X.-S., X.-R. Hou, J. Tang, and H.F. Cheng. “Complete Solution Classification for the

Perspective-Three-Point Problem.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Volume 25,Issue 8, pp. 930–943, August 2003.

[2] Torr, P. H. S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application to
Estimating Image Geometry.” Computer Vision and Image Understanding. Volume 78, Issue 1,
April 2000, pp. 138-156.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Functions
relativeCameraPose | triangulateMultiview | bundleAdjustment | plotCamera | pcshow |
extrinsics | worldToImage | extrinsicsToCameraPose | cameraPoseToExtrinsics |
pointsToWorld | viewSet

Topics
“Structure from Motion Overview”

Introduced in R2016b

3 Functions

3-508



cameraPoseToExtrinsics
Convert camera pose to extrinsics

Syntax
tform = cameraPoseToExtrinsics(cameraPose)
[rotationMatrix,translationVector] = cameraPoseToExtrinsics(orientation,
location)

Description
tform = cameraPoseToExtrinsics(cameraPose) returns a rigid3d object that contains the
transformation from world coordinates to camera coordinates. cameraPose is the orientation and
location of the camera in world coordinates, specified as a rigid3d object.

[rotationMatrix,translationVector] = cameraPoseToExtrinsics(orientation,
location) returns the camera extrinsics, rotationMatrix and translationVector, which
represent the coordinate system transformation from world coordinates to camera coordinates. The
inputs, orientation and location, represent the 3-D camera pose in the world coordinates.

Examples

Convert World Coordinates to Camera Coordinates

Create the 3-D orientation matrix and the location vector.

orientation = eye(3);
location = [0 0 10];

Compute the rotation matrix and translation vector to transform points from world coordinates to
camera coordinates.

[rotationMatrix,translationVector] = cameraPoseToExtrinsics(orientation,location)

rotationMatrix = 3×3

     1     0     0
     0     1     0
     0     0     1

translationVector = 1×3

     0     0   -10

Compute the transformation from world coordinates to camera coordinates as a rigid 3-D object.

cameraPose = rigid3d(orientation,location);
tform = cameraPoseToExtrinsics(cameraPose)

 cameraPoseToExtrinsics

3-509



tform = 
  rigid3d with properties:

       Rotation: [3x3 double]
    Translation: [0 0 -10]

Input Arguments
cameraPose — Orientation and location of the camera
rigid3d object

Orientation and location of the camera in world coordinates, specified as a rigid3d object.

orientation — 3-D orientation
3-by-3 matrix

3-D orientation of the camera in world coordinates, specified as a 3-by-3 matrix. The orientation
and location inputs must be the same data type.
Data Types: double | single

location — 3-D location
three-element vector

3-D location of the camera in world coordinates, specified as a three-element vector. The
orientation and location inputs must be the same data type.
Data Types: double | single

Output Arguments
tform — Transformation
rigid3d

Transformation from world coordinates to camera coordinates, returned as a rigid3d object. The
transformation allows you to transform points from the world coordinate system to the camera
coordinate system. tform is computed as:

tform.Rotation = cameraPose.Rotation'
tform.Translation = -cameraPose.Translation * cameraPose.Rotation'

rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation, returned as a 3-by-3 matrix. The rotation matrix, together with the translation vector
allows you to transform points from the world coordinate system to the camera coordinate system.

The relationship between the rotation matrix and the input orientation matrix is:

3 Functions

3-510



rotationMatrix = orientation'

translationVector — 3-D translation
1-by-3 vector

3-D translation, returned as a 1-by-3 vector. The translation vector together with the rotation matrix,
enables you to transform points from the world coordinate system to the camera coordinate system.

The relationship between the translation vector and the input orientation matrix is :
translationVector = –location*orientation'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
rigid3d

Functions
extrinsicsToCameraPose | extrinsics | relativeCameraPose | estimateWorldCameraPose

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2016b

 cameraPoseToExtrinsics

3-511



extrinsicsToCameraPose
Convert extrinsics to camera pose

Syntax
cameraPose = extrinsicsToCameraPose(tform)
[orientation,location] = extrinsicsToCameraPose(rotationMatrix,
translationVector)

Description
cameraPose = extrinsicsToCameraPose(tform) returns a rigid3d object that contains the
camera pose, cameraPose, in world coordinates. tform is a transformation from world coordinates
to camera coordinates, specified as a rigid3d object.

[orientation,location] = extrinsicsToCameraPose(rotationMatrix,
translationVector) returns 3-D camera pose orientation and location in world coordinates. The
inputs, rotationMatrix and translationVector, represent the transformation from world
coordinates to camera coordinates.

Examples

Convert Camera Coordinates to World Coordinates

Create a rotation matrix and a translation vector.

rotationMatrix = eye(3);
translationVector = [0 0 -10];

Compute the camera orientation matrix and location vector in world coordinates.

[orientation,location] = extrinsicsToCameraPose(rotationMatrix,translationVector)

orientation = 3×3

     1     0     0
     0     1     0
     0     0     1

location = 1×3

     0     0    10

Compute the camera pose in world coordinates as a rigid 3-D object.

tform = rigid3d(rotationMatrix,translationVector);
cameraPose = extrinsicsToCameraPose(tform)

cameraPose = 
  rigid3d with properties:

3 Functions

3-512



       Rotation: [3x3 double]
    Translation: [0 0 10]

Input Arguments
tform — Transformation
rigid3d object

Transformation from world coordinates to camera coordinates, specified as a rigid3d object. The
transformation allows you to transform points from the world coordinate system to the camera
coordinate system.

rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation, specified as a 3-by-3 matrix. The rotation matrix, together with the translation vector
allows you to transform points from the world coordinate system to the camera coordinate system.
Data Types: double | single

translationVector — 3-D translation
1-by-3 vector

3-D translation, specified as a 1-by-3 vector. The translation vector together with the rotation matrix,
enables you to transform points from the world coordinate system to the camera coordinate system.
Data Types: double | single

Output Arguments
cameraPose — Camera pose
rigid3d object

Camera pose in world coordinates, returned as a rigid3d object. cameraPose is computed as:

cameraPose.Rotation = tform.Rotation'
cameraPose.Translation = -tform.Translation * tform.Rotation'

orientation — 3-D orientation
3-by-3 matrix

3-D orientation of the camera in world coordinates, returned as a 3-by-3 matrix.

The relationship between the rotation matrix and the output orientation matrix is:
orientation = rotationMatrix'

location — 3-D location
3-element vector

 extrinsicsToCameraPose

3-513



3-D location of the camera in world coordinates, specified as a three-element vector.

The relationship between the translation vector and the output orientation matrix is:

location = –translationVector*rotationMatrix'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cameraPoseToExtrinsics | extrinsics | relativeCameraPose | estimateWorldCameraPose
| relativeCameraPose | estimateWorldCameraPose | cameraPoseToExtrinsics |
pointsToWorld | worldToImage

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2016b

3 Functions

3-514



trainACFObjectDetector
Train ACF object detector

Syntax
detector = trainACFObjectDetector(trainingData)
detector = trainACFObjectDetector(trainingData,Name=Value)

Description
detector = trainACFObjectDetector(trainingData) returns a trained aggregate channel
features (ACF) object detector. The function uses positive instances of objects in images stored in a
table or a datastore, and specified by trainingData. The function automatically collects negative
instances from the images during training. To create a ground truth table, use the Image Labeler or
Video Labeler app.

detector = trainACFObjectDetector(trainingData,Name=Value) returns a detector
specifies options using one or more name-value arguments in addition to any combination of
arguments from previous syntaxes. For example, ObjectTrainingSize=[100,100] sets the height
and width of objects during training.

Examples

Train Stop Sign Detector Using ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object detector that can
detect stop signs. Test the detector with a separate image.

Load the training data.

load('stopSignsAndCars.mat')

Prefix the full path to the stop sign images.

stopSigns = fullfile(toolboxdir('vision'),'visiondata',stopSignsAndCars{:,1});

Create datastores to load the ground truth data for stop signs.

imds = imageDatastore(stopSigns);
blds = boxLabelDatastore(stopSignsAndCars(:,2));

Combine the image and box label datastores.

ds = combine(imds,blds);

Train the ACF detector. Set the number of negative samples to use at each stage to 2. You can turn off
the training progress output by specifying Verbose=false,as a Name-Value argument.

acfDetector = trainACFObjectDetector(ds,NegativeSamplesFactor=2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.

 trainACFObjectDetector

3-515



Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--------------------------------------------
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--------------------------------------------
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--------------------------------------------
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--------------------------------------------
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--------------------------------------------
ACF object detector training is completed. Elapsed time is 23.3915 seconds.

Test the ACF detector on a test image.

img = imread('stopSignTest.jpg');
[bboxes,scores] = detect(acfDetector,img);

Display the detection results and insert the bounding boxes for objects into the image.

for i = 1:length(scores)
   annotation = sprintf('Confidence = %.1f',scores(i));
   img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
end

figure
imshow(img)

3 Functions

3-516



Input Arguments
trainingData — Labeled ground truth
datastore | table

Labeled ground truth, specified as a datastore or a table.

• If you use a datastore, your data must be set up so that calling the datastore with the read and
readall functions returns a cell array or table with at least two columns. The table describes the
data contained in the columns:

 trainACFObjectDetector

3-517



Images boxes labels (optional)
Cell vector of grayscale or
RGB images.

M-by-4 matrices of bounding
boxes of the form [x, y, width,
height], where [x,y] represent
the top-left coordinates of the
bounding box.

Cell array that contains an M-
element categorical vector
containing object class names.
All categorical data returned
by the datastore must contain
the same categories.

When you provide this data,
the function uses the class
label to fill the ModelName
property of the trained
detector, specified as an
acfObjectDetector object.
Otherwise, the class labels
are not required for training
because the ACF object
detector is a single class
detector.

• If you use a table, the table must have two or more columns. The first column of the table must
contain image file names with paths. The images must be grayscale or truecolor (RGB) and they
can be in any format supported by imread. Each of the remaining columns must be a cell vector
that contains M-by-4 matrices that represent a single object class, such as vehicle, flower, or stop
sign. The columns contain 4-element double arrays of M bounding boxes in the format
[x,y,width,height]. The format specifies the upper-left corner location and size of the bounding box
in the corresponding image. To create a ground truth table, you can use the Image Labeler app
or Video Labeler app. To create a table of training data from the generated ground truth, use the
objectDetectorTrainingData function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

3 Functions

3-518



Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ObjectTrainingSize=[100,100] sets the height and width of objects during training.

ObjectTrainingSize — Size of objects during training
'Auto' (default) | 2-element vector

Size of objects during training, specified as a 2-element vector of the form [height width] in pixels.
The minimum training size is [8 8]. During the training process, objects are resized to the height
and width specified by 'ObjectTrainingSize'. Increasing the size can improve detection
accuracy, but also increases training and detection times.

When you specify 'Auto', the size is set based on the median width-to-height ratio of the positive
instances.
Example: [100,100]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumStages — Number of training stages
4 (default) | positive integer

Number of training stages for the iterative training process, specified as a positive integer. Increasing
this number can improve the detector and reduce training errors, at the expense of longer training
time.
Data Types: double

NegativeSamplesFactor — Negative sample factor
5 (default) | real-valued scalar

Negative sample factor, specified as a real-valued scalar. The number of negative samples to use at
each stage is equal to

NegativeSamplesFactor × number of positive samples used at each stage

Data Types: double

MaxWeakLearners — Maximum number of weak learners
2048 (default) | positive integer scalar | vector of positive integers

Maximum number of weak learners for the last stage, specified as a positive integer scalar or vector
of positive integers. If the input is a scalar, MaxWeakLearners specifies the maximum number for the
last stage. If the input is a vector, MaxWeakLearners specifies the maximum number for each of the
stages and must have a length equal to 'NumStages'. These values typically increase throughout the
stages. The ACF object detector uses the boosting algorithm to create an ensemble of weaker
learners. You can use higher values to improve the detection accuracy, at the expense of reduced
detection performance speeds. Recommended values range from 300 to 5000.
Data Types: double

Verbose — Display progress information
true (default) | false

Option to display progress information for the training process, specified as true or false.
Data Types: logical

 trainACFObjectDetector

3-519



Output Arguments
detector — Trained ACF-based object detector
acfObjectDetector object

Trained ACF-based object detector, returned as an acfObjectDetector object.

See Also
Apps
Image Labeler | Video Labeler

Functions
acfObjectDetector | trainRCNNObjectDetector | trainCascadeObjectDetector |
detectPeopleACF

Introduced in R2017a

3 Functions

3-520



trainRCNNObjectDetector
Train an R-CNN deep learning object detector

Syntax
detector = trainRCNNObjectDetector(trainingData,network,options)
detector = trainRCNNObjectDetector( ___ ,Name,Value)
detector = trainRCNNObjectDetector( ___ ,'RegionProposalFcn',proposalFcn)
[detector,info] = trainRCNNObjectDetector( ___ )

detector = trainRCNNObjectDetector( ___ ,Name,Value)

Description
detector = trainRCNNObjectDetector(trainingData,network,options) trains an R-CNN
(regions with convolutional neural networks) based object detector. The function uses deep learning
to train the detector to detect multiple object classes.

This implementation of R-CNN does not train an SVM classifier for each object class.

This function requires that you have Deep Learning Toolbox and Statistics and Machine Learning
Toolbox. It is recommended that you also have Parallel Computing Toolbox to use with a CUDA-
enabled NVIDIA GPU. For information about the supported compute capabilities, see “GPU Support
by Release” (Parallel Computing Toolbox).

detector = trainRCNNObjectDetector( ___ ,Name,Value) returns a detector object with
optional input properties specified by one or more Name,Value pair arguments.

detector = trainRCNNObjectDetector( ___ ,'RegionProposalFcn',proposalFcn)
optionally trains an R-CNN detector using a custom region proposal function.

[detector,info] = trainRCNNObjectDetector( ___ ) also returns information on the training
progress, such as training loss and accuracy, for each iteration.

detector = trainRCNNObjectDetector( ___ ,Name,Value) uses additional options specified
by one or more Name,Value pair arguments and any of the previous inputs.

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
  'stopSignImages');
addpath(imDir);

 trainRCNNObjectDetector

3-521



Set network training options to use mini-batch size of 32 to reduce GPU memory usage. Lower the
InitialLearningRate to reduce the rate at which network parameters are changed. This is beneficial
when fine-tuning a pre-trained network and prevents the network from changing too rapidly.

options = trainingOptions('sgdm', ...
  'MiniBatchSize', 32, ...
  'InitialLearnRate', 1e-6, ...
  'MaxEpochs', 10);

Train the R-CNN detector. Training can take a few minutes to complete.

rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0 0.3]);

*******************************************************************
Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.

Step 2 of 3: Training a neural network to classify objects in training data...

|=========================================================================================|
|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|
|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |
|=========================================================================================|
|            3 |           50 |         9.27 |       0.2895 |       96.88% |     0.000001 |
|            5 |          100 |        14.77 |       0.2443 |       93.75% |     0.000001 |
|            8 |          150 |        20.29 |       0.0013 |      100.00% |     0.000001 |
|           10 |          200 |        25.94 |       0.1524 |       96.88% |     0.000001 |
|=========================================================================================|

Network training complete.

Step 3 of 3: Training bounding box regression models for each object class...100.00%...done.

R-CNN training complete.
*******************************************************************

Test the R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);

Display strongest detection result.

[score, idx] = max(score);

bbox = bbox(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);

figure
imshow(detectedImg)

3 Functions

3-522



Remove the image directory from the path.

rmpath(imDir);

Resume Training an R-CNN Object Detector

Resume training an R-CNN object detector using additional data. To illustrate this procedure, half the
ground truth data will be used to initially train the detector. Then, training is resumed using all the
data.

Load training data and initialize training options.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    stopSigns.imageFilename);

options = trainingOptions('sgdm', ...
    'MiniBatchSize', 32, ...
    'InitialLearnRate', 1e-6, ...
    'MaxEpochs', 10, ...
    'Verbose', false);

Train the R-CNN detector with a portion of the ground truth.

rcnn = trainRCNNObjectDetector(stopSigns(1:10,:), layers, options, 'NegativeOverlapRange', [0 0.3]);

Get the trained network layers from the detector. When you pass in an array of network layers to
trainRCNNObjectDetector, they are used as-is to continue training.

 trainRCNNObjectDetector

3-523



network = rcnn.Network;
layers = network.Layers;

Resume training using all the training data.

rcnnFinal = trainRCNNObjectDetector(stopSigns, layers, options);

Create a network for multiclass R-CNN object detection

Create an R-CNN object detector for two object classes: dogs and cats.

objectClasses = {'dogs','cats'};

The network must be able to classify both dogs, cats, and a "background" class in order to be trained
using trainRCNNObjectDetector. In this example, a one is added to include the background.

numClassesPlusBackground = numel(objectClasses) + 1;

The final fully connected layer of a network defines the number of classes that the network can
classify. Set the final fully connected layer to have an output size equal to the number of classes plus
a background class.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)        
    fullyConnectedLayer(numClassesPlusBackground);
    softmaxLayer()
    classificationLayer()];

These network layers can now be used to train an R-CNN two-class object detector.

Use A Saved Network In R-CNN Object Detector

Create an R-CNN object detector and set it up to use a saved network checkpoint. A network
checkpoint is saved every epoch during network training when the trainingOptions
'CheckpointPath' parameter is set. Network checkpoints are useful in case your training session
terminates unexpectedly.

Load the stop sign training data.

load('rcnnStopSigns.mat','stopSigns','layers')

Add full path to image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
      stopSigns.imageFilename);

Set the 'CheckpointPath' using the trainingOptions function.

checkpointLocation = tempdir;
options = trainingOptions('sgdm','Verbose',false, ...
    'CheckpointPath',checkpointLocation);

Train the R-CNN object detector with a few images.

3 Functions

3-524



rcnn = trainRCNNObjectDetector(stopSigns(1:3,:),layers,options);

Load a saved network checkpoint.

wildcardFilePath = fullfile(checkpointLocation,'convnet_checkpoint__*.mat');
contents = dir(wildcardFilePath);

Load one of the checkpoint networks.

filepath = fullfile(contents(1).folder,contents(1).name);
checkpoint = load(filepath);

checkpoint.net

ans = 

  SeriesNetwork with properties:

    Layers: [15×1 nnet.cnn.layer.Layer]

Create a new R-CNN object detector and set it up to use the saved network.

rcnnCheckPoint = rcnnObjectDetector();
rcnnCheckPoint.RegionProposalFcn = @rcnnObjectDetector.proposeRegions;

Set the Network to the saved network checkpoint.

rcnnCheckPoint.Network = checkpoint.net

rcnnCheckPoint = 

  rcnnObjectDetector with properties:

              Network: [1×1 SeriesNetwork]
           ClassNames: {'stopSign'  'Background'}
    RegionProposalFcn: @rcnnObjectDetector.proposeRegions

Input Arguments
trainingData — Labeled ground truth images
table

Labeled ground truth images, specified as a table with two or more columns.

If you use a table, the table must have two or more columns. The first column of the table must
contain image file names with paths. The images must be grayscale or truecolor (RGB) and they can
be in any format supported by imread. Each of the remaining columns must be a cell vector that
contains M-by-4 matrices that represent a single object class, such as vehicle, flower, or stop sign.
The columns contain 4-element double arrays of M bounding boxes in the format [x,y,width,height].
The format specifies the upper-left corner location and size of the bounding box in the corresponding
image. To create a ground truth table, you can use the Image Labeler app or Video Labeler app. To
create a table of training data from the generated ground truth, use the
objectDetectorTrainingData function.

 trainRCNNObjectDetector

3-525



The table variable name defines the object class name. To create the ground truth table, use the
Image Labeler app. Boxes smaller than 32-by-32 are not used for training.

network — Network
SeriesNetwork object | array of Layer objects | LayerGraph object | network name

Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph object, or by the
network name. The network is trained to classify the object classes defined in the trainingData
table. The SeriesNetwork, Layer, and layerGraph objects are available in the Deep Learning
Toolbox.

• When you specify the network as a SeriesNetwork, an array of Layer objects, or by the network
name, the network is automatically transformed into a R-CNN network by adding new
classification and regression layers to support object detection.

• The array of Layer objects must contain a classification layer that supports the number of object
classes, plus a background class. Use this input type to customize the learning rates of each layer.
An example of an array of Layer objects:

layers = [imageInputLayer([28 28 3])
        convolution2dLayer([5 5],10)
        reluLayer()
        fullyConnectedLayer(10)
        softmaxLayer()
        classificationLayer()];

• When you specify the network as SeriesNetwork, Layer array, or network by name, the weights
for convolution and fully-connected layers are initialized to 'narrow-normal'.

• The network name must be one of the following valid networks names. You must also install the
corresponding Add-on.

• 'alexnet'
• 'vgg16'
• 'vgg19'
• 'resnet18'

3 Functions

3-526



• 'resnet50'
• 'resnet101'
• 'inceptionv3'
• 'googlenet'
• 'inceptionresnetv2'
• 'squeezenet'
• 'mobilenetv2'

• The LayerGraph object must be a valid R-CNN object detection network. You can also use a
LayerGraph object to train a custom R-CNN network.

See “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” to learn more about how to create
a R-CNN network.

options — Training options
traingingOptions output

Training options, returned by the trainingOptions function from the Deep Learning Toolbox. To
specify solver and other options for network training, use trainingOptions.

Note trainRCNNObjectDetector does not support these training options:

• The ValidationData, ValidationFrequency, or ValidationPatience options

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PositiveOverlapRange',[0.5 1].

PositiveOverlapRange — Positive training sample ratios for range of bounding box
overlap
[0.5 1] (default) | two-element vector

Positive training sample ratios for range of bounding box overlap, specified as the comma-separated
pair consisting of 'PositiveOverlapRange' and a two-element vector. The vector contains values in
the range [0,1]. Region proposals that overlap with ground truth bounding boxes within the specified
range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is
defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

 trainRCNNObjectDetector

3-527



NegativeOverlapRange — Negative training sample ratios for range of bounding box
overlap
[0.1 0.5] (default) | two-element vector

Negative training sample ratios for range of bounding box overlap, specified as the comma-separated
pair consisting of 'NegativeOverlapRange' and a two-element vector. The vector contains values in
the range [0,1]. Region proposals that overlap with the ground truth bounding boxes within the
specified range are used as negative training samples.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | integer

Maximum number of strongest region proposals to use for generating training samples, specified as
the comma-separated pair consisting of 'NumStrongestRegions' and an integer. Reduce this value
to speed up processing time, although doing so decreases training accuracy. To use all region
proposals, set this value to inf.

RegionProposalFcn — Custom region proposal
function handle

Custom region proposal function handle, specified as the comma-separated pair consisting of
'RegionProposalFcn' and the function name. If you do not specify a custom region proposal
function, the default variant of the Edge Boxes algorithm [3], set in rcnnObjectDetector, is used.
A custom proposalFcn must have the following functional form:

 [bboxes,scores] = proposalFcn(I)

The input, I, is an image defined in the groundTruth table. The function must return rectangular
bounding boxes in an M-by-4 array. Each row of bboxes contains a four-element vector,
[x,y,width,height], that specifies the upper–left corner and size of a bounding box in pixels. The
function must also return a score for each bounding box in an M-by-1 vector. Higher scores indicate
that the bounding box is more likely to contain an object. The scores are used to select the strongest
regions, which you can specify in NumStrongestRegions.

BoxRegressionLayer — Box regression layer name
'auto' (default) | character vector

Box regression layer name, specified as the comma-separated pair consisting of
'BoxRegressionLayer' and a character vector. Valid values are 'auto' or the name of a layer in
the input network. The output activations of this layer are used as features to train a regression
model for refining the detected bounding boxes.

If the name is 'auto', then trainRCNNObjectDetector automatically selects a layer from the
input network based on the type of input network:

• If the input network is a SeriesNetwork or an array of Layer objects, then the function selects
the last convolution layer.

• If the input network is a LayerGraph, then the function selects the source of the last fully
connected layer.

ExperimentManager — Detector training experiment monitoring
'none' (default) | experiments.Monitor object

Detector training experiment monitoring, specified as an experiments.Monitor object for use with
the Experiment Manager app. You can use this object to track the progress of training, update

3 Functions

3-528



information fields in the training results table, record values of the metrics used by the training, and
to produce training plots.

Information monitored during training:

• Training loss at each iteration.
• Training accuracy at each iteration.
• Training root mean square error (RMSE) for the box regression layer.
• Learning rate at each iteration.

Output Arguments
detector — Trained R-CNN-based object detector
rcnnObjectDetector object

Trained R-CNN-based object detector, returned as an rcnnObjectDetector object. You can train an
R-CNN detector to detect multiple object classes.

info — Training information
structure

Training information, returned as a structure with the following fields. Each field is a numeric vector
with one element per training iteration. Values that have not been calculated at a specific iteration
are represented by NaN.

• TrainingLoss — Training loss at each iteration. This is the combination of the classification and
regression loss used to train the R-CNN network.

• TrainingAccuracy — Training set accuracy at each iteration
• BaseLearnRate — Learning rate at each iteration

Limitations
• This implementation of R-CNN does not train an SVM classifier for each object class.

Tips
• To accelerate data preprocessing for training, trainRCNNObjectDetector automatically creates

and uses a parallel pool based on your parallel preference settings. This requires Parallel
Computing Toolbox.

• VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training with large
images may produce "Out of Memory" errors. To mitigate these errors, manually resize the images
along with the bounding box ground truth data before calling trainRCNNObjectDetector.

• This function supports transfer learning. When a network is input by name, such as 'resnet50',
then the software automatically transforms the network into a valid R-CNN network model based
on the pretrained resnet50 model. Alternatively, manually specify a custom R-CNN network
using the LayerGraph extracted from a pretrained DAG network. See “Create R-CNN Object
Detection Network”.

• Use the trainingOptions function to enable or disable verbose printing.

 trainRCNNObjectDetector

3-529



References
[1] Girshick, R., J. Donahue, T. Darrell, and J. Malik. “Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation.”Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2014, pp. 580–587.

[2] Girshick, R. “Fast R-CNN.” Proceedings of the IEEE International Conference on Computer Vision.
2015, pp. 1440–1448.

[3] Zitnick, C. Lawrence, and P. Dollar. “Edge Boxes: Locating Object Proposals from Edges.”
Computer Vision-ECCV, Springer International Publishing. 2014, pp. 391–405.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainingOptions | trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector |
trainYOLOv2ObjectDetector | objectDetectorTrainingData | resnet50

Objects
SeriesNetwork | Layer | rcnnObjectDetector | imageCategoryClassifier

Topics
“Image Category Classification Using Deep Learning”
“Anchor Boxes for Object Detection”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”

Introduced in R2016b

3 Functions

3-530



estimateGeometricTransform2D
Estimate 2-D geometric transformation from matching point pairs

Syntax
tform = estimateGeometricTransform2D(matchedPoints1,matchedPoints2,
transformType)
[tform,inlierIndex] = estimateGeometricTransform2D( ___ )
[tform,inlierIndex,status] = estimateGeometricTransform2D( ___ )
[ ___ ] = estimateGeometricTransform2D( ___ , Name,Value)

Description
tform = estimateGeometricTransform2D(matchedPoints1,matchedPoints2,
transformType) estimates a 2-D geometric transformation between two images by mapping the
inliers in the matched points from one image matchedPoints1 to the inliers in the matched points
from another image matchedPoints2.

[tform,inlierIndex] = estimateGeometricTransform2D( ___ ) additionally returns a
vector specifying each matched point pair as either an inlier or an outlier using the input arguments
from the previous syntax.

[tform,inlierIndex,status] = estimateGeometricTransform2D( ___ ) additionally
returns a status code indicating whether or not the function could estimate a transformation and, if
not, why it failed. If you do not specify the status output, the function instead returns an error for
conditions that cannot produce results.

[ ___ ] = estimateGeometricTransform2D( ___ , Name,Value) specifies additional options
using one or more name-value pair arguments in addition to any combination of arguments from
previous syntaxes. For example, 'Confidence',99 sets the confidence value for finding the
maximum number of inliers to 99.

Examples

Recover Transformed Image Using SURF Feature Points

Read an image and display it.

original = imread('cameraman.tif');
imshow(original)
title('Base Image')

 estimateGeometricTransform2D

3-531



Distort and display the transformed image.

distorted = imresize(original,0.7); 
distorted = imrotate(distorted,31);
figure
imshow(distorted)
title('Transformed Image')

3 Functions

3-532



Detect and extract features from the original and the transformed images.

ptsOriginal  = detectSURFFeatures(original);
ptsDistorted = detectSURFFeatures(distorted);
[featuresOriginal,validPtsOriginal] = extractFeatures(original,ptsOriginal);
[featuresDistorted,validPtsDistorted] = extractFeatures(distorted,ptsDistorted);

Match and display features between the images.

index_pairs = matchFeatures(featuresOriginal,featuresDistorted);
matchedPtsOriginal  = validPtsOriginal(index_pairs(:,1));
matchedPtsDistorted = validPtsDistorted(index_pairs(:,2));
figure 
showMatchedFeatures(original,distorted,matchedPtsOriginal,matchedPtsDistorted)
title('Matched SURF Points With Outliers');

Exclude the outliers, estimate the transformation matrix, and display the results.

[tform,inlierIdx] = estimateGeometricTransform2D(matchedPtsDistorted,matchedPtsOriginal,'similarity');
inlierPtsDistorted = matchedPtsDistorted(inlierIdx,:);
inlierPtsOriginal  = matchedPtsOriginal(inlierIdx,:);

figure 
showMatchedFeatures(original,distorted,inlierPtsOriginal,inlierPtsDistorted)
title('Matched Inlier Points')

 estimateGeometricTransform2D

3-533



Use the estimated transformation to recover and display the original image from the distorted image.

outputView = imref2d(size(original));
Ir = imwarp(distorted,tform,'OutputView',outputView);
figure 
imshow(Ir); 
title('Recovered Image');

3 Functions

3-534



Input Arguments
matchedPoints1 — Matched points from first image
cornerPoints object | SURFPoints object | MSERRegions object | ORBPoints object |
BRISKPoints object | KAZEPoints object | M-by-2 matrix of [x,y] coordinates

Matched points from the first image, specified as either a KAZEPoints object, cornerPoints
object, SURFPoints object, MSERRegions object, ORBPoints object, BRISKPoints object, or an M-
by-2 matrix in which each row is a pair of [x,y] coordinates and M is the number of matched points.

matchedPoints2 — Matched points from second image
cornerPoints object | SURFPoints object | MSERRegions object | ORBPoints object |
BRISKPoints object | KAZEPoints object | M-by-2 matrix of [x,y] coordinates

Matched points from the second image, specified as either a KAZEPoints object, cornerPoints
object, SURFPoints object, MSERRegions object, ORBPoints object, BRISKPoints object, or an M-
by-2 matrix in which each row is a pair of [x,y] coordinates and M is the number of matched points.

transformType — Transformation type
'rigid' | 'similarity' | 'affine' | 'projective'

Transformation type, specified as a character string. You can set the transform type to 'rigid',
'similarity', 'affine', or 'projective'. Each transform type requires a minimum number of
matched pairs of points to estimate a transformation. You can generally improve the accuracy of a
transformation by using a larger number of matched pairs of points. This table shows the type of
object associated with each transformation type and the minimum number of matched pairs of points
the transformation requires.

Transformation Type tform Object Minimum Number of
Matched Pairs of Points

'rigid' rigid2d 2
'similarity' affine2d 2
'affine' affine2d 3
'projective' projective2d 4

Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Confidence',99 sets the confidence value for finding the maximum number of inliers to
99.

MaxNumTrials — Maximum random trials
1000 (default) | positive integer

Maximum number of random trials, specified as the comma-separated pair consisting of
'MaxNumTrials' and a positive integer. This value specifies the number of randomized attempts the

 estimateGeometricTransform2D

3-535



function makes to find matching point pairs. Specifying a higher value causes the function to perform
additional computations, which increases the likelihood of finding inliers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Confidence — Confidence of finding maximum number of inliers
99 (default) | positive numeric scalar

Confidence of finding the maximum number of inliers, specified as the comma-separated pair
consisting of 'Confidence' and a positive numeric scalar in the range (0, 100). Increasing this
value causes the function to perform additional computations, which increases the likelihood of
finding a greater number of inliers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxDistance — Maximum distance from point to projection
1.5 (default) | positive numeric scalar

Maximum distance from a point to the projection of the corresponding point, specified as the comma-
separated pair consisting of 'MaxDistance' and a positive numeric scalar. 'MaxDistance'
specifies the maximum distance, in pixels, that a point can differ from the projected location of its
corresponding point to be considered an inlier. The corresponding projection is based on the
estimated transform.

The function checks for a transformation from matchedPoints1 to matchedPoints2, and then
calculates the distance between the matched points in each pair after applying the transformation. If
the distance between the matched points in a pair is greater than the 'MaxDistance' value, then
the pair is considered an outlier for that transformation. If the distance is less than 'MaxDistance',
then the pair is considered an inlier.

3 Functions

3-536



Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
tform — Geometric transformation
rigid2d object | affine2d object | projective2d object

Geometric transformation, returned as a rigid2d, affine2d, or projective2d object.

The returned geometric transformation matrix maps the inliers in matchedPoints1 to the inliers in
matchedPoints2. The function returns an object specific to the transformation type specified by the
transformType input argument.

transformType tform
'rigid' rigid2d
'similarity' affine2d
'affine' affine2d
'projective' projective2d

status — Status code
0 | 1 | 2

Status code, returned as 0, 1, or 2. The status code indicates whether or not the function could
estimate the transformation and, if not, why it failed.

 estimateGeometricTransform2D

3-537



Value Description
0 No error
1 matchedPoints1 and matchedPoints2 inputs

do not contain enough points
2 Not enough inliers found

If you do not specify the status code output, the function returns an error if it cannot produce
results.
Data Types: int32

inlierIndex — Index of inliers
M-by-1 logical vector

Index of inliers, returned as an M-by-1 logical vector, where M is the number of point pairs. Each
element contains either a logical 1 (true), indicating that the corresponding point pair is an inlier, or
a logical 0 (false), indicating that the corresponding point pair is an outlier.

Algorithms
The function excludes outliers using the M-estimator sample consensus (MSAC) algorithm. The MSAC
algorithm is a variant of the random sample consensus (RANSAC) algorithm. Results may not be
identical between runs due to the randomized nature of the MSAC algorithm.

References
[1] Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd ed.

Cambridge, UK ; New York: Cambridge University Press, 2003.

[2] Torr, P.H.S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application to Estimating
Image Geometry.” Computer Vision and Image Understanding 78, no. 1 (April 2000): 138–56.
https://doi.org/10.1006/cviu.1999.0832.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You cannot use SURFPoints object as an input to estimateGeometricTransform2D. See the
“Introduction to Code Generation with Feature Matching and Registration” example for details on
how to use SURFPoints with estimateGeometricTransform2D in codegen.

See Also
Functions
rgb2gray | estimateGeometricTransform3D | estimateFundamentalMatrix |
detectSURFFeatures | detectMinEigenFeatures | detectORBFeatures |
detectFASTFeatures | detectMSERFeatures | extractFeatures | matchFeatures |
fitgeotrans

3 Functions

3-538



Objects
KAZEPoints | cornerPoints | MSERRegions | SURFPoints | ORBPoints | BRISKPoints

Topics
“Feature Based Panoramic Image Stitching”
“Point Feature Types”
“Coordinate Systems”
“2-D and 3-D Geometric Transformation Process Overview”
“Introduction to Code Generation with Feature Matching and Registration”

Introduced in R2020b

 estimateGeometricTransform2D

3-539



estimateGeometricTransform3D
Estimate 3-D geometric transformation from matching point pairs

Syntax
tform = estimateGeometricTransform3D(matchedPoints1,matchedPoints2,
transformType)
[tform,inlierIndex] = estimateGeometricTransform3D( ___ )
[tform,inlierIndex,status] = estimateGeometricTransform3D( ___ )
[ ___ ] = estimateGeometricTransform3D( ___ , Name,Value)

Description
tform = estimateGeometricTransform3D(matchedPoints1,matchedPoints2,
transformType) estimates a 3-D geometric transformation between two sets of 3-D points by
mapping the inliers in the matched points from one set of 3-D points matchedPoints1 to the inliers
in the matched points from the other set of 3-D points matchedPoints2.

[tform,inlierIndex] = estimateGeometricTransform3D( ___ ) additionally returns a
vector specifying each matched point pair as either an inlier or an outlier using the input arguments
from the previous syntax.

[tform,inlierIndex,status] = estimateGeometricTransform3D( ___ ) additionally
returns a status code indicating whether or not the function could estimate a transformation and, if
not, why it failed. If you do not specify the status output, the function instead returns an error for
conditions that cannot produce results.

[ ___ ] = estimateGeometricTransform3D( ___ , Name,Value) specifies additional options
using one or more name-value pair arguments in addition to any combination of arguments from
previous syntaxes. For example, 'Confidence',99 sets the confidence value for finding the
maximum number of inliers to 99.

Examples

Estimate Transformation Between Two Point Clouds

Load a point cloud file into the workspace.

ptCloud1 = pcread('teapot.ply')

ptCloud1 = 
  pointCloud with properties:

     Location: [41472×3 single]
        Count: 41472
      XLimits: [-3 3.4340]
      YLimits: [-2 2]
      ZLimits: [0 3.1500]
        Color: []

3 Functions

3-540



       Normal: []
    Intensity: []

ptCloud1 = pcdownsample(ptCloud1,'random',0.25);  

Create a rigid 3-D transformation object with a 30-degree rotation.

theta = 30; % degrees
rot = [cosd(theta)  sind(theta) 0; ...
      -sind(theta)  cosd(theta) 0; ...
            0           0       1];
trans = [0 0 0];
tform = rigid3d(rot,trans);

Transform the point cloud using the transformation object.

ptCloud2 = pctransform(ptCloud1,tform);

To introduce noise, add random points to both point clouds.

noise1 = rescale(rand(1000,3),-2,2);
ptCloud1 = pointCloud([ptCloud1.Location;noise1]);
noise2 = rescale(rand(1000,3),-2,2);
ptCloud2 = pointCloud([ptCloud2.Location;noise2]);

Visualize the noisy point clouds.

figure
pcshowpair(ptCloud1,ptCloud2)
title('Point Clouds With Added Noise')

 estimateGeometricTransform3D

3-541



Extract matched points from the point clouds.

matchedPoints1 = ptCloud1.Location;
matchedPoints2 = ptCloud2.Location;

Estimate the rigid transformation between the point clouds.

[tformEst,inlierIndex] = estimateGeometricTransform3D(matchedPoints1, ...
    matchedPoints2,'rigid'); 

Extract the inlier points.

inliersPtCloud1 = transformPointsForward(tformEst,matchedPoints1(inlierIndex,:));
inliersPtCloud2 = matchedPoints2(inlierIndex,:);

Visualize the inliers of the aligned point clouds.

figure
firstPtCloud = pointCloud(inliersPtCloud1);
secondPtCloud = pointCloud(inliersPtCloud2);
pcshowpair(firstPtCloud,secondPtCloud)
title('Aligned point clouds')

3 Functions

3-542



Input Arguments
matchedPoints1 — First set of matched 3-D points
M-by-3 matrix of [x,y,z] coordinates

First set of matched 3-D points, specified as an M-by-3 matrix in which each row is a set of (x,y,z)
coordinates and M is the number of matched points.

matchedPoints2 — Second set of atched 3-D points
M-by-3 matrix of [x,y,z] coordinates

Second set of matched 3-D points, specified as an M-by-3 matrix in which each row is a set of (x,y,z)
coordinates and M is the number of matched points.

transformType — Transformation type
'rigid' | 'similarity'

Transformation type, specified as 'rigid' or 'similarity'. Each transform type requires a
minimum number of matched pairs of points to estimate a transformation. You can generally improve
the accuracy of a transformation by using a larger number of matched pairs of points. This table
shows the type of object associated with each transformation type and the minimum number of
matched pairs of points the transformation requires.

 estimateGeometricTransform3D

3-543



transformType tform Object Minimum Number of
Matched Pairs of Points

'rigid' rigid3d 3
'similarity' affine3d 3

Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Confidence',99 sets the confidence value for finding the maximum number of inliers to
99.

MaxNumTrials — Maximum random trials
1000 (default) | positive integer

Maximum number of random trials, specified as the comma-separated pair consisting of
'MaxNumTrials' and a positive integer. This value specifies the number of randomized attempts the
function makes to find matching point pairs. Specifying a higher value causes the function to perform
additional computations, which increases the likelihood of finding inliers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Confidence — Confidence of finding maximum number of inliers
99 (default) | positive numeric scalar

Confidence of finding the maximum number of inliers, specified as the comma-separated pair
consisting of 'Confidence' and a positive numeric scalar in the range (0, 100). Increasing this
value causes the function to perform additional computations, which increases the likelihood of
finding a greater number of inliers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxDistance — Maximum distance from point to projection
1.5 (default) | positive numeric scalar

Maximum distance from a point to the projection of the corresponding point, specified as the comma-
separated pair consisting of 'MaxDistance' and a positive numeric scalar. 'MaxDistance'
specifies the maximum distance, in pixels, that a point can differ from the projected location of its
corresponding point to be considered an inlier. The corresponding projection is based on the
estimated transform.

The function checks for a transformation from matchedPoints1 to matchedPoints2, and then
calculates the distance between the matched points in each pair after applying the transformation. If
the distance between the matched points in a pair is greater than the 'MaxDistance' value, then
the pair is considered an outlier for that transformation. If the distance is less than 'MaxDistance',
then the pair is considered an inlier.

3 Functions

3-544



Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
tform — Geometric transformation
rigid3d object | affine3d object

Geometric transformation, returned as an affine3d or a rigid3d object.

The returned geometric transformation matrix maps the inliers in matchedPoints1 to the inliers in
matchedPoints2. The function returns an object specific to the transformation type specified by the
transformType input argument.

transformType tform
'rigid' rigid3d
'similarity' affine3d

status — Status code
0 | 1 | 2

Status code, returned as 0, 1, or 2. The status code indicates whether or not the function could
estimate the transformation and, if not, why it failed.

 estimateGeometricTransform3D

3-545



Value Description
0 No error
1 matchedPoints1 and matchedPoints2 inputs

do not contain enough points
2 Not enough inliers found

If you do not specify the status code output, the function returns an error if it cannot produce
results.
Data Types: int32

inlierIndex — Inliers
M-by-1 logical vector

Inliers, returned as an M-by-1 logical vector of M point pairs. Each element contains either a logical
true, 1, to indicate the point pair is an inlier, or a logical false, 0, to indicate the point pair is an
outlier.

Algorithms
The function excludes outliers using the M-estimator sample consensus (MSAC) algorithm. The MSAC
algorithm is a variant of the random sample consensus (RANSAC) algorithm. Results may not be
identical between runs due to the randomized nature of the MSAC algorithm.

References
[1] Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd ed.

Cambridge, UK ; New York: Cambridge University Press, 2003.

[2] Torr, P.H.S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application to Estimating
Image Geometry.” Computer Vision and Image Understanding 78, no. 1 (April 2000): 138–56.
https://doi.org/10.1006/cviu.1999.0832.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
estimateGeometricTransform2D | pcregistericp | ransac

Objects
rigid3d | affine3d

Topics
“Coordinate Systems”
“2-D and 3-D Geometric Transformation Process Overview”

3 Functions

3-546



Introduced in R2020b

 estimateGeometricTransform3D

3-547



estimateGeometricTransform
Estimate geometric transform from matching point pairs

Note estimateGeometricTransform is not recommended. Use the
estimateGeometricTransform2D or estimateGeometricTransform3D function instead, which
offer greater functionality.

Syntax
tform = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType)

[tform,inlierpoints1,inlierpoints2] = estimateGeometricTransform(
matchedPoints1,matchedPoints2,transformType)
[ ___ ,status] = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType)

[ ___ ] = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType, Name,Value)

Description
tform = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType) returns a 2-D geometric transform object, tform. The tform object maps the
inliers in matchedPoints1 to the inliers in matchedPoints2.

The function excludes outliers using the M-estimator SAmple Consensus (MSAC) algorithm. The
MSAC algorithm is a variant of the Random Sample Consensus (RANSAC) algorithm. Results may not
be identical between runs because of the randomized nature of the MSAC algorithm.

[tform,inlierpoints1,inlierpoints2] = estimateGeometricTransform(
matchedPoints1,matchedPoints2,transformType) returns the corresponding inlier points in
inlierpoints1 and inlierpoints2.

[ ___ ,status] = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType) returns a status code of 0, 1, or 2. If you do not request the status code output,
the function returns an error for conditions that cannot produce results.

[ ___ ] = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType, Name,Value) uses additional options specified by one or more Name,Value
arguments.

Examples

Recover Transformed Image Using SURF Feature Points

Read an image and display it.

3 Functions

3-548



original = imread('cameraman.tif');
imshow(original)
title('Base Image')

Distort and display the transformed image.

distorted = imresize(original,0.7); 
distorted = imrotate(distorted,31);
figure
imshow(distorted)
title('Transformed Image')

 estimateGeometricTransform

3-549



Detect and extract features from the original and the transformed images.

ptsOriginal  = detectSURFFeatures(original);
ptsDistorted = detectSURFFeatures(distorted);
[featuresOriginal,validPtsOriginal] = extractFeatures(original,ptsOriginal);
[featuresDistorted,validPtsDistorted] = extractFeatures(distorted,ptsDistorted);

Match and display features between the images.

index_pairs = matchFeatures(featuresOriginal,featuresDistorted);
matchedPtsOriginal  = validPtsOriginal(index_pairs(:,1));
matchedPtsDistorted = validPtsDistorted(index_pairs(:,2));
figure 
showMatchedFeatures(original,distorted,matchedPtsOriginal,matchedPtsDistorted)
title('Matched SURF Points With Outliers');

3 Functions

3-550



Exclude the outliers, estimate the transformation matrix, and display the results.

[tform,inlierIdx] = estimateGeometricTransform2D(matchedPtsDistorted,matchedPtsOriginal,'similarity');
inlierPtsDistorted = matchedPtsDistorted(inlierIdx,:);
inlierPtsOriginal  = matchedPtsOriginal(inlierIdx,:);

figure 
showMatchedFeatures(original,distorted,inlierPtsOriginal,inlierPtsDistorted)
title('Matched Inlier Points')

 estimateGeometricTransform

3-551



Use the estimated transformation to recover and display the original image from the distorted image.

outputView = imref2d(size(original));
Ir = imwarp(distorted,tform,'OutputView',outputView);
figure 
imshow(Ir); 
title('Recovered Image');

3 Functions

3-552



Input Arguments
matchedPoints1 — Matched points from image 1
cornerPoints object | SIFTPoints | SURFPoints object | MSERRegions object | ORBPoints
object | BRISKpoints | KAZEPoints | M-by-2 matrix of [x,y] coordinates

Matched points from image 1, specified as either a KAZEPoints, cornerPoints object,
SIFTPoints, SURFPoints object, MSERRegions object, ORBPoints object, BRISKPointsor an M-
by-2 matrix of [x,y] coordinates. The function excludes outliers using the M-estimator SAmple
Consensus (MSAC) algorithm. The MSAC algorithm is a variant of the Random Sample Consensus
(RANSAC) algorithm.

matchedPoints2 — Matched points from image 2
cornerPoints object | SIFTPoints | SURFPoints object | MSERRegions object | ORBPoints
object | BRISKpoints | KAZEPoints | M-by-2 matrix of [x,y] coordinates

Matched points from image 2, specified as either a KAZEPoints, cornerPoints object,
SIFTPoints, SURFPoints object, MSERRegions object, ORBPoints object, BRISKPointsor an M-
by-2 matrix of [x,y] coordinates. The function excludes outliers using the M-estimator SAmple
Consensus (MSAC) algorithm. The MSAC algorithm is a variant of the Random Sample Consensus
(RANSAC) algorithm.

transformType — Transform type
'similarity' | 'affine' | 'projective'

Transform type, specified as one of three character strings. You can set the transform type to either
'similarity', 'affine', or 'projective'. The greater the number of matched pairs of points,
the greater the accuracy of the estimated transformation. The minimum number of matched pairs of
points for each transform type:

Transform Type Minimum Number of Matched Pairs of Points
'similarity' 2
'affine' 3
'projective' 4

Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Confidence',99 sets the confidence value to 99.

MaxNumTrials — Maximum random trials
1000 (default) | positive integer

 estimateGeometricTransform

3-553



Maximum number of random trials for finding the inliers, specified as the comma-separated pair
consisting of 'MaxNumTrials' and a positive integer scalar. Increasing this value improves the
robustness of the results at the expense of additional computations.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Confidence — Confidence of finding maximum number of inliers
99 (default) | positive numeric scalar

Confidence of finding the maximum number of inliers, specified as the comma-separated pair
consisting of 'Confidence' and a percentage numeric scalar in the range (0 100). Increasing this
value improves the robustness of the results at the expense of additional computations.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxDistance — Maximum distance from point to projection
1.5 (default) | positive numeric scalar

Maximum distance in pixels, from a point to the projection of its corresponding point, specified as the
comma-separated pair consisting of 'MaxDistance' and a positive numeric scalar. The corresponding
projection is based on the estimated transform.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
tform — Geometric transformation
affine2d object | projective2d object

Geometric transformation, returned as either an affine2d object or a projective2d object.

The returned geometric transformation matrix maps the inliers in matchedPoints1 to the inliers in
matchedPoints2. When you set the transformType input to either 'similarity' or 'affine',
the function returns an affine2d object. Otherwise, it returns a projective2d object.

status — Status code
0 | 1 | 2

3 Functions

3-554



Status code, returned as the value 0, 1, or 2.

status Description
0 No error.
1 matchedPoints1 and matchedPoints2 inputs

do not contain enough points.
2 Not enough inliers found.

If you do not request the status code output, the function will throw an error for the two conditions
that cannot produce results.
Data Types: double

inlierpoints1 — Inlier points in image 1
inlier points

Inlier points in image 1, returned as the same type as the input matching points.

inlierpoints2 — Inlier points in image 2
inlier points

Inlier points in image 2, returned as the same type as the input matching points.

References
[1] Hartley, R., and A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge

University Press, 2003.

[2] Torr, P. H. S., and A. Zisserman, "MLESAC: A New Robust Estimator with Application to
Estimating Image Geometry," Computer Vision and Image Understanding, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You cannot use SURFPoints object as an input to estimateGeometricTransform. See the
“Introduction to Code Generation with Feature Matching and Registration” example for details on
how to use SURFPoints with estimateGeometricTransform in codegen.

See Also
Objects
SIFTPoints | KAZEPoints | cornerPoints | MSERRegions | SURFPoints | ORBPoints |
BRISKPoints

Functions
fitgeotrans | estimateFundamentalMatrix | detectSURFFeatures |
detectMinEigenFeatures | detectORBFeatures | detectFASTFeatures |
detectMSERFeatures | extractFeatures | matchFeatures

 estimateGeometricTransform

3-555



Topics
“Feature Based Panoramic Image Stitching”
“Point Feature Types”
“Coordinate Systems”
“2-D and 3-D Geometric Transformation Process Overview”
“Introduction to Code Generation with Feature Matching and Registration”

Introduced in R2013a

3 Functions

3-556



estimateUncalibratedRectification
Uncalibrated stereo rectification

Syntax
[T1,T2] = estimateUncalibratedRectification(F,inlierPoints1,inlierPoints2,
imagesize)

Description
[T1,T2] = estimateUncalibratedRectification(F,inlierPoints1,inlierPoints2,
imagesize) returns projective transformations for rectifying stereo images. This function does not
require either intrinsic or extrinsic camera parameters.

Examples

Find Fundamental Matrix Describing Epipolar Geometry

This example shows how to compute the fundamental matrix from corresponding points in a pair of
stereo images.

Load the stereo images and feature points which are already matched.

I1 = imread('yellowstone_left.png');
I2 = imread('yellowstone_right.png');
load yellowstone_inlier_points;

Display point correspondences. Notice that the matching points are in different rows, indicating that
the stereo pair is not rectified.

showMatchedFeatures(I1, I2,inlier_points1,inlier_points2,'montage');
title('Original images and matching feature points');

 estimateUncalibratedRectification

3-557



Compute the fundamental matrix from the corresponding points.

f = estimateFundamentalMatrix(inlier_points1,inlier_points2,...
    'Method','Norm8Point');

Compute the rectification transformations.

[t1, t2] = estimateUncalibratedRectification(f,inlier_points1,...
    inlier_points2,size(I2));

Rectify the stereo images using projective transformations t1 and t2.

[I1Rect,I2Rect] = rectifyStereoImages(I1,I2,t1,t2);

Display the stereo anaglyph, which can also be viewed with 3-D glasses.

figure;
imshow(stereoAnaglyph(I1Rect,I2Rect));

Input Arguments
F — Fundamental matrix for the stereo images
3-by-3 matrix

Fundamental matrix for the stereo images, specified as a 3-by-3 fundamental matrix. The
fundamental matrix satisfies the following criteria:
If P1, a point in image 1, corresponds to P2, a point in image 2, then:

3 Functions

3-558



[P2,1] *F * [P1,1]' = 0

F must be double or single.

inlierPoints1 — Coordinates of corresponding points
ORBPoints | BRISKPoints | SIFTPoints | SURFPoints | cornerPoints | MSERRegions | M-by-2
matrix of [x,y] coordinates

Coordinates of corresponding points in image one, specified as an M-by-2 matrix of M number of [x y]
coordinates, or as aORBPoints,BRISKPoints , SIFTPoints, SURFPoints, MSERRegions , or
cornerPoints object.

inlierPoints2 — Coordinates of corresponding points
ORBPoints | BRISKPoints | SIFTPoints | SURFPoints | cornerPoints | MSERRegions | M-by-2
matrix of [x,y] coordinates

Coordinates of corresponding points in image two, specified as an M-by-2 matrix of M number of [x y]
coordinates, or as aORBPoints,BRISKPoints , SIFTPoints, SURFPoints, MSERRegions , or
cornerPoints object.

imagesize — Input image size
single | double | integer

Second input image size, specified as a double, single, or integer value and in the format returned by
the size function. The size of input image 2 corresponds to inlierPoints2.

Output Arguments
T1 — Projective transformation one
3-by-3 matrix

Projective transformation, returned as a 3-by-3 matrix describing the projective transformations for
input image T1.

T2 — Projective transformation two
3-by-3 matrix

Projective transformation, returned as a 3-by-3 matrix describing the projective transformations for
input image T2.

Tips
• An epipole may be located in the first image or the second image. Applying the output

uncalibrated rectification of T1 (or T2) to image 1 (or image 2) may result in an undesired
distortion. You can check for an epipole within an image by applying the isEpipoleInImage
function.

References
[1] Hartley, R. and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University

Press. 2003.

 estimateUncalibratedRectification

3-559



[2] Pollefeys, M., Koch, R., and Van Gool, L.. A Simple and Efficient Rectification Method for General
Motion. Proceedings of the Seventh IEEE International Conference on Computer Vision.
Volume 1, pages 496-501. 1999. DOI:10.1109/ICCV.1999.791262.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Stereo Camera Calibrator | Camera Calibrator

Objects
MSERRegions | SIFTPoints | SURFPoints | BRISKPoints | ORBPoints | cornerPoints |
cameraParameters | stereoParameters

Functions
detectHarrisFeatures | detectSIFTFeatures | detectMinEigenFeatures |
detectHarrisFeatures | estimateFundamentalMatrix | extractFeatures |
isEpipoleInImage | matchFeatures | imwarp | size | reconstructScene |
estimateCameraParameters | cameraMatrix | undistortImage

Topics
Uncalibrated Stereo Image Rectification
“Point Feature Types”
“Coordinate Systems”

Introduced in R2012b

3 Functions

3-560



evaluateDetectionMissRate
Evaluate miss rate metric for object detection

Syntax
logAverageMissRate = evaluateDetectionMissRate(detectionResults,
groundTruthData)
[logAverageMissRate,fppi,missRate] = evaluateDetectionMissRate( ___ )
[ ___ ] = evaluateDetectionMissRate( ___ ,threshold)

Description
logAverageMissRate = evaluateDetectionMissRate(detectionResults,
groundTruthData) returns the log-average miss rate of the detectionResults compared to
groundTruthData, which is used to measure the performance of the object detector. For a
multiclass detector, the log-average miss rate is a vector of scores for each object class in the order
specified by groundTruthData.

[logAverageMissRate,fppi,missRate] = evaluateDetectionMissRate( ___ ) returns data
points for plotting the log miss rate–false positives per image (FPPI) curve, using input arguments
from the previous syntax.

[ ___ ] = evaluateDetectionMissRate( ___ ,threshold) specifies the overlap threshold for
assigning a detection to a ground truth box.

Examples

Evaluate Miss Rate of a YOLO v2 Object Detector

This example shows how to evaluate miss rate of a pretrained YOLO v2 object detector.

Load the Vehicle Ground Truth Data

Load a table containing the vehicle training data. The first column contains the training images, the
remaining columns contain the labeled bounding boxes.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData(1:100,:);

Add fullpath to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'), 'visiondata');
trainingData.imageFilename = fullfile(dataDir, trainingData.imageFilename);

Create an imageDatastore using the files from the table.

imds = imageDatastore(trainingData.imageFilename);

Create a boxLabelDatastore using the label columns from the table.

blds = boxLabelDatastore(trainingData(:,2:end));

 evaluateDetectionMissRate

3-561



Load YOLOv2 Detector for Detection

Load the detector containing the layerGraph for trainining.

vehicleDetector = load('yolov2VehicleDetector.mat');
detector = vehicleDetector.detector;

Evaluate and Plot the Miss Rate Results

Run the detector with imageDatastore.

results = detect(detector, imds);

Evaluate the results against the ground truth data.

[am, fppi, missRate] = evaluateDetectionMissRate(results, blds);

Plot the log-miss-rate/FPPI curve.

figure;
loglog(fppi, missRate);
grid on
title(sprintf('Log Average Miss Rate = %.1f', am))

Evaluate a Stop Sign Detector

Load a ground truth table.

3 Functions

3-562



load('stopSignsAndCars.mat')
stopSigns = stopSignsAndCars(:, 1:2);
stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    stopSigns.imageFilename);

Train an ACF based detector.

detector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--------------------------------------------
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--------------------------------------------
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--------------------------------------------
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--------------------------------------------
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--------------------------------------------
ACF object detector training is completed. Elapsed time is 24.6877 seconds.

Create a struct array to store the results.

numImages = height(stopSigns);
results(numImages) = struct('Boxes', [], 'Scores', []);

Run the detector on the training images.

for i = 1 : numImages
    I = imread(stopSigns.imageFilename{i});
    [bboxes, scores] = detect(detector, I);
    results(i).Boxes = bboxes;
    results(i).Scores = scores;
end

results = struct2table(results);

 evaluateDetectionMissRate

3-563



Evaluate the results against the ground truth data.

[am, fppi, missRate] = evaluateDetectionMissRate(results, stopSigns(:, 2));

Plot log-miss-rate/FPPI curve.

figure
loglog(fppi, missRate);
grid on
title(sprintf('log Average Miss Rate = %.1f', am))

Input Arguments
detectionResults — Object locations and scores
table

Object locations and scores, specified as a two-column table containing the bounding boxes and
scores for each detected object. For multiclass detection, a third column contains the predicted label
for each detection. The bounding boxes must be stored in an M-by-4 cell array. The scores must be
stored in an M-by-1 cell array, and the labels must be stored as a categorical vector.

When detecting objects, you can create the detection results table by using imageDatastore.

        ds = imageDatastore(stopSigns.imageFilename);
        detectionResults = detect(detector,ds);

3 Functions

3-564



Data Types: table

groundTruthData — Labeled ground truth
datastore | table

Labeled ground truth, specified as a datastore or a table.

Each bounding box must be in the format [x y width height].

• Datastore — A datastore whose read and readall functions return a cell array or a table with at
least two columns of bounding box and labels cell vectors. The bounding boxes must be in a cell
array of M-by-4 matrices in the format [x,y,width,height]. The datastore's read and readall
functions must return one of the formats:

• {boxes,labels} — The boxLabelDatastore creates this type of datastore.
• {images,boxes,labels} — A combined datastore. For example, using combine(imds,blds).

See boxLabelDatastore.
• Table — One or more columns. All columns contain bounding boxes. Each column must be a cell

vector that contains M-by-4 matrices that represent a single object class, such as stopSign,
carRear, or carFront . The columns contain 4-element double arrays of M bounding boxes in the
format [x,y,width,height]. The format specifies the upper-left corner location and size of the
bounding box in the corresponding image.

threshold — Overlap threshold
0.5 | numeric scalar

Overlap threshold for a detection assigned to a ground truth box, specified as a numeric scalar. The
overlap ratio is computed as the intersection over union.

Output Arguments
logAverageMissRate — Log-average miss rate metric
numeric scalar | vector

Log-average miss rate metric, returned as either a numeric scalar or vector. For a multiclass detector,
the log-average miss rate is returned as a vector of values that correspond to the data points for each
class.

fppi — False positives per image
vector of numeric scalars | cell array

False positives per image, returned as either a vector of numeric scalars or as a cell array. For a
multiclass detector, the FPPI and log miss rate are cell arrays, where each cell contains the data
points for each object class.

 evaluateDetectionMissRate

3-565



missRate — Log miss rate
vector of numeric scalars | cell array

Log miss rate, returned as either a vector of numeric scalars or as a cell array. For a multiclass
detector, the FPPI and log miss rate are cell arrays, where each cell contains the data points for each
object class.

See Also
Apps
Video Labeler | Image Labeler

Functions
evaluateDetectionPrecision | trainACFObjectDetector

Objects
boxLabelDatastore | acfObjectDetector

Topics
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2017a

3 Functions

3-566



evaluateDetectionPrecision
Evaluate precision metric for object detection

Syntax
averagePrecision = evaluateDetectionPrecision(detectionResults,
groundTruthData)
[averagePrecision,recall,precision] = evaluateDetectionPrecision( ___ )
[ ___ ] = evaluateDetectionPrecision( ___ ,threshold)

Description
averagePrecision = evaluateDetectionPrecision(detectionResults,
groundTruthData) returns the average precision, of the detectionResults compared to the
groundTruthData. You can use the average precision to measure the performance of an object
detector. For a multiclass detector, the function returns averagePrecision as a vector of scores for
each object class in the order specified by groundTruthData.

[averagePrecision,recall,precision] = evaluateDetectionPrecision( ___ ) returns
data points for plotting the precision–recall curve, using input arguments from the previous syntax.

[ ___ ] = evaluateDetectionPrecision( ___ ,threshold) specifies the overlap threshold for
assigning a detection to a ground truth box.

Examples

Evaluate Precision of a YOLO v2 Object Detector

This example shows how to evaluate a pretrained YOLO v2 object detector.

Load the Vehicle Ground Truth Data

Load a table containing the vehicle training data. The first column contains the training images, the
remaining columns contain the labeled bounding boxes.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Add fullpath to the local vehicle data folder.

dataDir = fullfile(toolboxdir('vision'), 'visiondata');
trainingData.imageFilename = fullfile(dataDir, trainingData.imageFilename);

Create an imageDatastore using the files from the table.

imds = imageDatastore(trainingData.imageFilename);

Create a boxLabelDatastore using the label columns from the table.

blds = boxLabelDatastore(trainingData(:,2:end));

 evaluateDetectionPrecision

3-567



Load YOLOv2 Detector for Detection

Load the detector containing the layerGraph for trainining.

vehicleDetector = load('yolov2VehicleDetector.mat');
detector = vehicleDetector.detector;

Evaluate and Plot the Results

Run the detector with imageDatastore.

results = detect(detector, imds);

Evaluate the results against the ground truth data.

[ap, recall, precision] = evaluateDetectionPrecision(results, blds);

Plot the precision/recall curve.

figure;
plot(recall, precision);
grid on
title(sprintf('Average precision = %.1f', ap))

3 Functions

3-568



Evaluate Precision of Stop Sign Detector

Train an ACF-based detector using preloaded ground truth information. Run the detector on the
training images. Evaluate the detector and display the precision-recall curve.

Load the ground truth table.

load('stopSignsAndCars.mat')
stopSigns = stopSignsAndCars(:,1:2);
stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    stopSigns.imageFilename);

Train an ACF-based detector.

detector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--------------------------------------------
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--------------------------------------------
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--------------------------------------------
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--------------------------------------------
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--------------------------------------------
ACF object detector training is completed. Elapsed time is 22.9146 seconds.

Create a table to store the results.

numImages = height(stopSigns);
results = table('Size',[numImages 2],...
       'VariableTypes',{'cell','cell'},...
       'VariableNames',{'Boxes','Scores'}); 

Run the detector on the training images. Store the results as a table.

 evaluateDetectionPrecision

3-569



for i = 1 : numImages
    I = imread(stopSigns.imageFilename{i});
    [bboxes, scores] = detect(detector,I);
    results.Boxes{i} = bboxes;
    results.Scores{i} = scores;
end 

Evaluate the results against the ground truth data. Get the precision statistics.

[ap,recall,precision] = evaluateDetectionPrecision(results,stopSigns(:,2));

Plot the precision-recall curve.

figure
plot(recall,precision)
grid on
title(sprintf('Average Precision = %.1f',ap))

Input Arguments
detectionResults — Object locations and scores
table

Object locations and scores, specified as a two-column table containing the bounding boxes and
scores for each detected object. For multiclass detection, a third column contains the predicted label

3 Functions

3-570



for each detection. The bounding boxes must be stored in an M-by-4 cell array. The scores must be
stored in an M-by-1 cell array, and the labels must be stored as a categorical vector.

When detecting objects, you can create the detection results table by using imageDatastore.

        ds = imageDatastore(stopSigns.imageFilename);
        detectionResults = detect(detector,ds);

Data Types: table

groundTruthData — Labeled ground truth
datastore | table

Labeled ground truth, specified as a datastore or a table.

Each bounding box must be in the format [x y width height].

• Datastore — A datastore whose read and readall functions return a cell array or a table with at
least two columns of bounding box and labels cell vectors. The bounding boxes must be in a cell
array of M-by-4 matrices in the format [x,y,width,height]. The datastore's read and readall
functions must return one of the formats:

• {boxes,labels} — The boxLabelDatastore creates this type of datastore.
• {images,boxes,labels} — A combined datastore. For example, using combine(imds,blds).

See boxLabelDatastore.
• Table — One or more columns. All columns contain bounding boxes. Each column must be a cell

vector that contains M-by-4 matrices that represent a single object class, such as stopSign,
carRear, or carFront . The columns contain 4-element double arrays of M bounding boxes in the
format [x,y,width,height]. The format specifies the upper-left corner location and size of the
bounding box in the corresponding image.

threshold — Overlap threshold
0.5 (default) | numeric scalar

Overlap threshold for assigned a detection to a ground truth box, specified as a numeric scalar. The
overlap ratio is computed as the intersection over union.

Output Arguments
averagePrecision — Average precision
numeric scalar | vector

Average precision over all the detection results, returned as a numeric scalar or vector. Precision is a
ratio of true positive instances to all positive instances of objects in the detector, based on the ground

 evaluateDetectionPrecision

3-571



truth. For a multiclass detector, the average precision is a vector of average precision scores for each
object class.

recall — Recall values from each detection
vector of numeric scalars | cell array

Recall values from each detection, returned as an M-by-1 vector of numeric scalars or as a cell array.
The length of M equals 1 + the number of detections assigned to a class. For example, if your
detection results contain 4 detections with class label 'car', then recall contains 5 elements. The
first value of recall is always 0.

Recall is a ratio of true positive instances to the sum of true positives and false negatives in the
detector, based on the ground truth. For a multiclass detector, recall and precision are cell
arrays, where each cell contains the data points for each object class.

precision — Precision values from each detection
vector of numeric scalars | cell array

Precision values from each detection, returned as an M-by-1 vector of numeric scalars or as a cell
array. The length of M equals 1 + the number of detections assigned to a class. For example, if your
detection results contain 4 detections with class label 'car', then precision contains 5 elements.
The first value of precision is always 1.

Precision is a ratio of true positive instances to all positive instances of objects in the detector, based
on the ground truth. For a multi-class detector, recall and precision are cell arrays, where each
cell contains the data points for each object class.

See Also
Apps
Video Labeler | Image Labeler

Functions
evaluateDetectionMissRate | trainACFObjectDetector

Objects
boxLabelDatastore | acfObjectDetector

Topics
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2017a

3 Functions

3-572



evaluateImageRetrieval
Evaluate image search results

Syntax
averagePrecision = evaluateImageRetrieval(queryImage,imageIndex,expectedIDs)
[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(queryImage,
imageIndex,expectedIDs)
[averagePrecision,imageIDs,scores] = evaluateImageRetrieval( ___ ,Name,Value)

Description
averagePrecision = evaluateImageRetrieval(queryImage,imageIndex,expectedIDs)
returns the average precision metric for measuring the accuracy of image search results for the
queryImage. The expectedIDs input contains the indices of images within imageIndex that are
known to be similar to the query image.

[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(queryImage,
imageIndex,expectedIDs) optionally returns the indices corresponding to images within
imageIndex that are visually similar to the query image. It also returns the corresponding similarity
scores.

[averagePrecision,imageIDs,scores] = evaluateImageRetrieval( ___ ,Name,Value)
uses additional options specified by one or more Name,Value pair arguments, using any of the
preceding syntaxes.

Examples

Evaluate Image Retrieval Results

Define a set of images.

dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);

Display the set of images.

thumbnailGallery = [];
for i = 1:length(bookCovers.Files)
    img = readimage(bookCovers,i); 
    thumbnail = imresize(img,[300 300]);
    thumbnailGallery = cat(4,thumbnailGallery,thumbnail);
end
figure
montage(thumbnailGallery);

 evaluateImageRetrieval

3-573



Index the images. This will take a few minutes.

imageIndex = indexImages(bookCovers);

Creating an inverted image index using Bag-Of-Features.
-------------------------------------------------------

Creating Bag-Of-Features.
-------------------------

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

3 Functions

3-574



* Extracting features from 58 images...done. Extracted 29216 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373.
** Using the strongest 23373 features from each of the other image categories.

* Creating a 20000 word visual vocabulary.
* Number of levels: 1
* Branching factor: 20000
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 23373
* Number of clusters          : 20000
* Initializing cluster centers...100.00%.
* Clustering...completed 11/100 iterations (~0.74 seconds/iteration)...converged in 11 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.
--------------------------------------

* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.

queryDir = fullfile(dataDir,'queries',filesep);
query = imread([queryDir 'query2.jpg']);

figure
imshow(query)

 evaluateImageRetrieval

3-575



Evaluation requires knowing the expected results. Here, the query image is known to be the 3rd book
in the imageIndex.

expectedID = 3;

Find and report the average precision score.

[averagePrecision,actualIDs] = evaluateImageRetrieval(query,...
    imageIndex,expectedID);

fprintf('Average Precision: %f\n\n',averagePrecision)

Average Precision: 0.043478

Show the query and best match side-by-side.

bestMatch = actualIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});

figure
imshowpair(query,bestImage,'montage')

3 Functions

3-576



Compute Mean Average Precision (MAP) for Image Retrieval

Create an image set of book covers.

  dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
  bookCovers = imageDatastore(dataDir);

Index the image set. The indexing may take a few minutes.

  imageIndex = indexImages(bookCovers,'Verbose',false);

Create a set of query images.

  queryDir = fullfile(dataDir,'queries',filesep);
  querySet = imageDatastore(queryDir);

Specify the expected search results for each query image.

  expectedIDs = [1 2 3];

Evaluate each query image and collect average precision scores.

  for i = 1:numel(querySet.Files)
      query = readimage(querySet,i);
      averagePrecision(i) = evaluateImageRetrieval(query, imageIndex, expectedIDs(i));
  end

Compute mean average precision (MAP).

  map = mean(averagePrecision)

map = 0.8333

 evaluateImageRetrieval

3-577



Input Arguments
queryImage — Input query image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input query image, specified as either an M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale
image.
Data Types: single | double | int16 | uint8 | uint16 | logical

imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object. The indexImages function
creates the invertedImageIndex object, which stores the data used for the image search.

expectedIDs — Image indices
row or column vector

Image indices, specified as a row or column vector. The indices correspond to the images within
imageIndex that are known to be similar to the query image.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumResults',25

NumResults — Maximum number of search results to evaluate
Inf (default) | positive integer value

Maximum number of search results to evaluate, specified as the comma-separated pair consisting of
'NumResults' and a positive integer value. The function evaluates the top NumResults and returns
the average-precision-at-NumResults metric.

ROI — Rectangular search region
[1 1 size(queryImage,2) size(queryImage,1)] (default) | [x y width height] vector

Rectangular search region within the query image, specified as the comma-separated pair consisting
of 'ROI' and a [x y width height] formatted vector.

Output Arguments
averagePrecision — Average precision metric
scalar value in the range [0 1]

Average precision metric, returned as a scalar value in the range [0 1]. The average precision metric
represents the accuracy of image search results for the query image.

imageIDs — Ranked index of retrieved images
M-by-1 vector

3 Functions

3-578



Ranked index of retrieved images, returned as an M-by-1 vector. The image IDs are returned in
ranked order, from the most to least similar matched image.

scores — Similarity metric
N-by-1 vector

Similarity metric, returned as an N-by-1 vector. This output contains the scores that correspond to
the retrieved images in the imageIDs output. The scores are computed using the cosine similarity
and range from 0 to 1.

See Also
retrieveImages | indexImages | imageDatastore | bagOfFeatures | invertedImageIndex

Topics
“Image Retrieval Using Customized Bag of Features”
“Image Retrieval with Bag of Visual Words”

Introduced in R2015a

 evaluateImageRetrieval

3-579



evaluateSemanticSegmentation
Evaluate semantic segmentation data set against ground truth

Syntax
ssm = evaluateSemanticSegmentation(dsResults,dsTruth)
ssm = evaluateSemanticSegmentation(imageSetConfusion,classNames)
[ssm,blockMetrics] = evaluateSemanticSegmentation(blockSetConfusion,
classNames)
[ ___ ] = evaluateSemanticSegmentation( ___ ,Name,Value)

Description
ssm = evaluateSemanticSegmentation(dsResults,dsTruth) computes various metrics to
evaluate the quality of the semantic segmentation results, dsResults, against the ground truth
segmentation, dsTruth.

ssm = evaluateSemanticSegmentation(imageSetConfusion,classNames) computes
various metrics to evaluate the quality of the semantic segmentation results from confusion matrices,
imageSetConfusion, with segmentation classes classNames.

[ssm,blockMetrics] = evaluateSemanticSegmentation(blockSetConfusion,
classNames) computes various metrics to evaluate the quality of the block-based semantic
segmentation results from confusion matrices, blockSetConfusion with classes classNames.

[ ___ ] = evaluateSemanticSegmentation( ___ ,Name,Value) computes semantic
segmentation metrics using one or more Name,Value pair arguments to control the evaluation.

Examples

Evaluate Semantic Segmentation Results

The triangleImages data set has 100 test images with ground truth labels. Define the location of
the data set.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');

Define the location of the test images.

testImagesDir = fullfile(dataSetDir,'testImages');

Define the location of the ground truth labels.

testLabelsDir = fullfile(dataSetDir,'testLabels');

Create an imageDatastore holding the test images.

imds = imageDatastore(testImagesDir);

Define the class names and their associated label IDs.

3 Functions

3-580



classNames = ["triangle","background"];
labelIDs   = [255 0];

Create a pixelLabelDatastore holding the ground truth pixel labels for the test images.

pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs);

Load a semantic segmentation network that has been trained on the training images of
triangleImages.

net = load('triangleSegmentationNetwork');
net = net.net;

Run the network on the test images. Predicted labels are written to disk in a temporary directory and
returned as a pixelLabelDatastore.

pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 100 images.

Evaluate the prediction results against the ground truth.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.90624          0.95085       0.61588      0.87529        0.40652  

Display the properties of the semanticSegmentationMetrics object.

metrics

metrics = 
  semanticSegmentationMetrics with properties:

              ConfusionMatrix: [2x2 table]
    NormalizedConfusionMatrix: [2x2 table]
               DataSetMetrics: [1x5 table]
                 ClassMetrics: [2x3 table]
                 ImageMetrics: [100x5 table]

Display the classification accuracy, the intersection over union, and the boundary F-1 score for each
class. These values are stored in the ClassMetrics property.

metrics.ClassMetrics

ans=2×3 table
                  Accuracy      IoU      MeanBFScore

 evaluateSemanticSegmentation

3-581



                  ________    _______    ___________

    triangle            1     0.33005     0.028664  
    background     0.9017      0.9017      0.78438  

Display the normalized confusion matrix that is stored in the NormalizedConfusionMatrix
property.

metrics.ConfusionMatrix

ans=2×2 table
                  triangle    background
                  ________    __________

    triangle        4730            0   
    background      9601        88069   

Input Arguments
dsResults — Predicted pixel labels
datastore | PixelLabelDatastore object | PixelLabelImageDatastore | cell array of datastore
objects

Predicted pixel labels resulting from semantic segmentation, specified as a datastore or a cell array of
datastore objects. dsResults can be any datastore that returns categorical images, such as
PixelLabelDatastore or pixelLabelImageDatastore. The read(dsResults) must return a
categorical array, a cell array, or a table. If the read function returns a multicolumn cell array or
table, the second column must contain categorical arrays.

dsTruth — Ground truth pixel labels
PixelLabelDatastore object | cell array of PixelLabelDatastore objects

Ground truth pixel labels, specified as a datastore or a cell array of datastore objects. dsResults can
be any datastore that returns categorical images, such as PixelLabelDatastore or
pixelLabelImageDatastore. Using read(dsTruth) must return a categorical array, a cell array,
or a table. If the read function returns a multicolumn cell array or table, the second column must
contain categorical arrays.

imageSetConfusion — Confusion matrices for segmented images
table | cell array

Confusion matrix for the classes in the segmented images, specified as one of the following, where F
is the number of images in the data set.

• Table with F rows and one variable with the name ConfusionMatrix. Each row in the table
contains a cell array with the confusion matrix for the corresponding image.

• F-by-one cell array. Each element of the cell array contains the confusion matrix for the
corresponding image.

blockSetConfusion — Confusion matrices for segmented blocks
table

3 Functions

3-582



Confusion matrices for segmented blocks, specified as a table with B rows and three columns, where
B is the total number of blocks in all images in the data set. The three columns are the variables
ImageNumber, ConfusionMatrix, and BlockInfo. You can obtain a table of the correct format by
using the segmentationConfusionMatrix function within a call to the block-based apply
function. For an example, see “Calculate Segmentation Metrics in Block-Based Workflow”.

classNames — Class names
array of strings | cell array of character vectors

Class names, specified as an array of strings or a cell array of character vectors.
Example: ["sky" "grass" "building" "sidewalk"]

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: metrics =
evaluateSemanticSegmentation(pxdsResults,pxdsTruth,'Metrics',"bfscore")
computes only the mean BF score of each class, each image, and the entire data set.

Metrics — Segmentation metrics
"all" (default) | vector of strings

Segmentation metrics in semanticSegmentationMetrics to compute, specified as the comma-
separated pair consisting of 'Metrics' and a vector of strings. This argument specifies which
variables in the DataSetMetrics, ClassMetrics, and ImageMetrics tables to compute.
ConfusionMatrix and NormalizedConfusionMatrix are computed regardless of the value of
'Metric'.

Value Description Aggre
gate
Data
Set
Metric

Image
Metric

Class
Metric

"all" Evaluate all semantic segmentation metrics.

The function excludes MeanBFScore from the semantic
segmentation metrics when you specify a confusion matrix
(imageSetConfusion or blockSetConfusion) as input to
the function.

All
aggreg
ate
data
set
metric
s

All
image
metric
s

All class
metrics

 evaluateSemanticSegmentation

3-583



Value Description Aggre
gate
Data
Set
Metric

Image
Metric

Class
Metric

"accuracy
"

Accuracy indicates the percentage of correctly identified
pixels for each class. Use the accuracy metric if you want to
know how well each class correctly identifies pixels.

• For each class, Accuracy is the ratio of correctly
classified pixels to the total number of pixels in that class,
according to the ground truth. In other words,

Accuracy score = TP / (TP + FN)
TP is the number of true positives and FN is the number
of false negatives.

• For the aggregate data set, MeanAccuracy is the
average Accuracy of all classes in all images.

• For each image, MeanAccuracy is the average
Accuracy of all classes in that particular image.

The class accuracy is a simple metric analogous to global
accuracy, but it can be misleading. For example, labeling all
pixels "car" gives a perfect score for the "car" class
(although not for the other classes). Use class accuracy in
conjunction with IoU for a more complete evaluation of
segmentation results.

MeanA
ccura
cy

MeanA
ccura
cy

Accura
cy

"bfscore" The boundary F1 (BF) contour matching score indicates how
well the predicted boundary of each class aligns with the
true boundary. Use the BF score if you want a metric that
tends to correlate better with human qualitative assessment
than the IoU metric.

• For each class, MeanBFScore is the average BF score of
that class over all images.

• For each image, MeanBFScore is the average BF score of
all classes in that particular image.

• For the aggregate data set, MeanBFScore is the average
BF score of all classes in all images.

For more information, see bfscore.

This metric is not available when you specify a confusion
matrix (imageSetConfusion or blockSetConfusion) as
input to the function.

MeanB
FScor
e

MeanB
FScor
e

MeanBF
Score

"global-
accuracy"

GlobalAccuracy is the ratio of correctly classified pixels,
regardless of class, to the total number of pixels. Use the
global accuracy metric if you want a quick and
computationally inexpensive estimate of the percentage of
correctly classified pixels.

Globa
lAccu
racy

Globa
lAccu
racy

none

3 Functions

3-584



Value Description Aggre
gate
Data
Set
Metric

Image
Metric

Class
Metric

"iou" Intersection over union (IoU), also known as the Jaccard
similarity coefficient, is the most commonly used metric. Use
the IoU metric if you want a statistical accuracy
measurement that penalizes false positives.

• For each class, IoU is the ratio of correctly classified
pixels to the total number of ground truth and predicted
pixels in that class. In other words,

IoU score = TP / (TP + FP + FN)
The image describes the true positives (TP), false
positives (FP), and false negatives (FN).

• For each image, MeanIoU is the average IoU score of all
classes in that particular image.

• For the aggregate data set, MeanIoU is the average IoU
score of all classes in all images.

For more information, see jaccard.

MeanI
oU

MeanI
oU

IoU

"weighted
-iou"

Average IoU of each class, weighted by the number of pixels
in that class. Use this metric if images have disproportionally
sized classes, to reduce the impact of errors in the small
classes on the aggregate quality score.

Weigh
tedIo
U

Weigh
tedIo
U

none

 evaluateSemanticSegmentation

3-585



Example: metrics =
evaluateSemanticSegmentation(pxdsResults,pxdsTruth,'Metrics',["global-
accuracy","iou"]) calculates the global accuracy and IoU metrics across the data set, images,
and classes.
Data Types: string

Verbose — Flag to display evaluation progress
1 (default) | 0

Flag to display evaluation progress information in the command window, specified as the comma-
separated pair consisting of 'Verbose' and either 1 (true) or 0 (false).

The displayed information includes a progress bar, elapsed time, estimated time remaining, and data
set metrics.
Example: metrics = evaluateSemanticSegmentation(pxdsResults,
pxdsTruth,'Verbose',0) calculates segmentation metrics without displaying progress
information.
Data Types: logical

Output Arguments
ssm — Semantic segmentation metrics
semanticSegmentationMetrics object

Semantic segmentation metrics, returned as a semanticSegmentationMetrics object.

blockMetrics — Block-based semantic segmentation metrics
F-by-one cell array

Block-based semantic segmentation metrics, returned as an F-by-one cell array, where F is the
number of images in the data set. Each element in the cell array contains information about all of the
metrics calculated for all blocks in the corresponding image, formatted as a table.

Each table has K(f) rows, where K(f) is the number of blocks in the fth image in the data set. The
table has up to five variables:

• The table always includes the BlockInfo variable. This table data in this variable are structs that
provide spatial information about the block. The four fields of the struct are BlockStartWorld,
BlockEndWorld, DataStartWorld, and DataEndWorld. For more information about these
fields, see the IncludeBlockInfo name-value pair argument of the apply function.

• The table includes the metrics in the DataSetMetrics property of the ssm output argument. By
default, the metrics are GlobalAccuracy, MeanAccuracy, MeanIoU, and WeightedIoU.
However, if you create the ssm and specify a subset of the metrics to calculate by using the
Metrics name-value pair argument, then the table includes only the specified metrics.

Tips
• A value of NaN in the dataset, class, or image metrics, indicates that one or more classes were

missing during the computation of the metrics when using the
evaluateSemanticSegmentation function. In this case, the software was unable to accurately
compute the metrics.

3 Functions

3-586



The missing classes can be found by looking at the ClassMetrics property, which provides the
metrics for each class. To more accurately evaluate your network, augment your ground truth with
more data that includes the missing classes.

References
[1] Csurka, G., D. Larlus, and F. Perronnin. "What is a good evaluation measure for semantic

segmentation?" Proceedings of the British Machine Vision Conference, 2013, pp. 32.1–32.11.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

• To run in parallel, set 'UseParallel' to true or enable this by default using the Computer
Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.
• Parallel processing is only supported when the input datastores is a pixelLabelDatastore or a

pixelLabelImageDatastore.

See Also
Functions
semanticseg | plotconfusion | jaccard | bfscore | segmentationConfusionMatrix

Objects
semanticSegmentationMetrics | PixelLabelDatastore | pixelLabelImageDatastore

Topics
“Calculate Segmentation Metrics in Block-Based Workflow”
“Getting Started with Semantic Segmentation Using Deep Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2017b

 evaluateSemanticSegmentation

3-587



extractFeatures
Extract interest point descriptors

Syntax
[features,validPoints] = extractFeatures(I,points)
[features,validPoints] = extractFeatures(I,points,Name,Value)

Description
[features,validPoints] = extractFeatures(I,points) returns extracted feature vectors,
also known as descriptors, and their corresponding locations, from a binary or intensity image.

The function derives the descriptors from pixels surrounding an interest point. The pixels represent
and match features specified by a single-point location. Each single-point specifies the center location
of a neighborhood. The method you use for descriptor extraction depends on the class of the input
points.

[features,validPoints] = extractFeatures(I,points,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

Examples

Extract Corner Features from an Image.

Read the image.

  I = imread('cameraman.tif');

Find and extract corner features.

  corners = detectHarrisFeatures(I);
  [features, valid_corners] = extractFeatures(I, corners);

Display image.

  figure; imshow(I); hold on

3 Functions

3-588



Plot valid corner points.

  plot(valid_corners);

 extractFeatures

3-589



Extract SURF Features from an Image

Read image.

    I = imread('cameraman.tif');

Find and extract features.

    points = detectSURFFeatures(I);
    [features, valid_points] = extractFeatures(I, points);

Display and plot ten strongest SURF features.

    figure; imshow(I); hold on;
    plot(valid_points.selectStrongest(10),'showOrientation',true);

Extract MSER Features from an Image

Read image.

    I = imread('cameraman.tif');

Find features using MSER with SURF feature descriptor.

    regions = detectMSERFeatures(I);
    [features, valid_points] = extractFeatures(I,regions,'Upright',true);

Display SURF features corresponding to the MSER ellipse centers.

    figure; imshow(I); hold on;
    plot(valid_points,'showOrientation',true);

3 Functions

3-590



Input Arguments
I — Input image
binary image | M-by-N 2-D grayscale image

Input image, specified as either a binary or 2-D grayscale image.
Data Types: logical | single | double | int16 | uint8 | uint16

points — Center location point
SIFTPoints | BRISKPoints object | cornerPoints object | SURFPoints object | KAZEPoints
object | MSERRegions object | ORBPoints object | M-by-2 matrix of [x,y] coordinates

Center location point of a square neighborhood, specified as either a SIFTPoints, BRISKPoints,
SURFPoints, KAZEPoints, MSERRegions, cornerPoints , or ORBPoints object, or an M-by-2
matrix of M number of [x y] coordinates. The table lists the possible input classes of points that can
be used for extraction.

Class of Points  
SIFTPoints Scale-Invariant Feature Transform (SIFT)
BRISKPoints Binary Robust Invariant Scalable Keypoints

(BRISK)
SURFPoints object Speeded-Up Robust Features (SURF)
MSERRegions object Maximally Stable Extremal Regions (MSER)
cornerPoints Features from Accelerated Segment Test (FAST),

Minimum eigen-value, or Harris

 extractFeatures

3-591



Class of Points  
KAZEPoints Non-linear image pyramid-based rotation and

orientation invariant features. Similar to SURF,
but contains less noisy points.

ORBPoints Oriented FAST and rotated BRIEF (ORB)
features.

M-by-2 matrix of [x y] coordinates Simple square neighborhood around [x y] point
locations

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Method','Block' specifies the Block method for descriptor extraction.

Method — Descriptor extraction method
'Auto' (default) | 'SIFT' | 'BRISK' | 'FREAK' | 'SURF' | 'ORB' | 'KAZE' | 'Block'

Descriptor extraction method, specified as 'SIFT', 'FREAK', 'SURF', 'ORB', 'Block', or 'Auto'.

The table describes how the function implements the descriptor extraction methods.

Method Feature Vector (Descriptor)
SIFT Scale-Invariant Feature Transform (SIFT). The function sets the

Orientation property of the validPoints output object to the
orientation of the extracted features, in radians.

BRISK Binary Robust Invariant Scalable Keypoints (BRISK). The function
sets the Orientation property of the validPoints output object
to the orientation of the extracted features, in radians.

FREAK Fast Retina Keypoint (FREAK). The function sets the Orientation
property of the validPoints output object to the orientation of the
extracted features, in radians.

SURF Speeded-Up Robust Features (SURF).The function sets the
Orientation property of the validPoints output object to the
orientation of the extracted features, in radians.

When you use an MSERRegions object with the SURF method, the
Centroid property of the object extracts SURF descriptors. The
Axes property of the object selects the scale of the SURF
descriptors such that the circle representing the feature has an
area proportional to the MSER ellipse area. The scale is calculated
as 1/4*sqrt((majorAxes/2).*(minorAxes/2)) and saturated
to 1.6, as required by the SURFPoints object.

3 Functions

3-592



Method Feature Vector (Descriptor)
ORB Oriented FAST and rotated BRIEF (ORB) features.The

Orientation property of the validPoints output object is
automatically set to the Orientation property of the input
ORBPoints object points.

KAZE Non-linear pyramid-based features.

The function sets the Orientation property of the validPoints
output object to the orientation of the extracted features, in radians.

When you use an MSERRegions object with the KAZE method, the
Location property of the object is used to extract KAZE
descriptors.

The Axes property of the object selects the scale of the KAZE
descriptors such that the circle representing the feature has an
area proportional to the MSER ellipse area.

Block Simple square neighbhorhood.

The Block method extracts only the neighborhoods fully contained
within the image boundary. Therefore, the output, validPoints,
can contain fewer points than the input POINTS.

Auto The function selects the Method, based on the class of the input
points and implements:
The FREAK method for a cornerPoints input object.
The SURF method for a SURFPoints or MSERRegions input object.
The BRISK method for a BRISKPoints input object.
The ORB method for a ORBPoints input object.

For an M-by-2 input matrix of [x y] coordinates, the function
implements the Block method.

Note The descriptor extraction method must be ORB, if the input points is an ORBPoints object.
Also, ORB descriptor extraction method is not supported for any other class of points, except
ORBPoints.

BlockSize — Block size
11 (default) | odd integer scalar

Block size, specified as an odd integer scalar. This value defines the local square neighborhood
BlockSize-by-BlockSize, centered at each interest point. This option applies only when the function
implements the Block method.

Upright — Rotation invariance flag
false | logical scalar

Rotation invariance flag, specified a logical scalar. When you set this property to true, the
orientation of the feature vectors are not estimated and the feature orientation is set to pi/2. Set this
to true when you do not need the image descriptors to capture rotation information. When you set

 extractFeatures

3-593



this property to false, the orientation of the features is estimated and the features are then
invariant to rotation.

Note The rotation invariance flag 'Upright' is not supported if the input points is an ORBPoints
object.

FeatureSize — Length of feature vector
64 (default) | 128

Length of the SURF or KAZE feature vector (descriptor), specified as 64 or 128. This option applies
only when the function implements the SURF or KAZE method. The larger feature size of 128 provides
greater accuracy, but decreases the feature matching speed.

Output Arguments
features — Feature vectors
M-by-N matrix | binaryFeatures object

Feature vectors, returned as a binaryFeatures object or an M-by-N matrix of M feature vectors,
also known as descriptors. Each descriptor is of length N.

validPoints — Valid points
SIFTPointsBRISKPoints object | cornerPoints object | SURFPoints object | KAZEPoints
object | MSERRegions object | ORBPoints object | M-by-2 matrix of [x,y] coordinates

Valid points associated with each output feature vector (descriptor) in features, returned in the
same format as the input. Valid points can be a SIFTPoints, BRISKPoints, cornerPoints,
SURFPoints, KAZEPoints, MSERRegions, ORBPoints object, or an M-by-2 matrix of [x,y]
coordinates.

The function extracts descriptors from a region around each interest point. If the region lies outside
of the image, the function cannot compute a feature descriptor for that point. When the point of
interest lies too close to the edge of the image, the function cannot compute the feature descriptor. In
this case, the function ignores the point. The point is not included in the valid points output.

References
[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library, O'Reilly,

Sebastopol, CA, 2008.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, SURF: Speeded Up Robust Features",
Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008

[3] Bay, Herbert, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "SURF: Speeded Up Robust
Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359,
2008.

[4] Alahi, Alexandre, Ortiz, Raphael, and Pierre Vandergheynst, "FREAK: Fast Retina Keypoint", IEEE
Conference on Computer Vision and Pattern Recognition, 2012.

[5] Alcantarilla, P.F., A. Bartoli, and A.J. Davison. "KAZE Features", ECCV 2012, Part VI, LNCS 7577
pp. 214, 2012

3 Functions

3-594



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Method' must be a compile-time constant.
• Supports MATLAB Function block for BRISK, FREAK, and SURF methods only.
• Generates portable C code using a C++ compiler that links to OpenCV (Version 4.2.0) libraries for

SIFT, BRISK, ORB, FREAK, and SURF Methods. See “Portable C Code Generation for Functions
That Use OpenCV Library”.

• The KAZE method and the detectKAZEFeatures function do not support code generation.

See Also
Objects
SURFPoints | ORBPoints | KAZEPoints | MSERRegions | binaryFeatures

Functions
detectSIFTFeatures | detectKAZEFeatures | extractHOGFeatures | extractLBPFeatures |
detectBRISKFeatures | detectMSERFeatures | matchFeatures | detectSURFFeatures |
detectHarrisFeatures | detectFASTFeatures | detectMinEigenFeatures |
detectORBFeatures

Topics
“Point Feature Types”
“Local Feature Detection and Extraction”

Introduced in R2011a

 extractFeatures

3-595



extractHOGFeatures
Extract histogram of oriented gradients (HOG) features

Syntax
features = extractHOGFeatures(I)
[features,validPoints] = extractHOGFeatures(I,points)
[ ___ , visualization] = extractHOGFeatures(I, ___ )
[ ___ ] = extractHOGFeatures( ___ ,Name,Value)

Description
features = extractHOGFeatures(I) returns extracted HOG features from a truecolor or
grayscale input image, I. The features are returned in a 1-by-N vector, where N is the HOG feature
length. The returned features encode local shape information from regions within an image. You can
use this information for many tasks including classification, detection, and tracking.

[features,validPoints] = extractHOGFeatures(I,points) returns HOG features extracted
around specified point locations. The function also returns validPoints, which contains the input
point locations whose surrounding region is fully contained within I. Scale information associated
with the points is ignored.

[ ___ , visualization] = extractHOGFeatures(I, ___ ) optionally returns a HOG feature
visualization, using any of the preceding syntaxes. You can display this visualization using
plot(visualization).

[ ___ ] = extractHOGFeatures( ___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments, using any of the preceding syntaxes.

Examples

Extract and Plot HOG Features

Read the image of interest.

img = imread('cameraman.tif');

Extract HOG features.

[featureVector,hogVisualization] = extractHOGFeatures(img);

Plot HOG features over the original image.

figure;
imshow(img); 
hold on;
plot(hogVisualization);

3 Functions

3-596



Extract HOG Features using CellSize

Read the image of interest.

I1 = imread('gantrycrane.png');

Extract HOG features.

[hog1,visualization] = extractHOGFeatures(I1,'CellSize',[32 32]);

Display the original image and the HOG features.

subplot(1,2,1);
imshow(I1);
subplot(1,2,2);
plot(visualization);

 extractHOGFeatures

3-597



Extract HOG Features Around Corner Points

Read in the image of interest.

I2 = imread('gantrycrane.png');

Detect and select the strongest corners in the image.

corners   = detectFASTFeatures(im2gray(I2));
strongest = selectStrongest(corners,3);

Extract HOG features.

[hog2,validPoints,ptVis] = extractHOGFeatures(I2,strongest);

Display the original image with an overlay of HOG features around the strongest corners.

figure;
imshow(I2);
hold on;
plot(ptVis,'Color','green');

3 Functions

3-598



Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified in either M-by-N-by-3 truecolor or M-by-N 2-D grayscale. The input image
must be a real, nonsparse value. If you have tightly cropped images, you may lose shape information
that the HOG function can encode. You can avoid losing this information by including an extra margin
of pixels around the patch that contains background pixels.
Data Types: single | double | int16 | uint8 | uint16 | logical

points — Center location point
BRISKPoints object | cornerPoints object | SURFPoints object | MSERRegions object | M-by-2
matrix of [x, y] coordinates

Center location point of a square neighborhood, specified as either a BRISKPoints, SURFPoints,
MSERRegions, ORBPoints or cornerPoints object, or an M-by-2 matrix of M number of [x, y]
coordinates. The function extracts descriptors from the neighborhoods that are fully contained within
the image boundary. You can set the size of the neighborhood with the BlockSize parameter. Only
neighborhoods fully contained within the image are used to determine the valid output points. The
function ignores scale information associated with these points.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 extractHOGFeatures

3-599



Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'BlockSize',[2 2] sets the BlockSize to be a 2-by-2 square block.

CellSize — Size of HOG cell
[8 8] (default) | 2-element vector

Size of HOG cell, specified in pixels as a 2-element vector. To capture large-scale spatial information,
increase the cell size. When you increase the cell size, you may lose small-scale detail.

BlockSize — Number of cells in block
[2 2] (default) | 2-element vector

Number of cells in a block, specified as a 2-element vector. A large block size value reduces the ability
to suppress local illumination changes. Because of the number of pixels in a large block, these
changes may get lost with averaging. Reducing the block size helps to capture the significance of
local pixels. Smaller block size can help suppress illumination changes of HOG features.

BlockOverlap — Number of overlapping cells between adjacent blocks
ceil(BlockSize/2) (default)

Number of overlapping cells between adjacent blocks, specified as a 2-element vector. To ensure
adequate contrast normalization, select an overlap of at least half the block size. Large overlap values
can capture more information, but they produce larger feature vector size. This property applies only
when you are extracting HOG features from regions and not from point locations. When you are
extracting HOG features around a point location, only one block is used, and thus, no overlap occurs.

NumBins — Number of orientation histogram bins
9 (default) | positive scalar

Number of orientation histogram bins, specified as positive scalar. To encode finer orientation details,
increase the number of bins. Increasing this value increases the size of the feature vector, which
requires more time to process.

UseSignedOrientation — Selection of orientation values
false (default) | logical scalar

Selection of orientation values, specified as a logical scalar. When you set this property to true,
orientation values are evenly spaced in bins between -180 and 180 degrees. When you set this
property to false, they are evenly spaced from 0 through 180. In this case, values of theta that are
less than 0 are placed into a theta + 180 value bin. Using signed orientation can help differentiate
light-to-dark versus dark-to-light transitions within an image region.

Output Arguments
features — Extracted HOG features
1-by-N vector | P-by-Q matrix

Extracted HOG features, returned as either a 1-by-N vector or a P-by-Q matrix. The features encode
local shape information from regions or from point locations within an image. You can use this
information for many tasks including classification, detection, and tracking.

3 Functions

3-600



features output Description
1-by-N vector HOG feature length, N, is based on the image size and the function

parameter values.
N = prod([BlocksPerImage, BlockSize, NumBins])
BlocksPerImage = floor((size(I)./CellSize – BlockSize)./(BlockSize –
BlockOverlap) + 1)

P-by-Q matrix P is the number of valid points whose surrounding region is fully contained
within the input image. You provide the points input value for extracting
point locations.
The surrounding region is calculated as:
CellSize.*BlockSize.
The feature vector length, Q, is calculated as:
prod([NumBins,BlockSize]).

Example 3.1. Arrangement of Histograms in HOG Feature Vectors

The figure below shows an image with six cells.

If you set the BlockSize to [2 2], it would make the size of each HOG block, 2-by-2 cells. The size of
the cells are in pixels. You can set it with the CellSize property.

The HOG feature vector is arranged by HOG blocks. The cell histogram, H(Cyx), is 1-by-NumBins.

The figure below shows the HOG feature vector with a 1-by-1 cell overlap between blocks.

 extractHOGFeatures

3-601



validPoints — Valid points
cornerPoints object | BRISKPoints object | SURFPoints object | MSERRegions object |
ORBPoints object | M-by-2 matrix of [x,y] coordinates

Valid points associated with each features descriptor vector output. This output can be returned as
either a cornerPoints object, BRISKPoints, SURFPoints object, MSERRegions object,
ORBPoints object or an M-by-2 matrix of [x,y] coordinates. The function extracts M number of
descriptors from valid interest points in a region of size equal to [CellSize.*BlockSize]. The
extracted descriptors are returned as the same type of object or matrix as the input. The region must
be fully contained within the image.

visualization — HOG feature visualization
object

HOG feature visualization, returned as an object. The function outputs this optional argument to
visualize the extracted HOG features. You can use the plot method with the visualization output.
See the “Extract and Plot HOG Features” on page 3-596 example.

HOG features are visualized using a grid of uniformly spaced rose plots. The cell size and the size of
the image determines the grid dimensions. Each rose plot shows the distribution of gradient
orientations within a HOG cell. The length of each petal of the rose plot is scaled to indicate the
contribution each orientation makes within the cell histogram. The plot displays the edge directions,
which are normal to the gradient directions. Viewing the plot with the edge directions allows you to
better understand the shape and contours encoded by HOG. Each rose plot displays two times
NumBins petals.

You can use the following syntax to plot the HOG features:
plot(visualization) plots the HOG features as an array of rose plots.
plot(visualization,AX) plots HOG features into the axes AX.
plot(___,'Color',colorValue) Specifies the color used to plot HOG features, where
colorValue represents the color as a 1-by-3 RGB vector, a short, or a long color name, described in
the Color Value on page 3-602 table.

More About
Color Value

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

3 Functions

3-602



References
[1] Dalal, N. and B. Triggs. "Histograms of Oriented Gradients for Human Detection", IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Vol. 1 (June 2005), pp. 886–
893.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
extractLBPFeatures | extractFeatures | detectMSERFeatures | matchFeatures |
detectSURFFeatures | SURFPoints | MSERRegions | ORBPoints | detectORBFeatures |
detectHarrisFeatures | detectFASTFeatures | detectMinEigenFeatures |
binaryFeatures | rose

Topics
“Digit Classification Using HOG Features”
“Local Feature Detection and Extraction”
“Point Feature Types”

Introduced in R2013b

 extractHOGFeatures

3-603



fitPolynomialRANSAC
Fit polynomial to points using RANSAC

Syntax
P = fitPolynomialRANSAC(xyPoints,N,maxDistance)
[P,inlierIdx] = fitPolynomialRANSAC( ___ )
[ ___ ] = fitPolynomialRANSAC( ___ ,Name,Value)

Description
P = fitPolynomialRANSAC(xyPoints,N,maxDistance) finds the polynomial coefficients, P, by
sampling a small set of points given in xyPoints and generating polynomial fits. The fit that has the
most inliers within maxDistance is returned. If a fit cannot be found, then P is returned empty. The
function uses the M-estimator sample consensus (MSAC) algorithm, a variation of the random sample
consensus (RANSAC) algorithm to fit the data.

[P,inlierIdx] = fitPolynomialRANSAC( ___ ) returns a logical array, inlierIdx, that
specifies the indices for data points that are inliers to the fit polynomial based on maxDistance. Use
the input arguments from the previous syntax.

[ ___ ] = fitPolynomialRANSAC( ___ ,Name,Value) specifies additional options specified by
one or more Name,Value pair arguments.

Examples

Fit Parabola to Noisy Data Using RANSAC

Use the RANSAC algorithm to generate a polynomial that fits a set of noisy data. The
fitPolynomialRANSAC function generates a polynomial by sampling a small set of points from [x
y] point data and generating polynomial fits. The fit with the most inliers within maxDistance is
returned.

Construct and plot a parabola with [x y] points.

x = (-10:0.1:10)';
y = (36-x.^2)/9;
figure
plot(x,y)
title('Parabola')

3 Functions

3-604



Add noise and outlier points to the points on the parabola.

y = y+rand(length(y),1);
y([50,150,99,199]) = [y(50)+12,y(150)-12,y(99)+33,y(199)-23];

plot(x,y)
title('Parabola with Outliers and Noise')

 fitPolynomialRANSAC

3-605



Use fitPolynomialRANSAC to generate coefficients for a second-degree polynomial. Also get the
inliers identified by the specified maxDistance from the polynomial fit.

N = 2;           % second-degree polynomial
maxDistance = 1; % maximum allowed distance for a point to be inlier

[P, inlierIdx] = fitPolynomialRANSAC([x,y],N,maxDistance);

Evaluate the polynomial using polyval. Plot the curve and overlay the [x y] points. Mark outliers
with a red circle.

yRecoveredCurve = polyval(P,x);
figure
plot(x,yRecoveredCurve,'-g','LineWidth',3)
hold on
plot(x(inlierIdx),y(inlierIdx),'.',x(~inlierIdx),y(~inlierIdx),'ro')
legend('Fit polynomial','Inlier points','Outlier points')
hold off

3 Functions

3-606



Input Arguments
xyPoints — [x y] coordinate points
m-by-2 matrix

[x y] coordinate points, specified as an m-by-2 matrix. The polynomial is fit to these points.
Data Types: double | single | uint32 | int32 | uint16 | int16

N — Degree of polynomial fit
integer

Degree of polynomial fit, P, specified as an integer. The degree of a polynomial is the highest degree
of the terms in the equation. For example, a polynomial of degree 2 is:

Ax2+Bx+C

A, B, and C are constants. In general, higher degree polynomials allow for a better fit, but the fit
depends on your data.

maxDistance — Maximum distance for inlier points
positive scalar

Maximum distance from the polynomial fit curve to an inlier point, specified as a positive scalar. Any
points further away are considered outliers. The RANSAC algorithm creates a fit from a small sample

 fitPolynomialRANSAC

3-607



of points but tries to maximize the number of inlier points. Lowering the maximum distance helps to
improve the polynomial fit by putting a tighter tolerance on inlier points.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxNumTrials',2000

MaxNumTrials — Maximum number of random trials
1000 (default) | integer

Maximum number of random trials, specified as the comma-separated pair consisting of
'MaxNumTrials' and an integer. A single trial uses a minimum number of random points from
xyPoints to fit a parabolic model. Then, the trial checks the number of inliers within the
maxDistance from the model. After all trials, the model with the highest number of inliers is
selected. Increasing the number of trials improves the robustness of the output at the expense of
additional computation.

Confidence — Confidence of final solution
99 (default) | scalar from 0 to 100

Confidence that the final solution finds the maximum number of inliers for the polynomial fit,
specified as the comma-separated pair consisting of 'Confidence' and a scalar from 0 to 100.
Increasing this value improves the robustness of the output at the expense of additional computation.

ValidatePolynomialFcn — Function to validate polynomial
function handle

Function to validate polynomial, specified as the comma-separated pair consisting of
'ValidatePolynomialFcn' and a function handle. The function returns true if the polynomial is
accepted based on criteria defined in the function. Use this function to reject specific polynomial fits.
The function must be of the form:

isValid = validatePolynomialFcn(P,varargin)

If no function is specified, all polynomials are assumed to be valid.

MaxSamplingAttempts — Maximum number of sample attempts
100 (default) | integer

Maximum number of attempts to find a sample that yields a valid polynomial, specified as the comma-
separated pair consisting of 'MaxSamplingAttempts' and an integer.

Output Arguments
P — Polynomial coefficients
vector of numeric scalars

3 Functions

3-608



Polynomial coefficients, returned as a vector of numeric scalars. Each element corresponds to a
constant in the polynomial equation with degree N. For example, for a second-degree polynomial,
Ax2+Bx+C:

P = [A B C];

Data Types: single | double

inlierIdx — Inlier points
logical vector

Inlier points, returned as a logical vector. The vector is the same length as xyPoints, and each
element indicates if that point is an inlier for the polynomial fit based on maxDistance.

References
[1] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application to

Estimating Image Geometry." Computer Vision and Image Understanding. Vol. 18, Issue 1,
April 2000, pp. 138–156.

See Also
ransac | polyfit | polyval

Introduced in R2017a

 fitPolynomialRANSAC

3-609



extrinsics
Compute location of calibrated camera

Syntax
[rotationMatrix,translationVector] = extrinsics(imagePoints,worldPoints,
cameraParams)

Description
[rotationMatrix,translationVector] = extrinsics(imagePoints,worldPoints,
cameraParams) returns the 3-D rotation matrix and the 3-D translation vector to allow you to
transform points from the world coordinate to the camera coordinate system.

Examples

Compute Camera Extrinsics

Create a set of calibration images.

  images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
      'calibration', 'slr'));

Detect the checkerboard corners in the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system,
with the upper-left corner at (0,0). The square size is in millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I,1), size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
                              'ImageSize',imageSize);

Load image at new location.

imOrig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ...
    'calibration','slr','image9.jpg'));
figure 
imshow(imOrig);
title('Input Image');

3 Functions

3-610



Undistort image.

[im,newOrigin] = undistortImage(imOrig,cameraParams,'OutputView','full');

Find reference object in new image.

[imagePoints,boardSize] = detectCheckerboardPoints(im);

Compensate for image coordinate system shift.

imagePoints = [imagePoints(:,1) + newOrigin(1), ...
             imagePoints(:,2) + newOrigin(2)];

Compute new extrinsics.

[rotationMatrix, translationVector] = extrinsics(...
imagePoints,worldPoints,cameraParams);

Compute camera pose.

[orientation, location] = extrinsicsToCameraPose(rotationMatrix, ...
  translationVector);
figure
plotCamera('Location',location,'Orientation',orientation,'Size',20);
hold on
pcshow([worldPoints,zeros(size(worldPoints,1),1)], ...
  'VerticalAxisDir','down','MarkerSize',40);

 extrinsics

3-611



Input Arguments
imagePoints — Image coordinates of points
M-by-2 array

Image coordinates of points, specified as an M-by-2 array. The array contains M number of [x, y]
coordinates. The imagePoints and worldPoints inputs must both be double or both be single.
Data Types: single | double

worldPoints — World coordinates corresponding to image coordinates
M-by-2 matrix

World coordinates corresponding to image coordinates, specified as an M-by-2 matrix. The
imagePoints and worldPoints inputs must both be double or both be single. The function
assumes that the points are coplanar with z= 0 and the number of points, M, must be at least 4.
Data Types: single | double

cameraParams — Camera parameters
cameraParameters object | cameraIntrinsics object | fisheyeIntrinsics object

Object for storing camera parameters, specified as a cameraParameters, cameraIntrinsics, or
fisheyeIntrinsics object. These objects are returned by the estimateCameraParameters
function, the estimateFisheyeParameters function, or the Camera Calibrator app. The object
contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

3 Functions

3-612



Output Arguments
rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation, returned as a 3-by-3 matrix. The rotation matrix together with the translation vector
allows you to transform points from the world coordinate to the camera coordinate system.

If you set the imagePoints and worldPoints inputs to class double, then the function returns the
rotationMatrix and translationVector as double. Otherwise, they are single.

translationVector — 3-D translation
3-D translation, returned as a 1-by-3 vector. The rotation matrix together with the translation vector
allows you to transform points from the world coordinate to the camera coordinate system.

3-D translation, returned as a 1-by-3 vector.

If you set the imagePoints and worldPoints inputs to class double, then the function returns the
rotationMatrix and translationVector as double. Otherwise, they are single.

Algorithms
The extrinsics function uses two different algorithms to compute the extrinsics depending on
whether worldPoints are specified as an M-by-2 matrix. Use an M-by-2 matrix for coplanar points
where z= 0.

The extrinsics function computes the rotation matrix and translation vector for a single image in
closed form. During calibration, the extrinsics are estimated numerically to minimize the reprojection
errors for all calibration images. Therefore, using the extrinsics function on one of the calibration
images returns rotation matrix and translation vector slightly different from the ones obtained during
calibration.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• Use of a fisheyeIntrinsics object as the cameraParams input is not supported.

 extrinsics

3-613



See Also
Camera Calibrator | plotCamera | estimateCameraParameters | cameraMatrix |
cameraParameters | cameraIntrinsics | estimateFisheyeParameters |
fisheyeIntrinsics | worldToImage | extrinsicsToCameraPose | cameraPoseToExtrinsics
| pointsToWorld

Topics
“Code Generation for Depth Estimation From Stereo Video”

Introduced in R2014a

3 Functions

3-614



generalizedDice
Generalized Sørensen-Dice similarity coefficient for image segmentation

Syntax
similarity = generalizedDice(X,target)
similarity = generalizedDice(X,target,'DataFormat',dataFormat)

Description
The generalized Dice similarity coefficient measures the overlap between two segmented images.
Generalized Dice similarity is based on Sørensen-Dice similarity and controls the contribution that
each class makes to the similarity by weighting classes by the inverse size of the expected region.
When working with imbalanced data sets, class weighting helps to prevent the more prevalent classes
from dominating the similarity score.

similarity = generalizedDice(X,target) calculates the generalized Sørensen-Dice similarity
coefficient between test image X and target image target.

similarity = generalizedDice(X,target,'DataFormat',dataFormat) also specifies the
dimension labels, dataFormat, of unformatted image data. You must use this syntax when the input
are unformatted dlarray objects.

Examples

Calculate Generalized Dice Similarity

Load a pretrained network.

data = load('triangleSegmentationNetwork');
net = data.net;

Load the triangle image data set using imageDatastore.

dataDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
testImageDir = fullfile(dataDir,'testImages');
imds = imageDatastore(testImageDir);

Load ground truth labels for the triangle data set using pixelLabelDatastore.

labelDir = fullfile(dataDir,'testLabels');
classNames = ["triangle" "background"];
pixelLabelID = [255 0];
pxdsTruth = pixelLabelDatastore(labelDir,classNames,pixelLabelID);

Read a sample image and the corresponding ground truth labels.

I = readimage(imds,1);
gTruthLabels = readimage(pxdsTruth,1);

Run semantic segmentation on the image.

 generalizedDice

3-615



[predictions,scores] = semanticseg(I,net);

Encode the categorical predictions and targets using the onehotencode function.

featureDim = ndims(predictions) + 1;
encodedPredictions = onehotencode(predictions,featureDim);
encodedGroundTruthLabels = onehotencode(gTruthLabels,featureDim);

Ignore any undefined classes in the encoded data.

encodedPredictions(isnan(encodedPredictions)) = 0;
encodedGroundTruthLabels(isnan(encodedGroundTruthLabels)) = 0;

Compute generalized Dice similarity coefficient between the segmented image and the ground truth.

gDice = generalizedDice(encodedPredictions,encodedGroundTruthLabels)

gDice = 0.4008

Calculate Generalized Dice Loss of dlarray Input

Create input data as a formatted dlarray object containing 32 observations with unnormalized
scores for ten output categories.

spatial = 10;
numCategories = 10;
batchSize = 32;
X = dlarray(rand(spatial,numCategories,batchSize),'SCB');

Convert unnormalized scores to probabilities of membership of each of the ten categories.

X = sigmoid(X);

Create target values for membership in the second and sixth category.

targets = zeros(spatial,numCategories,batchSize);
targets(:,2,:) = 1; 
targets(:,6,:) = 1;
targets = dlarray(targets,'SCB');

Compute the generalized Dice similarity coefficient between probability vectors X and targets for
multi-label classification.

Z = generalizedDice(X,targets);
whos Z

  Name      Size              Bytes  Class      Attributes

  Z         1x1x32              262  dlarray              

Calculate the generalized Dice loss.

loss = 1 - mean(Z,'all')

loss = 
  1(S) x 1(C) x 1(B) dlarray

3 Functions

3-616



     1

Input Arguments
X — Test image
numeric array | dlarray object

Test image to be analyzed, specified as one of these values.

• A numeric array of any dimension. The last dimension must correspond to classes.
• An unformatted dlarray object. You must specify the data format using the dataFormat

argument.
• A formatted dlarray object. The dlarray input must contain a channel dimension, 'C' and can

contain a batch dimension, 'B'.

dlarray input requires Deep Learning Toolbox.

target — Target image
numeric array | dlarray object

Target image, specified as a numeric array or a dlarray object. The size and format of target must
match the size and format of the test image, X. dlarray input requires Deep Learning Toolbox.

dataFormat — Dimension labels
string scalar | character vector

Dimension labels for unformatted dlarray image input, specified as a string scalar or character
vector. Each character in dataFormat must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations

The format must include one channel label. The format cannot include more than one channel label or
batch label. Do not specify the 'dataFormat' argument when the input images are formatted
dlarray objects.
Example: 'SSC' indicates that the array has two spatial dimensions and one channel dimension
Example: 'SSCB' indicates that the array has two spatial dimensions, one channel dimension, and
one batch dimension

Output Arguments
similarity — Generalized Dice similarity coefficient
numeric scalar | dlarray object

Generalized Dice similarity coefficient, returned as a numeric scalar or a dlarray object with values
in the range [0, 1]. A similarity of 1 means that the segmentations in the two images are a perfect
match.

 generalizedDice

3-617



• If the input arrays are numeric images, then similarity is a numeric scalar.
• If the input arrays are dlarray objects, then similarity is a dlarray object of the same

dimensionality as the input images. The spatial and channel dimensions of similarity are
singleton dimensions. There is one generalized Dice measurement for each element along the
batch dimension.

More About
Generalized Dice Similarity

Generalized Dice similarity is based on Sørensen-Dice similarity for measuring overlap between two
segmented images.

The generalized Dice similarity function S used by generalizedDice for the similarity between one
image Y and the corresponding ground truth T is given by:

S =
2∑k = 1

K wk∑m = 1
M YkmTkm

∑k = 1
K wk∑m = 1

M Ykm
2 + Tkm

2

K is the number of classes, M is the number of elements along the first two dimensions of Y, and wk is
a class specific weighting factor that controls the contribution each class makes to the score. This
weighting helps counter the influence of larger regions on the generalized Dice score. wk is typically
the inverse area of the expected region:

wk = 1

∑m = 1
M Tkm

2

There are several variations of generalized Dice scores [1], [2]. The generalizedDice function uses
squared terms to ensure that the derivative is 0 when the two images match [3].

References
[1] Crum, William R., Oscar Camara, and Derek LG Hill. "Generalized overlap measures for evaluation

and validation in medical image analysis." IEEE Transactions on Medical Imaging. 25.11,
2006, pp. 1451–1461.

[2] Sudre, Carole H., et al. "Generalised Dice overlap as a deep learning loss function for highly
unbalanced segmentations." Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support. Springer, Cham, 2017, pp. 240–248.

[3] Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation". Fourth International Conference on
3D Vision (3DV). Stanford, CA, 2016: pp. 565–571.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

3 Functions

3-618



See Also
dice | dlarray | dicePixelClassificationLayer | semanticseg | onehotencode

Introduced in R2021a

 generalizedDice

3-619



generateCheckerboardPoints
Generate checkerboard corner locations

Syntax
[worldPoints] = generateCheckerboardPoints(boardSize,squareSize)

Description
[worldPoints] = generateCheckerboardPoints(boardSize,squareSize) returns an M-
by-2 matrix containing M [x, y] corner coordinates for the squares on a checkerboard. The point [0,0]
corresponds to the lower-right corner of the top-left square of the board.

Examples

Generate and Plot Corners of an 8-by-8 Checkerboard

Generate the checkerboard, and obtain world coordinates.

    I = checkerboard;
    squareSize = 10;
    worldPoints = generateCheckerboardPoints([8 8], squareSize);

Offset the points, placing the first point at the lower-right corner of the first square.

    imshow(insertMarker(I, worldPoints + squareSize));

Input Arguments
boardSize — Generated checkerboard dimensions
2-element [height, width] vector

Generated checkerboard dimensions, specified as a 2-element [height, width] vector. You express the
dimensions of the checkerboard in number of squares.

3 Functions

3-620



squareSize — Generated checkerboard square side length
scalar

Checkerboard square side length, specified as a scalar in world units. You express world units as a
measurement, such as millimeters or inches.

 generateCheckerboardPoints

3-621



Output Arguments
worldPoints — Generated checkerboard corner coordinates
M-by-2 matrix

Generated checkerboard corner coordinates, returned as an M-by-2 matrix of M number of [x y]
coordinates. The coordinates represent the corners of the squares on the checkerboard. The point
[0,0] corresponds to the lower-right corner of the top-left square of the board. The number of points,
M, that the function returns are based on the number of squares on the checkerboard. This value is
set with the boardSize parameter.
M = (boardSize(1)-1) * (boardSize(2)-1)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 Functions

3-622



See Also
estimateCameraParameters | detectCheckerboardPoints | cameraParameters |
stereoParameters | Camera Calibrator

Topics
“Measuring Planar Objects with a Calibrated Camera”
“Using the Single Camera Calibrator App”

Introduced in R2013b

 generateCheckerboardPoints

3-623



indexImages
Create image search index

Syntax
imageIndex = indexImages(imds)

imageIndex = indexImages(imds,bag)
imageIndex = indexImages( ___ ,Name,Value)

Description
imageIndex = indexImages(imds) creates an invertedImageIndex object, imageIndex, that
contains a search index for imds. Use imageIndex with the retrieveImages function to search for
images.

imageIndex = indexImages(imds,bag) returns a search index that uses a custom
bagOfFeatures object, bag. Use this syntax with the bag you created when you want to modify the
number of visual words or the feature type used to create the image search index for imds.

imageIndex = indexImages( ___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments, using any of the preceding syntaxes.

This object supports parallel computing using multiple MATLAB workers. Enable parallel computing
from the “Computer Vision Toolbox Preferences” dialog box. To open Computer Vision Toolbox
preferences, on the Home tab, in the Environment section, click Preferences. Then select
Computer Vision Toolbox .

Examples

Search Image Set Using a Query Image

Create an image set.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(setDir);

Index the image set.

imageIndex = indexImages(imds)

Creating an inverted image index using Bag-Of-Features.
-------------------------------------------------------

Creating Bag-Of-Features.
-------------------------

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

3 Functions

3-624



* Extracting features from 6 images...done. Extracted 1708 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 1366.
** Using the strongest 1366 features from each of the other image categories.

* Creating a 1366 word visual vocabulary.
* Number of levels: 1
* Branching factor: 1366
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 1366
* Number of clusters          : 1366
* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.06 seconds/iteration)...converged in 1 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.
--------------------------------------

* Encoding 6 images...done.
Finished creating the image index.

imageIndex = 
  invertedImageIndex with properties:

         ImageLocation: {6x1 cell}
            ImageWords: [6x1 vision.internal.visualWords]
         WordFrequency: [1x1366 double]
         BagOfFeatures: [1x1 bagOfFeatures]
               ImageID: [1 2 3 4 5 6]
        MatchThreshold: 0.0100
    WordFrequencyRange: [0.0100 0.9000]

Display the image set using the montage function.

thumbnailGallery = [];
for i = 1:length(imds.Files)
    I = readimage(imds,i);
    thumbnail = imresize(I,[300 300]);
    thumbnailGallery = cat(4,thumbnailGallery,thumbnail);
end

figure
montage(thumbnailGallery);

 indexImages

3-625



Select a query image.

queryImage = readimage(imds,2);
figure
imshow(queryImage)

3 Functions

3-626



Search the image set for similar image using query image. The best result is first.

indices = retrieveImages(queryImage,imageIndex)

indices = 5x1 uint32 column vector

 indexImages

3-627



   2
   1
   4
   3
   5

bestMatchIdx = indices(1);

Display the best match from the image set.

bestMatch = imageIndex.ImageLocation{bestMatchIdx}

bestMatch = 
'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg'

figure
imshow(bestMatch)

3 Functions

3-628



Create Search Index Using Custom Bag of Features

Create an image set.

 indexImages

3-629



setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imgSets = imageSet(setDir, 'recursive');

Display image set.

thumbnailGallery = [];
for i = 1:imgSets.Count
    I = read(imgSets, i);
    thumbnail = imresize(I, [300 300]);
    thumbnailGallery = cat(4, thumbnailGallery, thumbnail);
end

figure
montage(thumbnailGallery);

Train a bag of features using a custom feature extractor.

extractor = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imgSets,'CustomExtractor',extractor);

Creating Bag-Of-Features.
-------------------------
* Image category 1: cups
* Extracting features using a custom feature extraction function: exampleBagOfFeaturesExtractor.

* Extracting features from 6 images in image set 1...done. Extracted 115200 features.

3 Functions

3-630



* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 92160
* Number of clusters          : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 45/100 iterations (~0.17 seconds/iteration)...converged in 45 iterations.

* Finished creating Bag-Of-Features

Use the trained bag of features to index the image set.

imageIndex = indexImages(imgSets,bag,'Verbose',false) 

imageIndex = 
  invertedImageIndex with properties:

         ImageLocation: {6x1 cell}
            ImageWords: [6x1 vision.internal.visualWords]
         WordFrequency: [1x500 double]
         BagOfFeatures: [1x1 bagOfFeatures]
               ImageID: [1 2 3 4 5 6]
        MatchThreshold: 0.0100
    WordFrequencyRange: [0.0100 0.9000]

queryImage = read(imgSets,4);

figure
imshow(queryImage)

 indexImages

3-631



Search for the image from image index using query image.

indices = retrieveImages(queryImage,imageIndex);
bestMatch = imageIndex.ImageLocation{indices(1)};
figure
imshow(bestMatch)

3 Functions

3-632



Input Arguments
imds — Images
imageDatastore object

 indexImages

3-633



Images, specified as an imageDatastore object. The object stores a collection of images.

bag — Bag of visual words
bagOfFeatures object

Bag of visual words, specified as a bagOfFeatures object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose',true sets the 'Verbose' property to true

SaveFeatureLocations — Save feature locations
true (default) | false

Save feature locations, specified as the comma-separated pair consisting of
'SaveFeatureLocations' and a logical scalar. When set to true, the image feature locations are
saved in the imageIndex output object. Use location data to verify spatial or geometric image search
results. If you do not require feature locations, set this property to false to reduce memory
consumption.

Verbose — Display progress information
true (default) | false

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and a
logical scalar.

Output Arguments
imageIndex — Image search index
invertedImageIndex object

Image search index, returned as an invertedImageIndex object.

Algorithms
imageIndex uses the bag-of-features framework with the speeded-up robust features (SURF)
detector and extractor to learn a vocabulary of 20,000 visual words. The visual words are then used
to create an index that maps visual words to the images in imds. You can use the index to search for
images within imds that are similar to a given query image.

See Also
retrieveImages | evaluateImageRetrieval | imageDatastore | bagOfFeatures |
invertedImageIndex

Topics
“Image Retrieval Using Customized Bag of Features”
“Image Retrieval with Bag of Visual Words”

3 Functions

3-634



Introduced in R2015a

 indexImages

3-635



integralFilter
Filter using integral image

Syntax
J = integralFilter(intI,H)

Description
J = integralFilter(intI,H) filters an image, given its integral image, intI, and filter object, H.
The integralKernel function returns the filter object used for the input to the integralFilter.

This function uses integral images for filtering an image with box filters. You can obtain the integral
image, intI, by calling the integralImage function. The filter size does not affect the speed of the
filtering operation. Thus, the integralFilter function is ideally suited to use for fast analysis of
images at different scales, as demonstrated by the Viola-Jones algorithm [1].

Tips
Because the integralFilter function uses correlation for filtering, the filter is not rotated before
computing the result.

Input Arguments
intI

Integral image. You can obtain the integral image, intI, by calling the integralImage function.
The class for this value can be double or single.

H

Filter object. You can obtain the filter object, H, by calling the integralKernel function.

Output Arguments
J

Filtered image. The filtered image, J, returns only the parts of correlation that are computed without
padding. This results in size(J) = size(intI) – H.Size for an upright filter, and size(J) =
size(intI) – H.Size – [0 1] for a rotated filter. This function uses correlation for filtering.

Examples

Blur an Image Using an Average Filter

Read and display the input image.

3 Functions

3-636



   I = imread('pout.tif');
   imshow(I);

Compute the integral image.

   intImage = integralImage(I);

Apply a 7-by-7 average filter.

   avgH = integralKernel([1 1 7 7], 1/49);
   J = integralFilter(intImage, avgH);

Cast the result back to the same class as the input image.

   J = uint8(J);
   figure
   imshow(J);

 integralFilter

3-637



Find Vertical and Horizontal Edges in Image

Construct Haar-like wavelet filters to find vertical and horizontal edges in an image.

Read the input image and compute the integral image.

I = imread('pout.tif');
intImage = integralImage(I);

Construct Haar-like wavelet filters. Use the dot notation to find the vertical filter from the horizontal
filter.

horiH = integralKernel([1 1 4 3; 1 4 4 3],[-1, 1]);
vertH = horiH.'

vertH = 
  integralKernel with properties:

    BoundingBoxes: [2x4 double]
          Weights: [-1 1]
     Coefficients: [4x6 double]
           Center: [2 3]
             Size: [4 6]
      Orientation: 'upright'

Display the horizontal filter.

3 Functions

3-638



imtool(horiH.Coefficients, 'InitialMagnification','fit');

Compute the filter responses.

horiResponse = integralFilter(intImage,horiH);
vertResponse = integralFilter(intImage,vertH);

Display the results.

figure; 
imshow(horiResponse,[]); 
title('Horizontal edge responses');

 integralFilter

3-639



figure; 
imshow(vertResponse,[]); 
title('Vertical edge responses');

3 Functions

3-640



Compute a Rotated Edge Response Using Integral Filter

Read the input image.

I = imread('pout.tif');

Compute 45 degree edge responses of the image.

intImage = integralImage(I,'rotated');
figure;
imshow(I);
title('Original Image');

 integralFilter

3-641



Construct 45 degree rotated Haar-like wavelet filters.

rotH = integralKernel([2 1 2 2;4 3 2 2],[1 -1],'rotated');
rotHTrans = rotH.';

Visualize the filter rotH.

figure;
imshow(rotH.Coefficients, [],'InitialMagnification','fit');

3 Functions

3-642



Compute filter responses.

rotHResponse = integralFilter(intImage,rotH);
rotHTransResponse = integralFilter(intImage,rotHTrans);

Display results.

figure;
imshow(rotHResponse, []);
title('Response for SouthWest-NorthEast edges');

 integralFilter

3-643



figure;
imshow(rotHTransResponse, []);
title('Response for NorthWest-SouthEast edges');

3 Functions

3-644



References
[1] Viola, Paul and Michael J. Jones, “Rapid Object Detection using a Boosted Cascade of Simple

Features”, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2001. Volume: 1, pp.511–518.

See Also
cumsum | integralImage | integralKernel

Introduced in R2012a

 integralFilter

3-645



insertMarker
Insert markers in image or video

Syntax
RGB = insertMarker(I,position)
RGB = insertMarker(I,position,marker)
RGB = insertMarker(___,Name,Value)

Description
RGB = insertMarker(I,position) returns a truecolor image with inserted plus (+) markers. The
input image, I, can be either a truecolor or grayscale image. You draw the markers by overwriting
pixel values. The input position can be either an M-by-2 matrix of M number of [x y] pairs or one of
the “Point Feature Types”.

RGB = insertMarker(I,position,marker) returns a truecolor image with the marker type of
markers inserted.

RGB = insertMarker(___,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Draw Markers on an Image

Read the image.

I = imread('peppers.png');

Insert a plus (+) marker.

RGB = insertMarker(I,[147 279]);

Draw four x-marks.

pos   = [120 248;195 246;195 312;120 312];
color = {'red','white','green','magenta'};
RGB = insertMarker(RGB,pos,'x','color',color,'size',10);

Display the image.

imshow(RGB);

3 Functions

3-646



Input Arguments
I — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16

position — Position of marker
M-by-2 matrix | vector

Position of marker, specified as either an M-by-2 matrix of M number of [x y] pairs or one of the “Point
Feature Types”. The center positions for the markers are defined by the [xy] pairs of the matrix or by
the Location property of the point feature object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

marker — Type of marker
'plus' (default) | character vector | string scalar

 insertMarker

3-647



Type of marker, specified as a character vector. The vector can be full text or the corresponding
symbol.

Character Vector Symbol
'circle' 'o'
'x-mark' 'x'
'plus' '+'
'star' '*'
'square' 's'

Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','yellow' specifies yellow for the marker color.

Size — Size of marker
3 (default) | scalar value

Size of marker in pixels, specified as the comma-separated pair consisting of 'Size' and a scalar
value in the range [1, inf).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Color — Marker color
'green' (default) | character vector | cell array of character vectors | string scalar | string array

Marker color, specified as the comma-separated pair consisting of 'Color' and either a character
vector, cell array of character vectors, vector, or matrix. You can specify a different color for each
marker or one color for all markers.

To specify a color for each marker, set Color to a cell array of color character vectors or an M-by-3
matrix of M number of RGB (red, green, and blue) color values.

To specify one color for all markers, set Color to either a color character vector or an [R G B] vector.
The [R G B] vector contains the red, green, and blue values.

Supported colors are: 'blue', 'green', 'red', 'cyan', 'magenta', 'yellow','black', and
'white'.
Data Types: cell | char | uint8 | uint16 | int16 | double | single

Output Arguments
RGB — Output image
M-by-N-by-3 truecolor

Output image, returned as a truecolor image.

3 Functions

3-648



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The input argument marker and the name-value pair argument 'Color' must be compile-time
constants.

See Also
insertObjectAnnotation | cornerPoints | SURFPoints | MSERRegions | BRISKPoints |
ORBPoints | insertShape | insertText | “Point Feature Types”

Topics
“Insert Circle and Filled Shapes on an Image” on page 3-661
“Insert Numbers and Text on Image” on page 3-667

Introduced in R2013a

 insertMarker

3-649



insertObjectAnnotation
Annotate truecolor or grayscale image or video stream

Syntax
RGB = insertObjectAnnotation(I,shape,position,label)
RGB = insertObjectAnnotation(I,shape,position,label,Name,Value)

insertObjectAnnotation(I,'rectangle',position,label)
insertObjectAnnotation(I,'circle',position,label)

Description
RGB = insertObjectAnnotation(I,shape,position,label) returns a truecolor image
annotated with shape and label at the location specified by position.

RGB = insertObjectAnnotation(I,shape,position,label,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

insertObjectAnnotation(I,'rectangle',position,label) inserts rectangles and labels at
the location indicated by the position matrix.

insertObjectAnnotation(I,'circle',position,label) inserts circles and corresponding
labels at the location indicated by the position matrix.

Examples

Annotate Image with Numbers and Strings

Read image.

I = imread('board.tif');

Create labels of floating point numbers. The floating point numbers relate to confidence value labels.

label_str = cell(3,1);
conf_val = [85.212 98.76 78.342];
for ii=1:3
    label_str{ii} = ['Confidence: ' num2str(conf_val(ii),'%0.2f') '%'];
end

Set the position for the rectangles as [x y width height].

   position = [23 373 60 66;35 185 77 81;77 107 59 26];

Insert the labels.

RGB = insertObjectAnnotation(I,'rectangle',position,label_str,...
    'TextBoxOpacity',0.9,'FontSize',18);

Display the annotated image.

3 Functions

3-650



figure
imshow(RGB)
title('Annotated chips');

 insertObjectAnnotation

3-651



Annotate Image with Integer Numbers

Read image.

I = imread('coins.png');

Set positions for the circles. The first two values represents the center at (x,y) and the third value is
the radius.

position = [96 146 31;236 173 26];

Set the label to display the integers 5 and 10 (U.S. cents).

label = [5 10];

Insert the annotations.

RGB = insertObjectAnnotation(I,'circle',position,label,'LineWidth',3,'Color',{'cyan','yellow'},'TextColor','black');

Display.

figure
imshow(RGB)
title('Annotated coins');

Input Arguments
I — Truecolor or grayscale image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

3 Functions

3-652



Truecolor or grayscale image, specified as an image or video stream. The input image can be either
an M-by-N-by-3 truecolor or a M-by-N 2-D grayscale image.
Data Types: double | single | uint8 | uint16 | int16

shape — Rectangle or circle annotation
‘rectangle’ | ‘circle’

Rectangle or circle annotation, specified as a character vector indicating the annotation shape.
Data Types: char

position — Location and size of the annotation shape
M-by-3 matrix | M-by-4 matrix

Location and size of the annotation shape, specified as an M-by-3 or M-by-4 matrix. When you specify
a rectangle, the position input matrix must be an M-by-4 matrix. Each row, M, specifies a rectangle as
a four-element vector, [x y width height]. The elements, x and y, indicate the upper-left corner of the
rectangle, and the width and height specify the size.

When you specify a circle, the position input matrix must be an M-by-3 matrix, where each row, M,
specifies a three-element vector [x y r]. The elements, x and y, indicate the center of the circle and r
specifies the radius.
Example: position = [50 120 75 75]

A rectangle with top-left corner located at x=50, y=120, with a width and height of 75 pixels.
Example: position = [96 146 31]

A circle with center located at x=96, y=146 and a radius of 31 pixels.
Example: position = [23 373 60 66;35 185 77 81;77 107 59 26]

Location and size for three rectangles.

label — Label to associate with a shape
M-element numeric vector | string | categorical labels | cell array of ASCII character vectors

Label to associate with a shape, specified as an M numeric vector, string, categorical labels, or a cell
array of ASCII character vectors. The character, string, or categorical labels must be encoded as
ASCII characters. The cell array must be the of length equal to the number of shape positions. You
can specify a scalar label for all shapes as a numeric scalar, string, or categorical.
Example: label = [5 10], where the function marks the first shape with the label, 5, and the second
shape with the label, 10.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color', 'white' sets the color for the label text box to white.

Font — Font face of text
'LucidaSansRegular' (default) | character vector | string scalar

 insertObjectAnnotation

3-653



Font face of text, specified as the comma-separated pair consisting of 'Font' and a character vector.
The font face must be one of the available truetype fonts installed on your system. To get a list of
available fonts on your system, type listTrueTypeFonts at the MATLAB command prompt.
Data Types: char

FontSize — Label text font size
12 (default) | integer in the range of [8 72]

Label text font size, specified as the comma-separated pair consisting of 'FontSize' and an integer
corresponding to points in the range of [8 72].
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LineWidth — Shape border line width
1 (default)

Shape border line width, specified as the comma-separated pair consisting of 'LineWidth' and a
positive scalar integer in pixels.

Color — Color for shape and corresponding label text box
'yellow' (default) | character vector | string scalar | [R G B] vector | cell array | string array | M-
by-3 matrix

Color for shape and for corresponding label text box, specified as the comma-separated pair
consisting of 'Color' and either a character vector, an [R G B] vector, a cell array, or an M-by-3
matrix.

To specify one color for all shapes, set this parameter to either a character vector or an [R G B]
vector. To specify a color for each of the M shapes, set this parameter to a cell array of M character
vectors. Alternatively, you can specify an M-by-3 matrix of RGB values for each annotation. RGB
values must be in the range of the input image data type.

Supported colors: 'blue', 'green', 'cyan', 'red', 'magenta', 'black', and 'white'.
Data Types: char | uint8 | uint16 | int16 | double | single | cell

TextColor — Color of text in text label
'black' (default) | character vector | string scalar | [R G B] vector | cell array | string array | M-by-3
matrix

Color of text in text label, specified as the comma-separated pair consisting of 'TextColor' and
either a character vector, an [R G B] vector, a cell array, or an M-by-3 matrix. To specify one color for
all text, set this parameter to either a character vector or an [R G B] vector. To specify a color for
each of the M text labels, set this parameter to a cell array of M character vectors. Alternatively, you
can specify an M-by-3 matrix of RGB values for each annotation. RGB values must be in the range of
the input image data type.

Supported colors: 'blue', 'green', 'cyan', 'red', 'magenta', 'yellow', and 'white'.
Data Types: char | uint8 | uint16 | int16 | double | single | cell

TextBoxOpacity — Opacity of text label box background
0.6 (default) | range of [0 1]

3 Functions

3-654



Opacity of text label box background, specified as the comma-separated pair consisting of
'TextBoxOpacity' and a scalar defining the opacity of the background of the label text box.
Specify this value in the range of 0 to 1.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
RGB — Truecolor or grayscale image with annotation
M-by-N-by-3 truecolor

Truecolor image with annotation, returned as an image or video stream.
Data Types: double | single | uint8 | uint16 | int16

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input image must be bounded. See “Specify Upper Bounds for Variable-Size Arrays” (MATLAB
Coder).

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
insertMarker | insertText | insertShape | insertObjectMask

Topics
“Choose Function to Visualize Detected Objects”

Introduced in R2012b

 insertObjectAnnotation

3-655



insertObjectMask
Insert masks in image or video stream

Syntax
RGB = insertObjectMask(I,BW)
RGB = insertObjectMask(I,maskstack)
RGB = insertObjectMask( ___ ,Name,Value)

Description
RGB = insertObjectMask(I,BW) inserts a mask BW into the specified image I and returns the
result as a truecolor image RGB.

RGB = insertObjectMask(I,maskstack) inserts a set of masks maskstack into the specified
image I and returns the result as a truecolor image RGB.

RGB = insertObjectMask( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in previous syntaxes.

Examples

Insert Masks with White Border to Differentiate Close Objects

Read an image into the workspace.

I = imread('visionteam1.jpg');

Load a stack of binary masks.

load('visionteam1Maskstack.mat')

Insert the masks into the image.

RGB = insertObjectMask(I,maskstack,'LineColor','white','LineWidth',2);

Display the image with the masks inserted.

figure
imshow(RGB)

3 Functions

3-656



Insert Masks with Unique Color for Each Mask

Read an image into the workspace.

I = imread('visionteam1.jpg');

Load a stack of binary mask images.

load('visionteam1Maskstack.mat');

Insert the masks into the image, specifying a unique color for each mask.

numMasks = size(maskstack,3);
RGB = insertObjectMask(I,maskstack,'Color',lines(numMasks));

Display the image with the inserted masks.

figure 
imshow(RGB)

 insertObjectMask

3-657



Input Arguments
I — Input image
truecolor image | grayscale image

Input image, specified as a truecolor (RGB) image, m-by-n-by-3 array, or a grayscale image, m-by-n
array.
Data Types: single | double | int16 | uint8 | uint16

BW — Input mask image
m-by-n logical matrix

Input mask image, specified as an m-by-n logical matrix.
Data Types: logical

maskstack — Stack of mask images
m-by-n-by-P logical array

Stack of mask images, specified as an m-by-n-by-P logical array, where P is the total number of masks
in the stack.

3 Functions

3-658



maskstack has the same width and height as I.
Data Types: logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: RGB = insertObjectMask(I,maskstack,
'LineColor','white','LineWidth',2);

Color — Color of each mask
lines(1) (default) | RGB triplet | ColorSpec

Color of each mask, specified as the comma-separated pair consisting of 'Color' and one of these
values:

• P-by-3 matrix of RGB triplets, where P is the total number of masks
• P-element vector of MATLAB ColorSpec names
• 1-by-3 RGB triplet or scalar MATLAB ColorSpec name, specifying the color to use for all masks

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

Opacity — Opacity of mask
0.6 (default) | scalar in the range [0 1]

Opacity of mask, specified as the comma separated pair consisting of 'Opacity' and a scalar value
in the range [0 1]. The value 1 makes the mask completely opaque and the value 0 makes the mask
completely transparent.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LineColor — Color of mask borders
'auto' (default) | RGB triplet | ColorSpec

Color of mask borders, specified as the comma separated pair consisting of 'LineColor' and one of
these values:

• 'auto' — 'LineColor' uses the same value or values as 'Color'.
• P-by-3 matrix of RGB triplets, where P is the total number of masks
• P-element vector of MATLAB ColorSpec names
• 1-by-3 RGB triplet or scalar MATLAB ColorSpec name, specifying the color to use for all masks

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

LineOpacity — Opacity of mask borders
1 (default) | 0

 insertObjectMask

3-659



Opacity of the mask borders, specified as the comma-separated pair consisting of 'LineOpacity'
and a scalar value in the range of [0 1].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LineWidth — Width of mask borders
1 (default) | positive scalar

Width of mask borders, specified as the comma-separated pair consisting of 'LineWidth' and a
positive scalar. Specify 'LineWidth' in pixel units.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
RGB — Output image
truecolor image

Output image, returned as a truecolor image of class uint8, with the same m-by-n dimensions as I.

Tips
• When masks overlap and the same pixel is in more than one mask, maskstack(:,:,i) takes

precedence over maskstack(:,:,j), where i < j.
• For better performance, set 'LineOpacity' to 0 to disable drawing the edges.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The value of the 'LineWidth' parameter must be a compile-time constant.
• The values of the 'Color' and 'LineColor' parameters must be numeric. The MATLAB

ColorSpec is not supported with code generation.

See Also
insertObjectAnnotation | insertShape | labeloverlay | showShape

Topics
“Choose Function to Visualize Detected Objects”

Introduced in R2020b

3 Functions

3-660



insertShape
Insert shapes in image or video

Syntax
RGB = insertShape(I,shape,position)
RGB = insertShape( ___ ,Name,Value)

Description
RGB = insertShape(I,shape,position) returns a truecolor image with shape inserted. The
input image, I, can be either a truecolor or grayscale image. You draw the shapes by overwriting
pixel values.

RGB = insertShape( ___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Insert Circle and Filled Shapes on an Image

Read the image.

I = imread('peppers.png');

Draw a circle with a border line width of 5.

RGB = insertShape(I,'circle',[150 280 35],'LineWidth',5);

Draw a filled triangle and a filled hexagon.

pos_triangle = [183 297 302 250 316 297];
pos_hexagon = [340 163 305 186 303 257 334 294 362 255 361 191];
RGB = insertShape(RGB,'FilledPolygon',{pos_triangle,pos_hexagon},...
    'Color', {'white','green'},'Opacity',0.7);

Display the image.

imshow(RGB);

 insertShape

3-661



Input Arguments
I — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16

shape — Type of shape
'Rectangle' | 'FilledRectangle' | 'Line' | 'Polygon' | 'FilledPolygon' | 'Circle' |
'FilledCircle'

Type of shape, specified as a character vector. The vector can be, 'Rectangle',
'FilledRectangle', 'Line', 'Polygon', 'FilledPolygon', 'Circle', or 'FilledCircle'.
Data Types: char

position — Position of shape
matrix | vector | cell array

Position of shape, specified according to the type of shape, described in the table.

3 Functions

3-662



Shape Position Example
'Rectangle'
'FilledRectangle'

For one or more rectangles, specify M-by-4 matrix
where each row specifies a rectangle as
x y width height .

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

Two rectangles, M=2

'Line'

'Polygon'

'FilledPolygon'

For one or more disconnected lines, specify an M-by-4
matrix, where each four-element vector, x1 y1 x2 y2 ,
describes a line with endpoints.

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 xM2

The polyline always contains (L-1) number of
segments because the first and last vertex points do
not connect.

Two lines, M=2

For one or more polylines or polygons with the same
number of vertices, specify an M-by-2L matrix, where
each row is a vector, x1 y1 x2 y2 ... xL yL , of
consecutive vertex locations, representing a polyline
or a polygon with L number of vertices.

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

Two polygons with equal
number of vertices, M=2, L=5

 insertShape

3-663



Shape Position Example
For one or more polylines or polygons with unequal
number of vertices, specify an M-by-1 cell array,
where each cell contains an L-by-2 matrix of [x,y]
vertices, or a 1-by-2L vector, x1 y1 x2 y2 ... xL yL , of
consecutive vertex locations.

The value of L can be different for each cell element.
For example,

x1 y1 x2 y2 , x1 y1 x2 y2 x3 y3

Two polygons with unequal
number of vertices, M=2

'Circle'
'FilledCircle'

An M-by-3 matrix, where each row is a vector
specifying a circle as x y radius . The x y
coordinates represent the center of the circle.

x1 y1 radius1

x2 y2 radius2

⋮ ⋮ ⋮
xM yM radiusM

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','yellow' specifies yellow for the shape color.

LineWidth — Shape border line width
1 (default) | positive scalar integer

3 Functions

3-664



Shape border line width, specified in pixels, as a positive scalar integer. This property only applies to
the 'Rectangle', 'Line', 'Polygon', or 'Circle' shapes.
Data Types: uint8 | uint16 | int16 | double | single

Color — Shape color
'yellow' (default) | character vector | cell array of character vectors | [R G B] vector | M-by-3
matrix

Shape color, specified as the comma-separated pair consisting of 'Color' and either a character
vector, cell array of character vector, or matrix. You can specify a different color for each shape, or
one color for all shapes.

To specify a color for each shape, set Color to a cell array of color character vectors or an M-by-3
matrix of M number of RGB (red, green, and blue) color values.

To specify one color for all shapes, set Color to either a color character vector or an [R G B] vector.
The [R G B] vector contains the red, green, and blue values.

Supported colors: 'blue', 'green', 'red', 'cyan', 'magenta', 'black','black', and
'white'.
Data Types: cell | char | uint8 | uint16 | int16 | double | single

Opacity — Opacity of filled shape
0.6 (default) | range of [0 1]

Opacity of filled shape, specified as the comma-separated pair consisting of 'Opacity' and a scalar
value in the range [0 1]. The Opacity property applies for the FilledRectangle, FilledPolygon,
and FilledCircle shapes.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SmoothEdges — Smooth shape edges
true (default) | false

Smooth shape edges, specified as the comma-separated pair consisting of 'SmoothEdges' and a
logical value of true or false. A true value enables an anti-aliasing filter to smooth shape edges.
This value applies only to nonrectangular shapes. Enabling anti-aliasing requires additional time to
draw the shapes.
Data Types: logical

Output Arguments
RGB — Output image
M-by-N-by-3 truecolor

Output image, returned as a truecolor image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 insertShape

3-665



• 'Color' and 'SmoothEdges' must be compile-time constants.

See Also
showShape | insertObjectAnnotation | insertObjectMask | insertMarker | insertText

Topics
“Draw Markers on an Image” on page 3-646
“Insert Numbers and Text on Image” on page 3-667
“Choose Function to Visualize Detected Objects”

Introduced in R2014a

3 Functions

3-666



insertText
Insert text in image or video

Syntax
RGB = insertText(I,position,text)
RGB = insertText(I,position,numericValue)
RGB = insertText( ___ ,Name,Value)

Description
RGB = insertText(I,position,text) returns a truecolor image with text inserted. The input
image, I, can be either a truecolor or grayscale image.

RGB = insertText(I,position,numericValue) returns a truecolor image with numeric values
inserted.

RGB = insertText( ___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Insert Numbers and Text on Image

Read the image.

I = imread('board.tif');

Create texts that contain fractions.

text_str = cell(3,1);
conf_val = [85.212 98.76 78.342]; 
for ii=1:3
   text_str{ii} = ['Confidence: ' num2str(conf_val(ii),'%0.2f') '%'];
end

Define the positions and colors of the text boxes.

position = [23 373;35 185;77 107]; 
box_color = {'red','green','yellow'};

Insert the text with new font size, box color, opacity, and text color.

RGB = insertText(I,position,text_str,'FontSize',18,'BoxColor',...
    box_color,'BoxOpacity',0.4,'TextColor','white');

Display the image.

figure
imshow(RGB)
title('Board');

 insertText

3-667



3 Functions

3-668



Insert Numeric Text on Image

Read the image.

I = imread('peppers.png');

Define the ( x,_y_ ) position for the text and the value.

position =  [1 50; 100 50];
value = [555 pi];

Insert text using the bottom-left as the anchor point.

RGB = insertText(I,position,value,'AnchorPoint','LeftBottom');

Display the image with the numeric text inserted.

figure
imshow(RGB),title('Numeric values');

Display non-ASCII character (U+014C)

OWithMacron=native2unicode([hex2dec('C5') hex2dec('8C')],'UTF-8');
RGB = insertText(RGB,[256 50],OWithMacron,'Font','LucidaSansRegular','BoxColor','w');

 insertText

3-669



Display the image with the numeric text inserted.

figure
imshow(RGB),title('Numeric values');

Input Arguments
I — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified as M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16

text — Unicode text character vector
character vector | string scalar | cell array of character vectors | string array

Unicode text, specified as a single UNICODE text string or a cell array of UNICODE strings of length
M, where M is the number of rows in position. The function overwrites pixels with the value of
text. The length of the cell array must equal the number of rows in the position matrix. If you
specify a single string, the function uses it for all positions in the position matrix. Most unicode

3 Functions

3-670



fonts contain ASCII characters. You can display non-English and English characters, including English
numeric values, with a single font.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numericValue — Numeric value text
scalar | vector

Numeric value text, specified as a scalar or a vector. If you specify a scalar value, that value is used
for all positions. The vector length must equal the number of rows in the position matrix. Numeric
values are converted to a character vector using the sprintf format '%0.5g'.
Data Types: char

position — Position of inserted text
vector | matrix

Position of inserted text, specified as a vector or an M-by-2 matrix of [x y] coordinates. Each row
represents the [x y] coordinate for the AnchorPoint of the text bounding box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AnchorPoint','LeftTop'

Font — Font face of text
'LucidaSansRegular' (default) | character vector

Font face of text, specified as the comma-separated pair consisting of 'Font' and a character vector.
The font face must be one of the available truetype fonts installed on your system. To get a list of
available fonts on your system, type listTrueTypeFonts at the MATLAB command prompt.
Data Types: char

FontSize — Font size
12 (default) | positive integer in the range [1,200]

Font size, specified as the comma-separated pair consisting of 'FontSize' and a positive integer in
the range [1,200].
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TextColor — Text color
'black' (default) | character vector | cell array of character vectors | [R G B] vector | M-by-3 matrix

Text color, specified as the comma-separated pair consisting of 'TextColor' and a character vector,
cell array of character vectors, or matrix. You can specify a different color for each character vector
or one color for all character vectors.

 insertText

3-671



• To specify a color for each text character vector, set TextColor to a cell array of M number of
color character vectors. Or, you can set it to an M-by-3 matrix of RGB character vector color
values.

• To specify one color for all text character vectors, set TextColor to either a color character
vector or an [R G B] vector of red, green, and blue values.

• RGB values must be in the range of the image data type. Supported colors: 'blue', 'green',
'red', 'cyan', 'magenta', 'yellow','black', and 'white'.

Data Types: cell | char | uint8 | uint16 | int16 | double | single

BoxColor — Text box color
'yellow' (default) | character vector | cell array of character vectors | [R G B] vector | M-by-3 matrix

Text box color, specified as the comma-separated pair consisting of 'BoxColor' and a character
vector, cell array of character vector, or matrix. You can specify a different color for each text box or
one color for all the boxes.

• To specify a color for each text box, set BoxColor to a cell array of M number of color character
vectors. Or, you can set it to an M-by-3 matrix of M number of RGB (red, green, and blue)
character vector color values.

• To specify one color for all the text boxes, set BoxColor to either a color character vector or an [R
G B] vector. The [R G B] vector contains the red, green, and blue values.

• RGB values must be in the range of the image data type. Supported colors: 'blue', 'green',
'red', 'cyan', 'magenta', 'yellow','black', and 'white'.

Data Types: cell | char | uint8 | uint16 | int16 | double | single

BoxOpacity — Opacity of text box
0.6 (default) | scalar value in the range of [0 1]

Opacity of text box, specified as the comma-separated pair consisting of 'BoxOpacity' and a scalar
value in the range [0,1]. A value of 0 corresponds to a fully transparent text box, or no box. A value of
1 corresponds to a fully opaque text box.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

AnchorPoint — Text box reference point
'LeftTop' (default) | 'LeftCenter' | 'LeftBottom' | 'CenterTop' | 'Center' | 'CenterBottom' |
'RightTop' | 'RightCenter' | 'RightBottom'

Text box reference point, specified as the comma-separated pair consisting of 'AnchorPoint' and a
character vector value. The anchor point defines a relative location on the text box. You can position
the text box by placing its anchor point at the [x,y] coordinate defined by the corresponding
position for the text. For example, to place the center of the text box to be at the [x,y] coordinate
you specified with the position input, then set AnchorPoint to Center.

Supported positions are LeftTop, LeftCenter, LeftBottom, CenterTop, Center,
CenterBottom, RightTop, RightCenter, and RightBottom.
Data Types: char

3 Functions

3-672



Output Arguments
RGB — Output image
M-by-N-by-3 truecolor image

Output image, returned as an M-by-N-by-3 truecolor image with the specified text inserted.

Limitations
• If you do not see characters in the output image, it means that the font did not contain the

character. Select a different font. To get a list of available fonts on your system, at the MATLAB
prompt, type listTrueTypeFonts.

• Increasing the font size also increases the preprocessing time and memory usage.
• The insertText function does not work for certain composite characters. For example, you

cannot insert text when the rendering of one glyph corresponding to a character code influences
the position, shape, or size of the adjacent glyph.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Font, FontSize must be compile-time constants.
• Non-ASCII characters are not supported.

See Also
insertObjectAnnotation | insertMarker | insertShape | listTrueTypeFonts

Topics
“Draw Markers on an Image” on page 3-646
“Insert Circle and Filled Shapes on an Image” on page 3-661
“Choose Function to Visualize Detected Objects”

Introduced in R2013a

 insertText

3-673



isEpipoleInImage
Determine whether image contains epipole

Syntax
isIn = isEpipoleInImage(F,imageSize)
isIn = isEpipoleInImage(F',imageSize)
[isIn,epipole] = isEpipoleInImage( ___ )

Description
isIn = isEpipoleInImage(F,imageSize) determines whether the first stereo image associated
with the fundamental matrix F contains an epipole. imageSize is the size of the first image, and is in
the format returned by the function size.

isIn = isEpipoleInImage(F',imageSize) determines whether the second stereo image
associated with the fundamental matrix F' contains an epipole.

[isIn,epipole] = isEpipoleInImage( ___ ) also returns the epipole.

Examples

Determine Epipole Location in an Image

% Load stereo point pairs.
    load stereoPointPairs
    f = estimateFundamentalMatrix(matchedPoints1, matchedPoints2, 'NumTrials', 2000);
    imageSize = [200 300];
    
% Determine whether the image contains epipole and epipole location.     
    [isIn,epipole] = isEpipoleInImage(f,imageSize)

isIn = logical
   1

epipole = 1×2

  256.5465  100.0140

Input Arguments
F — Fundamental matrix
3-by-3 matrix (default)

Fundamental matrix, specified as a 3-by-3 matrix computed from stereo images. F must be double or
single. If P1 represents a point in the first image I1 that corresponds to P2, a point in the second image
I2, then:

3 Functions

3-674



[P2,1] * F * [P1,1]’ = 0

In computer vision, the fundamental matrix is a 3-by-3 matrix which relates corresponding points in
stereo images. When two cameras view a 3-D scene from two distinct positions, there are a number of
geometric relations between the 3-D points and their projections onto the 2-D images that lead to
constraints between the image points. Two images of the same scene are related by epipolar
geometry.

imageSize — Image size
row vector

Image size, specified in the format returned by the size function.

Output Arguments
isIn — Valid epipole
logical

Valid epipole logical, specified as true when the image contains an epipole, and false when the
image does not contain an epipole.

When the image planes are at a great enough angle to each other, you can expect the epipole to be
located in the image.

When the image planes are at a more subtle angle to each other, you can expect the epipole to be
located outside of the image, (but still in the image plane).

 isEpipoleInImage

3-675



epipole — Location of epipole
1-by-2 vector

Location of epipole, returned as a 1-by-2 vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
estimateFundamentalMatrix | epipolarLine | estimateUncalibratedRectification

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2011a

3 Functions

3-676



isfilterseparable
Determine whether filter coefficients are separable

Syntax
isSeparable = isfilterseparable(H)
[isSeparable,hcol,hrow] = isfilterseparable(H)

Description
isSeparable = isfilterseparable(H) returns logical 1 (true) when the filter kernel H is
separable, and 0 (false) otherwise.

[isSeparable,hcol,hrow] = isfilterseparable(H) also returns the vertical coefficients
hcol and horizontal coefficients hrow when the filter kernel, H, is separable. Otherwise, hcol and
hrow are empty.

Examples

Determine if Gaussian Filter is Separable

Determine if the Gaussian filter created using the fspecial function is separable.

Create a Gaussian filter.

twoDimensionalFilter = fspecial('gauss');

Test the filter.

[isseparable,hcol,hrow] = isfilterseparable(twoDimensionalFilter)

isseparable = logical
   1

hcol = 3×1

   -0.1065
   -0.7870
   -0.1065

hrow = 1×3

   -0.1065   -0.7870   -0.1065

 isfilterseparable

3-677



Input Arguments
H — Filter kernel
2-D numeric matrix | 2-D logical matrix

Filter kernel, specified as a non-sparse 2-D numeric or logical matrix.

Output Arguments
isSeparable — Filter is separable
1 (true) | 0 (false)

Filter is separable, returned as logical 1 (true) when the filter is separable and 0 (false) when the
filter is not separable.
Data Types: logical

hcol — Vertical coefficients
numeric vector | []

Vertical coefficients when the filter kernel H is separable, returned as a numeric vector. When H is not
separable, hcol is empty. If H is of data type single, then hcol is also of data type single.
Otherwise, hcol is of data type double.

hrow — Horizontal coefficients
numeric vector | []

Horizontal coefficients when the filter kernel H is separable, returned as a numeric vector. When H is
not separable, hrow is empty. If H is of data type single, then hrow is also of data type single.
Otherwise, hrow is of data type double.

More About
Separable two dimensional filters

Separable two-dimensional filters reflect the outer product of two vectors. Separable filters help
reduce the number of calculations required.

A two-dimensional convolution calculation requires a number of multiplications equal to the width ×
height for each output pixel. The general case equation for a two-dimensional convolution is:

Y(m, n) = ∑
k
∑
l

H(k, l)U(m− k, n− l)

If the filter H is separable then,

H(k, l) = Hrow(k)Hcol(l)

Shifting the filter instead of the image, the two-dimensional equation becomes:

Y(m, n) = ∑
k

Hrow(k)∑
l

Hcol(l) U(m− k, n− l)

This calculation requires only (width + height) number of multiplications for each pixel.

3 Functions

3-678



Algorithms
The isfilterseparable function uses the singular value decomposition svd function to determine
the rank of the matrix.

See Also
2-D FIR Filter | svd | rank

External Websites
MATLAB Central — Separable Convolution

Introduced in R2006a

 isfilterseparable

3-679

https://blogs.mathworks.com/steve/2006/10/04/separable-convolution/


lineToBorderPoints
Intersection points of lines in image and image border

Syntax
points = lineToBorderPoints(lines,imageSize)

Description
points = lineToBorderPoints(lines,imageSize) computes the intersection points between
one or more lines in an image with the image border.

Examples

Find Intersection Points Between a Line and Image Border

Load and display an image.

I = imread('rice.png');
figure; 
imshow(I); 
hold on;

Define a line with the equation, 2 * x + y - 300 = 0.

aLine = [2,1,-300];

3 Functions

3-680



Compute the intersection points of the line and the image border.

points = lineToBorderPoints(aLine,size(I))

points = 1×4

  149.7500    0.5000   21.7500  256.5000

line(points([1,3]),points([2,4]));

Input Arguments
lines — Line matrix
M-by-3 matrix (default)

Line matrix, specified as an M-by-3 matrix, where each row must be in the format, [A,B,C]. This
matrix corresponds to the definition of the line:
A * x + B * y + C = 0.
M represents the number of lines.

lines must be double or single.

imageSize — Image size
integer (default) | row vector

Image size, specified as a row vector in the format returned by the size function.

 lineToBorderPoints

3-681



Output Arguments
points — Intersection points
M-by-4 matrix

Intersection points, returned as an M-by-4 matrix. The function returns the matrix in the format of
[x1, y1, x2, y2]. In this matrix, [x1 y1] and [x2 y2] are the two intersection points. When a line in the
image and the image border do not intersect, the function returns [-1,-1,-1,-1].

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
size | line | epipolarLine

Introduced in R2011a

3 Functions

3-682



matchFeatures
Find matching features

Syntax
indexPairs = matchFeatures(features1,features2)
[indexPairs,matchmetric] = matchFeatures(features1,features2)
[indexPairs,matchmetric] = matchFeatures(features1,features2,Name,Value)

Description
indexPairs = matchFeatures(features1,features2) returns indices of the matching
features in the two input feature sets. The input feature must be either binaryFeatures objects or
matrices.

[indexPairs,matchmetric] = matchFeatures(features1,features2) also returns the
distance between the matching features, indexed by indexPairs.

[indexPairs,matchmetric] = matchFeatures(features1,features2,Name,Value)
includes additional options specified by one or more Name,Value pair arguments.

Examples

Find Corresponding Interest Points Between Pair of Images

Find corresponding interest points between a pair of images using local neighbhorhoods and the
Harris algorithm.

Read the stereo images.

I1 = im2gray(imread('viprectification_deskLeft.png'));
I2 = im2gray(imread('viprectification_deskRight.png'));

Find the corners.

points1 = detectHarrisFeatures(I1);
points2 = detectHarrisFeatures(I2);

Extract the neighborhood features.

[features1,valid_points1] = extractFeatures(I1,points1);
[features2,valid_points2] = extractFeatures(I2,points2);

Match the features.

indexPairs = matchFeatures(features1,features2);

Retrieve the locations of the corresponding points for each image.

matchedPoints1 = valid_points1(indexPairs(:,1),:);
matchedPoints2 = valid_points2(indexPairs(:,2),:);

 matchFeatures

3-683



Visualize the corresponding points. You can see the effect of translation between the two images
despite several erroneous matches.

figure; 
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);

Find Corresponding Points Using SURF Features

Use the SURF local feature detector function to find the corresponding points between two images
that are rotated and scaled with respect to each other.

Read the two images.

I1 = imread('cameraman.tif');
I2 = imresize(imrotate(I1,-20),1.2);

Find the SURF features.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Extract the features.

[f1,vpts1] = extractFeatures(I1,points1);
[f2,vpts2] = extractFeatures(I2,points2);

Retrieve the locations of matched points.

3 Functions

3-684



indexPairs = matchFeatures(f1,f2) ;
matchedPoints1 = vpts1(indexPairs(:,1));
matchedPoints2 = vpts2(indexPairs(:,2));

Display the matching points. The data still includes several outliers, but you can see the effects of
rotation and scaling on the display of matched features.

figure; showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);
legend('matched points 1','matched points 2');

Input Arguments
features1 — Feature set 1
binaryFeatures object | M1-by-N matrix

Features set 1, specified as a binaryFeatures object or an M1-by-N matrix. The matrix contains M1
features, and N corresponds to the length of each feature vector. You can obtain the
binaryFeatures object using the extractFeatures function with the fast retina keypoint
(FREAK), Oriented FAST and Rotated BRIEF (ORB), or binary robust invariant scalable keypoints
(BRISK) descriptor method.

 matchFeatures

3-685



features2 — Feature set 2
M2-by-N matrix | binaryFeatures object

Features set 2, specified as a binaryFeatures object or an M2-by-N matrix. The matrix contains M2
features and N corresponds to the length of each feature vector. You can obtain the
binaryFeatures object using the extractFeatures function with the fast retina keypoint
(FREAK), Oriented FAST and Rotated BRIEF (ORB), or binary robust invariant scalable keypoints
(BRISK) descriptor method.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Metric','SSD' specifies the sum of squared differences for the feature matching metric.

Method — Matching method
'Exhaustive' (default) | 'Approximate'

Matching method, specified as the comma-separated pair consisting of 'Method' and either
'Exhaustive' or 'Approximate'. The method specifies how nearest neighbors between
features1 and features2 are found. Two feature vectors match when the distance between them
is less than the threshold set by the MatchThreshold parameter.

'Exhaustive' Compute the pairwise distance between feature vectors in
features1 and features2.

'Approximate' Use an efficient approximate nearest neighbor search. Use
this method for large feature sets. [3]

MatchThreshold — Matching threshold
10.0 or 1.0 (default) | percent value in the range (0, 100]

Matching threshold, specified as the comma-separated pair consisting of 'MatchThreshold' and a
scalar percent value in the range (0,100]. The default values are set to either 10.0 for binary feature
vectors or to 1.0 for nonbinary feature vectors. You can use the match threshold for selecting the
strongest matches. The threshold represents a percent of the distance from a perfect match.

Two feature vectors match when the distance between them is less than the threshold set by
MatchThreshold. The function rejects a match when the distance between the features is greater
than the value of MatchThreshold. Increase the value to return more matches.

Inputs that are binaryFeatures objects typically require a larger value for the match threshold.
The extractFeatures function returns the binaryFeatures objects when extracting FREAK,
ORB, or BRISK descriptors.

MaxRatio — Ratio threshold
0.6 (default) | ratio in the range (0,1]

Ratio threshold, specified as the comma-separated pair consisting of 'MaxRatio' and a scalar ratio
value in the range (0,1]. Use the max ratio for rejecting ambiguous matches. Increase this value to
return more matches.

3 Functions

3-686



Metric — Feature matching metric
'SSD' (default) | 'SAD'

Feature matching metric, specified as the comma-separated pair consisting of 'Metric' and either
'SAD' or 'SSD'.

'SAD' Sum of absolute differences
'SSD' Sum of squared differences

This property applies when the input feature sets, features1 and features2, are not
binaryFeatures objects. When you specify the features as binaryFeatures objects, the function
uses the Hamming distance to compute the similarity metric.

Unique — Unique matches
false (default) | true

Unique matches, specified as the comma-separated pair consisting of 'Unique' and either false or
true. Set this value to true to return only unique matches between features1 and features2.

When you set Unique to false, the function returns all matches between features1 and
features2. Multiple features in features1 can match to one feature in features2.

When you set Unique to true, the function performs a forward-backward match to select a unique
match. After matching features1 to features2, it matches features2 to features1 and keeps
the best match.

Output Arguments
indexPairs — Indices to corresponding features
P-by-2 matrix

Indices of corresponding features between the two input feature sets, returned as a P-by-2 matrix of
P number of indices. Each index pair corresponds to a matched feature between the features1 and
features2 inputs. The first element indexes the feature in features1. The second element indexes
the matching feature in features2.

 matchFeatures

3-687



matchmetric — Distance between matching features
p-by-1 vector

Distance between matching features, returned as a p-by-1 vector. The value of the distances are
based on the metric selected. Each ith element in matchmetric corresponds to the ith row in the
indexPairs output matrix. When Metric is set to either SAD or SSD, the feature vectors are
normalized to unit vectors before computation.

Metric Range Perfect Match Value
SAD [0, 2*sqrt(size(features1, 2))]. 0
SSD [0,4] 0
Hamming [0, features1.NumBits] 0

References
[1] Lowe, David G. "Distinctive Image Features from Scale-Invariant Keypoints." International Journal

of Computer Vision. Volume 60, Number 2, pp. 91–110.

[2] Muja, M., and D. G. Lowe. "Fast Matching of Binary Features. "Conference on Computer and
Robot Vision. CRV, 2012.

[3] Muja, M., and D. G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm
Configuration." International Conference on Computer Vision Theory and
Applications.VISAPP, 2009.

[4] Rublee, E., V. Rabaud, K. Konolige and G. Bradski. "ORB: An efficient alternative to SIFT or SURF."
In Proceedings of the 2011 International Conference on Computer Vision, 2564–2571.
Barcelona, Spain, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

3 Functions

3-688



• Generates platform-dependent library for MATLAB host only when using the Exhaustive
method.

• Generates portable C code for non-host target only when using the Exhaustive method.
• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries

when not using the Exhaustive method. See “Portable C Code Generation for Functions That
Use OpenCV Library”.

• 'Method' and 'Metric' must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• CUDA code is generated only for the exhaustive matching method. If the Approximate method
is selected, GPU Coder issues a warning and generates C/C++ code for this function.

See Also
showMatchedFeatures | extractFeatures | binaryFeatures | detectHarrisFeatures |
detectMSERFeatures | detectSURFFeatures | detectORBFeatures | detectBRISKFeatures |
detectFASTFeatures | detectMinEigenFeatures | estimateFundamentalMatrix |
estimateGeometricTransform

Topics
“Structure from Motion Overview”

Introduced in R2011a

 matchFeatures

3-689



matchFeaturesInRadius
Find matching features within specified radius

Syntax
indexPairs = matchFeaturesInRadius(features1,features2,points2,centerPoints,
radius)
[indexPairs,matchMetric] = matchFeaturesInRadius( ___ )
[indexPairs,matchMetric] = matchFeaturesInRadius( ___ ,Name,Value)

Description
indexPairs = matchFeaturesInRadius(features1,features2,points2,centerPoints,
radius) returns the indices of the features most likely to correspond between the input feature sets
within the specified radius or radii around each expected match location.

[indexPairs,matchMetric] = matchFeaturesInRadius( ___ ) also returns the distance
between the features in a matched pair in indexPairs.

[indexPairs,matchMetric] = matchFeaturesInRadius( ___ ,Name,Value) specifies
options using one or more name-value arguments in addition of the input arguments in previous
syntaxes.

Examples

Match Features Between Two Images

Load a MAT file containing an image and camera data into the workspace.

data = load('matchInRadiusData.mat');

Convert the camera pose to extrinsics.

orientation = data.cameraPose2.Rotation;
location = data.cameraPose2.Translation;
[rotationMatrix,translationVector] = cameraPoseToExtrinsics(orientation,location);

Project the 3-D world points associated with feature set one onto the second image.

centerPoints = worldToImage(data.intrinsics,rotationMatrix,translationVector,data.worldPoints);

Match features between the two feature sets within spatial constraints.

indexPairs1 = matchFeaturesInRadius(data.features1,data.features2, ...
        data.points2,centerPoints,data.radius,'MatchThreshold',40, ...
        'MaxRatio',0.9);

Match features between the two feature sets without using spatial constraints.

indexPairs2 = matchFeatures(data.features1,data.features2, ...
        'MatchThreshold',40,'MaxRatio',0.9);

3 Functions

3-690



Visualize and compare the results between the two ways of matching features.

figure
subplot(2,1,1)
showMatchedFeatures(data.I1,data.I2,data.points1( ...
    indexPairs1(:,1)),data.points2(indexPairs1(:,2)));
title(sprintf('%d pairs matched with spatial constraints',size(indexPairs1,1)));

subplot(2,1,2)
showMatchedFeatures(data.I1,data.I2,data.points1( ...
    indexPairs2(:,1)),data.points2(indexPairs2(:,2)));
title(sprintf('%d pairs matched without spatial constraints',size(indexPairs2,1)));

Input Arguments
features1 — Feature set one
binaryFeatures object | M1-by-N matrix

Feature set one, specified as a binaryFeatures object or an M1-by-N matrix. The matrix contains
M1 features, and N corresponds to the length of each feature vector.

You can obtain the binaryFeatures object using the extractFeatures function with the fast
retina keypoint (FREAK), oriented fast and rotated brief (ORB), or binary robust invariant scalable
keypoints (BRISK) descriptor method.

 matchFeaturesInRadius

3-691



Data Types: logical | int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
binaryFeature object

features2 — Feature set two
M2-by-N matrix | binaryFeatures object

Feature set two, specified as a binaryFeatures object or an M2-by-N matrix. The matrix contains
M2 features, and N corresponds to the length of each feature vector.

You can obtain the binaryFeatures object using the extractFeatures function with the fast
retina keypoint (FREAK), oriented fast and rotated brief (ORB), or binary robust invariant scalable
keypoints (BRISK) descriptor method.
Data Types: logical | int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
binaryFeature object

points2 — Feature points of feature set two
M2-by-2 matrix | M2-element feature point array

Feature points of feature set two, specified as either an M2-by-2 matrix in the format [x y] or an M2-
element feature point array. For a list of point feature types, see “Point Feature Types”.
Data Types: single | double | point feature type

centerPoints — Expected matched locations
M1-by-2 matrix

Expected matched locations in the second image that correspond to the feature points from
features1, specified as an M1-by-2 matrix of coordinates in the format [x y].
Data Types: single | double

radius — Search radius associated with center points
scalar | M1-element vector

Search radius associated with the center points, specified as a scalar or an M1-element vector. When
you specify the radius as a scalar value, the function uses the same search radius for all center
points.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Metric','SSD' specifies the sum of squared differences metric for feature matching.

MatchThreshold — Matching threshold
10.0 or 1.0 (default) | scalar value in the range (0, 100]

Matching threshold, specified as a scalar value in the range (0,100]. The default values are 10.0 for
binary feature vectors or 1.0 for nonbinary feature vectors. You can use the matching threshold to
select the strongest matches. The threshold represents a percent of the distance from a perfect
match.

3 Functions

3-692



Two feature vectors match when the distance between them is less than the threshold set by
'MatchThreshold'. The function rejects a match when the distance between the features is greater
than the value of 'MatchThreshold'. Increase the value to return more matches.

Inputs that are binaryFeatures objects typically require a larger value for the match threshold.
The extractFeatures function returns a binaryFeatures object when extracting FREAK, ORB,
or BRISK descriptors.

MaxRatio — Ratio threshold
0.6 (default) | scalar value in the range (0, 1]

Ratio threshold, specified as a scalar value in the range (0, 1]. Use the ratio to reject ambiguous
matches. Increase this value to return more matches.

Metric — Feature matching metric
'SSD' (default) | 'SAD'

Feature matching metric, specified as either 'SAD' or 'SSD'.

'SAD' Sum of absolute differences
'SSD' Sum of squared differences

This property applies when you specify the input feature sets, features1 and features2, as
matrices. When you specify the features as binaryFeatures objects, the function uses the
Hamming distance to compute the similarity metric.

Unique — Unique matches
false or 0 (default) | true or 1

Unique matches, specified as a logical 0 (false) or 1 (true). Set this value to true to return only
unique matches between features1 and features2.

When you set Unique to false, the function returns all matches between features1 and
features2. Multiple features in features1 can match to one feature in features2.

When you set Unique to true, the function performs a forward-backward match to select a unique
match. After matching features1 to features2, it matches features2 to features1 and keeps
the best match.

 matchFeaturesInRadius

3-693



Output Arguments
indexPairs — Indices of corresponding features
P-by-2 matrix

Indices of corresponding features between the two input feature sets, returned as a P-by-2 matrix. Pis
the number of matched pairs of features. Each index pair corresponds to a matched feature between
the features1 and features2 inputs. The first element indexes the feature in features1. The
second element indexes the matching feature in features2.

matchMetric — Distance between matching features
P-by-1 vector

Distance between matching features, returned as a P-by-1 vector. The ith element in matchMetric
corresponds to the ith row in the indexPairs output matrix. The values of the distances are based
on the metric selected, but a perfect match is always 0. When Metric is set to either SAD or SSD, the
feature vectors are normalized to unit vectors before computation. The function returns
matchMetric as a double data type when features1 and features2 are of type double.
Otherwise, the returned vector is of type single.

Metric Range
SAD [0, 2*sqrt(size(features1,2))].
SSD [0, 4]
Hamming [0, features1.NumBits]

Note You cannot select the Hamming metric. The metric is selected automatically when the
features1 and features2 inputs are binaryFeatures.

Data Types: single | double

Tips
• Use this function when the 3-D world points that correspond to feature set one features1, are

known. centerPoints can be obtained by projecting a 3-D world point onto the second image.

3 Functions

3-694



You can obtain the 3-D world points by triangulating matched image points from two stereo
images.

• You can specify a circular area of points in feature set two to match with feature set one. Specify
the origin as centerPoints with a radius specified by radius. Specify the points to match from
feature set two as points2

.

References
[1] Fraundorfer, Friedrich, and Davide Scaramuzza. “Visual Odometry: Part II: Matching, Robustness,

Optimization, and Applications.” IEEE Robotics & Automation Magazine 19, no. 2 (June
2012): 78–90. https://doi.org/10.1109/MRA.2012.2182810.

[2] Lowe, David G. “Distinctive Image Features from Scale-Invariant Keypoints.” International Journal
of Computer Vision 60, no. 2 (November 2004): 91–110. https://doi.org/10.1023/
B:VISI.0000029664.99615.94.

[3] Muja, Marius, and David G. Lowe. “Fast Approximate Nearest Neighbors With Automatic
Algorithm Configuration:” In Proceedings of the Fourth International Conference on
Computer Vision Theory and Applications, 331–40. Lisboa, Portugal: SciTePress - Science and
and Technology Publications, 2009. https://doi.org/10.5220/0001787803310340.

[4] Muja, Marius, and David G. Lowe. "Fast Matching of Binary Features." In 2012 Ninth Conference
on Computer and Robot Vision, 404–10. New York: Institute of Electrical and Electronics
Engineers, 2012. https://doi.org/10.1109/CRV.2012.60.

 matchFeaturesInRadius

3-695



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Method' and 'Metric' must be compile-time constants.

See Also
Functions
showMatchedFeatures | extractFeatures | detectHarrisFeatures | detectSURFFeatures |
detectORBFeatures | detectFASTFeatures | detectBRISKFeatures |
detectMinEigenFeatures | estimateFundamentalMatrix | estimateGeometricTransform |
detectMSERFeatures | estimateWorldCameraPose | worldToImage

Objects
binaryFeatures

Topics
“Structure from Motion Overview”
“Monocular Visual Simultaneous Localization and Mapping”
“Implement Visual SLAM in MATLAB”

Introduced in R2021a

3 Functions

3-696



mplay
View video from MATLAB workspace, multimedia file, or Simulink model.

Syntax

Description

Note The mplay function will be removed in a future release. Use the Video Viewer app instead,
which offers identical functionality.

Introduced in R2006a

 mplay

3-697



ocr
Recognize text using optical character recognition

Syntax
txt = ocr(I)
txt = ocr(I, roi)

[ ___ ] = ocr( ___ ,Name,Value)

Description
txt = ocr(I) returns an ocrText object containing optical character recognition information from
the input image, I. The object contains recognized text, text location, and a metric indicating the
confidence of the recognition result.

txt = ocr(I, roi) recognizes text in I within one or more rectangular regions. The roi input
contains an M-by-4 matrix, with M regions of interest.

[ ___ ] = ocr( ___ ,Name,Value) uses additional options specified by one or more Name,Value
pair arguments, using any of the preceding syntaxes.

Examples

Recognize Text Within an Image

     businessCard   = imread('businessCard.png');
     ocrResults     = ocr(businessCard)

ocrResults = 
  ocrText with properties:

                      Text: '‘ MathWorks®...'
    CharacterBoundingBoxes: [103x4 double]
      CharacterConfidences: [103x1 single]
                     Words: {16x1 cell}
         WordBoundingBoxes: [16x4 double]
           WordConfidences: [16x1 single]

     recognizedText = ocrResults.Text;    
     figure;
     imshow(businessCard);
     text(600, 150, recognizedText, 'BackgroundColor', [1 1 1]);

3 Functions

3-698



Recognize Text in Regions of Interest (ROI)

Read image.

I = imread('handicapSign.jpg');

Define one or more rectangular regions of interest within I.

roi = [360 118 384 560];

You may also use IMRECT to select a region using a mouse: figure; imshow(I); roi =
round(getPosition(imrect))

ocrResults = ocr(I, roi);

Insert recognized text into original image

Iocr = insertText(I,roi(1:2),ocrResults.Text,'AnchorPoint',...
    'RightTop','FontSize',16);
figure; imshow(Iocr);

 ocr

3-699



Display Bounding Boxes of Words and Recognition Confidences
     businessCard = imread('businessCard.png');
     ocrResults   = ocr(businessCard)

ocrResults = 
  ocrText with properties:

                      Text: '‘ MathWorks®...'
    CharacterBoundingBoxes: [103x4 double]
      CharacterConfidences: [103x1 single]
                     Words: {16x1 cell}
         WordBoundingBoxes: [16x4 double]
           WordConfidences: [16x1 single]

     Iocr         = insertObjectAnnotation(businessCard, 'rectangle', ...
                           ocrResults.WordBoundingBoxes, ...
                           ocrResults.WordConfidences);
     figure; imshow(Iocr);

3 Functions

3-700



Find and Highlight Text in an Image

businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);
Iocr = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(Iocr);

 ocr

3-701



Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image | M-by-N binary image

Input image, specified in M-by-N-by-3 truecolor, M-by-N 2-D grayscale, or binary format. The input
image must be a real, nonsparse value. The function converts truecolor or grayscale input images to a
binary image, before the recognition process. It uses the Otsu’s thresholding technique for the
conversion. For best ocr results, the height of a lowercase ‘x’, or comparable character in the input
image, must be greater than 20 pixels. From either the horizontal or vertical axes, remove any text
rotations greater than +/- 10 degrees, to improve recognition results.
Data Types: single | double | int16 | uint8 | uint16 | logical

roi — Region of interest
M-by-4 element matrix

One or more rectangular regions of interest, specified as an M-by-4 element matrix. Each row, M,
specifies a region of interest within the input image, as a four-element vector, [x y width height]. The
vector specifies the upper-left corner location, [x y], and the size of a rectangular region of interest,
[width height], in pixels. Each rectangle must be fully contained within the input image, I. Before the
recognition process, the function uses the Otsu’s thresholding to convert truecolor and grayscale
input regions of interest to binary regions. The function returns text recognized in the rectangular
regions as an array of objects.

3 Functions

3-702



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ocr(I,'TextLayout','Block')

TextLayout — Input text layout
'Auto' (default) | 'Block' | 'Line' | 'Word' | 'Character'

Input text layout, specified as the comma-separated pair consisting of 'TextLayout' and one of the
following:

TextLayout Text Treatment
'Auto' Determines the layout and reading order of text

blocks within the input image.
'Block' Treats the text in the image as a single block of

text.
'Line' Treats the text in the image as a single line of

text.
'Word' Treats the text in the image as a single word of

text.
'Character' Treats the text in the image as a single character.

Use the automatic layout analysis to recognize text from a scanned document that contains a specific
format, such as a double column. This setting preserves the reading order in the returned text. You
may get poor results if your input image contains a few regions of text or the text is located in a
cluttered scene. If you get poor OCR results, try a different layout that matches the text in your
image. If the text is located in a cluttered scene, try specifying an ROI around the text in your image
in addition to trying a different layout.

Language — Language
'English' (default) | 'Japanese' | character vector | string scalar | cell array of character vectors
| string array

Language to recognize, specified as the comma-separated pair consisting of 'Language' and the
character vector 'English', 'Japanese', or a cell array of character vectors. You can also install
the “Install OCR Language Data Files” package for additional languages or add a custom language.
Specifying multiple languages enables simultaneous recognition of all the selected languages.
However, selecting more than one language may reduce the accuracy and increase the time it takes
to perform ocr.

To specify any of the additional languages which are contained in the “Install OCR Language Data
Files” package, use the language character vector the same way as the built-in languages. You do not
need to specify the path.

txt = ocr(img,'Language','Finnish');

 ocr

3-703



List of Support Package OCR Languages

• 'Afrikaans'
• 'Albanian'
• 'AncientGreek'
• 'Arabic'
• 'Azerbaijani'
• 'Basque'
• 'Belarusian'
• 'Bengali'
• 'Bulgarian'
• 'Catalan'
• 'Cherokee'
• 'ChineseSimplified'
• 'ChineseTraditional'
• 'Croatian'
• 'Czech'
• 'Danish'
• 'Dutch'
• 'English'
• 'Esperanto'
• 'EsperantoAlternative'
• 'Estonian'
• 'Finnish'
• 'Frankish'
• 'French'
• 'Galician'
• 'German'
• 'Greek'
• 'Hebrew'
• 'Hindi'
• 'Hungarian'
• 'Icelandic'
• 'Indonesian'
• 'Italian'
• 'ItalianOld'
• 'Japanese'
• 'Kannada'
• 'Korean'
• 'Latvian'

3 Functions

3-704



• 'Lithuanian'
• 'Macedonian'
• 'Malay'
• 'Malayalam'
• 'Maltese'
• 'MathEquation'
• 'MiddleEnglish'
• 'MiddleFrench'
• 'Norwegian'
• 'Polish'
• 'Portuguese'
• 'Romanian'
• 'Russian'
• 'SerbianLatin'
• 'Slovakian'
• 'Slovenian'
• 'Spanish'
• 'SpanishOld'
• 'Swahili'
• 'Swedish'
• 'Tagalog'
• 'Tamil'
• 'Telugu'
• 'Thai'
• 'Turkish'
• 'Ukrainian'

To use your own custom languages, specify the path to the trained data file as the language character
vector. You must name the file in the format, <language>.traineddata. The file must be located in a
folder named 'tessdata'. For example:

txt = ocr(img,'Language','path/to/tessdata/eng.traineddata');

You can load multiple custom languages as a cell array of character vectors:

txt = ocr(img,'Language', ...
               {'path/to/tessdata/eng.traineddata',...
                'path/to/tessdata/jpn.traineddata'});

The containing folder must always be the same for all the files specified in the cell array. In the
preceding example, all of the traineddata files in the cell array are contained in the folder
‘path/to/tessdata’. Because the following code points to two different containing folders, it does
not work.

 ocr

3-705



txt = ocr(img,'Language', ...
               {'path/one/tessdata/eng.traineddata',...
                'path/two/tessdata/jpn.traineddata'});

Some language files have a dependency on another language. For example, Hindi training depends on
English. If you want to use Hindi, the English traineddata file must also exist in the same folder as
the Hindi traineddata file. The ocr only supports traineddata files created using tesseract-
ocr 3.02 or using the OCR Trainer.

For deployment targets generated by MATLAB Coder: Generated ocr executable and language
data file folder must be colocated. The tessdata folder must be named tessdata:

• For English: C:/path/tessdata/eng.traineddata
• For Japanese: C:/path/tessdata/jpn.traineddata
• For custom data files: C:/path/tessdata/customlang.traineddata
• C:/path/ocr_app.exe

You can copy the English and Japanese trained data files from:

fullfile(matlabroot, 'toolbox','vision','visionutilities','tessdata');

CharacterSet — Character subset
'' all characters (default) | character vector | string scalar

Character subset, specified as the comma-separated pair consisting of 'CharacterSet' and a
character vector. By default, CharacterSet is set to the empty character vector, ''. The empty
vector sets the function to search for all characters in the language specified by the Language
property. You can set this property to a smaller set of known characters to constrain the classification
process.

The ocr function selects the best match from the CharacterSet. Using deducible knowledge about
the characters in the input image helps to improve text recognition accuracy. For example, if you set
CharacterSet to all numeric digits, '0123456789', the function attempts to match each character
to only digits. In this case, a non-digit character can incorrectly get recognized as a digit.

Output Arguments
txt — Recognized text and metrics
ocrText object

Recognized text and metrics, returned as an ocrText object. The object contains the recognized text,
the location of the recognized text within the input image, and the metrics indicating the confidence
of the results. The confidence values range is [0 1] and represents a percent probability. When you
specify an M-by-4 roi, the function returns ocrText as an M-by-1 array of ocrText objects.

If your ocr results are not what you expect, try one or more of the following options:

• Increase the image 2-to-4 times the original size.
• If the characters in the image are too close together or their edges are touching, use morphology

to thin out the characters. Using morphology to thin out the characters separates the characters.
• Use binarization to check for non-uniform lighting issues. Use the graythresh and imbinarize

functions to binarize the image. If the characters are not visible in the results of the binarization,

3 Functions

3-706



it indicates a potential non-uniform lighting issue. Try top hat, using the imtophat function, or
other techniques that deal with removing non-uniform illumination.

• Use the region of interest roi option to isolate the text. Specify the roi manually or use text
detection.

• If your image looks like a natural scene containing words, like a street scene, rather than a
scanned document, try using an ROI input. Also, you can set the TextLayout property to
'Block' or 'Word'.

References
[1] R. Smith. An Overview of the Tesseract OCR Engine, Proceedings of the Ninth International

Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2 (2007), pp. 629-633.

[2] Smith, R., D. Antonova, and D. Lee. Adapting the Tesseract Open Source OCR Engine for
Multilingual OCR. Proceedings of the International Workshop on Multilingual OCR, (2009).

[3] R. Smith. Hybrid Page Layout Analysis via Tab-Stop Detection. Proceedings of the 10th
international conference on document analysis and recognition. 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'TextLayout', 'Language', and 'CharacterSet' must be compile-time constants.
• Generated code for this function uses a precompiled platform-specific shared library.

See Also
OCR Trainer | ocrText | insertShape | graythresh | imbinarize | imtophat |
detectTextCRAFT

Topics
“Automatically Detect and Recognize Text Using MSER and OCR”
“Recognize Text Using Optical Character Recognition (OCR)”
“Train Optical Character Recognition for Custom Fonts”
“Install OCR Language Data Files”
“Install Computer Vision Toolbox Add-on Support Files”

Introduced in R2014a

 ocr

3-707

https://www.mathworks.com/support/requirements/matlab-system-requirements.html


detectTextCRAFT
Detect texts in images by using CRAFT deep learning model

Syntax
bboxes = detectTextCRAFT(I)
bboxes = detectTextCRAFT(I,roi)
bboxes = detectTextCRAFT( ___ ,Name=Value)

Description
bboxes = detectTextCRAFT(I) detects texts in images by using character region awareness for
text detection (CRAFT) deep learning model. The detectTextCRAFT function uses a pretrained
CRAFT deep learning model to detect texts in an image. The pretrained CRAFT model can detect 9
languages that include Chinese, Japanese, Korean, Italian, English, French, Arabic, German, and
Bangla (Indian).

Note To use the pretrained CRAFT model, you must install the Computer Vision Toolbox Model for
Text Detection. You can download and install the Computer Vision Toolbox Model for Text Detection
from Add-On Explorer. For more information about installing add-ons, see Get and Manage Add-Ons.
To run this function, you will require the Deep Learning Toolbox.

bboxes = detectTextCRAFT(I,roi) detects texts within a region-of-interest (ROI) in the image.

bboxes = detectTextCRAFT( ___ ,Name=Value) specifies additional options by using name-
value pair arguments. You can use the name-value pair arguments to fine-tune the detection results.

Examples

Detect Texts in Images by Using CRAFT Model

Read an input image into the MATLAB workspace.

I = imread("handicapSign.jpg");

Compute the text detection results by using the detectTextCRAFT function. The region and the
affinity thresholds are set to default values. The output is a set of bounding boxes that contain the
detected text regions.

bboxes = detectTextCRAFT(I);

Draw the output bounding boxes on the image by using the insertShape function.

Iout = insertShape(I,"Rectangle",bboxes,LineWidth=3);

Display the text detection results.

figure
imshow(Iout)

3 Functions

3-708



Detect Texts in ROI by Using CRAFT

Read an input image into the MATLAB workspace.

visiondatadir = fullfile(toolboxdir('vision'),'visiondata'); 
I = imread(fullfile(visiondatadir,'imageSets','books','pairOfBooks.jpg'));

Specify a region of interest (ROI) within the input image.

roi = [120,80,250,200];

Detect texts within the specified ROI by using the detectTextCRAFT function. The region and
affinity thresholds are set to default values. The output is a set of bounding boxes that contain the
detected text regions.

bboxes = detectTextCRAFT(I,roi);

Draw the ROI and the output bounding boxes on the input image. Display the text detection results.

I = insertObjectAnnotation(I,"Rectangle",roi,"ROI",Color="green");
Iout = insertShape(I,"Rectangle",bboxes,LineWidth=3);

 detectTextCRAFT

3-709



figure
imshow(Iout)

Detect Characters by Modifying Affinity Threshold

This example shows how to detect each character in the text regions of an input image by using the
CRAFT model. You can achieve this by modifying the affinity threshold. This example also
demonstrates the effect of different affinity threshold values on the detection results.

Read an input image into the MATLAB workspace.

visiondatadir = fullfile(toolboxdir('vision'),'visiondata'); 
I = imread(fullfile(visiondatadir,'bookCovers','book27.jpg'));

Specify the affinity threshold values to consider for detecting the text regions in the image.

threshold = [1 0.1 0.01 0.001 0.0004];

Preallocate a 4-D array Iout to store the output image with detection results.

Iout = zeros(size(I,1),size(I,2),size(I,3),length(threshold));

3 Functions

3-710



Compute the output for each affinity threshold value specified at the input. The output is a set of
bounding boxes that contain the detected text regions. Draw the output bounding boxes on the image
by using the insertShape function. The region threshold is set to the default value, 0.4.

for cnt = 1:length(threshold)
    bboxes = detectTextCRAFT(I,LinkThreshold=threshold(cnt));
    Iout(:,:,:,cnt) = insertShape(I,"Rectangle",bboxes,LineWidth=3);
end

Display the text detection results obtained for different values of affinity threshold. You can notice
that as the affinity threshold value decrease, the characters with less affinity scores are considered as
connected components and are grouped as a single instance. For good localization and detection
results, the affinity threshold must be greater than zero.

figure
montage(uint8(Iout),Size=[1 5],BackgroundColor="white");
title(['LinkThreshold = ' num2str(threshold(1)) ' | LinkThreshold = ' num2str(threshold(2)) ' | LinkThreshold = ' num2str(threshold(3)) ...
    ' | LinkThreshold = ' num2str(threshold(4)) ' | LinkThreshold = ' num2str(threshold(5))]);

Input Arguments
I — Input image
2-D grayscale image | 2-D color image

Input image, specified as a 2-D grayscale image or 2-D color image.
Data Types: single | double | int16 | uint8 | uint16 | logical

roi — Search region-of-interest
four-element vector

Search region-of-interest in an image, specified as a four-element vector of the form [x y width
height]. The vector specifies the upper left corner and size of a region in pixels.

When you specify this value, the detectTextCRAFT function detects texts that are present only
within this ROI.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 detectTextCRAFT

3-711



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: bboxes = detectTextCRAFT(I,MaxSize=[10,10]) specifies the maximum size of the
text region to detect in the input image

CharacterThreshold — Region threshold
0.4 (default) | positive scalar

Region threshold for localizing each character in the image, specified as a positive scalar in the range
[0, 1]. To increase the number of detections, lower the region threshold value. However, this will also
result in false-positives. To reduce the number of false-positives, increase the region threshold value.
Data Types: single | double

LinkThreshold — Affinity threshold
0.4 (default) | positive scalar

Affinity threshold for grouping adjacent characters into a word, specified as a positive scalar in the
range [0, 1]. You can increase the number of character level detections by increasing the affinity
threshold. To detect each character in the image, set this value to 1. For good localization and
detection results, the affinity threshold must be greater than zero.
Data Types: single | double

MinSize — Size of smallest detectable text region
[6,6] (default) | two-element vector

Size of smallest detectable text region in the image, specified as a two-element vector of form [height
width].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxSize — Size of largest detectable text region
size of input image (default) | two-element vector

Size of largest detectable text region in the image, specified as a two-element vector of form [height
width]. By default, this value is set to the height and width of the input image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ExecutionEnvironment — Hardware resource
"auto" (default) | "cpu" | "gpu"

Hardware resource for processing images with the CRAFT model, specified as "auto", "gpu", or
"cpu".

3 Functions

3-712



ExecutionEnvironment Description
"auto" Use a GPU if available. Otherwise, use the CPU. The use of

GPU requires Parallel Computing Toolbox and a CUDA
enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

"gpu" Use the GPU. If a suitable GPU is not available, the function
returns an error message.

"cpu" Use the CPU.

Data Types: char | string

Acceleration — Performance optimization
"auto" (default) | "mex" | "none"

Performance optimization, specified as "auto", "mex", or "none".

Acceleration Description
"auto" Automatically apply a number of optimizations suitable for

the input network and hardware resource.
"mex" Compile and execute a MEX function. This option is available

when using a GPU only. You must also have a C/C++ compiler
installed. For setup instructions, see “MEX Setup” (GPU
Coder).

"none" Disable all acceleration.

The default option is "auto". If you use the "auto" option, MATLAB does not ever generate a MEX
function.

Using the "Acceleration" options "auto" and "mex" can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

The "mex" option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The "mex" option is only available when you are using a GPU. Using a GPU requires Parallel
Computing Toolbox and a CUDA enabled NVIDIA GPU. For information about the supported compute
capabilities, see “GPU Support by Release” (Parallel Computing Toolbox). If Parallel Computing
Toolbox or a suitable GPU is not available, then the function returns an error.

Output Arguments
bboxes — Bounding boxes for detected text regions
M-by-4 matrix

Bounding boxes specifying the detected text regions, returned as an M-by-4 matrix. M is the number
of detected text regions. Each row in the matrix is a vector of form [x y width height]. The vector
specifies the upper left corner and size of the detected region in pixels.

 detectTextCRAFT

3-713



See Also
OCR Trainer | ocrText | ocr | insertShape | insertObjectAnnotation

Topics
“Automatically Detect and Recognize Text Using Pretrained CRAFT Network and OCR”
“Recognize Text Using Optical Character Recognition (OCR)”
“Automatically Detect and Recognize Text Using MSER and OCR”

Introduced in R2022a

3 Functions

3-714



pcdenoise
Remove noise from 3-D point cloud

Syntax
ptCloudOut = pcdenoise(ptCloudIn)
[ptCloudOut,inlierIndices,outlierIndices] = pcdenoise(ptCloudIn)
[ptCloudOut, ___ ] = pcdenoise( ___ Name=Value)

Description
ptCloudOut = pcdenoise(ptCloudIn) returns a filtered point cloud that removes outliers.

[ptCloudOut,inlierIndices,outlierIndices] = pcdenoise(ptCloudIn) additionally
returns the linear indices to the points that are identified as inliers and outliers.

[ptCloudOut, ___ ] = pcdenoise( ___ Name=Value) specifies a name-value argument in
addition to any combination of arguments from previous syntaxes. For example, Threshold=1.0 sets
the outlier threshold to 1.0.

Examples

Remove Outliers from Noisy Point Cloud

Create a plane point cloud.

gv = 0:0.01:1;
[X,Y] = meshgrid(gv,gv);
ptCloud = pointCloud([X(:),Y(:),0.5*ones(numel(X),1)]);

figure
pcshow(ptCloud);
title('Original Data');

 pcdenoise

3-715



Add uniformly distributed random noise.

noise = rand(500, 3);
ptCloudA = pointCloud([ptCloud.Location; noise]);

figure
pcshow(ptCloudA);
title('Noisy Data');

3 Functions

3-716



Remove outliers.

ptCloudB = pcdenoise(ptCloudA);

figure;
pcshow(ptCloudB);
title('Denoised Data');

 pcdenoise

3-717



Preserve Organized Structure of Point Cloud After Denoising

Load an organized point cloud from a saved MAT-file.

ld = load('drivingLidarPoints.mat');
orgPtCloud = ld.ptCloud;

Remove noise from the point cloud.

orgPtCloudOut = pcdenoise(orgPtCloud,PreserveStructure=true);

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

3 Functions

3-718



Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Threshold=1.0 sets the threshold to 1.0.

NumNeighbors — Number of nearest neighbor points
4 (default) | positive integer

Number of nearest neighbor points, specified as the comma-separated pair consisting of
'NumNeighbors' and a positive integer in pixels. The value is used to estimate the mean of the
average distance to neighbors of all points. Decreasing this value makes the filter more sensitive to
noise. Increasing this value increases the number of computations.
Data Types: single | double

Threshold — Outlier threshold
1.0 (default) | scalar

Outlier threshold, specified as the comma-separated pair consisting of 'Threshold' and a scalar. By
default, the threshold is one standard deviation from the mean of the average distance to neighbors
of all points. A point is considered to be an outlier if the average distance to its k-nearest neighbors is
above the specified threshold.
Data Types: single | double

PreserveStructure — Preserve the organized structure of a point cloud
false (default) | true

Preserve the organized structure of a point cloud as an M-by-N-by-3 location matrix, specified as
true or false. The table describes the point cloud structure according to the value of
PreserveStructure.

PreserveStructure The function returns
true An organized, denoised, point cloud.

The “Location” on page 2-0  property that
describes the structure of the point cloud,
contains an M-by-N-by-3 matrix.

Points that are not selected in the denoised point
cloud are filled with NaN, and the corresponding
color is set to [0 0 0].

To return an organized point cloud, the input
must be an organized point cloud.

false An unorganized, denoised, point cloud.

The “Location” on page 2-0  property that
describes the structure of the point cloud,
contains an M-by-3 matrix.

Output Arguments
ptCloudOut — Filtered point cloud
pointCloud object

 pcdenoise

3-719



Filtered point cloud, returned as a pointCloud object.

inlierIndices — Linear index of inlier points
1-by-N vector

Linear index of inlier points, returned as a 1-by-N vector.
Data Types: uint32

outlierIndices — Linear index of outlier points
1-by-N vector

Linear index of outlier points, returned as a 1-by-N vector.
Data Types: uint32

References
[1] Rusu, R. B., Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz. “Towards 3D Point Cloud Based

Object Maps for Household Environments”. Robotics and Autonomous Systems Journal. 2008.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

• The PreserveStructure name-value argument is not supported for GPU code generation.

See Also
Functions
pcdownsample | pcplayer | pcshow | pcwrite | pcread | pcfitplane | pcmerge | pctransform
| pcregistericp | pcregisterndt

Objects
pointCloud | planeModel | affine3d

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

3 Functions

3-720



pcmerge
Merge two 3-D point clouds

Syntax
ptCloudOut = pcmerge(ptCloudA,ptCloudB,gridStep)

Description
ptCloudOut = pcmerge(ptCloudA,ptCloudB,gridStep) returns a merged point cloud using a
box grid filter. gridStep specifies the size of the 3-D box for the filter.

Examples

Merge Two Identical Point Clouds Using Box Grid Filter

Create a point cloud with X, Y, Z points in [0, 100].

ptCloudA = pointCloud(100*rand(1000,3));

Create a partially overlapping point cloud.

ptCloudB = pointCloud([70 20 30] + 100*rand(1000,3));

Merge the two point clouds using a box filter.

ptCloudOut = pcmerge(ptCloudA, ptCloudB, 1);
pcshow(ptCloudOut);

 pcmerge

3-721



Input Arguments
ptCloudA — Point cloud A
pointCloud object

Point cloud A, specified as a pointCloud object.

ptCloudB — Point cloud B
pointCloud object

Point cloud B, specified as a pointCloud object.

gridStep — Size of 3-D box for grid filter
numeric value

Size of 3-D box for grid filter, specified as a numeric value. Increase the size of gridStep when there
are not enough resources to construct a large fine-grained grid. The function divides the space into 3-
D boxes (also known as voxels), of size gridStep. It then takes an average of all points contained in
each voxel. The result of the average provides a new point to represent all the points in the voxel for
the merged output.
Data Types: single | double

3 Functions

3-722



Output Arguments
ptCloudOut — Merged point cloud
pointCloud object

Merged point cloud, returned as a pointCloud object. The function computes the axis-aligned
bounding box for the overlapped region between two point clouds. The bounding box is divided into
grid boxes of the size specified by gridStep. Points within each grid box are merged by averaging
their locations, colors, and normals. Points outside the overlapped region are untouched.

Tips
• If the two point clouds do not have the same set of properties filled, such as Color or Normal,

these properties will be cleared in the returned point cloud. For example, if ptCloudA has color
but ptCloudB does not, then ptCloudOut will not contain color.

• The function filters out points with NaN or Inf values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Objects
pointCloud | planeModel | affine3d | rigid3d

Functions
pcplayer | pcshow | pcwrite | pcread | pctransform | pcdownsample | pcfitplane |
pcdenoise | pcregistericp | pccat | pcalign

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

 pcmerge

3-723



pcdownsample
Downsample a 3-D point cloud

Syntax
ptCloudOut = pcdownsample(ptCloudIn,'random',percentage)
ptCloudOut = pcdownsample(ptCloudIn,'gridAverage',gridStep)
ptCloudOut = pcdownsample(ptCloudIn,'nonuniformGridSample',maxNumPoints)

[ptCloudOut,indices] = pcdownsample( ___ )
___  = pcdownsample( ___ ,Name=Value)

Description
ptCloudOut = pcdownsample(ptCloudIn,'random',percentage) returns a downsampled
point cloud with random sampling and without replacement. The percentage input specifies the
portion of the input to return to the output.

ptCloudOut = pcdownsample(ptCloudIn,'gridAverage',gridStep) returns a downsampled
point cloud using a box grid filter. The gridStep input specifies the size of a 3-D box.

ptCloudOut = pcdownsample(ptCloudIn,'nonuniformGridSample',maxNumPoints)
returns a downsampled point cloud using nonuniform box grid filter. You must set the maximum
number of points in the grid box, maxNumPoints, to at least 6.

[ptCloudOut,indices] = pcdownsample( ___ ) returns the linear indices for the points that are
included in the downsampled point cloud. This syntax applies only when you use the 'random' or
'nonuniformGridSample' downsampling methods.

___  = pcdownsample( ___ ,Name=Value) specifies a name-value argument in addition to any
combination of arguments from previous syntaxes.

Examples

Downsample Point Cloud Using Box Grid Filter

Read a point cloud.

ptCloud = pcread('teapot.ply');

Set the 3-D resolution to be (0.1 x 0.1 x 0.1).

gridStep = 0.1;
ptCloudA = pcdownsample(ptCloud,'gridAverage',gridStep);

Visualize the downsampled data.

figure;
pcshow(ptCloudA);

3 Functions

3-724



Compare the point cloud to data that is downsampled using a fixed step size.

stepSize = floor(ptCloud.Count/ptCloudA.Count);
indices = 1:stepSize:ptCloud.Count;
ptCloudB = select(ptCloud, indices);

figure;
pcshow(ptCloudB);

 pcdownsample

3-725



Remove Redundant Points from Point Cloud

Create a point cloud with all points sharing the same coordinates.

ptCloud = pointCloud(ones(100,3));

Set the 3-D resolution to a small value.

gridStep = 0.01;

The output now contains only one unique point.

ptCloudOut = pcdownsample(ptCloud,'gridAverage',gridStep)

ptCloudOut = 
  pointCloud with properties:

     Location: [1 1 1]
        Count: 1
      XLimits: [1 1]
      YLimits: [1 1]
      ZLimits: [1 1]
        Color: [0x3 uint8]
       Normal: [0x3 double]
    Intensity: [0x1 double]

3 Functions

3-726



Preserve Organized Structure of Point Cloud After Downsampling

Load an organized point cloud from a saved MAT-file.

ld = load('drivingLidarPoints.mat');
orgPtCloud = ld.ptCloud;

Downsample the point cloud.

percentage = 0.1;
orgPtCloudOut = pcdownsample(orgPtCloud,'random',percentage,PreserveStructure=true);

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

'random' — Random downsample method
'random'

Random downsample method, specified as 'random'. The 'random' method is more efficient than
the 'gridAverage' downsample method, especially when it is applied before point cloud
registration.

percentage — Percentage of input
nonnegative scalar

Percentage of input, specified as a nonnegative scalar in the range [0, 1]. The percentage input
specifies the portion of the input for the function to return.

'gridAverage' — Grid average downsample method
'gridAverage'

Grid average downsample method, specified as 'gridAverage'. Points within the same box are
merged to a single point in the output. Their color and normal properties are averaged accordingly.
This method preserves the shape of the point cloud better than the 'random' downsample method.

The function computes the axis-aligned bounding box for the entire point cloud. The bounding box is
divided into grid boxes of size specified by gridStep. Points within each grid box are merged by
averaging their locations, colors, and normals.

gridStep — Size of 3-D box for grid filter
numeric value

Size of 3-D box for grid filter, specified as a numeric value. Increase the size of gridStep when there
are not enough resources to construct a large fine-grained grid.
Data Types: single | double

'nonuniformGridSample' — Nonuniform grid sample method
'nonuniformGridSample'

 pcdownsample

3-727



Nonuniform grid sample method, specified as 'nonuniformGridSample'. When you use the
'nonuniformGridSample' algorithm, the normals are computed on the original data prior to
downsampling. The downsampled output preserves more accurate normals.

maxNumPoints — Maximum number of points in grid box
integer

Maximum number of points in grid box, specified as an integer greater than 6. The method randomly
selects a single point from each box. If the normal was not provided in the input point cloud, this
method automatically fills in the normal property in the ptCloudOut output.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: PreserveStructure=true preserves the organized structure of a point cloud.

PreserveStructure — Preserve the organized structure of a point cloud
false (default) | true

Preserve the organized structure of a point cloud, specified as true or false. The table describes
the point cloud structure according to the value of PreserveStructure.

PreserveStructure The function returns
true An organized, downsampled, point cloud.

The “Location” on page 2-0  property that
describes the structure of the point cloud,
contains an M-by-N-by-3 matrix.

Points that are not selected in the downsampled
point cloud are filled with NaN, and the
corresponding color is set to [0 0 0].

To return an organized point cloud, the input
must be an organized point cloud, and the
downsampling method must be 'random' or
'nonuniformGridSample'.

false An unorganized, downsampled, point cloud.

The “Location” on page 2-0  property that
describes the structure of the point cloud,
contains an M-by-3 matrix.

Output Arguments
ptCloudOut — Downsampled point cloud
pointCloud object

Downsampled point cloud, returned as a pointCloud object.

3 Functions

3-728



indices — Indices of points in the downsampled point cloud
N-element vector

Indices of points in the downsampled point cloud, returned as a N-element vector.

References
[1] Pomerleau, F., F. Colas, R. Siegwart, and S. Magnenat. “Comparing ICP variants on real-world

data sets.” Autonomous Robots. Vol. 34, Issue 3, April 2013, pp. 133–148.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation for nonuniform grid sample method is not optimized.
• For the random downsample method, GPU Coder uses the NVIDIA CUDA random library

(cuRAND) to generate the random numbers. Because of architectural and implementation
differences between the random number generators on the GPU and CPU, numerical verification
does not always match.

• The PreserveStructure name-value argument is not supported for GPU code generation.

See Also
Functions
pcdenoise | pcplayer | pcshow | pcwrite | pcread | pcfitplane | pcmerge | pctransform |
pcregistericp | pcregisterndt

Objects
pointCloud | planeModel | affine3d

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

 pcdownsample

3-729



pcread
Read 3-D point cloud from PLY or PCD file

Syntax
ptCloud = pcread(filename)

Description
ptCloud = pcread(filename) reads a point cloud from the PLY or PCD file specified by the input
filename. The function returns a pointCloud object, ptCloud.

Examples

Read Point Cloud from a PLY File

ptCloud = pcread('teapot.ply');
pcshow(ptCloud);

3 Functions

3-730



Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or a string scalar. The input file type must be a PLY or a
PCD format file.

The polygon (PLY) file format , also known as the Stanford triangle format stores three-dimensional
data from 3-D scanners. It is a format for storing graphical objects that are described as a collection
of polygons. A PLY file consists of a header, followed by a list of vertices and then, a list of polygons.
The header specifies how many vertices and polygons are in the file. It also states what properties are
associated with each vertex, such as (x,y,z) coordinates, normals, and color. The file format has two
sub-formats: an ASCII representation and a binary version for compact storage and for rapid saving
and loading. The header of both ASCII and binary files is ASCII text. Only the numeric data that
follows the header is different between the two versions. See “The PLY Format” for details on the
contents of a PLY file.

The point cloud data (PCD) file format also stores three-dimensional data. It was created by the
authors of the widely used point cloud library (PCL) to accommodate additional point cloud data
requirements. See The PCD (Point Cloud Data) file format.

Note This function only supports PCD file formats saved in version 0.7 (PCD_V7). It also only
supports the header entries with the COUNT entry set to 1. It does not support the COUNT entry set to
a feature descriptor.

Output Arguments
ptCloud — Object for storing point cloud
pointCloud object

Object for storing point cloud, returned as a pointCloud object that contains the following PLY or
PCD fields:

• Location property, stores the x, y, and z values.
• Color property, stores the red, green, and blue values.
• Normal property, stores the normal vectors for each point.
• Intensity property, stores the grayscale intensity for each point.

See Also
pointCloud | pcplayer | pcshow | pcwrite | pcmerge | pcfitplane | planeModel |
pctransform | pcdownsample | pcdenoise | pcregistericp

Topics
“3-D Point Cloud Registration and Stitching”
“The PLY Format”

External Websites
The PCD (Point Cloud Data) file format

 pcread

3-731

https://pointclouds.org/documentation/tutorials/pcd_file_format.html#
https://pointclouds.org/documentation/tutorials/pcd_file_format.html#


Introduced in R2015a

3 Functions

3-732



pcregistericp
Register two point clouds using ICP algorithm

Syntax
tform = pcregistericp(moving,fixed)
[tform,movingReg] = pcregistericp(moving,fixed)
[ ___ ,rmse] = pcregistericp(moving,fixed)
[ ___ ] = pcregistericp(moving,fixed,Name,Value)

Description
tform = pcregistericp(moving,fixed) returns a rigid transformation that registers a moving
point cloud to a fixed point cloud.

The registration algorithm is based on the "iterative closest point" (ICP) algorithm. Best performance
of this iterative process requires adjusting properties for your data. Consider downsampling point
clouds using pcdownsample before using pcregistericp to improve accuracy and efficiency of
registration.

Point cloud normals are required by the registration algorithm when you select the 'pointToPlane'
metric. Therefore, if the input point cloud’s Normal property is empty, the function fills it. When the
function fills the Normal property, it uses 6 points to fit the local plane. Six points may not work
under all circumstances. If registration with the 'pointToPlane' metric fails, consider calling the
pcnormals function which allows you to select the number of points to use.

[tform,movingReg] = pcregistericp(moving,fixed) additionally returns the transformed
point cloud that aligns with the fixed point cloud.

[ ___ ,rmse] = pcregistericp(moving,fixed) additionally returns the root mean square error
of the Euclidean distance between the inlier aligned points, using any of the preceding syntaxes.

[ ___ ] = pcregistericp(moving,fixed,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

Examples

Align Two Point Clouds Using ICP Algorithm

Load point cloud data.

ptCloud = pcread('teapot.ply');

pcshow(ptCloud); 
title('Teapot');

 pcregistericp

3-733



Create a transform object with 30 degree rotation along z -axis and translation [5,5,10].

A = [cos(pi/6) sin(pi/6) 0 0; ...
    -sin(pi/6) cos(pi/6) 0 0; ...
            0         0  1 0; ...
            5         5 10 1];
tform1 = affine3d(A);

Transform the point cloud.

ptCloudTformed = pctransform(ptCloud,tform1);

pcshow(ptCloudTformed);
title('Transformed Teapot');

3 Functions

3-734



Apply the rigid registration.

tform = pcregistericp(ptCloudTformed,ptCloud,'Extrapolate',true);

Compare the result with the true transformation.

disp(tform1.T);

    0.8660    0.5000         0         0
   -0.5000    0.8660         0         0
         0         0    1.0000         0
    5.0000    5.0000   10.0000    1.0000

tform2 = invert(tform);
disp(tform2.T);

    0.8660    0.5000    0.0000         0
   -0.5000    0.8660    0.0000         0
   -0.0000   -0.0000    1.0000         0
    5.0000    5.0000   10.0000    1.0000

Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

 pcregistericp

3-735



fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Metric','pointToPoint' sets the metric for the ICP algorithm to the
'pointToPoint' character vector.

Metric — Minimization metric
'pointToPoint' (default) | 'pointToPlane'

Minimization metric, specified as the comma-separated pair consisting of Metric and the
'pointToPoint' or 'pointToPlane' character vector. The rigid transformation between the
moving and fixed point clouds is estimated by the iterative closest point (ICP) algorithm. The ICP
algorithm minimizes the distance between the two point clouds according to the given metric.

Setting Metric to 'pointToPlane' can reduce the number of iterations to process. However, this
metric requires extra algorithmic steps within each iteration. The 'pointToPlane' metric improves
the registration of planar surfaces.

Downsample Method Selection:
Downsample the point clouds using the pcdownsample function. Point cloud normals are required by
the registration algorithm when you select the 'pointToPlane'. The 'nonuniformGridSample'
algorithm computes the normals on the original data prior to downsampling, resulting in more
accurate normals. Therefore, using the 'nonuniformGridSample' downsampling method can
result in a more accurate 'pointToPlane' registration. Use the “'random'” on page 3-0 ,
“'gridAverage'” on page 3-0 , or the “'nonuniformGridSample'” on page 3-0
input for the pcdownsample function according to the Metric table below.

Metric Moving PointCloud
Downsample Method

Fixed Point Cloud
Downsample Method

'pointToPoint' 'random' 'random'
'gridAverage' 'gridAverage'

'pointToPlane' 'gridAverage' 'gridAverage'
'random' 'nonuniformGridSample'

Extrapolate — Extrapolation
false (default) | true

Extrapolation, specified as the comma-separated pair consisting of 'Extrapolate' and the boolean
true or false. When you set this property to true, the function adds an extrapolation step that
traces out a path in the registration state space, that is described in [2]. Setting this property to true
can reduce the number of iterations to converge.

3 Functions

3-736



InlierRatio — Percentage of inliers
1 (default) | scalar

Percentage of inliers, specified as the comma-separated pair consisting of 'InlierRatio' and a
scalar value. Use this value to set a percentage of matched pairs as inliers. A pair of matched points
is considered an inlier if its Euclidean distance falls within the percentage set of matching distances.
By default, all matching pairs are used.

MaxIterations — Maximum number of iterations
20 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer. This value specifies the maximum number of iterations
before ICP stops.

Tolerance — Tolerance between consecutive ICP iterations
[0.01, 0.05] (default) | 2-element vector

Tolerance between consecutive ICP iterations, specified as the comma-separated pair consisting of
'Tolerance' and a 2-element vector. The 2-element vector, [Tdiff, Rdiff], represents the tolerance of
absolute difference in translation and rotation estimated in consecutive ICP iterations. Tdiff measures
the Euclidean distance between two translation vectors. Rdiff measures the angular difference in
degrees. The algorithm stops when the average difference between estimated rigid transformations
in the three most recent consecutive iterations falls below the specified tolerance value.

InitialTransform — Initial rigid transformation
rigid3d object

Initial rigid transformation, specified as the comma-separated pair consisting of
'InitialTransform' and a rigid3d object. The initial rigid transformation is useful when you
provide an external coarse estimation.

The rigid3d object contains a translation that moves the center of the moving point cloud to the
center of the fixed point cloud.

Verbose — Display progress information
false (default) | true

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and a
logical scalar. Set Verbose to true to display progress information.

Output Arguments
tform — Rigid transformation
rigid3d object

Rigid transformation, returned as a rigid3d object. The rigid transformation registers a moving
point cloud to a fixed point cloud. The rigid3d object describes the rigid 3-D transform. The
iterative closest point (ICP) algorithm estimates the rigid transformation between the moving and
fixed point clouds.

movingReg — Transformed point cloud
pointCloud object

 pcregistericp

3-737



Transformed point cloud, returned as a pointCloud object. The transformed point cloud is aligned
with the fixed point cloud.

rmse — Root mean square error
positive numeric

Root mean square error, returned as a positive numeric value that represents the Euclidean distance
between the inlier aligned points.

3 Functions

3-738



Algorithms

 pcregistericp

3-739



Tips

• For ground vehicle point clouds, you can improve performance and accuracy by removing the
ground using pcfitplane or segmentGroundFromLidarData before registration. For details
on how to do this, see the helper function, helperProcessPointCloud in the “Build a Map from
Lidar Data” (Automated Driving Toolbox) example.

• To merge more than two point clouds, you can use pccat function instead of the pcmerge
function.

Compatibility Considerations
The pcregistericp function returns a rigid3d object
Behavior changed in R2020a

Starting in R2020a, the pcregistericp function returns a rigid3d object. Prior to R2020a, the
function returned an affine3d object.

References
[1] Chen, Y. and G. Medioni. “Object Modelling by Registration of Multiple Range Images.” Image

Vision Computing. Butterworth-Heinemann . Vol. 10, Issue 3, April 1992, pp. 145-155.

[2] Besl, Paul J., N. D. McKay. “A Method for Registration of 3-D Shapes.” IEEE Transactions on
Pattern Analysis and Machine Intelligence. Los Alamitos, CA: IEEE Computer Society. Vol. 14,
Issue 2, 1992, pp. 239-256.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pcregistercorr | pcregisterndt | pcregistercpd | pctransform | pcshow | pcshowpair |
pcdownsample | pcfitplane | pcdenoise | pcmerge

Objects
pointCloud | rigid3d

Topics
“3-D Point Cloud Registration and Stitching”
“Implement Point Cloud SLAM in MATLAB”

Introduced in R2018a

3 Functions

3-740



pcregisterndt
Register two point clouds using NDT algorithm

Syntax
tform = pcregisterndt(moving,fixed,gridStep)
[tform,movingReg] = pcregisterndt(moving,fixed,gridStep)
[ ___ ,rmse] = pcregisterndt(moving,fixed,gridStep)
[ ___ ] = pcregisterndt(moving,fixed,gridStep,Name=Value)

Description
tform = pcregisterndt(moving,fixed,gridStep) returns the rigid transformation that
registers the moving point cloud with the fixed point cloud. The point clouds are voxelized into cubes
of size gridStep.

The registration algorithm is based on the normal-distributions transform (NDT) algorithm [1] [2].
Best performance of this iterative process requires adjusting properties for your data. To improve
accuracy and efficiency of registration, consider downsampling the point clouds by using
pcdownsample before using pcregisterndt.

[tform,movingReg] = pcregisterndt(moving,fixed,gridStep) also returns the
transformed point cloud that aligns with the fixed point cloud.

[ ___ ,rmse] = pcregisterndt(moving,fixed,gridStep) also returns the root mean square
error of the Euclidean distance between the aligned point clouds, using any of the preceding
syntaxes.

[ ___ ] = pcregisterndt(moving,fixed,gridStep,Name=Value) specifies options using one
or more name-value arguments in addition to any combination of arguments from previous syntaxes.
For example, MaxIterations=20 stops the NDT algorithm after 20 iterations.

Examples

Align Two Point Clouds Using NDT Algorithm

Load point cloud data.

ld = load('livingRoom.mat');
moving = ld.livingRoomData{1};
fixed = ld.livingRoomData{2};
pcshowpair(moving,fixed,'VerticalAxis','Y','VerticalAxisDir','Down')

 pcregisterndt

3-741



To improve the efficiency and accuracy of the NDT registration algorithm, downsample the moving
point cloud.

movingDownsampled = pcdownsample(moving,'gridAverage',0.1);

Voxelize the point cloud into cubes of sidelength 0.5. Apply the rigid registration using the NDT
algorithm.

gridStep = 0.5;
tform = pcregisterndt(movingDownsampled,fixed,gridStep);

Visualize the alignment.

movingReg = pctransform(moving,tform);
pcshowpair(movingReg,fixed,'VerticalAxis','Y','VerticalAxisDir','Down')

3 Functions

3-742



Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

gridStep — Size of voxels
positive scalar

Size of the 3-D cube that voxelizes the fixed point cloud, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: MaxIterations=20 stops the NDT algorithm after 20 iterations.

 pcregisterndt

3-743



InitialTransform — Initial rigid transformation
rigid3d object

Initial rigid transformation, specified as a rigid3d object. Set the initial transformation to a coarse
estimate. If you do not provide a course or initial estimate, the function uses a rigid3d object that
contains a translation that moves the center of the moving points to the center of the fixed points.

OutlierRatio — Percentage of outliers
0.55 (default) | scalar in the range [0, 1)

Expected percentage of outliers with respect to a normal distribution, specified as a scalar in the
range [0, 1). The NDT algorithm assumes a point is generated by a mixture of a normal distribution
for inliers and a uniform distribution for outliers. A larger value of 'OutlierRatio' reduces the
influence of outliers.
Data Types: single | double

MaxIterations — Maximum number of iterations
30 (default) | nonnegative integer

Maximum number of iterations before NDT stops, specified as a nonnegative integer.
Data Types: single | double

Tolerance — Tolerance between consecutive NDT iterations
[0.01 0.5] (default) | 2-element vector

Tolerance between consecutive NDT iterations, specified as a 2-element vector with nonnegative
values. The vector, [Tdiff Rdiff], represents the tolerance of absolute difference in translation and
rotation estimated in consecutive NDT iterations. Tdiff measures the Euclidean distance between two
translation vectors. Rdiff measures the angular difference in degrees. The algorithm stops when the
difference between estimated rigid transformations in the most recent consecutive iterations falls
below the specified tolerance value.
Data Types: single | double

Verbose — Display progress information
false (default) | true

Display progress information, specified as a numeric or logical 0 (false) or 1 (true). To display the
progress information, set Verbose to true.

Output Arguments
tform — Rigid transformation
rigid3d object

Rigid transformation, returned as a rigid3d object. tform describes the rigid 3-D transformation
that registers the moving point cloud, moving, to the fixed point cloud, fixed.

movingReg — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud is aligned
with the fixed point cloud, fixed.

3 Functions

3-744



rmse — Root mean square error
positive number

Root mean square error, returned as a positive number. rmse is the Euclidean distance between the
aligned point clouds. A low rmse value indicates a more accurate registration.

 pcregisterndt

3-745



Algorithms

3 Functions

3-746



Tips

• For ground vehicle point clouds, you can improve performance and accuracy by removing the
ground using pcfitplane or segmentGroundFromLidarData before registration. For details
on how to do this, see the helper function, helperProcessPointCloud in the “Build a Map from
Lidar Data” (Automated Driving Toolbox) example.

• To merge more than two point clouds, you can use pccat function instead of the pcmerge
function.

NDT Registration Overview

The NDT registration is based on normal distributions rather than other types of registration which
match points or lines in order to find the transformation between two point clouds. The NDT
approach uses statistical models with 3-D boxes, called voxels.

To register two point clouds, a moving point cloud and a fixed point cloud, using the NDT approach,
the algorithm performs the following:

1 Computes the normal distributions for the fixed point cloud by dividing the area covered by the
point cloud scan into 3-D boxes of constant size, referred to as "voxels". Each voxel contains a set
of points. The algorithm computes the mean and covariance matrix for the points in each voxel.

2 Starting with an initial guess of the transformation, the algorithm aligns the moving point cloud
to the fixed point cloud. It then finds the sum of the statistical likelihood of each aligned point to
be located in the voxel that surrounds the point (in the moving point cloud), based on the normal
distribution of the fixed point cloud.

3 To improve the registration, the algorithm maximizes the probability score of the moving point
cloud on the normal distributions of the fixed point cloud. This is done by iteratively optimizing
angular and translational estimations.

4 Repeats the alignment of the moving point cloud with the fixed piont cloud using the new
transformation from the previous step and then repeats the optimization.

5 The algorithm stops once the maximum iterations or the tolerance parameters, are met. The
tolerance is a measure of how much the angular and translational estimations change from one
iteration to another.

Compatibility Considerations
The pcregisterndt function returns a rigid3d object
Behavior changed in R2020a

Starting in R2020a, the pcregisterndt function returns a rigid3d object. Prior to R2020a, the
function returned an affine3d object.

References
[1] Biber, P., and W. Straßer. “The Normal Distributions Transform: A New Approach to Laser Scan

Matching.” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Las Vegas, NV. Vol. 3, November 2003, pp. 2743–2748.

[2] Magnusson, M. “The Three-Dimensional Normal-Distributions Transform — an Efficient
Representation for Registration, Surface Analysis, and Loop Detection.” Ph.D. Thesis. Örebro
University, Örebro, Sweden, 2013.

 pcregisterndt

3-747



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Functions
pcregistercorr | pcregistericp | pcregistercpd | pctransform | pcshow | pcshowpair |
pcdownsample | pcfitplane | pcdenoise | pcmerge

Objects
pointCloud | rigid3d

Topics
“3-D Point Cloud Registration and Stitching”
“Implement Point Cloud SLAM in MATLAB”

Introduced in R2018a

3 Functions

3-748



pcregrigid
Register two point clouds using ICP algorithm

Note pcregrigid is not recommended. Use pcregistericp instead.

Syntax
tform = pcregrigid(moving,fixed)
[tform,movingReg] = pcregrigid(moving,fixed)
[ ___ ,rmse] = pcregrigid(moving,fixed)
[ ___ ] = pcregrigid(moving,fixed,Name,Value)

Description
tform = pcregrigid(moving,fixed) returns a rigid transformation that registers a moving
point cloud to a fixed point cloud.

The registration algorithm is based on the "iterative closest point" (ICP) algorithm. Best performance
of this iterative process requires adjusting properties for your data. Consider downsampling point
clouds using pcdownsample before using pcregrigid to improve accuracy and efficiency of
registration.

Point cloud normals are required by the registration algorithm when you select the 'pointToPlane'
metric. Therefore, if the input point cloud’s Normal property is empty, the function fills it. When the
function fills the Normal property, it uses 6 points to fit the local plane. Six points may not work
under all circumstances. If registration with the 'pointToPlane' metric fails, consider calling the
pcnormals function which allows you to select the number of points to use.

[tform,movingReg] = pcregrigid(moving,fixed) additionally returns the transformed point
cloud that aligns with the fixed point cloud.

[ ___ ,rmse] = pcregrigid(moving,fixed) additionally returns the root mean squared error of
the Euclidean distance between the aligned point clouds, using any of the preceding syntaxes.

[ ___ ] = pcregrigid(moving,fixed,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Align Two Point Clouds

Load point cloud data.

ptCloud = pcread('teapot.ply');
figure
pcshow(ptCloud); 
title('Teapot');

 pcregrigid

3-749



Create a transform object with 30 degree rotation along z -axis and translation [5,5,10].

A = [cos(pi/6) sin(pi/6) 0 0; ...
    -sin(pi/6) cos(pi/6) 0 0; ...
            0         0  1 0; ...
            5         5 10 1];
tform1 = affine3d(A);

Transform the point cloud.

ptCloudTformed = pctransform(ptCloud,tform1);

figure
pcshow(ptCloudTformed);
title('Transformed Teapot');

3 Functions

3-750



Apply the rigid registration.

tform = pcregrigid(ptCloudTformed,ptCloud,'Extrapolate',true);

Compare the result with the true transformation.

disp(tform1.T);

    0.8660    0.5000         0         0
   -0.5000    0.8660         0         0
         0         0    1.0000         0
    5.0000    5.0000   10.0000    1.0000

tform2 = invert(tform);
disp(tform2.T);

    0.8660    0.5000    0.0000         0
   -0.5000    0.8660    0.0000         0
   -0.0000   -0.0000    1.0000         0
    5.0000    5.0000   10.0000    1.0000

Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

 pcregrigid

3-751



fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Metric','pointToPoint' sets the metric for the ICP algorithm to the
'pointToPoint'.

Metric — Minimization metric
'pointToPoint' (default) | 'pointToPlane'

Minimization metric, specified as the comma-separated pair consisting of 'Metric' and
'pointToPoint' or 'pointToPlane'. The rigid transformation between the moving and fixed
point clouds are estimated by the iterative closest point (ICP) algorithm. The ICP algorithm minimizes
the distance between the two point clouds according to the given metric.

Setting 'Metric' to 'pointToPlane' can reduce the number of iterations to process. However, this
metric requires extra algorithmic steps within each iteration. The 'pointToPlane' metric improves
the registration of planar surfaces.

Downsample Method Selection:
Downsample the point clouds using the pcdownsample function. Use either the 'random' or
'gridAverage' input for the pcdownsample function according to the Metric table below.

Metric Point Cloud A Downsample Method Point Cloud B Downsample Method
'pointToPoint' 'random' 'random'

'gridAverage' 'gridAverage'
'pointToPlane' 'gridAverage' 'gridAverage'

'random' 'nonuniformGridSample'

Extrapolate — Extrapolation
false (default) | true

Extrapolation, specified as the comma-separated pair consisting of 'Extrapolate' and the boolean
true or false. When you set this property to true, the function adds an extrapolation step that
traces out a path in the registration state space, that is described in [2]. Setting this property to true
can reduce the number of iterations to converge.

InlierRatio — Percentage of inliers
1 (default) | scalar

Percentage of inliers, specified as the comma-separated pair consisting of 'InlierRatio' and a
scalar value. Use this value to set a percentage of matched pairs as inliers. A pair of matched points
is considered an inlier if its Euclidean distance falls within the percentage set of matching distances.
By default, all matching pairs are used.

3 Functions

3-752



MaxIterations — Maximum number of iterations
20 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer. This value specifies the maximum number of iterations
before ICP stops.

Tolerance — Tolerance between consecutive ICP iterations
[0.01, 0.009] (default) | 2-element vector

Tolerance between consecutive ICP iterations, specified as the comma-separated pair consisting of
'Tolerance' and a 2-element vector. The 2-element vector, [Tdiff, Rdiff], represents the tolerance of
absolute difference in translation and rotation estimated in consecutive ICP iterations. Tdiff measures
the Euclidean distance between two translation vectors. Rdiff measures the angular difference in
radians. The algorithm stops when the average difference between estimated rigid transformations in
the three most recent consecutive iterations falls below the specified tolerance value.

InitialTransform — Initial rigid transformation
affine3d() object (default)

Initial rigid transformation, specified as the comma-separated pair consisting of
'InitialTransform' and an affine3d object. The initial rigid transformation is useful when you
provide an external coarse estimation.

Verbose — Display progress information
true (default) | false

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and a
logical scalar. Set Verbose to true to display progress information.

Output Arguments
tform — Rigid transformation
affine3d object

Rigid transformation, returned as an affine3d object. The rigid transformation registers a moving
point cloud to a fixed point cloud. The affine3d object describes the rigid 3-D transform. The
iterative closest point (ICP) algorithm estimates the rigid transformation between the moving and
fixed point clouds.

movingReg — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud is aligned
with the fixed point cloud.

rmse — Root mean square error
positive numeric

Root mean square error, returned as the Euclidean distance between the aligned point clouds.

 pcregrigid

3-753



References
[1] Chen, Y. and G. Medioni. “Object Modelling by Registration of Multiple Range Images.” Image

Vision Computing. Butterworth-Heinemann . Vol. 10, Issue 3, April 1992, pp. 145-155.

[2] Besl, Paul J., N. D. McKay. “A Method for Registration of 3-D Shapes.” IEEE Transactions on
Pattern Analysis and Machine Intelligence. Los Alamitos, CA: IEEE Computer Society. Vol. 14,
Issue 2, 1992, pp. 239-256.

See Also
pointCloud | pcregistericp | pcregisterndt

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

3 Functions

3-754



pcsegdist
Segment point cloud into clusters based on Euclidean distance

Syntax
labels = pcsegdist(ptCloud,minDistance)
[labels,numClusters] = pcsegdist(ptCloud,minDistance)
[ ___ ] = pcsegdist( ___ ,Name=Value)

Description
labels = pcsegdist(ptCloud,minDistance) segments a point cloud into clusters, with a
minimum Euclidean distance of minDistance between points from different clusters. pcsegdist
assigns an integer cluster label to each point in the point cloud, and returns the labels of all points.

[labels,numClusters] = pcsegdist(ptCloud,minDistance) also returns the number of
clusters.

[ ___ ] = pcsegdist( ___ ,Name=Value) sets properties using name-value arguments. For
example, labels = pcsegdist(ptCloud,minDistance,NumClusterPoints=[1,Inf]) sets the
minimum and maximum number of points in each cluster to [1,Inf].

Examples

Cluster Point Cloud Based on Euclidean Distance

Create two concentric spheres and combine them.

[X,Y,Z] = sphere(100);
loc1 = [X(:),Y(:),Z(:)];
loc2 = 2*loc1;
ptCloud = pointCloud([loc1;loc2]);
pcshow(ptCloud)
title('Point Cloud')

 pcsegdist

3-755



Set the minimum Euclidean distance between clusters.

minDistance = 0.5;

Segment the point cloud.

[labels,numClusters] = pcsegdist(ptCloud,minDistance);

Plot the labeled results. The points are grouped into two clusters.

pcshow(ptCloud.Location,labels)
colormap(hsv(numClusters))
title('Point Cloud Clusters')

3 Functions

3-756



Cluster Lidar Point Cloud Based on Euclidean Distance

Load an organized lidar point cloud in the workspace.

ld = load('drivingLidarPoints.mat');

Detect the ground plane. Distance is measured in meters.

maxDistance = 0.9;
referenceVector = [0 0 1];
[~,inliers,outliers] = pcfitplane(ld.ptCloud,maxDistance,referenceVector);

Remove the ground plane points.

ptCloudWithoutGround = select(ld.ptCloud,outliers);

Cluster the point cloud with a minimum of 10 points per cluster.

minDistance = 2;
minPoints = 10;
[labels,numClusters] = pcsegdist(ptCloudWithoutGround,minDistance,'NumClusterPoints',minPoints);

Remove the points with a label value of 0.

 pcsegdist

3-757



idxValidPoints = find(labels);
labelColorIndex = labels(idxValidPoints);
segmentedPtCloud = select(ptCloudWithoutGround,idxValidPoints);

Plot the labeled results.

figure
colormap(hsv(numClusters))
pcshow(segmentedPtCloud.Location,labelColorIndex)
title('Point Cloud Clusters')

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

minDistance — Minimum Euclidean distance
positive scalar

Minimum Euclidean distance between points from two different clusters, specified as a positive
scalar.
Data Types: single | double

3 Functions

3-758



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ParallelNeighborSearch=false sets the ParallelNeighborSearch to false.

NumClusterPoints — Minimum and maximum number of points in each cluster
[1,Inf] (default) | 2-element vector | scalar

Minimum and maximum number of points in each cluster, specified as a scalar or a 2-element vector
of the form [minPoints,maxPoints]. When you specify NumClusterPoints as a scalar, the maximum
number of points in the cluster is unrestricted. The function sets labels to 0 when clusters are
outside of the specified range.

ParallelNeighborSearch — Parallel neighbor search to segment point cloud data
false (default) | true

Parallel neighbor search to segment point cloud data, specified as true or false. Set this property
to true when you expect there to be approximately 50 clusters or more with fewer than 100 points
per cluster.

A parallel neighbor search can improve segmentation speed for some datasets. Improved speed
depends on the dataset and the value of the minDistance input.

Output Arguments
labels — Cluster labels
M-by-1 vector | M-by-N matrix

Cluster labels, returned as one of the following.

• If the point cloud, ptCloud, stores point locations as an unorganized M-by-3 matrix, then labels
is an M-by-1 vector.

• If the point cloud, ptCloud, stores point locations as an organized M-by-N-by-3 array, then
labels is an M-by-N matrix.

Each point in the point cloud has a cluster label, specified by the corresponding element in labels.
The value of each label is an integer from 0 to the number of clusters of valid points, numClusters.
The value 0 is reserved for invalid points, such as points with Inf or NaN coordinates.

numClusters — Number of clusters
positive integer

Number of clusters, returned as a positive integer. The number of clusters does not include the
cluster corresponding to invalid points and excludes the label value, 0, which is reserved for invalid
points.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 pcsegdist

3-759



GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The generated CUDA code segments the point cloud into clusters by using a combination of
algorithms described in [1] and [2]. The output from the generated code can differ slightly with
results from MATLAB simulation.

• The NumClusterPoints name-value argument is not supported for GPU code generation.

References
[1] Andrade, Guilherme, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Renato Ferreira, and

Leonardo Rocha. “G-DBSCAN: A GPU Accelerated Algorithm for Density-Based Clustering.”
Procedia Computer Science 18 (2013): 369–78. https://doi.org/10.1016/j.procs.2013.05.200.

[2] Kalentev, Oleksandr, Abha Rai, Stefan Kemnitz, and Ralf Schneider. “Connected Component
Labeling on a 2D Grid Using CUDA.” Journal of Parallel and Distributed Computing 71, no. 4
(April 2011): 615–20. https://doi.org/10.1016/j.jpdc.2010.10.012.

See Also
Objects
pointCloud

Functions
pcdenoise | pcfitplane | pcshow | segmentLidarData | pcbin

Introduced in R2018a

3 Functions

3-760

https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1016/j.jpdc.2010.10.012


pcwrite
Write 3-D point cloud to PLY or PCD file

Syntax
pcwrite(ptCloud,filename)
pcwrite(ptCloud,filename,'Encoding',encodingType)

Description
pcwrite(ptCloud,filename) writes the point cloud object, ptCloud, to the PLY or PCD file
specified by the input filename.

pcwrite(ptCloud,filename,'Encoding',encodingType) writes a pointCloud object,
ptCloud, to a PLY file that is in the specified format.

Examples

Write 3-D Point Cloud to PLY File
ptCloud = pcread('teapot.ply');
pcshow(ptCloud); 

 pcwrite

3-761



pcwrite(ptCloud,'teapotOut','PLYFormat','binary');

Write 3-D Organized Point Cloud to PCD File
load('object3d.mat');
pcwrite(ptCloud,'object3d.pcd','Encoding','ascii');
pc = pcread('object3d.pcd');
pcshow(pc);

Input Arguments
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar. The input file type must be a PLY or PCD
format file.

For a PLY-file, the pcwrite function converts an organized M-by-N-by-3 point cloud to an
unorganized M-by-3 format. It converts the format because PLY files do not support organized point
clouds. To preserve the organized format, you can save the point cloud as a PCD-file.

If you do not specify the file name with an extension, the function writes the file in a PLY-format. All
NaN or Inf values will be skipped when writing to a PLY file.

3 Functions

3-762



ptCloud — Object for storing point cloud
pointCloud object

Object for storing point cloud, specified as a pointCloud object.

encodingType — PLY or PCD file
'ascii' (default) | 'binary' | 'compressed'

PLY or PCD formatted file, specified as the comma-separated pair consisting of 'Encoding', and
either 'ascii', 'binary', 'compressed' for the file format.

File Format Valid Encodings
PLY 'ascii', 'binary'
PCD 'ascii', 'binary', or 'compressed'

To improve performance when writing large point clouds, use the 'compressed' or 'binary' file
type.

See Also
pointCloud | pcread | pcplayer | pcshow | pcmerge | pcfitplane | planeModel |
pctransform | pcdownsample | pcdenoise | pcregistericp

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

 pcwrite

3-763



pctransform
Transform 3-D point cloud

Syntax
ptCloudOut = pctransform(ptCloudIn,tform)
ptCloudOut = pctransform(ptCloudIn,D)

Description
ptCloudOut = pctransform(ptCloudIn,tform) applies the specified 3-D affine transform,
tform to the point cloud, ptCloudIn. The transformation can be a rigid or nonrigid transform.

ptCloudOut = pctransform(ptCloudIn,D) applies the displacement field D to the point cloud.
Point cloud transformation using a displacement field define translations with respect to each point in
the point cloud.

Examples

Rotate 3-D Point Cloud Using Rigid Transformation

Read a point cloud.

ptCloud = pcread('teapot.ply');

Plot the point cloud.

figure
pcshow(ptCloud)
xlabel('X')
ylabel('Y')
zlabel('Z')

3 Functions

3-764



Create a transform object with a 45 degree rotation along the z-axis.

theta = pi/4;
rot = [cos(theta) sin(theta) 0; ...
      -sin(theta) cos(theta) 0; ...
               0          0  1];
trans = [0, 0, 0];
tform = rigid3d(rot,trans);

Transform the point cloud.

ptCloudOut = pctransform(ptCloud,tform);

Plot the transformed point cloud.

figure
pcshow(ptCloudOut)
xlabel('X')
ylabel('Y')
zlabel('Z')

 pctransform

3-765



Affine Transformations of 3-D Point Cloud

This example shows affine transformation of a 3-D point cloud. The specified forward transform can
be a rigid or nonrigid transform. The transformations shown includes rotation (rigid transform) and
shearing (nonrigid transform) of the input point cloud.

Read a point cloud into the workspace.

ptCloud = pcread('teapot.ply');

Rotation of 3-D Point Cloud

Create an affine transform object that defines a 45 degree rotation along the z-axis.

A = [cos(pi/4) sin(pi/4) 0 0; ...
     -sin(pi/4) cos(pi/4) 0 0; ...
     0 0 1 0; ...
     0 0 0 1];
tform = affine3d(A);

Transform the point cloud.

ptCloudOut1 = pctransform(ptCloud,tform);

3 Functions

3-766



Shearing of 3-D point cloud

Create an affine transform object that defines shearing along the x-axis.

A = [1 0 0 0; ...
     0.75 1 0 0; ...
     0.75 0 1 0; ...
     0 0 0 1];
tform = affine3d(A);

Transform the point cloud.

ptCloudOut2 = pctransform(ptCloud,tform);

Display the Original and Affine Transformed 3-D Point Clouds

Plot the original 3-D point cloud.

figure1 = figure('WindowState','normal');
axes1 = axes('Parent',figure1);
pcshow(ptCloud,'Parent',axes1); 
xlabel('X');
ylabel('Y');
zlabel('Z');
title('3-D Point Cloud','FontSize',14)

% Plot the rotation and shear affine transformed 3-D point clouds.
figure2 = figure('WindowState','normal');

 pctransform

3-767



axes2 = axes('Parent',figure2);
pcshow(ptCloudOut1,'Parent',axes2);
xlabel('X');
ylabel('Y');
zlabel('Z');
title({'Rotation of 3-D Point Cloud'},'FontSize',14)

figure3 = figure('WindowState','normal');
axes3 = axes('Parent',figure3);
pcshow(ptCloudOut2,'Parent',axes3);
xlabel('X');
ylabel('Y');
zlabel('Z');
title({'Shearing of 3-D Point Cloud'},'FontSize',14)

3 Functions

3-768



Point Cloud Transformation Using Displacement Field

Read a point cloud into the workspace.

ptCloud = pcread('teapot.ply');

Create a displacement field D of same size as the point cloud.

D = zeros(size(ptCloud.Location));

Set the displacement field value along x-axis for the first half of the points to 7.

pthalf = ptCloud.Count/2;
D(1:pthalf,1) = 7;

Extract the indices of points within a region-of-interest (ROI) using the pointCloud method
findNeighborsInRadius. Set the displacement field value along the x-, y-, and z-axis for points
within the ROI to 4, 4, and -2, respectively.

indices = findNeighborsInRadius(ptCloud,[0 0 3.1],1.5);
D(indices,1:2) = 4;
D(indices,3) = -2;

Transform the point cloud using the displacement field.

ptCloudOut = pctransform(ptCloud,D);

 pctransform

3-769



Display the original and transformed point cloud.

figure
pcshow(ptCloud)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Original 3-D Point Cloud')

figure
pcshow(ptCloudOut)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Transformed 3-D Point Cloud Using Displacement Field')

3 Functions

3-770



Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

tform — 3-D geometric transformation
rigid3d object | affine3d object

3-D geometric transformation, specified as a rigid3d object or an affine3d object. See “Define
Transformation Matrix” for details on how to set up an affine 3-D tform input.

D — Displacement field
M-by-3 matrix | M-by-N-by-3 array

Displacement field, specified as either M-by-3 or an M-by-N-by-3 array. The displacement field is a set
of displacement vectors that specify the magnitude and direction of translation for each point in the
point cloud. The size of the displacement field must be the same as the size of the Location property
of the pointCloud object.
Data Types: single | double

 pctransform

3-771



Output Arguments
ptCloudOut — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformation applies to the
coordinates of points and their normal vectors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Objects
pointCloud | planeModel | affine3d | rigid3d

Functions
pcplayer | pcshow | pcwrite | pcread | pcmerge | pcdownsample | pcfitplane | pcdenoise |
pcregistericp | pccat | pcalign

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

3 Functions

3-772



pcnormals
Estimate normals for point cloud

Syntax
normals = pcnormals(ptCloud)
normals = pcnormals(ptCloud,k)

Description
normals = pcnormals(ptCloud) returns a matrix that stores a normal for each point in the input
ptCloud. The function uses six neighboring points to fit a local plane to determine each normal
vector.

normals = pcnormals(ptCloud,k) additionally specifies k, the number of points used for local
plane fitting. The function uses this value rather than the six neighboring points as described in the
first syntax.

Examples

Estimate Normals of Point Cloud

Load a point cloud.

load('object3d.mat');

Estimate the normal vectors.

normals = pcnormals(ptCloud);

figure
pcshow(ptCloud)
title('Estimated Normals of Point Cloud')
hold on

 pcnormals

3-773



x = ptCloud.Location(1:10:end,1:10:end,1);
y = ptCloud.Location(1:10:end,1:10:end,2);
z = ptCloud.Location(1:10:end,1:10:end,3);
u = normals(1:10:end,1:10:end,1);
v = normals(1:10:end,1:10:end,2);
w = normals(1:10:end,1:10:end,3);

Plot the normal vectors.

quiver3(x,y,z,u,v,w);
hold off

3 Functions

3-774



Flip the normals to point towards the sensor location. This step is necessary only for determining the
inward or outward direction of the surface. The sensor center is set in x , y , z coordinates.

sensorCenter = [0,-0.3,0.3]; 
for k = 1 : numel(x)
   p1 = sensorCenter - [x(k),y(k),z(k)];
   p2 = [u(k),v(k),w(k)];
   % Flip the normal vector if it is not pointing towards the sensor.
   angle = atan2(norm(cross(p1,p2)),p1*p2');
   if angle > pi/2 || angle < -pi/2
       u(k) = -u(k);
       v(k) = -v(k);
       w(k) = -w(k);
   end
end

Plot the adjusted normals.

figure
pcshow(ptCloud)
title('Adjusted Normals of Point Cloud')
hold on
quiver3(x, y, z, u, v, w);
hold off

 pcnormals

3-775



Input Arguments
ptCloud — Object for storing point cloud
pointCloud object

Object for storing point cloud, returned as a pointCloud object.

k — Number of points used for local plane fitting
integer greater than or equal to 3

Number of points used for local plane fitting, specified as an integer greater than or equal to 3.
Increasing this value improves accuracy but slows down computation time. If you do not specify k,
the function uses six neighboring points to fit a local plane to determine each normal vector.

Output Arguments
normals — Normals used to fit a local plane
M-by-3 | M-by-N-by-3

Normals used to fit a local plane, returned as an M-by-3 or an M-by-N-by-3 vector. The normal vectors
are computed locally using six neighboring points. The direction of each normal vector can be set
based on how you acquired the points. The “Estimate Normals of Point Cloud” on page 3-773
example, shows how to set the direction when the normal vectors are pointing towards the sensor.

3 Functions

3-776



References
[1] Hoppe, H., T. DeRose, T. Duchamp, J. Mcdonald, and W. Stuetzle. "Surface Reconstruction from

Unorganized Points". Computer Graphics (SIGGRAPH 1992 Proceedings). 1992, pp. 71–78.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For GPU code generation, the number of neighbors must be a compile-time constant.
• Because of architectural and implementation differences between the GPU and CPU, the choice of

neighboring points may differ during computation of normal vectors. As a result, there may be
numerical mismatch between MATLAB simulation and the output from code generation.

See Also
pointCloud | pcplayer | pcshow | pcwrite | pcmerge | pcfitplane | planeModel |
pctransform | pcdownsample | pcdenoise | pcregistericp

Topics
“3-D Point Cloud Registration and Stitching”
“The PLY Format”

Introduced in R2015b

 pcnormals

3-777



pcfitcylinder
Fit cylinder to 3-D point cloud

Syntax
model = pcfitcylinder(ptCloudIn,maxDistance)
model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector)
model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector,
maxAngularDistance)

[model,inlierIndices,outlierIndices] = pcfitcylinder(ptCloudIn,maxDistance)
[ ___ ,meanError] = pcfitcylinder(ptCloudIn,maxDistance)
[ ___ ] = pcfitcylinder( ___ ,Name,Value)

Description
model = pcfitcylinder(ptCloudIn,maxDistance) fits a cylinder to a point cloud with a
maximum allowable distance from an inlier point to the cylinder. This function uses the M-estimator
SAmple Consensus (MSAC) algorithm to find the cylinder.

model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector) fits a cylinder to the
point cloud with additional orientation constraints specified by the 1-by-3 reference orientation input
vector.

model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector,
maxAngularDistance) additionally specifies the maximum allowed absolute angular distance.

[model,inlierIndices,outlierIndices] = pcfitcylinder(ptCloudIn,maxDistance)
additionally returns linear indices to the inlier and outlier points in the point cloud input.

[ ___ ,meanError] = pcfitcylinder(ptCloudIn,maxDistance) additionally returns the mean
error of the distance of the inlier points to the model.

[ ___ ] = pcfitcylinder( ___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Extract Cylinder from Point Cloud

Load the point cloud.

load("object3d.mat");

Display the point cloud.

figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")

3 Functions

3-778



zlabel("Z(m)")
title("Original Point Cloud")

Set the maximum point-to-cylinder distance (5 mm) for cylinder fitting.

maxDistance = 0.005;

Set the region of interest to constrain the search.

roi = [0.4,0.6,-inf,0.2,0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Set the orientation constraint.

referenceVector = [0,0,1];

Detect the cylinder and extract it from the point cloud by specifying the inlier points.

[model,inlierIndices] = pcfitcylinder(ptCloud,maxDistance,...
        referenceVector,SampleIndices=sampleIndices);
pc = select(ptCloud,inlierIndices);

Plot the extracted cylinder.

figure
pcshow(pc)
title("Cylinder Point Cloud")

 pcfitcylinder

3-779



Detect Cylinder in Point Cloud

Load a MAT file containing a point cloud into the workspace.

load("object3d.mat");

Display the point cloud.

figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")
zlabel("Z(m)")
title("Detect a Cylinder in a Point Cloud")

Set the maximum point-to-cylinder distance for cylinder fitting to 5mm.

maxDistance = 0.005;

Specify a region of interest (ROI) to constrain the fitting function.

roi = [0.4 0.6; -inf 0.2; 0.1 inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Set the orientation constraint for the fitting function

3 Functions

3-780



referenceVector = [0 0 1];

Detect the cylinder in the specified ROI of the point cloud and extract it.

model = pcfitcylinder(ptCloud,maxDistance,referenceVector, ...
        SampleIndices=sampleIndices);

Plot the model of the detected cylinder.

hold on
plot(model)

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. If the Normal property of the input ptCloud is empty,
the function populates it with values to meet the requirements of the fitting algorithm.

maxDistance — Maximum distance from an inlier point to the cylinder
scalar value

Maximum distance from an inlier point to the cylinder, specified as a scalar value. Specify the
distance in units that are consistent with the units you are using for the point cloud.

 pcfitcylinder

3-781



Data Types: single | double

referenceVector — Reference orientation
1-by-3 vector

Reference orientation, specified as a 1-by-3 vector.

maxAngularDistance — Maximum absolute angular distance
5 (default) | scalar value

Maximum absolute angular distance, specified as a scalar value. The maximum angular distance is
measured in degrees between the direction of the fitted cylinder and the reference orientation.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SampleIndices',[].

SampleIndices — Linear indices of points to sample
[] (default) | column vector

Linear indices of points to sample in the input point cloud, specified as the comma-separated pair
consisting of 'SampleIndices' and a column vector. An empty vector means that all points are
candidates to sample when fitting the cylinder during the RANSAC iteration. If you specify a subset of
points, the function fits the model by sampling only those points in the subset. Providing a subset of
points can significantly speed up the process by reducing the number of trials. You can generate the
indices vector using the findPointsInROI method of the pointCloud object.

MaxNumTrials — Maximum number of random trials
1000 (default) | positive integer

Maximum number of random trials for finding inliers, specified as the comma-separated pair
consisting of 'MaxNumTrials' and a positive integer. To improve robustness of the output, increase
this value. However, doing so adds additional computations.

Confidence — Percentage for finding maximum number of inliers
99 (default) | numeric scalar in the range (0,100)

Percentage for finding maximum number of inliers, specified as the comma-separated pair consisting
of 'Confidence' and a numeric scalar, in the range (0 100). To improve the robustness of the output,
increase this value. However, doing so adds additional computations.

Output Arguments
model — Geometric model of cylinder
cylinderModel object.

Geometric model of cylinder, returned as a cylinderModel object.

The coefficients for the output model are set to zero when:

3 Functions

3-782



• The input point cloud does not contain enough valid points.
• The algorithm cannot find enough inlier points.

inlierIndices — Linear indices of inlier points
column vector

Linear indices of the inlier points in the input point cloud, returned as a column vector.

outlierIndices — Linear indices of outlier points
column vector

Linear indices of the outlier points in the input point cloud returned as a column vector.

meanError — Mean square error
scalar value

Mean error of the distance of inlier points to the model, returned as a scalar value.

Algorithms
The function returns a geometric model that describes the cylinder. This function uses the M-
estimator SAmple Consensus (MSAC) algorithm to find the cylinder. The MSAC algorithm is a variant
of the RANdom SAmple Consensus (RANSAC) algorithm.

The fitting algorithm for the pcfitcylinder function requires point cloud normals. Therefore, if the
Normal property for the input point cloud is empty, the function fills it. When the function fills the
Normal property, it uses six points to fit the local cylinder. If six points do not work and the fitting
fails, consider calling the pcnormals function which enables you to select the number of points to
use.

References
[1] Torr, P. H. S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application to

Estimating Image Geometry.” Computer Vision and Image Understanding. Volume 78, Issue 1,
April 2000, pp. 138-156.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
cylinderModel | planeModel | sphereModel | affine3d | pointCloud

Functions
pcfitplane | pcfitsphere | pcplayer | pcshow | pcwrite | pcread | pcmerge | pctransform |
pcregistericp | pcdenoise

Topics
“3-D Point Cloud Registration and Stitching”

 pcfitcylinder

3-783



Introduced in R2015b

3 Functions

3-784



pcfitplane
Fit plane to 3-D point cloud

Syntax
model = pcfitplane(ptCloudIn,maxDistance)
model = pcfitplane(ptCloudIn,maxDistance,referenceVector)
model = pcfitplane(ptCloudIn,maxDistance,referenceVector,maxAngularDistance)

[model,inlierIndices,outlierIndices] = pcfitplane(ptCloudIn,maxDistance)
[ ___ ,meanError] = pcfitplane(ptCloudIn,maxDistance)
[ ___ ] = pcfitplane(ptCloudIn,maxDistance,Name,Value)

Description
model = pcfitplane(ptCloudIn,maxDistance) fits a plane to a point cloud that has a
maximum allowable distance from an inlier point to the plane. The function returns a geometrical
model that describes the plane.

This function uses the M-estimator SAmple Consensus (MSAC) algorithm to find the plane. The MSAC
algorithm is a variant of the RANdom SAmple Consensus (RANSAC) algorithm.

model = pcfitplane(ptCloudIn,maxDistance,referenceVector) fits a plane to a point
cloud that has additional orientation constraints specified by the 1-by-3 referenceVector input.

model = pcfitplane(ptCloudIn,maxDistance,referenceVector,maxAngularDistance)
fits a plane to a point cloud that has a specified maximum angular distance.

[model,inlierIndices,outlierIndices] = pcfitplane(ptCloudIn,maxDistance)
additionally returns the linear indices to the inlier and outlier points in the point cloud input.

[ ___ ,meanError] = pcfitplane(ptCloudIn,maxDistance) additionally returns the mean
error of the distance of inlier points to the model, using any of the preceding syntaxes.

[ ___ ] = pcfitplane(ptCloudIn,maxDistance,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Detect Multiple Planes from Point Cloud

Load the point cloud.

load("object3d.mat")

Display and label the point cloud.

figure
pcshow(ptCloud)
xlabel("X(m)")

 pcfitplane

3-785



ylabel("Y(m)")
zlabel("Z(m)")
title("Original Point Cloud")

Set the maximum point-to-plane distance (2cm) for plane fitting.

maxDistance = 0.02;

Set the normal vector of the plane.

referenceVector = [0,0,1];

Set the maximum angular distance to 5 degrees.

maxAngularDistance = 5;

Detect the first plane, the table, and extract it from the point cloud.

[model1,inlierIndices,outlierIndices] = pcfitplane(ptCloud,...
            maxDistance,referenceVector,maxAngularDistance);
plane1 = select(ptCloud,inlierIndices);
remainPtCloud = select(ptCloud,outlierIndices);

Set the region of interest to constrain the search for the second plane, left wall.

roi = [-inf,inf;0.4,inf;-inf,inf];
sampleIndices = findPointsInROI(remainPtCloud,roi);

Detect the left wall and extract it from the remaining point cloud.

3 Functions

3-786



[model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,...
            maxDistance,SampleIndices=sampleIndices);
plane2 = select(remainPtCloud,inlierIndices);
remainPtCloud = select(remainPtCloud,outlierIndices);

Plot the two planes and the remaining points.

figure
pcshow(plane1)
title("First Plane")

figure
pcshow(plane2)
title("Second Plane")

 pcfitplane

3-787



figure
pcshow(remainPtCloud)
title("Remaining Point Cloud")

3 Functions

3-788



Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

maxDistance — Maximum distance from an inlier point to the plane
scalar value

Maximum distance from an inlier point to the plane, specified as a scalar value. Specify the distance
in units that are consistent with the units you are using for the point cloud.
Data Types: single | double

referenceVector — Reference orientation constraint
1-by-3 vector

Reference orientation constraint, specified as a 1-by-3 vector. You must specify this argument for the
function to apply an orientation constraint to fit a plane to the input point cloud. If you do not specify
the reference vector, the function fits the model using the plane equation, ax + by + cz + d = 0.
Data Types: single | double

maxAngularDistance — Maximum absolute angular distance
5 degrees (default) | scalar value

 pcfitplane

3-789



Maximum absolute angular distance between the normal vector of the fitted plane and the reference
orientation, specified as a scalar value in degrees.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SampleIndices',[].

SampleIndices — Linear indices of points to be sampled
[] (default) | column vector

Linear indices of points to sample in the input point cloud, specified as the comma-separated pair
consisting of 'SampleIndices' and a column vector. An empty vector means that all points are
candidates to sample in the RANSAC iteration to fit the plane. When you specify a subset, only points
in the subset are sampled to fit a model.

Providing a subset of points can significantly speed up the process and reduce the number of trials.
You can generate the indices vector using the findPointsInROI method of the pointCloud object.

MaxNumTrials — Maximum number of random trials
1000 (default) | positive integer

Maximum number of random trials for finding inliers, specified as the comma-separated pair
consisting of 'MaxNumTrials' and a positive integer. Increasing this value makes the output more
robust but adds additional computations.

Confidence — Confidence percentage for finding maximum number of inliers
99 (default) | numeric scalar

Confidence percentage for finding maximum number of inliers, specified as the comma-separated pair
consisting of 'Confidence' and a numeric scalar, in the range [0 100]. Increasing this value makes
the output more robust but adds additional computations.

Output Arguments
model — Geometric model of plane
planeModel object

Geometric model of plane, returned as a planeModel object.

When the input point cloud does not contain enough valid points, or when the function cannot find
enough inlier points, the coefficients for the output model are set to zero.

inlierIndices — Linear indices of inlier points
column vector

Linear indices of inlier points within the input point cloud, returned as a column vector.

3 Functions

3-790



outlierIndices — Linear indices of outlier points
column vector

Linear indices of outlier points within the input point cloud, returned as a column vector.

meanError — Mean square error
scalar value

Mean error of the distance of inlier points to the model, returned as a scalar value.

References
[1] Torr, P. H. S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application to

Estimating Image Geometry.” Computer Vision and Image Understanding. 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For optimized CUDA code generation, the confidence percentage for finding maximum number of
inliers is always set to 99.

See Also
pointCloud | pcplayer | pcshow | pcwrite | pcread | pcfitsphere | pcfitcylinder |
planeModel | pcmerge | pctransform | pcregistericp | pcdenoise | affine3d

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

 pcfitplane

3-791



pcfitsphere
Fit sphere to 3-D point cloud

Syntax
model = pcfitsphere(ptCloudIn,maxDistance)
[model,inlierIndices,outlierIndices] = pcfitsphere(ptCloudIn,maxDistance)
[ ___ ,meanError] = pcfitsphere(ptCloudIn,maxDistance)
[ ___ ] = pcfitsphere( ___ ,Name=Value)

Description
model = pcfitsphere(ptCloudIn,maxDistance) fits a sphere to a point cloud that has a
maximum allowable distance from an inlier point to the sphere. The function returns a geometrical
model that describes the sphere.

This function uses the M-estimator SAmple Consensus (MSAC) algorithm to find the sphere. The
MSAC algorithm is a variant of the RANdom SAmple Consensus (RANSAC) algorithm.

[model,inlierIndices,outlierIndices] = pcfitsphere(ptCloudIn,maxDistance)
additionally returns linear indices to the inlier and outlier points in the point cloud input.

[ ___ ,meanError] = pcfitsphere(ptCloudIn,maxDistance) additionally returns the mean
error of the distance of inlier points to the model, using any of the preceding syntaxes.

[ ___ ] = pcfitsphere( ___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from previous syntaxes. For example,
MaxNumTrials=1000 sets the maximum number of random trials to 1000.

Examples

Detect Sphere in Point Cloud

Load point cloud.

load("object3d.mat");

Display point cloud.

figure
pcshow(ptCloud)
xlabel("X(m)")
ylabel("Y(m)")
zlabel("Z(m)")
title("Detect a sphere in a point cloud")

3 Functions

3-792



Set the maximum point-to-sphere distance (1cm), for sphere fitting.

maxDistance = 0.01;

Set the region of interest to constrain the search.

roi = [-inf,0.5;0.2,0.4;0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Detect the globe in the point cloud and extract it.

model = pcfitsphere(ptCloud,maxDistance,SampleIndices=sampleIndices);

Plot the sphere.

hold on
plot(model)

 pcfitsphere

3-793



Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

maxDistance — Maximum distance from an inlier point to the sphere
scalar value

Maximum distance from an inlier point to the sphere, specified as a scalar value. Specify the distance
in units that are consistent with the units you are using for the point cloud.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MaxNumTrials=1000 sets the maximum number of random trials to 1000.

3 Functions

3-794



SampleIndices — Linear indices of points to be sampled
[] (default) | column vector

Linear indices of points to sample in the input point cloud, specified as a column vector. An empty
vector means that all points are candidates to sample in the RANSAC iteration to fit the sphere. When
you specify a subset, only points in the subset are sampled to fit a model. Providing a subset of points
can significantly speed up the process and reduce the number of trials. You can generate the indices
vector using the findPointsInROI method of the pointCloud object.

MaxNumTrials — Maximum number of random trials
1000 (default) | positive integer

Maximum number of random trials for finding inliers, specified as a positive integer. Increasing this
value makes the output more robust but adds additional computations.

Confidence — Confidence percentage for finding maximum number of inliers
99 (default) | numeric scalar in the range [0,100]

Confidence percentage for finding maximum number of inliers, specified as a numeric scalar
representing percentage, in the range [0,100]. Increasing this value makes the output more robust
but adds additional computations.

Output Arguments
model — Geometric model of sphere
sphereModel object

Geometric model of sphere, returned as a sphereModel object.

When the input point cloud does not contain enough valid points, or when the function cannot find
enough inlier points, the coefficients for the output model are set to zero.

inlierIndices — Linear indices of inlier points
column vector

Linear indices of inlier points within the input point cloud, returned as a column vector.

outlierIndices — Linear indices of outlier points
column vector

Linear indices of outlier points within the input point cloud, returned as a column vector.

meanError — Mean square error
scalar value

Mean error of the distance of inlier points to the model, returned as a scalar value.

References
[1] Torr, P. H. S. and A. Zisserman. “MLESAC: A New Robust Estimator with Application to Estimating

Image Geometry.” Computer Vision and Image Understanding. 2000.

 pcfitsphere

3-795



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pcfitplane | pcfitcylinder | pointCloud | pcplayer | pcshow | pcwrite | pcread |
planeModel | pcmerge | pctransform | pcregistericp | pcdenoise | affine3d

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

3 Functions

3-796



pixelLabelImageSource
(To be removed) Create datastore for semantic segmentation networks

Note pixelLabelImageSource will be removed in a future release. Create a pixel label image
datastore using the pixelLabelImageDatastore function instead. For more information, see
“Compatibility Considerations”.

Syntax
pximds = pixelLabelImageSource(gTruth)
pximds = pixelLabelImageSource(imds,pxds)
pximds = pixelLabelImageSource( ___ ,Name,Value)

Description
pximds = pixelLabelImageSource(gTruth) returns a pixel label image datastore for training a
semantic segmentation network based on the input array of groundTruth objects. Use the output
pixelLabelImageDatastore object with the Deep Learning Toolbox function trainNetwork to
train convolutional neural networks for semantic segmentation.

pximds = pixelLabelImageSource(imds,pxds) returns a pixel label image datastore based on
the input image datastore and the pixel label datastore objects. imds is an ImageDatastore object
that represents the training input to the network. pxds is a PixelLabelDatastore object that
represents the required network output.

pximds = pixelLabelImageSource( ___ ,Name,Value) sets properties of the returned pixel
label image datastore using name-value pairs. You can specify multiple name-value pairs. Enclose
each argument name in quotes.

Examples
Augment Data While Training Using PixelLabelImageSource

Configure a pixel label image datastore to augment data while training. This example uses the
pixelLabelImageSource function to create a pixel label image datastore object.

Load training images and pixel labels.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an imageDatastore object to hold the training images.

imds = imageDatastore(imageDir);

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs   = [255 0];

 pixelLabelImageSource

3-797



Create a pixelLabelDatastore object to hold the ground truth pixel labels for the training images.

pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);

Create an imageDataAugmenter object to randomly rotate and mirror image data.

augmenter = imageDataAugmenter('RandRotation',[-10 10],'RandXReflection',true)

augmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 1
     RandYReflection: 0
        RandRotation: [-10 10]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [0 0]
    RandYTranslation: [0 0]

Use the pixelLabelImageSource function to create a pixelLabelImageDatastore object that
can be used to train the network with augmented data.

plimds = pixelLabelImageSource(imds,pxds,'DataAugmentation',augmenter)

plimds = 
  pixelLabelImageDatastore with properties:

                  Images: {200x1 cell}
          PixelLabelData: {200x1 cell}
              ClassNames: {2x1 cell}
        DataAugmentation: [1x1 imageDataAugmenter]
      ColorPreprocessing: 'none'
              OutputSize: []
          OutputSizeMode: 'resize'
           MiniBatchSize: 1
         NumObservations: 200
    DispatchInBackground: 0

Input Arguments
gTruth — Ground truth data
groundTruth object

Ground truth data, specified as a groundTruth object. You can use the Image Labeler to create a
groundTruth object for training a semantic segmentation network.

imds — Collection of images
ImageDatastore object

Collection of images, specified as an ImageDatastore object.

3 Functions

3-798



pxds — Collection of pixel labeled images
PixelLabelDatastore object

Collection of pixel labeled images, specified as a PixelLabelDatastore object. The object contains
the pixel labeled images for each image contained in the imds input object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ColorProcessing','rgb2gray'

DataAugmentation — Image data augmentation
'none' (default) | imageDataAugmenter object

Image data augmentation, specified as 'none' or an imageDataAugmenter object. This argument
sets the DataAugmentation on page 2-0  property of the returned pixel label image
datastore, pximds.

ColorPreprocessing — Color channel preprocessing
'none' (default) | 'gray2rgb' | 'rgb2gray'

Color channel preprocessing, specified as 'none', 'gray2rgb', or 'rgb2gray'. This argument sets
the ColorPreprocessing on page 2-0  property of the returned pixel label image datastore,
pximds. Use this property when you need the image data created by the data source must be only
color or grayscale, but the training set includes both. Suppose you need to train a network that
expects color images but some of your training images are grayscale. Set ColorPreprocessing to
'gray2rgb' to replicate the color channels of the grayscale images in the input image set. Using the
'gray2rgb' option creates M-by-N-by-3 output images.

OutputSize — Size of images produced by data source
[] (default) | 2-element vector

Size of images produced by data source, specified as a 2-element vector indicating the number of
rows and columns. This argument sets the OutputSize on page 2-0  property of the returned
pixel label image datastore, pximds. When you specify the OutputSize, image sizes are adjusted as
necessary. By default, this property is empty, which means that the images are not adjusted.

OutputSizeMode — Technique used to adjust image sizes
'false' (default) | 'resize' | 'centercrop' | 'randcrop'

Technique used to adjust image sizes, specified as 'false', 'resize', 'centercrop', or
'randcrop'. This argument sets the OutputSizeMode on page 2-0  property of the returned
pixel label image datastore, pximds. This property applies only when you set OutputSize to a value
other than [].

BackgroundExecution — Preprocess images in parallel
false (default) | true

Preprocess images in parallel, specified as false or true. This argument sets the
DispatchInBackground on page 2-0  property of the returned pixel label image datastore

 pixelLabelImageSource

3-799



object, pximds. If BackgroundExecution is true and you have Parallel Computing Toolbox, then
the pixel label image datastore asynchronously reads, augments, and queues pixel labeled images for
use in training.

Output Arguments
pximds — Pixel label image datastore
pixelLabelImageDatastore object

Pixel label image datastore, returned as a pixelLabelImageDatastore object.

Compatibility Considerations
pixelLabelImageSource object is removed

In R2017b, you could create a pixelLabelImageSource object for training semantic segmentation
networks. Starting in R2018a, the pixelLabelImageSource object has been removed. Use a
pixelLabelImageDatastore object instead.

A pixelLabelImageDatastore has additional properties and methods to assist with data
preprocessing. Unlike pixelLabelImageSource, which could be used for training only, you can use
a pixelLabelImageDatastore for both training and prediction.

To create a pixelLabelImageDatastore object, you can use either the
pixelLabelImageDatastore function (recommended) or the pixelLabelImageSource function.

pixelLabelImageSource function will be removed
Not recommended starting in R2018a

The pixelLabelImageSource function will be removed in a future release. Create a
pixelLabelImageDatastore using the pixelLabelImageDatastore function instead.

To update your code, change instances of the function name pixelLabelImageSource to
pixelLabelImageDatastore. You do not need to change the input arguments.

See Also
pixelLabelImageDatastore

Introduced in R2017b

3 Functions

3-800



pixelLabelTrainingData
Create training data for semantic segmentation from ground truth

Syntax
[imds,pxds] = pixelLabelTrainingData(gTruth)
[imds,pxds] = pixelLabelTrainingData(gTruth,Name,Value)

Description
[imds,pxds] = pixelLabelTrainingData(gTruth) creates image datastore imds and pixel
label datastore pxds from the specified ground truth. You can combine the returned datastores into a
pixelLabelImageDatastore and use the trainNetwork function to train deep learning
segmentation networks. You can also use these datastores with the
evaluateSemanticSegmentation function to evaluate the result from deep learning or classical
segmentation methods.

This function supports parallel computing using multiple MATLAB workers. Enable parallel
computing using the “Computer Vision Toolbox Preferences” dialog box.

[imds,pxds] = pixelLabelTrainingData(gTruth,Name,Value) returns image and pixel
label datastores with additional options specified by one or more name-value pair arguments.

• If the groundTruth objects in gTruth were created using a video file, a custom data source, or
an imageDatastore with different custom read functions, then you can specify any combination
of name-value pair arguments.

• If the groundTruth objects were created from an image collection or image sequence data
source, then you can specify only the SamplingFactor name-value pair argument

Examples

Prepare Data for Evaluating Semantic Segmentation Algorithm

Load a groundTruth object named gTruth. The ground truth contains pixel labels for triangles and
background, annotated on a video with 100 frames.

visiondataPath = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata');
addpath(fullfile(visiondataPath, 'triangleImages'));
addpath(fullfile(visiondataPath, 'triangleImages', 'testLabels'));
loadedData = load(fullfile(visiondataPath, 'triangleImages', 'triangleGroundTruth.mat'));
gTruth = loadedData.gTruth;

Create a folder in the current directory.

foldername = fullfile(tempdir,"videoFrames");
mkdir(foldername)

Create an imageDatastore and a pixelLabelDatastore from the video file and corresponding
pixel labels. Write every fifth image to disk.

 pixelLabelTrainingData

3-801



[imds,pxdsTruth] = pixelLabelTrainingData(gTruth,...
    'SamplingFactor',5,'WriteLocation',foldername);

Write images extracted for training to folder: 
    /tmp/videoFrames

Writing 20 images extracted from triangleVideo.avi...Completed.

Confirm that the temporary folder contains every fifth image.

imds.Files

ans = 20×1 cell
    {'/tmp/videoFrames/triangleVideo01.png'}
    {'/tmp/videoFrames/triangleVideo06.png'}
    {'/tmp/videoFrames/triangleVideo11.png'}
    {'/tmp/videoFrames/triangleVideo16.png'}
    {'/tmp/videoFrames/triangleVideo21.png'}
    {'/tmp/videoFrames/triangleVideo26.png'}
    {'/tmp/videoFrames/triangleVideo31.png'}
    {'/tmp/videoFrames/triangleVideo36.png'}
    {'/tmp/videoFrames/triangleVideo41.png'}
    {'/tmp/videoFrames/triangleVideo46.png'}
    {'/tmp/videoFrames/triangleVideo51.png'}
    {'/tmp/videoFrames/triangleVideo56.png'}
    {'/tmp/videoFrames/triangleVideo61.png'}
    {'/tmp/videoFrames/triangleVideo66.png'}
    {'/tmp/videoFrames/triangleVideo71.png'}
    {'/tmp/videoFrames/triangleVideo76.png'}
    {'/tmp/videoFrames/triangleVideo81.png'}
    {'/tmp/videoFrames/triangleVideo86.png'}
    {'/tmp/videoFrames/triangleVideo91.png'}
    {'/tmp/videoFrames/triangleVideo96.png'}

Remove the video and images from the path.

rmpath(fullfile(visiondataPath, 'triangleImages'));
rmpath(fullfile(visiondataPath, 'triangleImages', 'testLabels'));

Input Arguments
gTruth — Ground truth data
scalar groundTruth object | array of groundTruth objects

Ground truth data, specified as a scalar groundTruth object or an array of groundTruth objects.
When gTruth is an array of groundTruth objects, the LabelDefinitions property of each object
must contain the same pixel label names.

If you use custom data sources in gTruth with parallel computing enabled, then the reader function
is expected to work with a pool of MATLAB workers to read images from the data source in parallel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

3 Functions

3-802



Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SamplingFactor',5

SamplingFactor — Factor for subsampling images
1 (default) | integer | vector of integers

Factor for subsampling images in the ground truth data source, specified an integer or a vector of
integers. For a sampling factor of N, the returned training data includes every Nth image in the
ground truth data source. The function ignores ground truth images with empty label data

Use sampled data to reduce repeated data, such as a sequence of images with the same scene and
labels. It can also help in reducing training time.

Value Sampling Factor
Integer Manually set the sampling factor to apply to all

data.
Vector of integers When you input a vector of ground truth objects,

the function uses the sampling factor specified by
the corresponding vector element.

ImageFormat — Image file format
PNG (default) | string scalar | character vector

Image file format, specified as the comma-separated pair consisting of 'ImageFormat' and a string
scalar or character vector. File formats must be supported by imwrite. This argument applies only
for groundTruth objects created using a video file or a custom data source.

WriteLocation — Name of folder
pwd (current working folder) (default) | string scalar | character vector

Folder name to write extracted images to, specified as a string scalar or character vector. The
specified folder must exist and have write permissions.

This argument applies only for:

• groundTruth objects created using a video file or a custom data source.
• An array of groundTruth objects created using imageDatastore with different custom read

functions.

The function ignores this argument when:

• The input groundTruth object was created from an image sequence data source.
• The array of input groundTruth objects all contain image datastores using the same custom

read function.
• Any of the input groundTruth objects containing datastores, use the default read functions.

ImageFormat — Image file format
PNG (default) | string scalar | character vector

Image file format, specified as a string scalar or character vector. File formats must be supported by
imwrite.

This argument applies only for:

 pixelLabelTrainingData

3-803



• groundTruth objects created using a video file or a custom data source.
• An array of groundTruth objects created using imageDatastore with different custom read

functions.

The function ignores this argument when:

• The input groundTruth object was created from an image sequence data source.
• The array of input groundTruth objects all contain image datastores using the same custom

read function.
• Any of the input groundTruth objects containing datastores, use the default read functions.

NamePrefix — Prefix for output image file names
string scalar | character vector

Prefix for output image file names, specified as a string scalar or character vector. The image files are
named as:

<name_prefix><source_number>_<image_number>.<image_format>

The default value uses the name of the data source that the images were extracted from,
strcat(sourceName,'_') for video and custom data source, or 'datastore' for image datastore.

This argument applies only for:

• groundTruth objects created using a video file or a custom data source.
• An array of groundTruth objects created using imageDatastore with custom read functions.

The function ignores this argument when:

• The input groundTruth object was created from an image sequence data source.
• The array of input groundTruth objects all contain image datastores using the same custom

read function.
• Any of the input groundTruth objects containing datastores, use the default read functions.

Verbose — Display training progress
true (default) | false

Display training progress on the MATLAB command line, specified as the comma-separated pair
consisting of 'Verbose' and true or false. This argument applies only for groundTruth objects
created using a video file or a custom data source.

Output Arguments
imds — Collection of images
ImageDatastore object

Collection of images extracted from the ground truth, gTruth, returned as an ImageDatastore
object. Each image in imds has annotations with at least one class of pixel labels. imds ignores
images that with no annotations.

pxds — Collection of pixel-labeled data
PixelLabelDatastore object

3 Functions

3-804



Collection of pixel-labeled data extracted from the ground truth, gTruth, returned as a
PixelLabelDatastore object. The object contains a categorical matrix of pixel labels for each
image contained in the image datastore, imds. Labels that do not correspond to pixel labels are
ignored.

See Also
Apps
Image Labeler | Video Labeler

Functions
objectDetectorTrainingData | semanticseg | evaluateSemanticSegmentation |
trainNetwork

Objects
groundTruth | ImageDatastore | PixelLabelDatastore | pixelLabelImageDatastore

Topics
“Training Data for Object Detection and Semantic Segmentation”

Introduced in R2018a

 pixelLabelTrainingData

3-805



plotCamera
Plot a camera in 3-D coordinates

Syntax
cam = plotCamera
cam = plotCamera(cameraTable)
cam = plotCamera(Name,Value)

Description
cam = plotCamera plots a default camera in 3-D coordinates in the current axes. The function
returns cam, a Camera object that contains the properties of the plotted camera.

cam = plotCamera(cameraTable) plots one or more cameras specified by cameraTable.

cam = plotCamera(Name,Value) specifies options using one or more name-value pair arguments.
For example, 'Opacity',0.4 sets the opacity of the plotted camera to 0.4.

The name-value pair arguments set the associated properties of the plotted camera visualization
object.

Examples

Plot Animated Camera Using Absolute Pose

Create a rigid3d object.

R = [1 0 0; 0 0 -1;0 1 0];
t = [10 0 20];
pose = rigid3d(R,t);

Plot a camera with an opacity of zero and an absolute pose based on the created rigid3d object.

cam = plotCamera('AbsolutePose',pose,'Opacity',0)

cam = 
  Camera with properties:

           Parent: [1x1 Axes]
             Size: 1
     AbsolutePose: [1x1 rigid3d]
          Visible: 1
      AxesVisible: 0
    ButtonDownFcn: ''
            Color: [1 0 0]
          Opacity: 0
            Label: ''

Set viewing properties for the current axes.

3 Functions

3-806



grid on
axis equal
axis manual

Expand the viewable limits of each axis. These changes enable the entire animation to be visible in
the next step.

xlim([-15 20]);
ylim([-15 20]);
zlim([15 25]);

Rotate the camera around the y-axis.

for theta = 0:pi/64:10*pi
    T = [cos(theta) 0 sin(theta);0 1 0;-sin(theta) 0 cos(theta)];
    cam.AbsolutePose = rigid3d(T * R, [10 * cos(theta), 10 * sin(theta), 20]);
    drawnow();
end

Visualize Camera Extrinsics

Create a set of calibration images.

images = imageSet(fullfile(toolboxdir('vision'),'visiondata','calibration','slr'));

Detect the checkerboard corners in the images.

 plotCamera

3-807



[imagePoints,boardSize] = detectCheckerboardPoints(images.ImageLocation);

Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system,
with the upper-left corner at (0,0). Set the square size to 29 mm.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

cameraParams = estimateCameraParameters(imagePoints,worldPoints);

Load an image at its new location.

imOrig = imread(fullfile(toolboxdir('vision'),'visiondata','calibration','slr','image9.jpg'));
figure; imshow(imOrig,'InitialMagnification',50);
title('Input Image');

Undistort the image.

im = undistortImage(imOrig,cameraParams);

Find the reference object in the new image.

[imagePoints,boardSize] = detectCheckerboardPoints(im);

Compute the new extrinsics.

3 Functions

3-808



[rotationMatrix,translationVector] = extrinsics(imagePoints,worldPoints,cameraParams);

Plot the world points.

figure;
plot3(worldPoints(:,1),worldPoints(:,2),zeros(size(worldPoints, 1),1),'*');
hold on

Mark the origin.

plot3(0,0,0,'g*');

 plotCamera

3-809



Compute the camera location and orientation.

orientation = rotationMatrix';
location = -translationVector * orientation;

Plot the camera.

absPose = rigid3d(orientation,location);
cam = plotCamera('AbsolutePose',absPose,'Size',20);

3 Functions

3-810



Make the z -axis point down.

set(gca,'CameraUpVector',[0 0 -1]);

 plotCamera

3-811



Set the view parameters.

camorbit(gca,-110,60,'data',[0 0 1]);
axis equal
grid on

3 Functions

3-812



Turn on 3-D rotation.

cameratoolbar('SetMode','orbit');

 plotCamera

3-813



Label the axes.

xlabel('X (mm)');
ylabel('Y (mm)');
zlabel('Z (mm)');

3 Functions

3-814



Input Arguments
cameraTable — Properties of cameras for visualization
table

Properties of cameras for visualization, specified as a table. Each row represents a single camera.
Each column title must match the name-part of a name-value pair argument. The nth-row values set
the properties for the nth element of cam. You cannot specify values for 'Parent'. If the table
contains a 'ViewId' column, then the view IDs are used to set the 'Label' values of the cameras.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Size',0.3 specifies the camera-base width as 0.3.

AbsolutePose — Camera absolute pose
rigid3d object

Camera absolute pose in the world coordinate system, specified as the comma-separated pair
consisting of 'AbsolutePose' a rigid3d object.

 plotCamera

3-815



Size — Camera-base width
1 (default) | positive real number

Camera-base width, specified as the comma-separated pair consisting of 'Size' and a positive real
number.

Label — Camera label
'' (default) | character vector | string scalar

Camera label, specified as the comma-separated pair consisting of 'Label' and a character vector or
a string scalar.

Color — Camera color
[1 0 0] (red) (default) | RGB triplet

Camera color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet. An
RGB triplet is a three-element row vector whose elements specify the intensities of the red, green,
and blue components of the color. The intensities must be in the range [0, 1].

Opacity — Camera opacity
0.2 (default) | scalar in the range [0,1]

Camera opacity, specified as the comma-separated pair consisting of 'Opacity' and a scalar in the
range [0,1].

Visible — Camera visibility
true or 1 (default) | false or 0

Camera visibility, specified as the comma-separated pair consisting of 'Visible' and a numeric or
logical 1 (true) or 0 (false).

AxesVisible — Camera axes visibility
false or 0 (default) | true or 1

Camera axes visibility, specified as the comma-separated pair consisting of 'AxesVisible' and a
numeric or logical 1 (true) or 0 (false).

ButtonDownFcn — Callback function
'' (default) | function handle

Callback function, specified as the comma-separated pair consisting of 'ButtonDownFcn' and a
function handle that executes when you click the camera.

Parent — Output axes
axes handle

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes handle. By
default, plotCamera uses the current axes handle. To return the current axes, use the gca function.

Output Arguments
cam — Camera visualization object
Camera object | row vector of Camera objects

Camera visualization object, returned as one of these options.

3 Functions

3-816



• Camera object — The function returns this option when plotting a single camera. Name-value pair
arguments or cameraTable input elements set the corresponding Camera object properties.

• Row vector of Camera objects — The function returns this option when plotting multiple cameras.
The nth -row values of the cameraTable input set the properties for the nth Camera object in this
vector.

Camera objects are created using the vision.graphics.Camera class.

See Also
Functions
extrinsics | showExtrinsics

Objects
rigid3d

Topics
“Structure From Motion From Two Views”
“3-D Coordinate Systems”
“Using the Single Camera Calibrator App”
“Using the Stereo Camera Calibrator App”

Introduced in R2015a

 plotCamera

3-817



ransac
Fit model to noisy data

Syntax
[model,inlierIdx] = ransac(data,fitFcn,distFcn,sampleSize,maxDistance)
[ ___ ] = ransac( ___ ,Name,Value)

Description
[model,inlierIdx] = ransac(data,fitFcn,distFcn,sampleSize,maxDistance) fits a
model to noisy data using the M-estimator sample consensus (MSAC) algorithm, a version of the
random sample consensus (RANSAC) algorithm.

Specify your function for fitting a model, fitFcn, and your function for calculating distances from
the model to your data, distFcn. The ransac function takes random samples from your data using
sampleSize and uses the fit function to maximize the number of inliers within maxDistance.

[ ___ ] = ransac( ___ ,Name,Value) additionally specifies one or more Name,Value pair
arguments.

Examples

Fit Line to 2-D Points Using Least Squares and RANSAC Algorithms

Load and plot a set of noisy 2-D points.

load pointsForLineFitting.mat
plot(points(:,1),points(:,2),'o');
hold on

3 Functions

3-818



Fit a line using linear least squares. Due to outliers, the line is not a good fit.

modelLeastSquares = polyfit(points(:,1),points(:,2),1);
x = [min(points(:,1)) max(points(:,1))];
y = modelLeastSquares(1)*x + modelLeastSquares(2);
plot(x,y,'r-')

 ransac

3-819



Fit a line to the points using the MSAC algorithm. Define the sample size, the maximum distance for
inliers, the fit function, and the distance evaluation function. Call ransac to run the MSAC algorithm.

sampleSize = 2; % number of points to sample per trial
maxDistance = 2; % max allowable distance for inliers

fitLineFcn = @(points) polyfit(points(:,1),points(:,2),1); % fit function using polyfit
evalLineFcn = ...   % distance evaluation function
  @(model, points) sum((points(:, 2) - polyval(model, points(:,1))).^2,2);

[modelRANSAC, inlierIdx] = ransac(points,fitLineFcn,evalLineFcn, ...
  sampleSize,maxDistance);

Refit a line to the inliers using polyfit.

modelInliers = polyfit(points(inlierIdx,1),points(inlierIdx,2),1);

Display the final fit line. This line is robust to the outliers that ransac identified and ignored.

inlierPts = points(inlierIdx,:);
x = [min(inlierPts(:,1)) max(inlierPts(:,1))];
y = modelInliers(1)*x + modelInliers(2);
plot(x, y, 'g-')
legend('Noisy points','Least squares fit','Robust fit');
hold off

3 Functions

3-820



Input Arguments
data — Data to be modeled
m-by-n matrix

Data to be modeled, specified as an m-by-n matrix. Each row corresponds to a data point in the set to
be modeled. For example, to model a set of 2-D points, specify the point data as an m-by-2 matrix.
Data Types: single | double

fitFcn — Function to fit a subset of data
function handle

Function to fit a subset of data, specified as a function handle. The function must be of the form:

model = fitFcn(data)

If it is possible to fit multiple models to the data, then fitFcn returns the model parameters as a cell
array.

distFcn — Function to compute distances from model
function handle

Function to compute distances from the model to the data, specified as a function handle. The
function must be of the form:

 ransac

3-821



distances = distFcn(model,data)

If model is an n-element array, then distances must be an m-by-n matrix. Otherwise, distances
must be an m-by-1 vector.

sampleSize — Minimum sample size
positive scalar integer

Minimum sample size from data that is required by fitFcn, specified as a positive scalar integer.

maxDistance — Maximum distance for inlier points
positive scalar

Maximum distance from the fit curve to an inlier point, specified as a positive scalar. Any points
further away than this distance are considered outliers. The RANSAC algorithm creates a fit from a
small sample of points, but tries to maximize the number of inlier points. Lowering the maximum
distance improves the fit by putting a tighter tolerance on inlier points.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxNumTrials',2000

ValidateModelFcn — Function to validate model
function handle

Function to validate model, specified as the comma-separated pair consisting of
'ValidateModelFcn' and a function handle. The function returns true if the model is accepted
based on criteria defined in the function. Use this function to reject specific fits. The function must be
of the form:

isValid = validateModelFcn(model,varargin)

If no function is specified, all models are assumed to be valid.

MaxSamplingAttempts — Maximum number of sampling attempts
100 (default) | integer

Maximum number of attempts to find a sample that yields a valid model, specified as the comma-
separated pair consisting of 'MaxSamplingAttempts' and an integer.

MaxNumTrials — Maximum number of random trials
1000 (default) | integer

Maximum number of random trials, specified as the comma-separated pair consisting of
'MaxNumTrials' and an integer. A single trial uses a minimum number of random points from data
to fit a model. Then, the trial checks the number of inliers within the maxDistance from the model.
After all trials, the model with the highest number of inliers is selected. Increasing the number of
trials improves the robustness of the output at the expense of additional computation.

3 Functions

3-822



Confidence — Confidence of final solution
99 (default) | scalar from 0 to 100

Confidence that the final solution finds the maximum number of inliers for the model fit, specified as
the comma-separated pair consisting of 'Confidence' and a scalar from 0 to 100. Increasing this
value improves the robustness of the output at the expense of additional computation.

Output Arguments
model — Best fit model
parameters defined in fitFcn

Best fit model, returned as the parameters defined in the fitFcn input. This model maximizes the
number of inliers from all the sample attempts.

inlierIdx — Inlier points
logical vector

Inlier points, returned as a logical vector. The vector is the same length as data, and each element
indicates if that point is an inlier for the model fit based on maxDistance.

References
[1] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application to

Estimating Image Geometry." Computer Vision and Image Understanding. Vol. 18, Issue 1,
April 2000, pp. 138–156.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fitPolynomialRANSAC | polyfit | polyval

Introduced in R2017a

 ransac

3-823



reconstructScene
Reconstruct 3-D scene from disparity map

Syntax
xyzPoints = reconstructScene(disparityMap,reprojectionMatrix)

Description
xyzPoints = reconstructScene(disparityMap,reprojectionMatrix) returns an array of
3-D world point coordinates that reconstruct a scene from a disparity map. The 3-D world coordinates
are relative to the optical center of camera 1 in a stereo system. You can use the
rectifyStereoImages function to obtain the reprojectionMatrix from a pair of stereo images.

Examples

Reconstruct 3-D Scene from Disparity Map

Load the stereo parameters.

load('webcamsSceneReconstruction.mat');

Read in the stereo pair of images.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Rectify the images.

[J1, J2, reprojectionMatrix] = rectifyStereoImages(I1,I2,stereoParams);

Display the images after rectification.

figure 
imshow(cat(3,J1(:,:,1),J2(:,:,2:3)),'InitialMagnification',50);

3 Functions

3-824



Compute the disparity.

disparityMap = disparitySGM(im2gray(J1),im2gray(J2));
figure 
imshow(disparityMap,[0,64],'InitialMagnification',50);

 reconstructScene

3-825



Reconstruct the 3-D world coordinates of points corresponding to each pixel from the disparity map.

xyzPoints = reconstructScene(disparityMap,reprojectionMatrix);

Segment out a person located between 3.2 and 3.7 meters away from the camera.

Z = xyzPoints(:,:,3);
mask = repmat(Z > 3200 & Z < 3700,[1,1,3]);
J1(~mask) = 0;
imshow(J1,'InitialMagnification',50);

Input Arguments
disparityMap — Disparity image
2-D array

Disparity image, specified as a 2-D array of disparity values for pixels in image 1 of a stereo pair. You
can use either disparityBM or disparitySGM functions to generate the disparity image.

The disparity image can contain invalid values marked as NaN. These values correspond to pixels in
image 1 that did not match with image 2. The function sets the world coordinates corresponding to
invalid disparity value to NaN.

Pixels with zero disparity correspond to world points that are too far away to measure, given the
resolution of the camera. The function sets the world coordinates corresponding to zero disparity to
Inf.

When you specify the disparityMap input as a double, the function returns the coordinates as
double. Otherwise, the function returns the coordinates as single.

3 Functions

3-826



Data Types: single | double

reprojectionMatrix — Reprojection matrix
4-by-4 matrix

Reprojection matrix, specified as a 4-by-4 matrix. You can use the rectifyStereoImages function
to obtain the reprojectionMatrix from a pair of stereo images.

The reprojection matrix is represented as:

1 0 0 −cx
0 1 0 −cy
0 0 0 f
0 0 1/b 0

where f and [cx,cy] are the focal length and principal point of the rectified camera 1, respectively. b is
the baseline of the virtual rectified stereo camera.
Data Types: single | double

Output Arguments
xyzPoints — Coordinates of world points
M-by-N-by-3 array

Coordinates of world points, returned as an M-by-N-by-3 array. The 3-D world coordinates are relative
to the optical center of camera 1 in the stereo system represented by stereoParams.

The output array contains the [x, y, z] coordinates of world points that correspond to the pixels in the
disparityMap input. xyzPoints(:, :, 1) contains the x world coordinates of points corresponding to
the pixels in the disparity map. xyzPoints(:, :, 2) contains the y world coordinates, and
xyzPoints(:, :, 3) contains the z world coordinates. The 3-D world coordinates are relative to the
optical center of camera 1 in the stereo system.

When you specify the disparityMap input as double, the function returns the xyzPoints output
as double. Otherwise, the function returns it as single.
Data Types: single | double

References
[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library,

Sebastopol, CA: O'Reilly, 2008.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

 reconstructScene

3-827



See Also
Functions
disparitySGM | disparityBM | estimateCameraParameters | size | rectifyStereoImages |
lineToBorderPoints

Objects
cameraParameters | stereoParameters

Topics
“Structure From Motion From Two Views”
“Code Generation for Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2014a

3 Functions

3-828



rectifyStereoImages
Rectify a pair of stereo images

Syntax
[J1,J2,reprojectionMatrix] = rectifyStereoImages(I1,I2,stereoParams)
[ ___ ,camMatrix1,camMatrix2,R1,R2] = rectifyStereoImages(I1,I2,stereoParams)
[J1,J2] = rectifyStereoImages(I1,I2,tform1,tform2)

[J1,J2] = rectifyStereoImages( ___ ,interp)
[J1,J2] = rectifyStereoImages( ___ ,Name=Value)

Description
[J1,J2,reprojectionMatrix] = rectifyStereoImages(I1,I2,stereoParams) undistorts
and rectifies versions of I1 and I2 input images using the stereo parameters of a stereo camera
system stored in the stereoParams object. Use the reconstructScene function with the
reprojectionMatrix to reproject a 2-D point in a disparity map to a 3-D point in the rectified
camera coordinate system of camera 1.

Stereo image rectification projects images onto a common image plane in such a way that the
corresponding points have the same row coordinates. This image projection makes the image appear
as though the two cameras are parallel. Use the disparityBM or disparitySGM functions to
compute a disparity map from the rectified images for 3-D scene reconstruction.

[ ___ ,camMatrix1,camMatrix2,R1,R2] = rectifyStereoImages(I1,I2,stereoParams)
returns the 3-by-4 camera projection matrices camMatrix1 and camMatrix2 for the rectified
cameras, and the corresponding rectification rotation matrices, R1 and R2.

[J1,J2] = rectifyStereoImages(I1,I2,tform1,tform2) returns rectified versions of I1 and
I2 input images by applying projective transformations tform1 and tform2. The projective
transformations are returned by the estimateUncalibratedRectification function.

[J1,J2] = rectifyStereoImages( ___ ,interp) additionally specifies the interpolation method
to use for rectified images. You can specify the method as 'nearest', 'linear', or 'cubic'.

[J1,J2] = rectifyStereoImages( ___ ,Name=Value) specifies options using one or more
name-value arguments in addition to any combination of arguments from previous syntaxes. For
example, OutputView='valid' sets the OutputView argument to 'valid'.

Examples

Rectify Stereo Images

Specify images containing a checkerboard for calibration.

imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo');

 rectifyStereoImages

3-829



leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));

Detect the checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints(...
    leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints.

squareSizeInMillimeters = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSizeInMillimeters);

Read in the images.

I1 = readimage(leftImages,1);
I2 = readimage(rightImages,1);
imageSize = [size(I1,1),size(I1,2)];

Calibrate the stereo camera system.

stereoParams = estimateCameraParameters(imagePoints,worldPoints,ImageSize=imageSize);

Rectify the images using 'full' output view.

[J1_full,J2_full] = rectifyStereoImages(I1,I2,stereoParams,OutputView='full');

Display the result for 'full' output view.

figure; 
imshow(stereoAnaglyph(J1_full,J2_full));

3 Functions

3-830



Rectify the images using 'valid' output view. This is most suitable for computing disparity.

[J1_valid,J2_valid] = rectifyStereoImages(I1,I2,stereoParams,OutputView='valid');

Display the result for 'valid' output view.

figure; 
imshow(stereoAnaglyph(J1_valid,J2_valid));

 rectifyStereoImages

3-831



Input Arguments
I1 — Input image 1
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image corresponding to camera 1, specified as an M-by-N-by-3 truecolor image or an M-by-N 2-
D grayscale array. Input images I1 and I2 must also be real, finite, and nonsparse. The input images
must be the same class.
Data Types: uint8 | uint16 | int16 | single | double | logical

I2 — Input image 2
M-by-N-by-3 truecolor image | M-by-N 2-D truecolor image

Input image corresponding to camera 2, specified as an M-by-N-by-3 truecolor image or an M-by-N 2-
D grayscale array. Input images I1 and I2 must be real, finite, and nonsparse. The input images must
also be the same class.
Data Types: uint8 | uint16 | int16 | single | double | logical

stereoParams — Stereo camera system parameters
stereoParameters object

3 Functions

3-832



Stereo camera system parameters, specified as a stereoParameters object.
Data Types: uint8 | uint16 | int16 | single | double

tform1 — Projective transformation
3-by-3 matrix | projective2d object

Projective transformations for image 1, specified as a 3-by-3 matrix returned by the
estimateUncalibratedRectification function or a projective2d object.
Data Types: single | double

tform2 — Projective transformation
3-by-3 matrix | projective2d object

Projective transformations for image 2, specified as a 3-by-3 matrix returned by the
estimateUncalibratedRectification function or a projective2d object.
Data Types: single | double

interp — Interpolation method
'linear' (default) | 'nearest' | 'cubic'

Interpolation method, specified as either 'linear', 'nearest', or 'cubic'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: OutputView='valid' sets the OutputView argument to 'valid'.

OutputView — Size of rectified images
'valid' (default) | 'full'

Size of rectified images, specified as the comma-separated pair consisting of 'OutputView' and either
'full' or 'valid'. When you set this parameter to 'full', the rectified images include all pixels
from the original images. When you set this value to 'valid', the output images are cropped to the
size of the largest common rectangle containing valid pixels.

When there is no overlap between rectified images, set the OutputView to 'full'.

FillValues — Output pixel fill values
array of scalar values

Output pixel fill values, specified as the comma-separated pair consisting of 'FillValues' and an
array of one or more scalar values. When the corresponding inverse-transformed location in the input
image is completely outside the input image boundaries, use the fill values for output pixels. If I1 and
I2 are 2-D grayscale images, then you must set 'FillValues' to a scalar. If I1 and I2 are truecolor
images, then you can set 'FillValues' to a scalar or a 3-element vector of RGB values.

Output Arguments
J1 — Undistorted and rectified image 1
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

 rectifyStereoImages

3-833



Undistorted and rectified version of I1, returned as an M-by-N-by-3 truecolor image or as an M-by-N
2-D grayscale image.

Stereo image rectification projects images onto a common image plane in such a way that the
corresponding points have the same row coordinates. This image projection makes the image appear
as though the two cameras are parallel. Use the disparityBM or disparitySGM functions to
compute a disparity map from the rectified images for 3-D scene reconstruction.

J2 — Undistorted and rectified image 2
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Undistorted and rectified version of I2, returned as an M-by-N-by-3 truecolor image or as an M-by-N
2-D grayscale image.

Stereo image rectification projects images onto a common image plane in such a way that the
corresponding points have the same row coordinates. This image projection makes the image appear
as though the two cameras are parallel. Use the disparityBM or disparitySGM functions to
compute a disparity map from the rectified images for 3-D scene reconstruction.

reprojectionMatrix — Reprojection matrix
4-by-4 matrix

Reprojection matrix, returned as a 4-by-4 matrix of the form:

1 0 0 −cx
0 1 0 −cy
0 0 0 f
0 0 1/b 0 ,

where f and [cx,cy] are the focal length and principal point of rectified camera 1, respectively. b is the
baseline of the virtual rectified stereo camera.

Use the reconstructScene function with the reprojectionMatrix to reproject a 2-D point in a
disparity map to a 3-D point in the rectified camera coordinate system of camera 1.

camMatrix1 — Camera one rectified projection matrix
3-by-4 matrix

Rectified camera one projection matrix, returned as 3-by-4 matrix. Use camMatrix1 and
camMatrix2 to project 3-D world points in camera one's coordinate system into the image plane of
J1 and J2, respectively.

Use camMatrix1 to project 3-D world points in the rectified camera one coordinate system into the
image plane of J1.
Data Types: single | double

camMatrix2 — Camera two rectified projection matrix
3-by-4 matrix

Camera two rectified projection matrix, returned as 3-by-4 matrix. Use camMatrix1 and
camMatrix2 to project 3-D world points in camera one's coordinate system into the image plane of
J1 and J2, respectively.

3 Functions

3-834



Use camMatrix2 to project 3-D world points in the rectified camera two coordinate system into the
image plane of J2.
Data Types: single | double

R1 — Camera one rotation matrix
3-by-3 matrix

Camera one rotation matrix related to camera one rectified projection, returned as a 3-by-3 matrix.
The R1 rotation matrix relate 3-D points from the unrectified camera one coordinate system to points
in the rectified camera one coordinate system.
Data Types: single | double

R2 — Camera two rotation matrix
3-by-3 matrix

Camera two rotation matrix related to camera one rectified projection, returned as a 3-by-3 matrix.
The R2 rotation matrix relate 3-D points from the unrectified camera two coordinate system to points
in the rectified camera two coordinate system.
Data Types: single | double

Tips
• The Computer Vision Toolbox rectification algorithm requires that the epipole for each image lie

outside of the image. If the epipole lies within the image, you can first transform the images into
polar coordinates as described in the rectification method proposed by Marc Pollefeys, Reinhard
Koch, and Luc Van Gool [2] on page 3-560.

References
[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library.

Sebastopol, CA: O'Reilly, 2008.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'interp' and 'OutputView' must be compile-time constants.
• To generate code, use the toStruct function to pass stereoParameters to the

rectifyStereoImages function.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

 rectifyStereoImages

3-835



Functions
reconstructScene | disparityBM | disparitySGM | estimateCameraParameters |
estimateUncalibratedRectification

Objects
stereoParameters

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Stereo Visual Simultaneous Localization and Mapping”
“Uncalibrated Stereo Image Rectification”
“Code Generation for Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2014a

3 Functions

3-836



retrieveImages
Search image set for similar image

Syntax
imageIDs = retrieveImages(queryImage,imageIndex)
[imageIDs,scores] = retrieveImages(queryImage,imageIndex)
[imageIDs,scores,imageWords] = retrieveImages(queryImage,imageIndex)
[imageIDs, ___ ] = retrieveImages(queryImage,imageIndex,Name,Value)

Description
imageIDs = retrieveImages(queryImage,imageIndex) returns the image identifiers
imageIDs that correspond to images within imageIndex that are visually similar to the query
image. The imageIDs are returned in ranked order, from the most to least similar match.

[imageIDs,scores] = retrieveImages(queryImage,imageIndex) optionally returns the
similarity scores used to rank the image retrieval results. The scores output contains the
corresponding scores from 0 to 1.

[imageIDs,scores,imageWords] = retrieveImages(queryImage,imageIndex) optionally
returns the visual words in queryImage that are used to search for similar images.

[imageIDs, ___ ] = retrieveImages(queryImage,imageIndex,Name,Value) uses additional
options specified by one or more Name,Value pair arguments, using any of the preceding syntaxes.

Examples

Search Image Set Using Query Image

Create an image set of book covers.

dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);

Display the data set.

thumbnailGallery = [];
for i = 1:length(bookCovers.Files)
    I = readimage(bookCovers,i);
    thumbnail = imresize(I,[300 300]);
    thumbnailGallery = cat(4,thumbnailGallery,thumbnail);
end

figure
montage(thumbnailGallery);

 retrieveImages

3-837



Index the image set. This step may take a few minutes.

imageIndex = indexImages(bookCovers);

Creating an inverted image index using Bag-Of-Features.
-------------------------------------------------------

Creating Bag-Of-Features.
-------------------------

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

3 Functions

3-838



* Extracting features from 58 images...done. Extracted 29216 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373.
** Using the strongest 23373 features from each of the other image categories.

* Creating a 20000 word visual vocabulary.
* Number of levels: 1
* Branching factor: 20000
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 23373
* Number of clusters          : 20000
* Initializing cluster centers...100.00%.
* Clustering...completed 11/100 iterations (~0.84 seconds/iteration)...converged in 11 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.
--------------------------------------

* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.

queryDir = fullfile(dataDir,'queries',filesep);
queryImage = imread([queryDir 'query3.jpg']);

imageIDs = retrieveImages(queryImage,imageIndex);

Show the query image and its best match, side-by-side.

bestMatch = imageIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});

figure
imshowpair(queryImage,bestImage,'montage')

 retrieveImages

3-839



Search Image Set for Specific Object Using ROIs

Search an image set for an object using a region of interest (ROI) for the query image.

Define a set of images to search.

imageFiles = ...
  {'elephant.jpg', 'cameraman.tif', ...
  'peppers.png',  'saturn.png',...
  'pears.png',    'stapleRemover.jpg', ...
  'football.jpg', 'mandi.tif',...
  'kids.tif',     'liftingbody.png', ...
  'office_5.jpg', 'gantrycrane.png',...
  'moon.tif',     'circuit.tif', ...
  'tape.png',     'coins.png'};

imds = imageDatastore(imageFiles);

Create a search index.

 imageIndex = indexImages(imds);

Creating an inverted image index using Bag-Of-Features.
-------------------------------------------------------

3 Functions

3-840



Creating Bag-Of-Features.
-------------------------

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 16 images...done. Extracted 3680 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 2944.
** Using the strongest 2944 features from each of the other image categories.

* Creating a 2944 word visual vocabulary.
* Number of levels: 1
* Branching factor: 2944
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 2944
* Number of clusters          : 2944
* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.10 seconds/iteration)...converged in 1 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.
--------------------------------------

* Encoding 16 images...done.
Finished creating the image index.

Specify a query image and an ROI. The ROI outlines the object, an elephant, for the search.

queryImage = imread('clutteredDesk.jpg');
queryROI = [130 175 330 365];

figure
imshow(queryImage)
rectangle('Position',queryROI,'EdgeColor','yellow')

 retrieveImages

3-841



You can also use the imrect function to select an ROI interactively. For example, queryROI =
getPosition(imrect)

Find images that contain the object.

imageIDs = retrieveImages(queryImage,imageIndex,'ROI',queryROI)

imageIDs = 12x1 uint32 column vector

    1
   11
    6
   12
    3
   14
    2
    8
   10
   13
      ⋮

Display the best match.

3 Functions

3-842



bestMatch = imageIDs(1);

figure
imshow(imageIndex.ImageLocation{bestMatch})

Geometric Verification Using estimateGeometricTransform2D Function

Use the locations of visual words to verify the best search result. To rerank the search results based
on geometric information, repeat this procedure for the top N search results.

Specify the location of the images.

dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);

Index the image set. This process can take a few minutes.

imageIndex = indexImages(bookCovers);

Creating an inverted image index using Bag-Of-Features.
-------------------------------------------------------

 retrieveImages

3-843



Creating Bag-Of-Features.
-------------------------

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 58 images...done. Extracted 29216 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373.
** Using the strongest 23373 features from each of the other image categories.

* Creating a 20000 word visual vocabulary.
* Number of levels: 1
* Branching factor: 20000
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 23373
* Number of clusters          : 20000
* Initializing cluster centers...100.00%.
* Clustering...completed 11/100 iterations (~1.02 seconds/iteration)...converged in 11 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.
--------------------------------------

* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.

queryDir = fullfile(dataDir,'queries',filesep);
queryImage = imread([queryDir 'query3.jpg']);

figure
imshow(queryImage)

3 Functions

3-844



Retrieve the best matches. The queryWords output contains visual word locations information for
the query image. Use this information to verify the search results.

[imageIDs, ~, queryWords] = retrieveImages(queryImage,imageIndex);

 retrieveImages

3-845



Find the best match for the query image by extracting the visual words from the image index. The
image index contains the visual word information for all images in the index.

bestMatch = imageIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});
bestMatchWords = imageIndex.ImageWords(bestMatch);

Generate a set of tentative matches based on visual word assignments. Each visual word in the query
can have multiple matches due to the hard quantization used to assign visual words.

queryWordsIndex     = queryWords.WordIndex;
bestMatchWordIndex  = bestMatchWords.WordIndex;

tentativeMatches = [];
for i = 1:numel(queryWords.WordIndex)
    
    idx = find(queryWordsIndex(i) == bestMatchWordIndex);
    
    matches = [repmat(i, numel(idx), 1) idx];
    
    tentativeMatches = [tentativeMatches; matches];
    
end

Show the point locations for the tentative matches. There are many poor matches.

points1 = queryWords.Location(tentativeMatches(:,1),:);
points2 = bestMatchWords.Location(tentativeMatches(:,2),:);

figure
showMatchedFeatures(queryImage,bestImage,points1,points2,'montage')

3 Functions

3-846



Remove poor visual word assignments using estimateGeometricTransform2D function. Keep the
assignments that fit a valid geometric transform.

[tform,inlierIdx] = ...
    estimateGeometricTransform2D(points1,points2,'affine',...
        'MaxNumTrials',2000);
inlierPoints1 = points1(inlierIdx, :);
inlierPoints2 = points2(inlierIdx, :);

Rerank the search results by the percentage of inliers. Do this when the geometric verification
procedure is applied to the top N search results. Those images with a higher percentage of inliers are
more likely to be relevant.

percentageOfInliers = size(inlierPoints1,1)./size(points1,1);

figure
showMatchedFeatures(queryImage,bestImage,inlierPoints1,...
    inlierPoints2,'montage')

 retrieveImages

3-847



Apply the estimated transform.

outputView = imref2d(size(bestImage));
Ir = imwarp(queryImage, tform, 'OutputView', outputView);

figure
imshowpair(Ir,bestImage,'montage')

3 Functions

3-848



Modify Search Parameters For Image Search

Use the evaluateImageRetrieval function to help select proper search parameters.

Create an image set.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(setDir, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');

Index the image set.

 imageIndex = indexImages(imds,'Verbose',false);

Tune image search parameters.

imageIndex.MatchThreshold = 0.2;
imageIndex.WordFrequencyRange = [0 1]

imageIndex = 
  invertedImageIndex with properties:

         ImageLocation: {6x1 cell}
            ImageWords: [6x1 vision.internal.visualWords]
         WordFrequency: [1x1366 double]

 retrieveImages

3-849



         BagOfFeatures: [1x1 bagOfFeatures]
               ImageID: [1 2 3 4 5 6]
        MatchThreshold: 0.2000
    WordFrequencyRange: [0 1]

queryImage = readimage(imds, 1);
indices = retrieveImages(queryImage,imageIndex);

Input Arguments
queryImage — Input query image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input query image, specified as either an M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale
image.
Data Types: single | double | int16 | uint8 | uint16 | logical

imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object. The indexImages function
creates the invertedImageIndex object, which stores the data used for the image search.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumResults',25 sets the 'NumResults' property to 25

NumResults — Maximum number of results
20 (default) | numeric value

Maximum number of results to return, specified as the comma-separated pair consisting of
'NumResults' and a numeric value. Set this value to Inf to return as many matching images as
possible.

ROI — Query image search region
[1 1 size(queryImage,2) size(queryImage,1)] (default) | [x y width height] vector

Query image search region, specified as the comma-separated pair consisting of 'ROI' and an [x y
width height] vector.

Metric — Similarity metric
'cosine' (default) | 'L1'

Similarity metric used to rank the image retrieval results, specified as 'cosine' or 'L1' [3] on page
3-851.

3 Functions

3-850



Output Arguments
imageIDs — Ranked index of retrieved images
M-by-1 vector

Ranked index of retrieved images, returned as an M-by-1 vector. The image IDs are returned in
ranked order, from the most to least similar matched image.

scores — Similarity metric
N-by-1 vector

Similarity metric, returned as an N-by-1 vector. This output contains the scores that correspond to
the retrieved images in the imageIDs output. The scores are computed using the Metric property
and a range from 0 to 1.

imageWords — Object for storing visual word assignments
visualWords object

Object for storing visual word assignments, returned as a visualWords object. The object stores the
visual word assignments of queryImage and their locations within that image.

References
[1] Sivic, J. and A. Zisserman. Video Google: A text retrieval approach to object matching in videos.

ICCV (2003) pg 1470-1477.

[2] Philbin, J., O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching. CVPR (2007).

[3] Gálvez-López, Dorian, and Juan D. Tardos. Bags of binary words for fast place recognition in image
sequences. IEEE Transactions on Robotics 28.5 (2012): 1188-1197.

See Also
evaluateImageRetrieval | imageDatastore | imageSet | bagOfFeatures |
invertedImageIndex

Topics
“Image Retrieval Using Customized Bag of Features”
“Image Retrieval with Bag of Visual Words”

Introduced in R2015a

 retrieveImages

3-851



roialign
Non-quantized ROI pooling of dlarray data

Syntax
dlY = roialign(dlX,boxes,outputSize)
dlY = roialign(dlX,boxes,outputSize,Name=Value)

Description
The ROI align operation pools a rectangular ROI into fixed sized bins without quantizing the grid
points to the nearest pixel. The function uses bilinear interpolation to infer the value at each grid
point.

Given input data of size [H W C N], where C is the number of channels and N is the number of
observations, the pooled deep learning data has size [h w C sum(M)], where h and w are the specified
output size. M is a vector of length N and M(i) is the number of ROIs associated with the i-th
observation.

Note To perform ROI pooling within a layerGraph object or Layer array, use roiAlignLayer.

This function requires Deep Learning Toolbox.

dlY = roialign(dlX,boxes,outputSize) performs a pooling operation along the spatial
dimensions of the input X for each bounding box in boxes. The outputs, Y, are of size outputSize.

dlY = roialign(dlX,boxes,outputSize,Name=Value) specifies additional name-value
arguments.

Examples

Perform ROI Pooling

Create a 4-D formatted dlarray object that simulates a batch of two RGB images.

X = dlarray(rand(10,10,3,2),"SSCB");

Specify the position and batch index of one bounding box.

startXY = [2 2];
endXY = [4 4];
batchIdx = 1;
rois = [startXY endXY batchIdx]';

Perform ROI pooling with an output size of 3-by-3.

Y = roialign(X,rois,[3 3])

3 Functions

3-852



Y = 
  3(S) x 3(S) x 3(C) x 1(B) single dlarray

(:,:,1) =

    0.7464    0.3069    0.1780
    0.9212    0.8491    0.4677
    0.7303    0.9057    0.3840

(:,:,2) =

    0.3024    0.6428    0.6594
    0.1542    0.0046    0.1228
    0.6295    0.5182    0.3304

(:,:,3) =

    0.4915    0.7590    0.5035
    0.4574    0.4302    0.5453
    0.2960    0.2666    0.5389

Input Arguments
dlX — Deep learning data to pool
4-D formatted dlarray object

Deep learning data to pool, specified as a 4-D formatted dlarray object with a data format of
"SSCB".

boxes — Bounding boxes
5-by-N numeric matrix

Bounding boxes, specified as a 5-by-N numeric matrix, where N is the number of bounding boxes.
Each bounding box is formatted as a column vector of the form [x_start; y_start; x_end; y_end;
batchIdx], where:

• x_start and y_start specify the (x,y) coordinates of the upper-left corner of the rectangle.
• x_end and y_end specify the (x,y) coordinates of the bottom-right corner of the rectangle.
• batchIdx specifies the index of the observation corresponding to the rectangle.

By default, boxes are in the same coordinate space and scale as the input deep learning data dlX.

outputSize — Pooled output size
vector of two positive integers

Pooled output size, specified as a vector of two positive integers [h w], where h is the height and w is
the width.

 roialign

3-853



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: dlY = roialign(dlX,boxes,outputSize,ROIScale=2) scales the input ROIs by a
factor of 2

ROIScale — Ratio of scale of input feature map to ROI coordinates
1 (default) | numeric scalar

Ratio of the scale of the input feature map to that of the ROI coordinates. This ratio specifies the
factor used to scale input ROIs to the input feature map size.

SamplingRatio — Number of samples in each pooled bin
"auto" (default) | row vector of two positive integers

Number of samples in each pooled bin, specified as "auto" or a row vector of two positive integers.
The two elements are the number of vertical and horizontal samples, respectively.

If you do not specify the sampling ratio, then the number of vertical samples has the default value
ceil(roiHeight/outputHeight). Likewise, the number of horizontal samples has the default
value ceil(roiWidth/outputWidth).
Data Types: double | char

Output Arguments
dlY — Pooled deep learning data
4-D formatted dlarray object

Pooled deep learning data, returned as a 4-D formatted dlarray object with a data format of "SSCB".

More About
ROI Align

An ROI align operation returns fixed size feature maps for every rectangular ROI within an input
dlarray. The function first partitions an ROI into fixed sized bins of size OutputSize without
quantizing the grid points. Each bin is further sampled at SamplingRatio locations. The value at
each sampled point is inferred using bilinear interpolation. The average of the sampled values is
returned as the output value of each pooled bin.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

3 Functions

3-854



See Also
dlarray | roiAlignLayer | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector

Topics
“Getting Started with Object Detection Using Deep Learning”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Functions with dlarray Support” (Deep Learning Toolbox)

Introduced in R2021b

 roialign

3-855



rotationMatrixToVector
Convert 3-D rotation matrix to rotation vector

Syntax
rotationVector = rotationMatrixToVector(rotationMatrix)

Description
rotationVector = rotationMatrixToVector(rotationMatrix) returns an axis-angle
rotation vector that corresponds to the input 3-D rotation matrix. The function uses the Rodrigues
formula for the conversion.

Examples

Convert Rotation Matrix to Rotation Vector

Create a matrix representing a 90-degree rotation about the Z -axis.

rotationMatrix = [0, -1, 0; 1, 0, 0; 0, 0, 1];

Find the equivalent rotation vector.

rotationVector = rotationMatrixToVector(rotationMatrix)

rotationVector = 1×3

         0         0   -1.5708

Input Arguments
rotationMatrix — Rotation of camera
3-by-3 matrix

Rotation of camera, specified as a 3-by-3 matrix. You can obtain this matrix by using the extrinsics
function.

Output Arguments
rotationVector — Rotation vector
three-element vector

Rotation vector, returned as a three-element vector. The vector represents the axis of rotation in 3-D,
where the magnitude corresponds to the rotation angle in radians.
Data Types: single | double

3 Functions

3-856



References
[1] Trucco, E., and A. Verri. Introductory Techniques for 3-D Computer Vision." Prentice Hall, 1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
relativeCameraPose | triangulate | rotationVectorToMatrix | extrinsics

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2016a

 rotationMatrixToVector

3-857



rotationVectorToMatrix
Convert 3-D rotation vector to rotation matrix

Syntax
rotationMatrix = rotationVectorToMatrix(rotationVector)

Description
rotationMatrix = rotationVectorToMatrix(rotationVector) returns a 3-D rotation matrix
that corresponds to the input axis-angle rotation vector. The function uses the Rodrigues formula for
the computation.

Examples

Convert Rotation Vector to Rotation Matrix

Create a vector representing a 90-degree rotation about the Z -axis.

rotationVector = pi/2 * [0, 0, 1];

Find the equivalent rotation matrix.

rotationMatrix = rotationVectorToMatrix(rotationVector)

rotationMatrix = 3×3

    0.0000    1.0000         0
   -1.0000    0.0000         0
         0         0    1.0000

Input Arguments
rotationVector — Rotation vector
three-element vector

Rotation vector, specified as a three-element vector. The vector represents the axis of rotation in 3-D,
where the magnitude corresponds to the rotation angle in radians.
Data Types: single | double

Output Arguments
rotationMatrix — Rotation of camera
3-by-3 matrix

Rotation of camera, returned as a 3-by-3 matrix that corresponds to the input axis-angle rotation
vector.

3 Functions

3-858



References
[1] Trucco, E., and A. Verri. Introductory Techniques for 3-D Computer Vision." Prentice Hall, 1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
relativeCameraPose | triangulate | rotationMatrixToVector | extrinsics

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2016a

 rotationVectorToMatrix

3-859



segmentationConfusionMatrix
Confusion matrix of multi-class pixel-level image segmentation

Syntax
confusionMatrix = segmentationConfusionMatrix(LPred,LTruth)

Description
confusionMatrix = segmentationConfusionMatrix(LPred,LTruth) computes a confusion
matrix from the predicted pixel labels LPred and ground truth pixel labels LTruth.

Examples

Calculate Confusion Matrix from Labeled Images

Load a pretrained network that performs binary segmentation of triangles against a background.

load('triangleSegmentationNetwork');

The triangleImages data set has 100 test images with ground truth labels. Define the location of
the data set.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');

Get one test image.

testImage = imread(fullfile(dataSetDir,'testImages','image_001.jpg'));

Get the corresponding ground truth label. The label image is stored as a numeric image, so convert
the ground truth label to a categorical image.

gtLabel = imread(fullfile(dataSetDir,'testLabels','labeled_image_001.png'));
classNames = ["triangle","background"];
labelIDs   = [255 0];
gtLabel = categorical(gtLabel,labelIDs,classNames);

Display the ground truth labels over the test image.

imshow(labeloverlay(testImage,gtLabel))

Perform semantic image segmentation.

3 Functions

3-860



predLabel = semanticseg(testImage,net);

Get the confusion matrix of the predicted labels and ground truth labels. The confusion matrix shows
the segmentation correctly classified 21 pixels as triangle and 939 pixels as background. The
confusion matrix also shows that the segmentation misclassified 64 background pixels as triangle. No
triangle pixels are misclassified as background.

confusionMatrix = segmentationConfusionMatrix(predLabel,gtLabel)

confusionMatrix = 2×2

    21     0
    64   939

To check the accuracy of the confusion matrix, display the predicted labels over the test image. The
overlay agrees with the values in the confusion matrix.

imshow(labeloverlay(testImage,predLabel))

Input Arguments
LPred — Predicted pixel labels
2-D label image | 3-D label image

Predicted pixel labels after semantic segmentation, specified as a 2-D label image or 3-D label image.
Data Types: double | logical | categorical

LTruth — Ground truth pixel labels
2-D label image | 3-D label image

Ground truth pixel labels, specified as a 2-D label image or 3-D label image of the same size as the
predicted pixel labels, LPred.
Data Types: double | logical | categorical

Output Arguments
confusionMatrix — Confusion matrix
C-by-C numeric matrix

Confusion matrix for the classes in the segmented images, returned as a C-by-C numeric matrix,
where C is the number of classes in the semantic segmentation. Element (i,j) is the count of pixels
known to belong to class i but predicted to belong to class j.

 segmentationConfusionMatrix

3-861



Tips
• You can calculate semantic segmentation metrics such as the Jaccard score and classification

accuracy from the confusion matrix by using the evaluateSemanticSegmentation function.
• You can use this function in block-based image processing workflows such as bigimage. For

example, you can perform semantic segmentation and calculate the confusion matrix for a block in
the same call to the apply function.

See Also
semanticseg | dice | jaccard | semanticSegmentationMetrics |
evaluateSemanticSegmentation | plotconfusion

Topics
“Calculate Segmentation Metrics in Block-Based Workflow”
“Getting Started with Semantic Segmentation Using Deep Learning”

Introduced in R2020b

3 Functions

3-862



segmentLidarData
Segment organized 3-D range data into clusters

Syntax
labels = segmentLidarData(ptCloud,distThreshold)
labels = segmentLidarData(ptCloud,distThreshold,angleThreshold)
[labels,numClusters] = segmentLidarData( ___ )
[ ___ ] = segmentLidarData( ___ ,NumClusterPoints=[1,Inf])

Description
labels = segmentLidarData(ptCloud,distThreshold) segments organized 3-D range data
ptCloud into clusters. The function assigns an integer cluster label to each point in the point cloud
and returns the cluster label of all points in labels.

The function groups two neighboring points into the same cluster if their Euclidean distance is less
than distThreshold or if the angle between the sensor and two neighboring points is at least 5
degrees.

labels = segmentLidarData(ptCloud,distThreshold,angleThreshold) sets the angle
constraint for grouping points into the same cluster to angleThreshold.

[labels,numClusters] = segmentLidarData( ___ ) also returns the number of clusters.

[ ___ ] = segmentLidarData( ___ ,NumClusterPoints=[1,Inf]) also sets the minimum and
maximum number of points in each cluster, specified as a 2-element vector or as a scalar value. When
you specify NumClusterPoints as a scalar, the maximum number of points in the cluster is
unrestricted. The function sets the labels to 0 when clusters are outside of the specified range.

Examples

Cluster Organized Synthetic Lidar Data

Create organized synthetic lidar data containing two objects.

ldr = zeros(5,100);
ldr(:,1:50) = 10;
ldr(:,51:end) = 20;
pitch = linspace(-18,18,5);
pitch = repmat(pitch',1,100); 
yaw = linspace(-90,90,100);
yaw = repmat(yaw,5,1); 

Convert to Cartesian coordinates.

X = ldr .* cosd(pitch) .* sind(yaw);
Y = ldr .* cosd(pitch) .* cosd(yaw);
Z = ldr .* sind(pitch);
pc = pointCloud(cat(3,X,Y,Z));

 segmentLidarData

3-863



figure
pcshow(pc.Location,'r')
title('Unclustered Point Cloud')

Set the threshold.

distThreshold = 5;

Segment the lidar data.

labels = segmentLidarData(pc,distThreshold);

Plot the results.

figure
hold on
title('Segmented Clusters')

pc1 = select(pc,find(labels == 1));
pcshow(pc1.Location,'g')

pc2 = select(pc,find(labels == 2));
pcshow(pc2.Location,'y')

3 Functions

3-864



Cluster Organized Lidar Point Cloud

Set up the PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Wait for 0.3 seconds from the beginning of the file, then read the point cloud from the next frame.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);
ptCloud = readFrame(veloReader);

Segment and remove the ground plane.

groundPtsIdx = segmentGroundFromLidarData(ptCloud);
ptCloudWithoutGround = select(ptCloud,~groundPtsIdx,'OutputSize','full');

Cluster the remaining points. Distance is in meters.

distThreshold = 0.5;
[labels,numClusters] = segmentLidarData(ptCloudWithoutGround,distThreshold);

Add an additional label for the ground plane.

numClusters = numClusters+1;
labels(groundPtsIdx) = numClusters;

 segmentLidarData

3-865



Plot the labeled results. Display the ground plane in black.

labelColorIndex = labels+1;
pcshow(ptCloud.Location,labelColorIndex)
colormap([hsv(numClusters);[0 0 0]])
title('Point Cloud Clusters')

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. ptCloud is an organized point cloud that stores point
coordinates in an M-by-N-by-3 matrix. The points must be organized by pitch and yaw angles in a
sequential scanning order, which is typically obtained from laser range finders and the
velodyneFileReader.

distThreshold — Distance threshold
nonnegative scalar

Distance threshold in world units, specified as a nonnegative scalar. Adjacent points are grouped into
the same cluster if the distance between them is less than the distance threshold. To reduce the
number of output clusters, increase the value of distThreshold.
Data Types: single | double

3 Functions

3-866



angleThreshold — Angle threshold
scalar in the range [0, 180]

Angle threshold, in degrees, specified as a scalar in the range [0, 180]. To reduce the number of
output clusters, decrease the value of angleThreshold. The function groups adjacent points into
the same cluster if the angle formed by the sensor and the points is greater than the angle threshold.
For example, in the figure, the function groups points A and B into the same cluster if the angle
formed by the sensor, point A, and point B, is greater than angleThreshold. For more details, see
“Algorithms” on page 3-868.

Data Types: single | double

Output Arguments
labels — Cluster labels
M-by-N matrix

Cluster labels of all points in the point cloud ptCloud, returned as an M-by-N matrix of integers.
Each valid point in ptCloud belongs to a cluster. All points in a cluster are assigned the same integer
cluster label, ranging from 1 to numClusters. Invalid points, such as points with Inf or NaN
coordinates, are assigned the label 0.

numClusters — Number of clusters
nonnegative integer

Number of clusters, returned as a positive integer. The number of clusters does not include the
cluster corresponding to invalid points and excludes the label value, 0, which is reserved for invalid
points.

 segmentLidarData

3-867



Algorithms
The segmentLidarData function uses distance and angle thresholds to cluster neighboring points.
The function groups two neighboring points into the same cluster if their Euclidean distance is less
than the input distThreshold or if the angle between the sensor and neighboring points is greater
than or equal to the input angleThreshold. If you do not specify angleThreshold, the function
sets this angle to 5 degrees.

For example, suppose angleThreshold is set to 90. Because angles α and β in the figure are both
greater than the specified threshold of 90 degrees, the function groups points A, B, and C into the
same cluster. Because angle σ is less than the 90-degree threshold, the function groups point D into a
separate cluster. Each angle the function uses for clustering is formed by the line from a point to the
sensor and the line from that same point to the neighboring point

References
[1] Bogoslavskyi, I. “Efficient Online Segmentation for Sparse 3D Laser Scans.” Journal of

Photogrammetry, Remote Sensing and Geoinformation Science. Vol. 85, Issue 1, 2017, pp. 41–
52.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 Functions

3-868



See Also
pointCloud | pcsegdist | pcfitplane | velodyneFileReader |
segmentGroundFromLidarData

Introduced in R2018a

 segmentLidarData

3-869



selectStrongestBbox
Select strongest bounding boxes from overlapping clusters

Syntax
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score)
[selectedBbox,selectedScore,index] = selectStrongestBbox(bbox,score)
[ ___ ] = selectStrongestBbox( ___ ,Name,Value)

Description
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score) returns selected
bounding boxes that have a high confidence score. The function uses nonmaximal suppression to
eliminate overlapping bounding boxes from the bbox input.

[selectedBbox,selectedScore,index] = selectStrongestBbox(bbox,score) additionally
returns the index vector associated with selectedBbox. This vector contains the indices of the
selected boxes in the bbox input.

[ ___ ] = selectStrongestBbox( ___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Run Nonmaximal Suppression on Bounding Boxes Using People Detector

Load the pretrained aggregate channel features (ACF) people detector.

peopleDetector = peopleDetectorACF();

Detect people in an image. Disable the default nonmaximal suppression used by the detector.

I = imread('visionteam1.jpg'); 
[bbox,score] = detect(peopleDetector,I,'SelectStrongest',false); 

Run nonmaximal suppression with custom threshold.

I = imread('visionteam1.jpg'); 
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score,'OverlapThreshold',0.3);

Display the results.

I1 = insertObjectAnnotation(I,'rectangle',bbox,score,'Color','r');
I2 = insertObjectAnnotation(I,'rectangle',selectedBbox,selectedScore,'Color','r');

figure, imshow(I1);
title('Detected people and detection scores before suppression'); 

3 Functions

3-870



figure, imshow(I2);
title('Detected people and detection scores after suppression');

 selectStrongestBbox

3-871



Input Arguments
bbox — Bounding boxes
M-by-4 matrix | M-by-5 matrix

Bounding boxes, specified as an M-by-4 or M-by-5 nonsparse numeric matrix. M is the number of
bounding boxes. Each row of the matrix defines a bounding box as either an axis-aligned rectangle or
a rotated rectangle. This table describes the format for each bounding box.

3 Functions

3-872



Bounding Box Description
Axis-aligned rectangle Defined in spatial coordinates as an M-by-4 numeric matrix with rows of

the form [x y w h], where:

• M is the number of axis-aligned rectangles.
• x and y specify the upper-left corner of the rectangle.
• w specifies the width of the rectangle, which is its length along the x-

axis.
• h specifies the height of the rectangle, which is its length along the y-

axis.
Rotated rectangle Defined in spatial coordinates as an M-by-5 numeric matrix with rows of

the form [xctr yctr xlen ylen yaw], where:

• M is the number of rotated rectangles.
• xctr and yctr specify the center of the rectangle.
• xlen specifies the width of the rectangle, which is its length along the

x-axis before rotation.
• ylen specifies the height of the rectangle, which is its length along the

y-axis before rotation.
• yaw specifies the rotation angle in degrees. The rotation is clockwise-

positive around the center of the bounding box.

 selectStrongestBbox

3-873



Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

score — Confidence score
M-by-1 vector

Confidence score, specified as an M-by-1 vector. The Mth score corresponds to the Mth bounding box
in the bbox input. The selectStrongestBbox function uses nonmaximal suppression to eliminate
overlapping bounding boxes and associate the confidence score with the boxes. A higher score
represents a higher confidence in keeping the bounding box. The score input must be real, finite,
and nonsparse.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RatioType','Union' sets the 'RatioType' property to 'Union'.

RatioType — Bounding box overlap ratio denominator
'Union' (default) | 'Min'

Ratio type, specified as the character vector 'Union' or 'Min'.

• Set the ratio type to 'Union' to compute the ratio as the area of intersection between bboxA and
bboxB, divided by the area of the union of the two.

• Set the ratio type to 'Min' to compute the ratio as the area of intersection between bboxA and
bboxB, divided by the minimum area of the two bounding boxes.

Data Types: char

OverlapThreshold — Overlap ratio threshold
0.5 (default) | scalar in the range [0 1]

Overlap ratio threshold, specified as the comma-separated pair consisting of 'OverlapThreshold'
and a scalar in the range [0 1]. When the overlap ratio is above the threshold you set, the function
removes bounding boxes around the reference box. Decrease this value to reduce the number of
selected bounding boxes. However, if you decrease the overlap ratio too much, you might eliminate
boxes that represent objects close to each other in the image.
Data Types: single | double

NumStrongest — Maximum number of strongest boxes
inf (default) | positive scalar

3 Functions

3-874



Maximum number of strongest boxes, specified as the comma-separated pair consisting of
'NumStrongest' and inf or a positive scalar. Use this argument to reduce processing time when
you have a priori knowledge about the maximum number of boxes. Set the value to inf to select all
the strongest, non-overlapping, bounding boxes.

Output Arguments
selectedBbox — Selected bounding boxes
M-by-4 matrix | M-by-5 matrix

Selected bounding boxes, returned as an M-by-4 or an M-by-5 matrix. The 4-element vectors
represent axis-aligned rectangles and the 5-element vectors represent rotated rectangles.

The selectedBbox output returns the selected bounding boxes from the bbox input that have the
highest confidence score. The function uses nonmaximal suppression to eliminate overlapping
bounding boxes.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

selectedScore — Scores of selected bounding boxes
M-by-1 vector

Scores of selected bounding boxes, returned as an M-by-1 vector. The Mth score in the
selectedScore output corresponds to the Mth bounding box in the selectedBbox output.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

index — Index of selected bounding boxes
M-by-1 vector

Index of selected bounding boxes, returned as an M-by-1 vector. The index vector contains the
indices to the selected boxes in the bbox input.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation is only supported for numeric labels.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• CUDA code generation is only supported for numeric labels.
• CUDA code generation is not supported for rotated rectangle bounding box inputs.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

 selectStrongestBbox

3-875



Usage notes and limitations:

• GPU Arrays is not supported for rotated rectangle bounding box inputs.

See Also
bboxOverlapRatio | selectStrongestBboxMulticlass

Introduced in R2014b

3 Functions

3-876



selectStrongestBboxMulticlass
Select strongest multiclass bounding boxes from overlapping clusters

Syntax
selectedBboxes = selectStrongestBboxMulticlass(bboxes,scores,labels)
[selectedBboxes,selectedScores,selectedLabels,index] =
selectStrongestBboxMulticlass(bboxes,scores,labels)
[ ___ ] = selectStrongestBboxMulticlass( ___ ,Name,Value)

Description
selectedBboxes = selectStrongestBboxMulticlass(bboxes,scores,labels) returns
selected bounding boxes that have high confidence scores. The function uses greedy nonmaximal
suppression (NMS) to eliminate overlapping bounding boxes from the bboxes input, only if they have
the same class label.

[selectedBboxes,selectedScores,selectedLabels,index] =
selectStrongestBboxMulticlass(bboxes,scores,labels) additionally returns the scores,
labels, and index associated with the selected bounding boxes.

[ ___ ] = selectStrongestBboxMulticlass( ___ ,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Run Multiclass Nonmaximal Suppression on Bounding Boxes Using People Detector

Create detectors using two different models. These will be used to generate multiclass detection
results.

detectorInria = peopleDetectorACF('inria-100x41');
detectorCaltech = peopleDetectorACF('caltech-50x21');

Apply the detectors.

I = imread('visionteam1.jpg');
[bboxesInria,scoresInria] = detect(detectorInria,I,'SelectStrongest',false);
[bboxesCaltech,scoresCaltech] = detect(detectorCaltech,I,'SelectStrongest',false);

Create categorical labels for each the result of each detector.

labelsInria = repelem("inria",numel(scoresInria),1);
labelsInria = categorical(labelsInria,{'inria','caltech'});
labelsCaltech = repelem("caltech",numel(scoresCaltech),1);
labelsCaltech = categorical(labelsCaltech,{'inria','caltech'});

Combine results from all detectors to for multiclass detection results.

 selectStrongestBboxMulticlass

3-877



allBBoxes = [bboxesInria;bboxesCaltech];
allScores = [scoresInria;scoresCaltech];
allLabels = [labelsInria;labelsCaltech];

Run multiclass non-maximal suppression.

[bboxes,scores,labels] = selectStrongestBboxMulticlass(allBBoxes,allScores,allLabels,...
    'RatioType','Min','OverlapThreshold',0.65);

Annotate detected people.

annotations = string(labels) + ": " + string(scores);
I = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(annotations));
imshow(I)
title('Detected People, Scores, and Labels')

Input Arguments
bboxes — Bounding boxes
M-by-4 matrix | M-by-5 matrix

3 Functions

3-878



Bounding boxes, specified as an M-by-4 or M-by-5 nonsparse numeric matrix. M is the number of
bounding boxes. Each row of the matrix defines a bounding box as either an axis-aligned rectangle or
a rotated rectangle. This table describes the format for each bounding box.

Bounding Box Description
Axis-aligned rectangle Defined in spatial coordinates as an M-by-4 numeric matrix with rows of

the form [x y w h], where:

• M is the number of axis-aligned rectangles.
• x and y specify the upper-left corner of the rectangle.
• w specifies the width of the rectangle, which is its length along the x-

axis.
• h specifies the height of the rectangle, which is its length along the y-

axis.

 selectStrongestBboxMulticlass

3-879



Bounding Box Description
Rotated rectangle Defined in spatial coordinates as an M-by-5 numeric matrix with rows of

the form [xctr yctr xlen ylen yaw], where:

• M is the number of rotated rectangles.
• xctr and yctr specify the center of the rectangle.
• xlen specifies the width of the rectangle, which is its length along the

x-axis before rotation.
• ylen specifies the height of the rectangle, which is its length along the

y-axis before rotation.
• yaw specifies the rotation angle in degrees. The rotation is clockwise-

positive around the center of the bounding box.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

scores — Confidence scores
M-by-1 vector

Confidence scores corresponding to the input bounding boxes, specified as an M-by-1 vector. The
selectStrongestBboxMulticlass function uses greedy NMS to eliminate overlapping bounding
boxes and associate the confidence score with the boxes. A higher score represents a higher
confidence in keeping the bounding box. The scores input must be real, finite, and nonsparse.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

3 Functions

3-880



labels — Labels
M-by-1 categorical vector | M-by-1 numeric vector

Labels corresponding to the input bounding boxes, specified as an M-by-1 categorical or numeric
vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RatioType','Union' sets the 'RatioType' property to 'Union'.

RatioType — Bounding box overlap ratio denominator
'Union' (default) | 'Min'

Ratio type, specified as the character vector 'Union' or 'Min'.

• Set the ratio type to 'Union' to compute the ratio as the area of intersection between bboxA and
bboxB, divided by the area of the union of the two.

• Set the ratio type to 'Min' to compute the ratio as the area of intersection between bboxA and
bboxB, divided by the minimum area of the two bounding boxes.

Data Types: char

OverlapThreshold — Overlap ratio threshold
0.5 (default) | scalar in the range [0 1]

Overlap ratio threshold, specified as the comma-separated pair consisting of 'OverlapThreshold'
and a scalar in the range [0 1]. When the overlap ratio is above the threshold, the function removes
bounding boxes around the reference box. Decrease the threshold to reduce the number of selected
bounding boxes. However, if you decrease the threshold too much, you might eliminate boxes that
represent objects close to each other in the image.
Data Types: single | double

NumStrongest — Maximum number of strongest boxes
inf (default) | positive scalar

Maximum number of strongest boxes, specified as the comma-separated pair consisting of
'NumStrongest' and inf or a positive scalar. Use this argument to reduce processing time when
you have a priori knowledge about the maximum number of boxes. Set the value to inf to select all
the strongest, non-overlapping, bounding boxes.

 selectStrongestBboxMulticlass

3-881



When the labels input contains categorical labels, you can also specify a vector that contains the
maximum number of strongest boxes for each category in the labels input. The length of the specified
vector must equal the number of categories in the label.

Output Arguments
selectedBboxes — Selected bounding boxes
M-by-4 matrix | M-by-5 matrix

Selected bounding boxes, returned as an M-by-4 or an M-by-5 matrix. The 4-element vectors
represent axis-aligned rectangles and the 5-element vectors represent rotated rectangles.

The selectedBbox output returns the selected bounding boxes from the bbox input that have the
highest confidence score. The function uses nonmaximal suppression to eliminate overlapping
bounding boxes.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

selectedScores — Scores of selected bounding boxes
M-by-1 vector

Scores of selected bounding boxes, returned as an M-by-1 vector. The Mth score in the
selectedScores output corresponds to the Mth bounding box in the selectedBboxes output. The
data type of selectedScores matches the data type of scores.

selectedLabels — Labels of selected bounding boxes
M-by-1 categorical vector | M-by-1 numeric vector

Labels of selected bounding boxes, returned as an M-by-1 categorical or numeric vector. The Mth
label in the selectedLabels output corresponds to the Mth bounding box in the selectedBboxes
output. The data type of selectedLabels matches the data type of labels.

index — Index of selected bounding boxes
M-by-1 vector

Index of selected bounding boxes, returned as an M-by-1 vector. The index vector contains the
indices to the selected boxes in the bboxes input.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU Code generation is not supported for rotated rectangle bounding box inputs.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

3 Functions

3-882



Usage notes and limitations:

• GPU Arrays is not supported for rotated rectangle bounding box inputs.

See Also
bboxOverlapRatio | selectStrongestBbox

Introduced in R2018a

 selectStrongestBboxMulticlass

3-883



showExtrinsics
Visualize extrinsic camera parameters

Syntax
showExtrinsics(cameraParams)
showExtrinsics(cameraParams,view)
showExtrinsics( ___ ,Name,Value)

ax = showExtrinsics( ___ )

Description
showExtrinsics(cameraParams) renders a 3-D visualization of extrinsic parameters of a single
calibrated camera or a calibrated stereo pair. The function plots a 3-D view of the calibration patterns
with respect to the camera. The cameraParams input contains either a cameraParameters,
fisheyeParameters, or a stereoParameters object, which the estimateCameraParameters or
estimateFisheyeParameters function returns.

The showExtrinsics function shows the 3-D view of the calibration pattern as a convex polygon
containing all the detected keypoints of the pattern in the original calibration image.

showExtrinsics(cameraParams,view) displays visualization of the camera extrinsic parameters
using the style specified by the view input.

showExtrinsics( ___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments, using any of the preceding syntaxes.

ax = showExtrinsics( ___ ) returns the plot axis, using any of the preceding syntaxes.

Examples

Visualize Single Camera Extrinsic Parameters

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
  'calibration','webcam'));
imageFileNames = images.Files(1:5);

Detect calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates of the corners of the squares. The square size is in millimeters.

squareSide = 25;
worldPoints = generateCheckerboardPoints(boardSize,squareSide);

Calibrate the camera.

3 Functions

3-884



I = readimage(images,1); 
imageSize = [size(I, 1), size(I, 2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Visualize pattern locations.

figure
showExtrinsics(cameraParams);

Visualize camera locations.

figure
showExtrinsics(cameraParams,'patternCentric');

 showExtrinsics

3-885



Visualize Stereo Pair of Camera Extrinsic Parameters

Specify calibration images.

imageDir = fullfile(toolboxdir('vision'),'visiondata',...
        'calibration','circleGrid','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));
leftImageFileNames = leftImages.Files(2:2:10);
rightImageFileNames = rightImages.Files(2:2:10);

Define the circle grid pattern dimensions, and detect the pattern in the images.

patternDims = [4 11];
imagePoints = detectCircleGridPoints(leftImageFileNames,...
        rightImageFileNames,patternDims);

Specify the world coordinates for the circle grid keypoints. Center distance is in millimeters.

centerDistance = 36.5;
worldPoints = generateCircleGridPoints(patternDims,centerDistance);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1); 
imageSize = [size(I,1),size(I,2)];

3 Functions

3-886



cameraParams = estimateCameraParameters(imagePoints,worldPoints,...
    'ImageSize',imageSize);

Visualize pattern locations.

figure
showExtrinsics(cameraParams)

Visualize camera locations.

figure
showExtrinsics(cameraParams,'patternCentric')

 showExtrinsics

3-887



Input Arguments
cameraParams — Object containing parameters of single camera or stereo pair
cameraParameters object | fisheyeParameters object | stereoParameters object

Object containing parameters of single camera or stereo pair, specified as either a
cameraParameters, fisheyeParameters, or stereoParameters object. You can create the
single camera or stereo pair input object using the estimateCameraParameters function. The
fisheye parameters input object is created using estimateFisheyeParameters.

You can also use the Camera Calibrator app to create the cameraParameters input object, or use
Stereo Camera Calibrator app to create the stereoParameters input object. See “Using the
Single Camera Calibrator App” and “Using the Stereo Camera Calibrator App”.

view — Camera- or pattern-centric view
'CameraCentric' | 'PatternCentric'

Camera or pattern-centric view, specified as 'CameraCentric' or 'PatternCentric'. The view
input sets the visualization for the camera extrinsic parameters. If you keep your camera stationary
while moving the calibration pattern, set view to 'CameraCentric'. If the pattern is stationary
while you move your camera, set it to 'PatternCentric'.

3 Functions

3-888



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'HighlightIndex', [1, 4] sets the 'HighlightIndex' to patterns 1 and 4.

HighlightIndex — Highlight selection index
[] (default) | vector | scalar

Highlight selection index, specified as a scalar or a vector of integers. For example, if you want to
highlight patterns 1 and 4, use [1, 4]. Doing so increases the opacity of patterns 1 and 4 in contrast
to the rest of the patterns.

Parent — Output axes
current axes (default)

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes. You can
obtain the current axes handle by returning the function to an output variable:
ax = showExtrinsics(cameraParams)
You can also use the gca function to get the current axes handle.
Example: showExtrinsics(cameraParams,'Parent',ax)

Output Arguments
ax — Current axes handle
scalar value

Current axes handle, returned as a scalar value. The function returns the handle to the current axes
for the current figure.
Example: ax = showExtrinsics(cameraParams)

See Also
Camera Calibrator | Stereo Camera Calibrator | plotCamera | estimateCameraParameters |
showReprojectionErrors | undistortImage | detectCheckerboardPoints |
generateCheckerboardPoints | cameraParameters | stereoParameters |
fisheyeParameters

Topics
“Using the Single Camera Calibrator App”

Introduced in R2014a

 showExtrinsics

3-889



showMatchedFeatures
Display corresponding feature points

Syntax
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2)
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,method)

showMatchedFeatures( ___ ,PlotOptions, {MarkerStyle1, MarkerStyle2, LineStyle})

H = showMatchedFeatures( ___ )

Description
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2) displays a falsecolor
overlay of images I1 and I2 with a color-coded plot of corresponding points connected by a line.
matchedPoints1 and matchedPoints2 contain the coordinates of corresponding points in I1 and
I2. The input points can be M-by-2 matrices of M number of [x y] coordinates, or SURFPoints,
MSERRegions, ORBPoints, BRISKPoints, or cornerPoints object.

showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,method) displays images
I1 and I2 using the visualization style specified by the method parameter.

showMatchedFeatures( ___ ,PlotOptions, {MarkerStyle1, MarkerStyle2, LineStyle})
lets you specify custom plot options in a cell array containing three values. The MarkerStyle1,
MarkerStyle2, and LineStyle values correspond to the marker symbol in I1, marker symbol in
I2, and the line style and color. The LineSpec syntax of the plot function defines each of the
specifiers.

H = showMatchedFeatures( ___ ) returns the handle to the image object returned by
showMatchedFeatures.

Examples

Find Corresponding Points Between Two Images Using Harris Features

Read Images.

I1 = im2gray(imread('parkinglot_left.png'));
I2 = im2gray(imread('parkinglot_right.png'));

Detect SURF features

points1 = detectHarrisFeatures(I1);
points2 = detectHarrisFeatures(I2);

Extract features

[f1, vpts1] = extractFeatures(I1,points1);
[f2, vpts2] = extractFeatures(I2,points2);

3 Functions

3-890



Match features.

indexPairs = matchFeatures(f1,f2) ;
matchedPoints1 = vpts1(indexPairs(1:20,1));
matchedPoints2 = vpts2(indexPairs(1:20,2));

Visualize candidate matches.

figure; ax = axes;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'montage','Parent',ax);
title(ax,'Candidate point matches');
legend(ax,'Matched points 1','Matched points 2');

Display Corresponding Points Between Two Rotated and Scaled Images

Use SURF features to find corresponding points between two images rotated and scaled with respect
to each other.

Read images.

I1 = imread('cameraman.tif');
I2 = imresize(imrotate(I1,-20), 1.2);

Detect SURF features.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Extract features.

[f1, vpts1] = extractFeatures(I1, points1);
[f2, vpts2] = extractFeatures(I2, points2);

 showMatchedFeatures

3-891



Match features.

indexPairs = matchFeatures(f1, f2) ;
matchedPoints1 = vpts1(indexPairs(:, 1));
matchedPoints2 = vpts2(indexPairs(:, 2));

Visualize candidate matches.

figure; ax = axes;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'Parent',ax);
title(ax, 'Putative point matches');
legend(ax,'Matched points 1','Matched points 2');

Input Arguments
I1 — Input image
numeric array

Input image one, specified as a numeric array.

I2 — Input image
numeric array

3 Functions

3-892



Input image two, specified as a numeric array.

matchedPoints1 — Coordinates of points
M-by-2 matrix | SURFPoints object | MSERRegions object | ORBPoints object | BRISKPoints
object | cornerPoints object

Coordinates of points in image one, specified as an M-by-2 matrix of M number of [x y] coordinates,
or as a SURFPoints, MSERRegions, ORBPoints, BRISKPoints, or cornerPoints object.

matchedPoints2 — Coordinates of points
M-by-2 matrix | SURFPoints object | MSERRegions object | ORBPoints object | BRISKPoints
object | cornerPoints object

Coordinates of points in image two, specified as an M-by-2 matrix of M number of [x y] coordinates,
or as a SURFPoints, MSERRegions, ORBPoints, BRISKPoints, or cornerPoints object.

method — Display method
falsecolor (default) | blend | montage

Display style method, specified as one of the following:

falsecolor: Overlay the images by creating a composite red-cyan image
showing I1 as red and I2 as cyan.

blend: Overlay I1 and I2 using alpha blending.
montage: Place I1 and I2 next to each other in the same image.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:

PlotOptions — Line style and color
{'ro','g+','y-'} (default) | cell array of character vectors | string array

Line style and color options, specified as a cell array of character vectors or a string array. The three
values {MarkerStyle1, MarkerStyle2, LineStyle}, correspond to, a marker symbol in I1, marker
symbol in I2, and the line style and color. The LineSpec syntax of the plot function defines each of
the specifiers.

Parent — Output axes
axes graphics object

Output axes for displaying visualization, specified as an axes graphics object.

Output Arguments
H — Handle to image object
handle

 showMatchedFeatures

3-893



Handle to image object, returned as the handle to the image object returned by
showMatchedFeatures.

See Also
matchFeatures | SURFPoints | MSERRegions | ORBPoints | BRISKPoints | cornerPoints |
estimateGeometricTransform | legend | imshowpair

Introduced in R2012b

3 Functions

3-894



showPointCloud
Plot 3-D point cloud

Syntax
showPointCloud

Description
showPointCloud was renamed to pcshow. Please use pcshow in place of showPointCloud.

Introduced in R2014b

 showPointCloud

3-895



pcshow
Plot 3-D point cloud

Syntax
pcshow(ptCloud)

pcshow(xyzPoints)
pcshow(xyzPoints,color)
pcshow(xyzPoints,colorMap)
pcshow(filename)

pcshow( ___ ,Name,Value)

ax = pcshow( ___ )

Description
pcshow(ptCloud) displays points using the locations and colors stored in the point cloud object.

pcshow(xyzPoints) displays points specified by the xyzPoints matrix.

pcshow(xyzPoints,color) displays points contained in the xyzPoints matrix, with colors
specified by color.

pcshow(xyzPoints,colorMap) displays points contained in the xyzPoints matrix, with colors
specified by colorMap.

pcshow(filename) displays the point cloud stored in the file specified by filename.

pcshow( ___ ,Name,Value) uses additional options specified by one or more Name,Value pair
arguments, using any of the preceding syntaxes.

ax = pcshow( ___ ) returns the plot axes.

Examples

Plot Spherical Point Cloud with Texture Mapping

Generate a sphere consisting of 600-by-600 faces.

numFaces = 600;
[x,y,z] = sphere(numFaces);

Plot the sphere using the default color map.

figure;
pcshow([x(:),y(:),z(:)]);
title('Sphere with Default Color Map');
xlabel('X');

3 Functions

3-896



ylabel('Y');
zlabel('Z');

Load and display an image for texture mapping.

I = im2double(imread('visionteam1.jpg'));
imshow(I);

 pcshow

3-897



Resize and flip the image for mapping the coordinates.

J = flipud(imresize(I,size(x)));

Plot the sphere with the color texture.

pcshow([x(:),y(:),z(:)],reshape(J,[],3));
title('Sphere with Color Texture');
xlabel('X');
ylabel('Y');
zlabel('Z');

3 Functions

3-898



Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The object contains the locations, intensities, and RGB
colors to render the point cloud.

Point Cloud Property Color Rendering Result
Location only Maps the z-value to a color value in the current

color map.
Location and Intensity Maps the intensity to a color value in the current

color map.
Location and Color Use provided color.
Location, Intensity, and Color Use provided color.

filename — Point cloud filename
character vector | string scalar

 pcshow

3-899



Point cloud filename, specified as a character vector or a scalar string. The file must be supported by
pcread. pcshow calls pcread to read the point cloud from the file, but does not store the data in the
MATLAB workspace.

xyzPoints — Point cloud x, y, and z locations
M-by-3 matrix | M-by-N-by-3 matrix

Point cloud x, y, and z locations, specified as either an M-by-3 or an M-by-N-by-3 numeric matrix. The
xyzPoints numeric matrix contains M or M-by-N [x,y,z] points. The z values in the matrix, which
generally corresponds to depth or elevation, determine the color of each point. When you do not
specify the C input color, the function maps the z value to a color in the current colormap.

color — Color for points in the point cloud
1-by-3 RGB vector | short name of color | long name of color | M-by-3 matrix | M-by-N-by-3 matrix

Color for points in the point cloud, specified as a 1-by-3-RGB vector, an M-by-3 matrix, an M-by-N-
by-3 matrix, a short color name, or a long color name. For details on color values, see the Color Value
on page 3-902 table.

You can specify the same color for all points or a different color for each point. When you set color
to single or double, the RGB values range between [0, 1]. When you set color to uint8, the
values range between [0, 255].

Points Input Color
Selection

Valid Values of C

xyzPoints Same color
for all points

1-by-3 RGB vector, or a color name or short name,
listed in the Color Value on page 3-902 table.

Different
color for
each point

M-by-3 matrix or M-by-N-by-3 matrix containing
RGB values for each point.

colorMap — Point cloud color map
M-by-1 vector | M-by-N matrix

Point cloud color of points, specified as one of:

• M-by-1 vector
• M-by-N matrix

3 Functions

3-900



Points Input Color
Selection

Valid Values of C

xyzPoints Different
color for
each point

Vector or M-by-N matrix. The matrix must contain
values that are linearly mapped to a color in the
current colormap.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VerticalAxisDir','Up' sets the vertical axis direction to up.

MarkerSize — Diameter of marker
6 (default) | positive scalar

Diameter of marker, specified as a positive scalar. The value specifies the approximate diameter of the
point marker. MATLAB graphics define the unit as points. A marker size larger than six can reduce
the rendering performance.

BackgroundColor — Background color
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | character vector

Background color, specified as an RGB triplet, hexadecimal color code, or a character vector that
specifies a long or short color name.

VerticalAxis — Vertical axis
'Z' (default) | 'X' | 'Y'

Vertical axis, specified as 'X', 'Y', or 'Z'. When you reload a saved figure, any action on the figure
resets the vertical axis to the z-axis.

VerticalAxisDir — Vertical axis direction
'Up' (default) | 'Down'

Vertical axis direction, specified as 'Up' or 'Down'. When you reload a saved figure, any action on
the figure resets the direction to the up direction.

Parent — Axes on which to display the visualization
axes graphics object

 pcshow

3-901



Axes on which to display the visualization, specified as an Axes object. To create an Axes object, use
the axes function. To display the visualization in a new figure, leave 'Parent' unspecified.

Output Arguments
ax — Plot axes
axes graphics object

Plot axes, returned as an axes graphics object.

You can set the default center of rotation for the point cloud viewer to rotate around the axes center
or around a point. Set the default behavior from the “Computer Vision Toolbox Preferences”.

More About
Color Value

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Tips
• To improve performance, pcshow automatically downsamples the rendered point cloud when you

rotate, pan, or zoom in or out by clicking the mouse. Downsampling is not applied for zoom in or
out by using the mouse scroll mechanism. When using data tips, no downsampling is applied. The
downsampling occurs only for rendering the point cloud and does not affect the saved points.

• To view point data or modify color display values, hover over the axes toolbar and select one of the
following options.

3 Functions

3-902



Feature Description
Datatip Click Data Tips to view the data point values for any point in the

point cloud figure. For a normal point cloud, the Data Tips
displays the x,y,z values. Additional data properties for the depth
image and lidar are:

Point Cloud Data Data Value Properties
Depth image (RGB-D sensor) Color, row, column
Lidar Intensity, range, azimuth angle,

elevation angle, row, column

Background color Click Rotate and then right-click in the figure for background
options.

 pcshow

3-903



Feature Description
Colormap value Click Rotate and then right-click in the figure for colormap

options. You can modify colormap values for the coordinate and
range values available, depending on the type of point cloud
displayed.

View Click Rotate to change the viewing angle of the point cloud figure
to the XZ, ZX,YZ, ZY, XY, or the YX plane. Click Restore View to
reset the viewing angle.

• pcplayer supports the 'opengl' option for the Renderer figure property only.

See Also
showShape | pointCloud | pcplayer | pcshowpair | planeModel | plot3 | pcwrite | pcread |
pcmerge | scatter3 | reconstructScene | triangulate | pcdownsample | pcfitplane |
pcdenoise | pcregistericp

Topics
“Structure From Motion From Two Views”
“Depth Estimation From Stereo Video”
“Choose Function to Visualize Detected Objects”
“Coordinate Systems”

Introduced in R2015b

3 Functions

3-904



pcshowpair
Visualize difference between two point clouds

Syntax
pcshowpair(ptCloudA,ptCloudB)

pcshowpair(ptCloudA,ptCloudB,Name,Value)

ax = pcshowpair( ___ )

Description
pcshowpair(ptCloudA,ptCloudB) creates a visualization depicting the differences between the
two input point clouds. The differences are displayed using a blending of magenta for point cloud A
and green for point cloud B.

pcshowpair(ptCloudA,ptCloudB,Name,Value) visualizes the differences using additional
options specified by one or more Name,Value pair arguments.

ax = pcshowpair( ___ ) returns the plot axes to the visualization of the differences, using any of
the preceding syntaxes.

Examples

Visualize the Difference Between Two Point Clouds

Load two point clouds that were captured using a Kinect device in a home setting.

load('livingRoom');

pc1 = livingRoomData{1};
pc2 = livingRoomData{2};

Plot and set the viewpoint of point clouds.

figure
pcshowpair(pc1,pc2,'VerticalAxis','Y','VerticalAxisDir','Down')
title('Difference Between Two Point Clouds')
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')

 pcshowpair

3-905



Input Arguments
ptCloudA — Point cloud
pointCloud object

Point cloud A, specified as a pointCloud object. The function uses levels of magenta to represent
ptCloudA and a pure magenta when the point cloud contains no color information.

ptCloudB — Point cloud
pointCloud object

Point cloud B, specified as a pointCloud object. The function uses levels of green to represent
ptCloudB and a pure green when the point cloud contains no color information.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VerticalAxisDir','Up' sets the vertical axis direction to up.

MarkerSize — Diameter of marker
6 (default) | positive scalar

3 Functions

3-906



Approximate diameter of the point marker, specified as a positive scalar. The units are in points. A
marker size larger than six can reduce the rendering performance.

BackgroundColor — Background color
[0 0 0] (black) (default) | RGB triplet | hexadecimal color code | character vector

Background color, specified as an RGB triplet, hexadecimal color code, or a character vector that
specifies a long or short color name.

VerticalAxis — Vertical axis
'Z' (default) | 'X' | 'Y'

Vertical axis, specified as 'X', 'Y', or 'Z'. When you reload a saved figure, any action on the figure
resets the vertical axis to the z-axis.

VerticalAxisDir — Vertical axis direction
'Up' (default) | 'Down'

Vertical axis direction, specified as 'Up' or 'Down'. When you reload a saved figure, any action on
the figure resets the direction to the up direction.

Parent — Axes on which to display the visualization
axes graphics object

Axes on which to display the visualization, specified as an Axes object. To create an Axes object, use
the axes function. To display the visualization in a new figure, leave 'Parent' unspecified.

Output Arguments
ax — Plot axes
axes graphics object

Plot axes, returned as an axes graphics object. Points with NaN or Inf coordinates are not displayed.

You can set the default center of rotation for the point cloud viewer to rotate around the axes center
or around a point. Set the default behavior from the “Computer Vision Toolbox Preferences”.

Tips
• To improve performance, pcshowpair automatically downsamples the rendered point cloud

during interaction with the figure. The downsampling occurs only for rendering the point cloud
and does not affect the saved points.

• To view point data or modify color display values, hover over the axes toolbar and select one of the
following options.

 pcshowpair

3-907



Feature Description
Datatip Click Data Tips to view the data point values for any point in the

point cloud figure. For a normal point cloud, the Data Tips
displays the x,y,z values. Additional data properties for the depth
image and lidar are:

Point Cloud Data Data Value Properties
Depth image (RGB-D sensor) Color, row, column
Lidar Intensity, range, azimuth angle,

elevation angle, row, column

Background color Click Rotate and then right-click in the figure for background
options.

3 Functions

3-908



Feature Description
Colormap value Click Rotate and then right-click in the figure for colormap

options. You can modify colormap values for the coordinate and
range values available, depending on the type of point cloud
displayed.

View Click Rotate to change the viewing angle of the point cloud figure
to the XZ, ZX,YZ, ZY, XY, or the YX plane. Click Restore View to
reset the viewing angle.

• pcshowpair supports the 'opengl' option for the Renderer figure property only.

See Also
pointCloud | pcplayer | planeModel | plot3 | pcwrite | pcread | pcshow | pcmerge |
scatter3 | reconstructScene | triangulate | pcdownsample | pcfitplane | pcdenoise |
pcregistericp

Topics
“Structure From Motion From Two Views”
“Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2015b

 pcshowpair

3-909



showReprojectionErrors
Visualize calibration errors

Syntax
showReprojectionErrors(cameraParams)
showReprojectionErrors(cameraParams,view)
showReprojectionErrors( ___ ,Name,Value)

ax = showReprojectionErrors( ___ )

Description
showReprojectionErrors(cameraParams) displays a bar graph that represents the calibration
accuracy for a single camera or for a stereo pair. The bar graph displays the mean reprojection error
per image. The cameraParams input contains either a cameraParameters, fisheyeParameters,
or a stereoParameters object, which the estimateCameraParameters or
estimateFisheyeParameters function returns.

showReprojectionErrors(cameraParams,view) displays the reprojection errors using the
visualization style specified by the view input.

showReprojectionErrors( ___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments, using any of the preceding syntaxes.

ax = showReprojectionErrors( ___ ) returns the plot axis, using any of the preceding syntaxes.

Examples

Visualize Reprojection Errors for a Single Camera

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
  'calibration','webcam'));
imageFileNames = images.Files(1:5);

Detect calibration pattern.

[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates of the corners of the squares. The square size is in millimeters.

squareSize = 25;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I, 1), size(I, 2)];

3 Functions

3-910



params = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Visualize the errors as a bar graph.

subplot(1,2,1);
showReprojectionErrors(params);

Visualize the errors as a scatter plot.

subplot(1,2,2);
showReprojectionErrors(params,'ScatterPlot');

 showReprojectionErrors

3-911



Visualize Reprojection Errors for a Stereo Pair of Cameras

Specify calibration images

imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));

Detect the checkerboards.

[imagePoints, boardSize] = detectCheckerboardPoints(...
     leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints. The square size is in millimeters.

squareSize = 108; 
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Here both cameras have the same resolution.

I = readimage(leftImages,1); 
imageSize = [size(I, 1), size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

3 Functions

3-912



Visualize calibration accuracy.

showReprojectionErrors(params);

Input Arguments
cameraParams — Object containing parameters of single camera or stereo pair
cameraParameters object | fisheyeParameters object | stereoParameters object

Object containing parameters of single camera or stereo pair, specified as either a
cameraParameters, fisheyeParameters, or stereoParameters object. You can create the
single camera or stereo pair input object using the estimateCameraParameters function. The
fisheye parameters input object is created using estimateFisheyeParameters.

You can also use the Camera Calibrator app to create the cameraParameters input object, or use
Stereo Camera Calibrator app to create the stereoParameters input object. See “Using the
Single Camera Calibrator App” and “Using the Stereo Camera Calibrator App”.

view — Bar graph or scatter plot view
'BarGraph' | 'ScatterPlot'

Bar graph or scatter plot view, specified as either 'BarGraph' or 'ScatterPlot'. The view input
sets the visualization for the camera extrinsic parameters. Set view to 'BarGraph' to display the
mean error per image as a bar graph. Set view to 'ScatterPlot' to display the error for each
point as a scatter plot. The 'ScatterPlot' option applies only to the single camera case.

 showReprojectionErrors

3-913



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'view','BarGraph' displays the mean error per image as a bar graph.

HighlightIndex — Highlight selection index
[] (default) | vector of integers | scalar

Highlight selection index, specified as a scalar or a vector of integers. When you set the view to
'BarGraph', the function highlights the bars corresponding to the selected images. When you set
the view to 'ScatterPlot', the function highlights the points corresponding to the selected images
with circle markers.

Parent — Output axes
current axes (default) | scalar value

Output axes, specified as the comma-separated pair consisting of 'Parent' and a scalar value. Specify
output axes to display the visualization. You can obtain the current axes handle by returning the
function to an output variable:
ax = showReprojectionErrors(cameraParams)
You can also use the gca function to get the current axes handle.
Example: showReprojectionErrors(cameraParams,'Parent',ax)

Output Arguments
ax — Current axes handle
scalar value

Current axes handle, returned as a scalar value. The function returns the handle to the current axes
for the current figure.
Example: ax = showReprojectionErrors(cameraParams)

See Also
Camera Calibrator | Stereo Camera Calibrator | estimateCameraParameters |
showExtrinsics | undistortImage | detectCheckerboardPoints |
generateCheckerboardPoints | cameraParameters | stereoParameters |
fisheyeParameters

Topics
“Using the Single Camera Calibrator App”

Introduced in R2014a

3 Functions

3-914



stereoAnaglyph
Create red-cyan anaglyph from stereo pair of images

Syntax
J = stereoAnaglyph(I1,I2)

Description
J = stereoAnaglyph(I1,I2) combines images I1 and I2 into a red-cyan anaglyph. When the
inputs are rectified stereo images, you can view the output image with red-blue stereo glasses to see
the stereo effect.

Examples

Create 3-D Stereo Display

Load parameters for a calibrated stereo pair of cameras.

load('webcamsSceneReconstruction.mat')

Load a stereo pair of images.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Rectify the stereo images.

[J1, J2] = rectifyStereoImages(I1, I2, stereoParams);

Create the anaglyph.

A = stereoAnaglyph(J1, J2);

Display the anaglyph. Use red-blue stereo glasses to see the stereo effect.

figure; imshow(A);

 stereoAnaglyph

3-915



Input Arguments
I1 — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image I1, specified as an M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale image. I1
and I2 must be real, finite, and nonsparse, and the images must be the same size. If the images are
not the same size, use imfuse to pad the smaller image dimension with zeros before creating the
anaglyph.
Data Types: single | double | int16 | uint8 | uint16 | logical

I2 — Input image
M-by-N 2-D grayscale image | M-by-N-by-3 truecolor image

Input image I2, specified as an M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale image. I1
and I2 must be real, finite, and nonsparse, and the images must be the same size. If the images are
not the same size, use imfuse to pad the smaller image dimension with zeros before creating the
anaglyph.
Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Stereo anaglyph output image
M-by-N-by-3 truecolor image

Stereo anaglyph output image, returned as an M-by-N-by-3 truecolor image. Output image J is the
same size as input images I1 and I2.

3 Functions

3-916



Data Types: single | double | int16 | uint8 | uint16 | logical

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rectifyStereoImages | reconstructScene | estimateUncalibratedRectification |
imfuse | imshowpair

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2014b

 stereoAnaglyph

3-917



trainCascadeObjectDetector
Train cascade object detector model

Syntax
trainCascadeObjectDetector(outputXMLFilename,positiveInstances,
negativeImages)
trainCascadeObjectDetector(outputXMLFilename,'resume')

trainCascadeObjectDetector( ___ ,Name=Value)

Description
trainCascadeObjectDetector(outputXMLFilename,positiveInstances,
negativeImages) writes a trained cascade detector XML file named, outputXMLFilename. The
file name must include an XML extension. For a more detailed explanation on how this function
works, refer to “Get Started with Cascade Object Detector”.

trainCascadeObjectDetector(outputXMLFilename,'resume') resumes an interrupted
training session. The outputXMLFilename input must match the output file name from the
interrupted session. All arguments saved from the earlier session are reused automatically.

trainCascadeObjectDetector( ___ ,Name=Value) specifies options using one or more name-
value arguments in addition to any combination of arguments from previous syntaxes. For example,
ObjectTrainingSize=[100,100] sets the height and width of objects during training.

Examples

Train Stop Sign Detector

Load the positive samples data from a MAT file. The file contains the ground truth, specified as table
of bounding boxes for several object categories. The grount truth was labeled and exported from the
Image Labeler app.

load('stopSignsAndCars.mat');

Prefix the fullpath to the stop sign images.

stopSigns = fullfile(toolboxdir('vision'),'visiondata',stopSignsAndCars{:,1});

Create datastores to load the ground truth data for stop signs.

imds = imageDatastore(stopSigns);
blds = boxLabelDatastore(stopSignsAndCars(:,2));

Combine the image and box label datastores.

positiveInstances = combine(imds,blds);

Add the image folder path to the MATLAB path.

3 Functions

3-918



imDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imDir);

Specify a folder for negative images.

negativeFolder = fullfile(matlabroot,'toolbox','vision','visiondata','nonStopSigns');

Create an imageDatastore object containing negative images.

negativeImages = imageDatastore(negativeFolder);

Train a cascade object detector called 'stopSignDetector.xml' using HOG features. NOTE: The
command can take several minutes to run.

trainCascadeObjectDetector('stopSignDetector.xml',positiveInstances,negativeFolder,FalseAlarmRate=0.1,NumCascadeStages=5);

Automatically setting ObjectTrainingSize to [35, 32]
Using at most 42 of 42 positive samples per stage
Using at most 84 negative samples per stage

--cascadeParams--
Training stage 1 of 5
[........................................................................]
Used 42 positive and 84 negative samples
Time to train stage 1: 0 seconds

Training stage 2 of 5
[........................................................................]
Used 42 positive and 84 negative samples
Time to train stage 2: 0 seconds

Training stage 3 of 5
[........................................................................]
Used 42 positive and 84 negative samples
Time to train stage 3: 2 seconds

Training stage 4 of 5
[........................................................................]
Used 42 positive and 84 negative samples
Time to train stage 4: 6 seconds

Training stage 5 of 5
[........................................................................]
Used 42 positive and 17 negative samples
Time to train stage 5: 9 seconds

Training complete

Use the newly trained classifier to detect a stop sign in an image.

detector = vision.CascadeObjectDetector('stopSignDetector.xml');

Read the test image.

img = imread('stopSignTest.jpg');

Detect a stop sign in the test image.

bbox = step(detector,img);

 trainCascadeObjectDetector

3-919



Insert bounding box rectangles and return the marked image.

 detectedImg = insertObjectAnnotation(img,'rectangle',bbox,'stop sign');

Display the detected stop sign.

figure;

imshow(detectedImg);

Remove the image folder from the path.

rmpath(imDir);

Input Arguments
positiveInstances — Positive samples
datastore | table

Positive samples, specified as a datastore or a two-column table.

• If you use a datastore, your data must be set up so that calling the datastore with the read and
readall functions returns a cell array or table with at least two columns. The table describes the
data contained in the columns:

3 Functions

3-920



Images boxes labels (optional)
Cell vector of grayscale or
RGB images.

M-by-4 matrices of bounding
boxes of the form [x, y, width,
height], where [x,y] represent
the top-left coordinates of the
bounding box.

Cell array that contains an M-
element categorical vector
containing object class names.
All categorical data returned
by the datastore must contain
the same categories.

When you provide this data,
the function uses the class
label to fill the
ClassificationModel
property of the trained
detector, specified as a
vision.CascadeObjectDet
ector object. Otherwise, the
class labels are not required
for training because the
cascade object detector is a
single class detector.

• If you use a table, the table must have two or more columns. The first column of the table must
contain image file names with paths. The images must be grayscale or truecolor (RGB) and they
can be in any format supported by imread. Each of the remaining columns must be a cell vector
that contains M-by-4 matrices that represent a single object class, such as vehicle, flower, or stop
sign. The columns contain 4-element double arrays of M bounding boxes in the format
[x,y,width,height]. The format specifies the upper-left corner location and size of the bounding box
in the corresponding image. To create a ground truth table, you can use the Image Labeler app
or Video Labeler app. To create a table of training data from the generated ground truth, use the
objectDetectorTrainingData function.

negativeImages — Negative images
ImageDatastore object | cell array | character vector | string scalar

 trainCascadeObjectDetector

3-921



Negative images, specified as an ImageDatastore object, a path to a folder containing images, or as
a cell array of image file names. Because the images are used to generate negative samples, they
must not contain any objects of interest. Instead, they should contain backgrounds associated with
the object.

outputXMLFilename — Trained cascade detector file name
character vector | string scalar

Trained cascade detector file name, specified as a character vector or a string scalar with an XML
extension. For example, 'stopSignDetector.xml'.
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: FeatureType='Haar' specifies Haar for the type of features to use.

ObjectTrainingSize — Object size for training
'Auto' (default) | two-element vector

Training object size, specified as either a two-element [height, width] vector or as 'Auto'. Before
training, the function resizes the positive and negative samples to ObjectTrainingSize in pixels. If
you select 'Auto', the function determines the size automatically based on the median width-to-
height ratio of the positive instances. For optimal detection accuracy, specify an object training size
close to the expected size of the object in the image. However, for faster training and detection, set
the object training size to be smaller than the expected size of the object in the image.
Data Types: char | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

NegativeSamplesFactor — Negative sample factor
2 (default) | real-valued scalar

Negative sample factor, specified as a real-valued scalar. The number of negative samples to use at
each stage is equal to

NegativeSamplesFactor × [the number of positive samples used at each stage].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumCascadeStages — Number of cascade stages
20 (default) | positive integer

Number of cascade stages to train, specified as a positive integer. Increasing the number of stages
may result in a more accurate detector but also increases training time. More stages can require
more training images, because at each stage, some number of positive and negative samples are
eliminated. This value depends on the values of FalseAlarmRate and TruePositiveRate. More
stages can also enable you to increase the FalseAlarmRate. See the “Get Started with Cascade
Object Detector” tutorial for more details.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

3 Functions

3-922



FalseAlarmRate — Acceptable false alarm rate
0.5 (default) | value in the range (0 1]

Acceptable false alarm rate at each stage, specified as a value in the range (0 1]. The false alarm rate
is the fraction of negative training samples incorrectly classified as positive samples.

The overall false alarm rate is calculated using the FalseAlarmRate per stage and the number of
cascade stages, NumCascadeStages:

FalseAlarmRateNumCascadeStages

Lower values for FalseAlarmRate increase complexity of each stage. Increased complexity can
achieve fewer false detections but can result in longer training and detection times. Higher values for
FalseAlarmRate can require a greater number of cascade stages to achieve reasonable detection
accuracy.
Data Types: single | double

TruePositiveRate — Minimum true positive rate
0.995 (default) | value in the range (0,1]

Minimum true positive rate required at each stage, specified as a value in the range (0 1]. The true
positive rate is the fraction of correctly classified positive training samples.

The overall resulting target positive rate is calculated using the TruePositiveRate per stage and
the number of cascade stages, NumCascadeStages:

TruePositiveRateNumCascadeStages

Higher values for TruePositiveRate increase complexity of each stage. Increased complexity can
achieve a greater number of correct detections but can result in longer training and detection times.
Data Types: single | double

FeatureType — Feature type
'HOG' (default) | 'LBP' | 'Haar'

Feature type, specified as one of the following:
'Haar'[1] — Haar-like features
'LBP'[2] — Local binary patterns
'HOG'[3] — Histogram of oriented gradients

The function allocates a large amount of memory, especially the Haar features. To avoid running out
of memory, use this function on a 64-bit operating system with a sufficient amount of RAM.
Data Types: char

Tips
• Training a good detector requires thousands of training samples. Processing time for a large

amount of data varies, but it is likely to take hours or even days. During training, the function
displays the time it took to train each stage in the MATLAB command window.

• The OpenCV HOG parameters used in this function are:

• Numbins: 9

 trainCascadeObjectDetector

3-923



• CellSize = [8 8]
• BlockSize = [4 4]
• BlockOverlap = [2 2]
• UseSignedOrientation = false

References
[1] Viola, P., and M. J. Jones. "Rapid Object Detection using a Boosted Cascade of Simple Features."

Proceedings of the 2001 IEEE Computer Society Conference. Volume 1, 15 April 2001, pp.
I-511–I-518.

[2] Ojala, T., M. Pietikainen, and T. Maenpaa. “Multiresolution Gray-scale and Rotation Invariant
Texture Classification With Local Binary Patterns.” IEEE Transactions on Pattern Analysis and
Machine Intelligence. Volume 24, No. 7 July 2002, pp. 971–987.

[3] Dalal, N., and B. Triggs. “Histograms of Oriented Gradients for Human Detection.” IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. Volume 1, 2005,
pp. 886–893.

See Also
Apps
Image Labeler | Video Labeler

Functions
insertObjectAnnotation | imrect | vision.CascadeObjectDetector

Topics
“Image Category Classification Using Bag of Features”
“Get Started with the Image Labeler”
“Get Started with Cascade Object Detector”
“Multiple Object Tracking”

External Websites
Cascade Training GUI

Introduced in R2013a

3 Functions

3-924

https://www.mathworks.com/matlabcentral/fileexchange/39627-cascade-trainer-specify-ground-truth-train-a-detector


trainImageCategoryClassifier
Train an image category classifier

Syntax
classifier = trainImageCategoryClassifier(imds,bag)
classifier = trainImageCategoryClassifier(imds,bag,Name,Value)

Description
classifier = trainImageCategoryClassifier(imds,bag) returns an image category
classifier. The classifier contains the number of categories and the category labels for the input imds
images. The function trains a support vector machine (SVM) multiclass classifier using the input bag,
a bagOfFeatures object.

You must have a Statistics and Machine Learning Toolbox license to use this function.

This function supports parallel computing using multiple MATLAB workers. Enable parallel
computing using the “Computer Vision Toolbox Preferences” dialog. To open Computer Vision Toolbox
preferences, on the Home tab, in the Environment section, click Preferences. Select Computer
Vision Toolbox.

classifier = trainImageCategoryClassifier(imds,bag,Name,Value) returns a
classifier object with optional input properties specified by one or more Name,Value pair
arguments.

Examples

Train, Evaluate, and Apply Image Category Classifier

Load two image categories.

setDir  = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
    'foldernames');

Split the data set into a training and test data. Pick 30% of images from each set for the training data
and the remainder 70% for the test data.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Create bag of visual words.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.
-------------------------
* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.

 trainImageCategoryClassifier

3-925



* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1

* [Step 1/1] Clustering vocabulary level 1.
* Number of features          : 61440
* Number of clusters          : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.19 seconds/iteration)...converged in 20 iterations.

* Finished creating Bag-Of-Features

Train a classifier with the training sets.

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Training an image category classifier for 2 categories.
--------------------------------------------------------
* Category 1: books
* Category 2: cups

* Encoding features for 4 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

Evaluate the classifier using test images. Display the confusion matrix.

confMatrix = evaluate(categoryClassifier,testSet)

Evaluating image category classifier for 2 categories.
-------------------------------------------------------

* Category 1: books
* Category 2: cups

* Evaluating 8 images...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

             PREDICTED
KNOWN    | books   cups   
--------------------------
books    | 0.75    0.25   
cups     | 0.25    0.75   

* Average Accuracy is 0.75.

3 Functions

3-926



confMatrix = 2×2

    0.7500    0.2500
    0.2500    0.7500

Find the average accuracy of the classification.

mean(diag(confMatrix))

ans = 0.7500

Apply the newly trained classifier to categorize new images.

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

Encoding images using Bag-Of-Features.
--------------------------------------
* Encoding an image...done.

Display the classification label.

categoryClassifier.Labels(labelIdx)

ans = 1x1 cell array
    {'cups'}

Input Arguments
imds — Images
imageDatastore object

Images specified as an imageDatastore object.

bag — Bag of features
bagOfFeatures object

Bag of features, specified as a bagOfFeatures object. The object contains a visual vocabulary of
extracted feature descriptors from representative images of each image category.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose',true sets 'Verbose' to the logical true.

Verbose — Enable progress display to screen
true (default) | false

Enable progress display to screen, specified as the comma-separated pair consisting of 'Verbose' and
the logical true or false.

 trainImageCategoryClassifier

3-927



LearnerOptions — Classifier options
default values of templateSVM function

Classifier options, specified as the comma-separated pair consisting of 'LearnerOptions' and the
learner options output returned by the templateSVM function.

Example 3.2. Example

To adjust the regularization parameter of templateSVM and to set a custom kernel function, use the
following syntax:

opts = templateSVM('BoxConstraint',1.1,'KernelFunction','gaussian');
classifier = trainImageCategoryClassifier(imds,bag,'LearnerOptions',opts);

Output Arguments
classifier — Image category classifier
imageCategoryClassifier object

Image category classifier, returned as an imageCategoryClassifier object. The function trains a
support vector machine (SVM) multiclass classifier using the error correcting output codes (ECOC)
framework.

References
[1] Csurka, G., C. R. Dance, L. Fan, J. Willamowski, and C. Bray Visual Categorization with Bag of

Keypoints, Workshop on Statistical Learning in Computer Vision, ECCV 1 (1-22), 1-2.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
imageSet | bagOfFeatures | imageCategoryClassifier | fitcecoc | templateSVM

Topics
“Image Category Classification Using Bag of Features”
“Image Classification with Bag of Visual Words”

Introduced in R2014b

3 Functions

3-928



Image Labeler
Label images for computer vision applications

Description
The Image Labeler app enables you to label ground truth data in a collection of images. Using the
app, you can:

• Define rectangular regions of interest (ROI) labels, polyline ROI labels, pixel ROI labels, polygon
ROI labels, and scene labels. Use these labels to interactively label your ground truth data.

• Use built-in detection or tracking algorithms to label your ground truth data.
• Write, import, and use your own custom automation algorithm to automatically label ground truth.

See “Create Automation Algorithm for Labeling”.
• Evaluate the performance of your label automation algorithms using a visual summary. See “View

Summary of Ground Truth Labels”.
• Export the labeled ground truth as a groundTruth object. You can use this object for system
verification or for training an object detector or semantic segmentation network. See “Training
Data for Object Detection and Semantic Segmentation”.

The Image Labeler app supports all image file formats supported by the imread function and
additionally supports the Digital Imaging and Communication in Medicine (DICOM) format including
the ability to load multiframe data. To read additional file formats, you can create an
imageDatastore and use the ReadFcn property.

When loading images, if an image has a dimension larger than 8000 pixels or is a multiresolution
image, the Image Labeler app offers you the option to convert the image into a blocked image. A
blocked image consists of a large image that has been divided into smaller blocks that can fit in
memory. Once the Image Labeler converts the large image into a blocked, you can process it in the
app as you would any other image. While using blocked images enables you to process images in the
app that you might not otherwise be able to, there are some limitations. For more information, see
“Label Large Images in the Image Labeler”.

To learn more about this app, see “Get Started with the Image Labeler”.

 Image Labeler

3-929



Open the Image Labeler App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter imageLabeler.

Programmatic Use
imageLabeler opens a new session of the app, enabling you to label ground truth data in images.

imageLabeler(imageFolder) opens the app and loads all the images from the folder named
imageFolder.

3 Functions

3-930



The images in the folder can be unordered and can vary in size. To label a video, or a set of ordered
images that resemble a video, use the Video Labeler app instead.

imageLabeler(imageDatastore) opens the app and reads all of the images from an
imageDatastore object. The ReadFcn property of the imageDatastore object specifies how to
read the data.

For example, to open the app with a collection of stop sign images:

   stopSignsFolder = fullfile(toolboxdir('vision'),'visiondata','stopSignImages');
   imds = imageDatastore(stopSignsFolder)
   imageLabeler(imds)

imageLabeler(sessionFile) opens the app and loads a saved Image Labeler session,
sessionFile. The sessionFile input contains the path and file name. The MAT-file that
sessionFile points to contains the saved session.

imageLabeler(gTruth) opens the app and loads a groundTruth object . The ground truth object
data source must be an image collection or an imageDatastore.

More About
ROI Labels, Sublabels, and Attributes

On the left side of the app, the ROI Labels pane contains the region of interest (ROI) label definitions
that you can mark on the frames. You can create label definitions directly from this pane.
Alternatively, you can create label definitions programmatically by using a
labelDefinitionCreator object and then import these label definitions into an app session.

Selecting ROI Label and Drawing Tool for Your Application

You can use labeled data to validate or train algorithms such as image classifiers, object detectors,
and semantic and instance segmentation networks. Consider your application when choosing a
labeling drawing tool to create ROI labels. The figure below shows labeling techniques for four
different applications.

Application Label Types Example
Image Classification N/A

Boat, Plane

 Image Labeler

3-931



Application Label Types Example
Object Detection Line

Rectangle

Projected Rectangle

Semantic Segmentation Pixel label

Polygon

Instance Segmentation Polygon

ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI) in a signal frame. The table
describes the supported label types.

3 Functions

3-932



ROI Label Description Scene
Rectangle Draw rectangular ROI labels

(bounding boxes) around
objects.

Projected cuboid Draw cuboidal ROI labels (3-D
bounding boxes).

 Image Labeler

3-933



ROI Label Description Scene
Line Draw linear ROI labels to

represent lines. To draw a
polyline ROI, use two or more
points.

Pixel label Assign labels to pixels for
semantic segmentation. You can
label pixels manually using
polygons, brushes, or flood fill.
For more information about
pixel labeling, see “Label Pixels
for Semantic Segmentation”.

3 Functions

3-934



ROI Label Description Scene
Polygon Draw a pixel-filled polygon for

instance segmentation. You can
label distinct instances of the
same class. For more
information about instance
segmentation, see “Label
Objects Using Polygons”

ROI Sublabels

An ROI sublabel is an ROI label that belongs to a parent label. Use ROI sublabels to provide a greater
level of detail about the ROIs in your labeled ground truth data. For example, a vehicle label might
contain headlight, licensePlate, and wheel sublabels. You can create sublabels only for rectangular
and polyline labels. For more details about sublabels, see “Use Sublabels and Attributes to Label
Ground Truth Data”.

ROI Attributes

An ROI attribute specifies additional information about an ROI label or sublabel. For example, in an
ocean scene, attributes might include the type or color of a boat. The table describes the supported
attribute types.

Attribute Type Sample Attribute Definition Sample Default Values
Numeric Value

String

 Image Labeler

3-935



Attribute Type Sample Attribute Definition Sample Default Values
Logical

List

For more details about attributes, see “Use Sublabels and Attributes to Label Ground Truth Data”.

Algorithms
You can use label automation algorithms to speed up labeling within the app. To create your own
label automation algorithm to use within the app, see “Create Automation Algorithm for Labeling”.
You can also use one of the built-in algorithms by following these steps:

1 Import the data you want to label, and create at least one label definition.
2 On the app toolstrip, click Select Algorithm and select one of the built-in automation

algorithms.
3 Click Automate, and then follow the automation instructions in the right pane of the automation

window.

ACF People Detector

Detect and label people using aggregate channel features (ACF). This algorithm is based on the
peopleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI
label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.

• The pretrained people detector model that the algorithm uses — The 'inria-100x41' model
was trained using the INRIA person data set. The 'caltech-50x21' model was trained using the
Caltech Pedestrian data set.

• The overlap ratio threshold, from 0 to 1, for detecting people — When rectangle ROIs overlap by
more than this threshold, the algorithm discards one of the ROIs.

• The classification score threshold for detecting people — Increase the score to increase the
prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

3 Functions

3-936



ACF Vehicle Detector (requires Automated Driving Toolbox)

Detect and label vehicles using aggregate channel features (ACF). This algorithm is based on the
vehicleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI
label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.

• The pretrained vehicle detector model that the algorithm uses — The 'full-view' model was
trained using unoccluded images of the front, rear, left, and right sides of vehicles. The 'front-
rear-view' model was trained using images of only the front and rear sides of the vehicle.

• The overlap ratio threshold, from 0 to 1, for detecting vehicles — When rectangle ROIs overlap by
more than this threshold, the algorithm discards one of the ROIs.

• The classification score threshold for detecting vehicles — Increase the score to increase the
prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

You can also configure the detector with a calibrated monocular camera by importing a monoCamera
object into the MATLAB workspace. Specify the length and width ranges of the vehicle in world units,
such as meters.

See Also
Apps
Video Labeler | Ground Truth Labeler | Lidar Labeler

Functions
pixelLabelTrainingData | objectDetectorTrainingData | polyToBlockedImage

Objects
groundTruth | groundTruthDataSource | labelDefinitionCreator

Topics
“Choose an App to Label Ground Truth Data”
“Get Started with the Image Labeler”
“Label Objects Using Polygons”
“Label Pixels for Semantic Segmentation”
“Share and Store Labeled Ground Truth Data”
“Create Automation Algorithm for Labeling”
“Keyboard Shortcuts and Mouse Actions for Image Labeler”
“Training Data for Object Detection and Semantic Segmentation”
“Convert Image Labeler Polygons to Labeled Blocked Image for Semantic Segmentation”

Introduced in R2018a

 Image Labeler

3-937



Video Labeler
Label video for computer vision applications

Description
The Video Labeler app enables you to label ground truth data in a video, in an image sequence, or
from a custom data source reader. Using the app, you can:

• Define rectangular regions of interest (ROI) labels, polyline ROI labels, pixel ROI labels, and scene
labels. Use these labels to interactively label your ground truth data.

• Use built-in detection or tracking algorithms to label your ground truth data.
• Write, import, and use your own custom automation algorithm to automatically label ground truth.

See “Create Automation Algorithm for Labeling”.
• Evaluate the performance of your label automation algorithms using a visual summary. See “View

Summary of Ground Truth Labels”.
• Export the labeled ground truth as a groundTruth object. You can use this object for system
verification or for training an object detector or semantic segmentation network. See “Training
Data for Object Detection and Semantic Segmentation”.

To learn more about this app, see “Get Started with the Video Labeler”.

3 Functions

3-938



Open the Video Labeler App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter videoLabeler.

Examples
• “Get Started with the Video Labeler”

Programmatic Use
videoLabeler opens a new session of the app, enabling you to label ground truth data in a video or
image sequence.

videoLabeler(videoFileName) opens the app and loads the input video. The video file must have
an extension supported by VideoReader.

 Video Labeler

3-939



Example: videoLabeler('vipmen.avi')

videoLabeler(imageSeqFolder) opens the app and loads the image sequence from the input
folder. An image sequence is an ordered set of images that resemble a video.

imageSeqFolder must be a string scalar or character vector that specifies the folder containing the
image files. The image files must have extensions supported by imformats and are loaded in the
order returned by the dir function.

videoLabeler(imageSeqFolder,timestamps) opens the app and loads a sequence of images
with their corresponding timestamps. timestamps must be a duration vector of the same length as
the number of images in the sequence.

For example, load a sequence of images and their corresponding timestamps into the app.

imageDir = fullfile(toolboxdir('vision'),'visiondata','NewTsukuba');
timeStamps = seconds(1:150);
videoLabeler(imageDir,timeStamps)

videoLabeler(gtSource) opens the app and loads the data source and corresponding timestamps
from a groundTruthDataSource object, gtSource. To generate this object for a custom data
source, you can specify a custom reader function. For details, see “Use Custom Image Source Reader
for Labeling”.

videoLabeler(sessionFile) opens the app and loads a saved app session, sessionFile. The
sessionFile input contains the path and file name. The MAT-file that sessionFile points to
contains the saved session.

videoLabeler(gTruth) opens the app and loads a groundTruth object. You do not need to add a
video before loading the object. The ground truth object data source must be an image sequence,
video, or a custom data source.

Limitations
• The built-in automation algorithms support the automation of rectangular ROI labels only. When

you select a built-in algorithm and click Automate, scene labels, pixel ROI labels, polyline ROI
labels, sublabels, and attributes are not imported into the automation session. To automate the
labeling of these features, create a custom automation algorithm. See “Create Automation
Algorithm for Labeling”.

• Pixel ROI labels do not support sublabels or attributes.
• The Label Summary window does not support sublabels or attributes

More About
ROI Labels, Sublabels, and Attributes

On the left side of the app, the ROI Labels pane contains the region of interest (ROI) label definitions
that you can mark on the frames. You can create label definitions directly from this pane.
Alternatively, you can create label definitions programmatically by using a
labelDefinitionCreator object and then import these label definitions into an app session.

The app supports the definition of ROI labels, sublabels, and attributes.

3 Functions

3-940



Selecting ROI Label and Drawing Tool for Your Application

You can use labeled data to validate or train algorithms such as image classifiers, object detectors,
and semantic and instance segmentation networks. Consider your application when choosing a
labeling drawing tool to create ROI labels. The figure below shows labeling techniques for four
different applications.

Application Label Types Example
Image Classification N/A

Boat, Plane
Object Detection Line

Rectangle

Projected Rectangle

Semantic Segmentation Pixel label

Polygon

 Video Labeler

3-941



Application Label Types Example
Instance Segmentation Polygon

ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI) in a signal frame. The table
describes the supported label types.

ROI Label Description Scene
Rectangle Draw rectangular ROI labels

(bounding boxes) around
objects.

Vehicles, pedestrians, road signs

Projected cuboid Draw cuboidal ROI labels (3-D
bounding boxes).

3 Functions

3-942



ROI Label Description Scene
Line Draw linear ROI labels to

represent lines. To draw a
polyline ROI, use two or more
points.

Lane boundaries, guard rails,
road curbs

Pixel label Assign labels to pixels for
semantic segmentation. You can
label pixels manually using
polygons, brushes, or flood fill.
For more on pixel labeling, see
“Label Pixels for Semantic
Segmentation”.

Vehicles, road surface, trees,
pavement

Polygon Draw polygon ROI labels. You
can label distinct instances of
the same class. For more
information on drawing polygon
ROI labels for instance and
semantic segmentation
networks, see “Label Objects
Using Polygons”

Vehicles, road surface, trees,
pavement

ROI Sublabels

An ROI sublabel is an ROI label that belongs to a parent label. Use ROI sublabels to provide a greater
level of detail about the ROIs in your labeled ground truth data. For example, a vehicle label might
contain headlight, licensePlate, and wheel sublabels. You can create sublabels only for rectangular

 Video Labeler

3-943



and polyline labels. For more details about sublabels, see “Use Sublabels and Attributes to Label
Ground Truth Data”.

ROI Attributes

An ROI attribute specifies additional information about an ROI label or sublabel. For example, in a
driving scene, attributes might include the type or color of a vehicle. The table describes the
supported attribute types.

Attribute Type Sample Attribute Definition Sample Default Values
Numeric Value

String

Logical

List

For more details about attributes, see “Use Sublabels and Attributes to Label Ground Truth Data”.

3 Functions

3-944



Tips
• To avoid having to relabel ground truth with new labels, organize the labeling scheme you want to

use before marking your ground truth.

Algorithms
You can use label automation algorithms to speed up labeling within the app. To create your own
label automation algorithm to use within the app, see “Create Automation Algorithm for Labeling”.
You can also use one of the built-in algorithms by following these steps:

1 Import the data you want to label, and create at least one label definition.
2 On the app toolstrip, click Select Algorithm and select one of the built-in automation

algorithms.
3 Click Automate, and then follow the automation instructions in the right pane of the automation

window.

ACF People Detector

Detect and label people using aggregate channel features (ACF). This algorithm is based on the
peopleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI
label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.

• The pretrained people detector model that the algorithm uses — The 'inria-100x41' model
was trained using the INRIA person data set. The 'caltech-50x21' model was trained using the
Caltech Pedestrian data set.

• The overlap ratio threshold, from 0 to 1, for detecting people — When rectangle ROIs overlap by
more than this threshold, the algorithm discards one of the ROIs.

• The classification score threshold for detecting people — Increase the score to increase the
prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

Point Tracker

Track and label one or more rectangle ROI labels over short intervals by using the Kanade-Lucas-
Tomasi (KLT) algorithm. This algorithm is based on the vision.PointTracker System object. To
use this algorithm, you must define at least one rectangle ROI label, but you do not need to draw any
ROI labels.

To change the feature detector used to obtain the initial points for tracking, click Settings. This table
shows the feature detector options.

Feature Detector Description Equivalent Function
Minimum Eigen Value Detect corners by using the

minimum eigenvalue algorithm.
detectMinEigenFeatures

Harris Detect corners by using the
Harris–Stephens algorithm.

detectHarrisFeatures

 Video Labeler

3-945



Feature Detector Description Equivalent Function
FAST Detect corners by using the

features from accelerated
segment test (FAST) algorithm.

detectFASTFeatures

BRISK Detect features by using the
binary robust invariant scalable
keypoints (BRISK) algorithm.

detectBRISKFeatures

KAZE Detect features by using
nonlinear diffusion to construct
a scale space of an image, and
then detecting multiscale corner
features (KAZE features) from
that scale space.

detectKAZEFeatures

SURF Detect blob features by using
the speeded-up robust features
(SURF) algorithm.

detectSURFFeatures

MSER Detect regions by using the
maximally stable extremal
regions (MSER) algorithm.

detectMSERFeatures

Temporal Interpolator

Estimate rectangle ROIs between frames by interpolating the ROI locations across the time range. To
use this algorithm, you must draw a rectangle ROI on a minimum of two frames: one at the beginning
of the interval and one at the end of the interval. The interpolation algorithm estimates and draws
ROIs in the intermediate frames.

Consider a video with 10 frames. The first frame has a rectangle ROI centered at [5, 5]. The 10th
frame has a rectangle ROI centered at [25, 25]. At each frame, the algorithm moves the ROI 2 pixels
in the x-direction and 2 pixels in the y-direction. Therefore, the algorithm centers the ROI at [7, 7] in
the second frame, [9, 9] in the third frame, and so on, up to [23, 23] in the second-to-last frame.

ACF Vehicle Detector (requires Automated Driving Toolbox)

Detect and label vehicles using aggregate channel features (ACF). This algorithm is based on the
vehicleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI
label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.

• The pretrained vehicle detector model that the algorithm uses — The 'full-view' model was
trained using unoccluded images of the front, rear, left, and right sides of vehicles. The 'front-
rear-view' model was trained using images of only the front and rear sides of the vehicle.

• The overlap ratio threshold, from 0 to 1, for detecting vehicles — When rectangle ROIs overlap by
more than this threshold, the algorithm discards one of the ROIs.

• The classification score threshold for detecting vehicles — Increase the score to increase the
prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

You can also configure the detector with a calibrated monocular camera by importing a monoCamera
object into the MATLAB workspace. Specify the length and width ranges of the vehicle in world units,
such as meters.

3 Functions

3-946



Lane Boundary Detector (requires Automated Driving Toolbox)

Detect and label lane boundaries using an estimated bird’s-eye-view projected image. To use this
algorithm, you must define at least one line ROI label. You do not need to draw any ROI labels. To
detect lane boundaries, the algorithm follows these steps:

1 It makes an initial guess at the placement of the lane boundaries in the image.
2 It transforms the ROI around the lanes into a bird's-eye view image to make the lanes parallel

and remove distortion.
3 It uses this image to segment the lane boundaries.

To help improve the algorithm results, first click Settings. You can change any of these settings.

• The placement of the lane lines for generating the bird's-eye view image
• The ROI around the lanes, which you can expand to include more than just the ego lane

boundaries in the image
• The pixel width of detected lane boundaries in the image

You can also change the number of lane boundaries that you want to detect. The default number of
lane boundaries is 2.

See Also
Apps
Image Labeler | Ground Truth Labeler | Lidar Labeler

Functions
objectDetectorTrainingData | pixelLabelTrainingData

Objects
groundTruth | groundTruthDataSource | labelDefinitionCreator

Topics
“Get Started with the Video Labeler”
“Choose an App to Label Ground Truth Data”
“Use Custom Image Source Reader for Labeling”
“Use Sublabels and Attributes to Label Ground Truth Data”
“Label Pixels for Semantic Segmentation”
“Label Objects Using Polygons”
“Create Automation Algorithm for Labeling”
“Share and Store Labeled Ground Truth Data”
“Keyboard Shortcuts and Mouse Actions for Video Labeler”
“Training Data for Object Detection and Semantic Segmentation”

Introduced in R2018b

 Video Labeler

3-947



Training Image Labeler
Label images for training a classifier

Description
The Image Labeler app replaces the Training Image Labeler app. Use the Image Labeler instead.

Open the Training Image Labeler App
• MATLAB command prompt: Enter trainingImageLabeler.

Note The trainingImageLabeler function opens the Image Labeler app.

3 Functions

3-948



Examples

Open Training Image Labeler App

Type trainingImageLabeler on the MATLAB command line or select it from the MATLAB desktop
Apps tab.

Note The trainingImageLabeler function opens the Image Labeler app.

Programmatic Use
trainingImageLabeler invokes an app for labeling ground truth data in images. This app allows
you to interactively specify rectangular Regions of Interest (ROIs). The ROIs define locations of
objects, which are used to train a classifier. It outputs training data in a format supported by the
trainCascadeObjectDetector function. The function trains a model to use with the
vision.CascadeObjectDetector detector.

Note The trainingImageLabeler function opens the Image Labeler app.

See Also
Image Labeler | insertObjectAnnotation | imrect | trainCascadeObjectDetector |
vision.CascadeObjectDetector | imageDatastore

Topics
“Get Started with the Image Labeler”
“Get Started with Cascade Object Detector”

Introduced in R2014a

 Training Image Labeler

3-949



triangulate
3-D locations of undistorted matching points in stereo images

Syntax
worldPoints = triangulate(matchedPoints1,matchedPoints2,stereoParams)
worldPoints = triangulate(matchedPoints1,matchedPoints2,cameraMatrix1,
cameraMatrix2)
[worldPoints,reprojectionErrors] = triangulate( ___ )
[worldPoints,reprojectionErrors,validIndex] = triangulate( ___ )

Description
worldPoints = triangulate(matchedPoints1,matchedPoints2,stereoParams) returns
the 3-D locations of matching pairs of undistorted image points from two stereo images.

worldPoints = triangulate(matchedPoints1,matchedPoints2,cameraMatrix1,
cameraMatrix2) returns the 3-D locations of the matching pairs in a world coordinate system.
These locations are defined by camera projection matrices.

[worldPoints,reprojectionErrors] = triangulate( ___ ) additionally returns reprojection
errors for the world points using any of the input arguments from previous syntaxes.

[worldPoints,reprojectionErrors,validIndex] = triangulate( ___ ) additionally
returns the indices of valid and invalid world points. Valid points are located in front of the cameras.

Examples

Measure Distance from Stereo Camera to a Face

Load stereo parameters.

load('webcamsSceneReconstruction.mat');

Read in the stereo pair of images.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Undistort the images.

I1 = undistortImage(I1,stereoParams.CameraParameters1);
I2 = undistortImage(I2,stereoParams.CameraParameters2);

Detect a face in both images.

faceDetector = vision.CascadeObjectDetector;
face1 = faceDetector(I1);
face2 = faceDetector(I2);

Find the center of the face.

3 Functions

3-950



center1 = face1(1:2) + face1(3:4)/2;
center2 = face2(1:2) + face2(3:4)/2;

Compute the distance from camera 1 to the face.

point3d = triangulate(center1, center2, stereoParams);
distanceInMeters = norm(point3d)/1000;

Display the detected face and distance.

distanceAsString = sprintf('%0.2f meters', distanceInMeters);
I1 = insertObjectAnnotation(I1,'rectangle',face1,distanceAsString,'FontSize',18);
I2 = insertObjectAnnotation(I2,'rectangle',face2, distanceAsString,'FontSize',18);
I1 = insertShape(I1,'FilledRectangle',face1);
I2 = insertShape(I2,'FilledRectangle',face2);
 
imshowpair(I1, I2, 'montage');

Input Arguments
matchedPoints1 — Coordinates of points in image 1
M-by-2 matrix | SURFPoints object | MSERRegions object | cornerPoints object | BRISKPoints
object

Coordinates of points in image 1, specified as an M-by-2 matrix of M number of [x y] coordinates, or
as a KAZEPoints, SURFPoints, MSERRegions, cornerPoints, or BRISKPoints object. The
matchedPoints1 and matchedPoints2 inputs must contain points that are matched using a
function such as matchFeatures.

matchedPoints2 — Coordinates of points in image 2
M-by-2 matrix | SURFPoints object | MSERRegions object | cornerPoints object | BRISKPoints
object

Coordinates of points in image 2, specified as an M-by-2 matrix of M number of [x y] coordinates, or
as a KAZEPoints, SURFPoints, MSERRegions, cornerPoints, or BRISKPoints object. The
matchedPoints1 and matchedPoints2 inputs must contain points that are matched using a
function such as matchFeatures.

 triangulate

3-951



stereoParams — Camera parameters for stereo system
stereoParameters object

Camera parameters for stereo system, specified as a stereoParameters object. The object contains
the intrinsic, extrinsic, and lens distortion parameters of the stereo camera system. You can use the
estimateCameraParameters function to estimate camera parameters and return a
stereoParameters object.

When you pass a stereoParameters object to the function, the origin of the world coordinate
system is located at the optical center of camera 1. The x-axis points to the right, the y-axis points
down, and the z-axis points away from the camera.

cameraMatrix1 — Projection matrix for camera 1
4-by-3 matrix

Projection matrix for camera 1, specified as a 4-by-3 matrix. The matrix maps a 3-D point in
homogeneous coordinates onto the corresponding point in the image from the camera. This input
describes the location and orientation of camera 1 in the world coordinate system. cameraMatrix1
must be a real and nonsparse numeric matrix. You can obtain the camera matrix using the
cameraMatrix function.

Camera matrices, passed to the function, define the world coordinate system.

cameraMatrix2 — Projection matrix for camera 2
4-by-3 projection matrix

Projection matrix for camera 2, specified as a 4-by-3 matrix. The matrix maps a 3-D point in
homogeneous coordinates onto the corresponding point in the image from the camera. This input
describes the location and orientation of camera 2 in the world coordinate system. cameraMatrix2
must be a real and nonsparse numeric matrix. You can obtain the camera matrix using the
cameraMatrix function.

3 Functions

3-952



Camera matrices, passed to the function, define the world coordinate system.

Output Arguments
worldPoints — 3-D locations of matching pairs of undistorted image points
M-by-3 matrix

3-D locations of matching pairs of undistorted image points, returned as an M-by-3 matrix. The matrix
contains M number of [x y z] locations of matching pairs of undistorted image points from two stereo
images.

When you specify the camera geometry using stereoParams, the world point coordinates are
relative to the optical center of camera 1.

When you specify the camera geometry using cameraMatrix1 and cameraMatrix2, the world point
coordinates are defined by the camera matrices.

The function returns worldPoints as data type double when matchedPoints1 and
matchedPoints2 are of data type double. Otherwise, the function returns worldPoints as data
type single.
Data Types: single | double

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as an M-by-1 vector. The function projects each world point back into
both images. Then, in each image, the function calculates the reprojection error as the distance
between the detected and the reprojected point. The reprojectionErrors vector contains the
average reprojection error for each world point.

validIndex — Validity of world points
M-by-1 logical vector

 triangulate

3-953



Validity of world points, returned as an M-by-1 logical vector. Valid points, denoted as a logical 1
(true), are located in front of the cameras. Invalid points, denoted as a logical 0 (false), are located
behind the cameras.

The validity of a world point with respect to the position of a camera is determined by projecting the
world point onto the image using the camera matrix and homogeneous coordinates. The world point
is valid if the resulting scale factor is positive.

Tips
The triangulate function does not account for lens distortion. You can undistort the images using
the undistortImage function before detecting the points. Alternatively, you can undistort the points
themselves using the undistortPoints function.

References
[1] Hartley, R. and A. Zisserman. "Multiple View Geometry in Computer Vision." Cambridge

University Press, p. 312, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
triangulateMultiview | reconstructScene | estimateCameraParameters | cameraMatrix |
undistortImage | undistortPoints | relativeCameraPose

Objects
stereoParameters | cameraParameters

Topics
“Structure From Motion From Two Views”
“Code Generation for Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2014b

3 Functions

3-954



triangulateMultiview
3-D locations of world points matched across multiple images

Syntax
worldPoints = triangulateMultiview(pointTracks,cameraPoses,intrinsics)
[worldPoints,reprojectionErrors] = triangulateMultiview( ___ )
[worldPoints,reprojectionErrors,validIndex] = triangulateMultiview( ___ )

Description
worldPoints = triangulateMultiview(pointTracks,cameraPoses,intrinsics) returns
the locations of 3-D world points that correspond to points matched across multiple images taken
with calibrated cameras. pointTracks specifies an array of matched points. cameraPoses and
intrinsics specify camera pose information and intrinsics, respectively. The function does not
account for lens distortion.

[worldPoints,reprojectionErrors] = triangulateMultiview( ___ ) additionally returns
the mean reprojection error for each 3-D world point using all input arguments in the prior syntax.

[worldPoints,reprojectionErrors,validIndex] = triangulateMultiview( ___ )
additionally returns the indices of valid and invalid world points. Valid points are located in front of
the cameras.

Examples

Reconstruct Scene from Multiple Views

Load images in the workspace.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageSet(imageDir);

Load precomputed camera parameters.

data = load(fullfile(imageDir,'cameraParams.mat'));

Get camera intrinsic parameters.

intrinsics = data.cameraParams.Intrinsics;

Compute features for the first image.

I = im2gray(read(images,1));
I = undistortImage(I,intrinsics);
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Load camera locations and orientations.

load(fullfile(imageDir,'cameraPoses.mat'));

 triangulateMultiview

3-955



Create an imageviewset object.

vSet = imageviewset;
vSet = addView(vSet,1,rigid3d(orientations(:,:,1),locations(1,:)),...
    'Points',pointsPrev);

Compute features and matches for the rest of the images.

for i = 2:images.Count
  I = im2gray(read(images,i));
  I = undistortImage(I,intrinsics);
  points = detectSURFFeatures(I);
  [features,points] = extractFeatures(I,points);
  vSet = addView(vSet,i,rigid3d(orientations(:,:,i), locations(i,:)),...
      'Points',points);
  pairsIdx = matchFeatures(featuresPrev,features,'MatchThreshold',5);
  vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
  featuresPrev = features;
end

Find point tracks.

tracks = findTracks(vSet);

Get camera poses.

cameraPoses = poses(vSet);

Find 3-D world points.

[xyzPoints,errors] = triangulateMultiview(tracks,cameraPoses,intrinsics);
z = xyzPoints(:,3);
idx = errors < 5 & z > 0 & z < 20;
pcshow(xyzPoints(idx, :),'VerticalAxis','y','VerticalAxisDir','down','MarkerSize',30);
hold on
plotCamera(cameraPoses, 'Size', 0.2);
hold off

3 Functions

3-956



Input Arguments
pointTracks — Matched points across multiple images
N-element array of pointTrack objects

Matched points across multiple images, specified as an N-element array of pointTrack objects.
Each element contains two or more points that match across multiple images.

cameraPoses — Camera pose information
two-column table | three-column table

Camera pose information, specified as a two-column or three-column table. You can obtain
cameraPoses from an imageviewset object by using the poses object function.

Two-column Table

Column Description
ViewID View identifier in the pointTrack object,

specified as an integer.
AbsolutePose Absolute pose of the view, specified as a rigid3d

object. You can obtain the AbsolutePose from
the imageviewset object by using the poses
object function.

 triangulateMultiview

3-957



Three-column Table

Column Description
ViewID View identifier in the pointTrack object,

specified as an integer.
Orientation Camera orientation, specified as a 3-by-3 rotation

matrix.
Location Camera location coordinates, specified as a three-

element vector of the form [x, y, z] and
represented in the data units of the parent axes.

intrinsics — Camera intrinsics
cameraIntrinsics object | M-element vector of cameraIntrinsics objects

Camera intrinsics, specified as a cameraIntrinsics object or an M-element vector of
cameraIntrinsics objects. M is the number of camera poses. When all images are captured by the
same camera, specify one cameraIntrinsics object. When images are captured by different
cameras, specify a vector.

Output Arguments
worldPoints — 3-D world points
N-by-3 matrix

3-D world points, returned as an N-by-3 matrix. Each row represents one 3-D world point and is of the
form [x, y, z]. N is the number of 3-D world points.
Data Types: single | double

reprojectionErrors — Reprojection errors
N-element vector

Reprojection errors, returned as an N-element vector. To calculate reprojection errors, first the
function projects each world point back into each image. Then, in each image, the function calculates
the distance between the detected and the reprojected point. Each element of the
reprojectionErrors output is the average reprojection error for the corresponding world point in
the worldPoints output.

validIndex — Validity of world points
M-by-1 logical vector

Validity of world points, returned as an M-by-1 logical vector. Valid points, denoted as a logical 1
(true), are located in front of the cameras. Invalid points, denoted as logical 0 (false), are located
behind the cameras.

3 Functions

3-958



The validity of a world point with respect to the position of a camera is determined by projecting the
world point onto the image using the camera matrix and homogeneous coordinates. The world point
is valid if the resulting scale factor is positive.

Tips
Before detecting the points, correct the images for lens distortion by using by using the
undistortImage function. Alternatively, you can directly undistort the points by using the
undistortPoints function.

References
[1] Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd ed.

Cambridge, UK; New York; Cambridge University Press, 2003.

See Also
Apps
Camera Calibrator

Functions
undistortImage | estimateCameraParameters | bundleAdjustment |
bundleAdjustmentMotion | bundleAdjustmentStructure | undistortPoints |
relativeCameraPose

Objects
cameraParameters | pointTrack | imageviewset | rigid3d

Topics
“Structure From Motion From Two Views”
“Code Generation for Depth Estimation From Stereo Video”
“Structure from Motion Overview”
“Coordinate Systems”

Introduced in R2016a

 triangulateMultiview

3-959



undistortImage
Correct image for lens distortion

Syntax
[J,newOrigin] = undistortImage(I,cameraParams)
[J,newOrigin] = undistortImage(I,cameraParams,interp)
[J,newOrigin] = undistortImage( ___ ,Name,Value)

Description
[J,newOrigin] = undistortImage(I,cameraParams) returns an image, J, containing the
input image, I, with lens distortion removed. The function also returns the [x,y] location of the output
image origin. The location is set in terms of the input intrinsic coordinates specified in
cameraParams.

[J,newOrigin] = undistortImage(I,cameraParams,interp) specifies the interpolation
method for the function to use on the input image.

[J,newOrigin] = undistortImage( ___ ,Name,Value) specifies one or more Name,Value pair
arguments, using any of the preceding syntaxes. Unspecified properties have their default values.

Examples

Correct Image for Lens Distortion

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','mono'));

Detect calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate world coordinates of the corners of the squares. The square size is in millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1); 
imageSize = [size(I,1),size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Remove lens distortion and display results.

I = images.readimage(1);
J1 = undistortImage(I,cameraParams);

3 Functions

3-960



figure; imshowpair(I,J1,'montage');
title('Original Image (left) vs. Corrected Image (right)');

J2 = undistortImage(I,cameraParams,'OutputView','full');
figure; 
imshow(J2);
title('Full Output View');

 undistortImage

3-961



Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified in either M-by-N-by-3 truecolor or M-by-N 2-D grayscale. The input image
must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can
return the cameraParameters object using the estimateCameraParameters function. The
cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

interp — Interpolation method
'linear' (default) | 'nearest' | 'cubic'

Interpolation method to use on the input image, specified as 'linear', 'nearest' , or 'cubic'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FillValues',0 sets the sets the output pixel fill values to 0.

FillValues — Output pixel fill values
0 (default) | scalar | 3-element vector

Output pixel fill values, specified as the comma-separated pair consisting of 'FillValues' and an
array containing one or more fill values. When the corresponding inverse transformed location in the
input image lies completely outside the input image boundaries, you use the fill values for output
pixels. When you use a 2-D grayscale input image, you must set the FillValues to scalar. When you
use a truecolor, FillValues can be a scalar or a 3-element vector of RGB values.

OutputView — Size of output image
'same' (default) | 'full' | 'valid'

Size of output image, specified as the comma-separated pair consisting of 'OutputView' and 'same',
'full', or 'valid'. When you set the property to 'same', the function sets the output image to
match the size of the input image. When you set the property to 'full', the output includes all
pixels from the input image. When you set the property to 'valid', the function crops the output
image to contain only valid pixels.

For the input image:

3 Functions

3-962



OutputView Output Image
'same' Match the size of the input image.

 undistortImage

3-963



OutputView Output Image
'full' All pixels from the input image.

'valid' Only valid pixels from the input image.

Output Arguments
J — Undistorted image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Undistorted image, returned in either M-by-N-by-3 truecolor or M-by-N 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16 | logical

newOrigin — Output image origin
2-element vector

3 Functions

3-964



Output image origin, returned as a 2-element [x,y] vector. The function sets the output origin location
in terms of the input intrinsic coordinates. When you set OutputView to 'same', which means the
output image is the same size as the input image, the function sets the newOrigin to [0,0].

The newOrigin output represents the translation from the intrinsic coordinates of the output image
J into the intrinsic coordinates of the input image I.
Let PI represent a point in the intrinsic coordinates of input image I.
Let PJ represent the same point in the intrinsic coordinates of the output image J.

PI = PJ + newOrigin

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• 'interp' and 'OutputView' must be compile-time constants.

See Also
Camera Calibrator | Stereo Camera Calibrator | estimateCameraParameters | triangulate |
undistortPoints | extrinsics | cameraParameters | cameraIntrinsics |
stereoParameters

Topics
“Code Generation for Depth Estimation From Stereo Video”

Introduced in R2014a

 undistortImage

3-965



undistortPoints
Correct point coordinates for lens distortion

Syntax
undistortedPoints = undistortPoints(points,cameraParams)
[undistortedPoints,reprojectionErrors] = undistortPoints(points,cameraParams)

Description
undistortedPoints = undistortPoints(points,cameraParams) returns point coordinates
corrected for lens distortion. This function uses numeric nonlinear least-squares optimization.

[undistortedPoints,reprojectionErrors] = undistortPoints(points,cameraParams)
additionally returns the errors used to evaluate the accuracy of undistorted points.

Examples

Undistort Checkerboard Points

Create an imageDatastore object containing calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
   'calibration','mono'));
imageFileNames = images.Files;

Detect the calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates of the corners of the squares. The square size is in millimeters.

squareSize = 29; 
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,10); 
imageSize = [size(I, 1), size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
                                  'ImageSize',imageSize);

Load an image and detect the checkerboard points.

points = detectCheckerboardPoints(I);

Undistort the points

undistortedPoints = undistortPoints(points,params);

Undistort the image.

3 Functions

3-966



[J, newOrigin] = undistortImage(I,params,'OutputView','full');

Translate undistorted points

undistortedPoints = [undistortedPoints(:,1) - newOrigin(1), ...
                    undistortedPoints(:,2) - newOrigin(2)];

Display the results

figure; 
imshow(I); 
hold on;
plot(points(:,1),points(:,2),'r*-');
title('Detected Points'); 
hold off;

figure; 
imshow(J); 
hold on;
plot(undistortedPoints(:,1),undistortedPoints(:,2),'g*-');
title('Undistorted Points'); 
hold off;

 undistortPoints

3-967



Input Arguments
points — Input points
M-by-2 matrix

Input points, specified an M-by-2 matrix of M number of [x y] coordinates.

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can
return the cameraParameters object using the estimateCameraParameters function. The
cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a
camera.

Output Arguments
undistortedPoints — Undistorted points
M-by-2 matrix

Undistorted points, returned as an M-by-2 matrix. The undistortedPoints output contains M [x,y]
point coordinates corrected for lens distortion. When you input points as double, the function
outputs undistortedPoints as double. Otherwise, it outputs undistortedPoints as single.

3 Functions

3-968



Data Types: single | double

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as an M-by-1 vector. You can use the errors to evaluate the accuracy of
undistorted points. The function computes the errors by applying distortion to the undistorted points,
and then taking the distances between the result and the corresponding input points. The
reprojectionErrors output is in pixels.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Camera Calibrator | Stereo Camera Calibrator | estimateCameraParameters | triangulate |
extrinsics | cameraParameters | cameraIntrinsics | stereoParameters

Introduced in R2014b

 undistortPoints

3-969



visionlib
Open top-level Computer Vision Toolbox Simulink library

Syntax
visionlib

Description
visionlib opens the top-level Computer Vision Toolbox block library.

Examples

Open Computer Vision Toolbox Block Library

View and gain access to the Computer Vision Toolbox blocks.

visionlib

Alternatives
To view and gain access to the Computer Vision Toolbox blocks using the Simulink library browser:

• Type simulink at the MATLAB command line, and then expand the Computer Vision Toolbox
node in the library browser.

•
Click the Simulink icon  from the MATLAB desktop or from a model.

See Also

Introduced in R2011a

3 Functions

3-970



visionSupportPackages
Start installer to download, install, or uninstall Computer Vision Toolbox data

Syntax
visionSupportPackages

Description
visionSupportPackages launches the Support Package Installer, which you can use to download,
install, or uninstall support packages for Computer Vision Toolbox.

Computer Vision Toolbox Support Packages
“Install OCR Language Data Files”
“Install and Use Computer Vision Toolbox Interface for OpenCV in MATLAB”

Examples
Start Computer Vision Toolbox installer

visionSupportPackages

See Also
Topics
“Install Computer Vision Toolbox Add-on Support Files”

Introduced in R2014b

 visionSupportPackages

3-971



ocvStructToKeyPoints
Convert MATLAB feature points struct to OpenCV KeyPoint vector

C++ Syntax
#include "opencvmex.hpp"
void ocvStructToKeyPoints(const mxArray * in,cv::vector<cv::KeyPoint>
&keypoints);

Arguments
in

Pointer to a MATLAB structure, mxArray, that represents a point feature. Format:

Field Name Field Requirement Field Data Type
Location Required Single
Scale Required Single
Metric Required Single
Orientation Optional Single
Octave Optional int32
Misc Optional int32

Description
The ocvStructToKeyPoints function converts a point feature data structure from a MATLAB struct
to an OpenCV's KeyPoint vector.

See Also
mxArray, ocvKeyPointsToStruct, “C Matrix API”, “Write C Functions Callable from MATLAB
(MEX Files)”

Introduced in R2015a

3 Functions

3-972



ocvMxGpuArrayToGpuMat_{DataType}
Create cv::gpu::GpuMat from mxArray containing GPU data.

C++ Syntax

Note This function will be removed in a future release.

#include "opencvgpumex.hpp"
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_double(const mxArray * in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_single(const mxArray * in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_uint8(const mxArray * in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_uint16(const mxArray * in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_uint32(const mxArray * in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_int8(const mxArray * in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_int16(const mxArray * in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_int32(const mxArray * in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_bool(const mxArray * in);

Arguments
in

Pointer to a MATLAB struct, mxArray, containing GPU data. Supported data types:

real_T (double) real32_T (single) uint8_T (uint8)
uint16_T (uint16) uint32_T (uint32) int8_T (int8)
int16_T (int16) int32_T (int32) boolean_T (bool)

Returns
OpenCV smart pointer (cv::Ptr) to a cv::gpu::GpuMat object.

Description
The ocvMxGpuArrayToGpuMat_{DataType} function creates a cv::gpu::GpuMat object from an
mxArray containing GPU data. This function requires the Parallel Computing Toolbox software.

See Also
mxArray, ocvMxGpuArrayFromGpuMat_{DataType}, “C Matrix API”, “Write C Functions Callable
from MATLAB (MEX Files)”

Introduced in R2015a

 ocvMxGpuArrayToGpuMat_{DataType}

3-973



ocvMxGpuArrayFromGpuMat_{DataType}
Create an mxArray from cv::gpu::GpuMat object

C++ Syntax

Note This function will be removed in a future release.

#include "opencvgpumex.hpp"
mxArray * ocvMxGpuArrayFromGpuMat_double(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_single(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_uint8(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_uint16(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_uint32(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_int8(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_int16(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_int32(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_bool(const cv::gpu::GpuMat & in)

Arguments
in

Reference to OpenCV cv::gpu::GpuMat object.

Returns
Pointer to a MATLAB struct, mxArray, containing GPU data. Supported data types:

real_T (double) real32_T (single) uint8_T (uint8)
uint16_T (uint16) uint32_T (uint32) int8_T (int8)
int16_T (int16) int32_T (int32) boolean_T (bool)

Description
The ocvMxGpuArrayFromGpuMat function creates an mxArray from a cv::gpu::GpuMat object.
GpuMat supports 2-D arrays only. This function requires the Parallel Computing Toolbox software.

See Also
mxArray, ocvMxGpuArrayToGpuMat_{DataType}, “C Matrix API”, “Write C Functions Callable
from MATLAB (MEX Files)”

Introduced in R2015a

3 Functions

3-974



ocvMxArrayToSize_{DataType}
Convert 2-element mxArray to cv::Size.

C++ Syntax
#include "opencvmex.hpp"
cv::Size ocvMxArrayToSize_single(const mxArray * in, bool rcInput = true);
cv::Size ocvMxArrayToSize_int32(const mxArray * in, bool rcInput = true);

Arguments
in

Pointer to a MATLAB mxArray having 2 elements. Supported data types:

single
int32

rcInput
Boolean flag that indicates if input mxArray is of the format [r c] or [x y].

rcInput in
true (default) [r c] (height, width)
false [x y] (width, height)

Returns
OpenCV cv::Size

Description
The ocvMxArrayToSize_{DataType} function converts a 2-element mxArray to cv::Size. Empty
input ([]) returns cv::Size(0,0);

See Also
mxArray, “C Matrix API”, “Write C Functions Callable from MATLAB (MEX Files)”

Introduced in R2015a

 ocvMxArrayToSize_{DataType}

3-975



ocvMxArrayToMat_{DataType}
Convert column major mxArray to row major cv::Mat for generic matrix

C++ Syntax
#include "opencvmex.hpp"
void ocvMxArrayToMat_double(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_single(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_bool(const mxArray *in, cv::Mat &out);
cv::Ptr<cv::Mat> ocvMxArrayToMat_double(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_single(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint8(const mxArray *in, const bool copyData
= true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint16(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint32(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int8(const mxArray *in, const bool copyData
= true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int16(const mxArray *in, const bool copyData
= true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int32(const mxArray *in, const bool copyData
= true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint8(const mxArray *in, const bool copyData
= true);

Arguments
in

Pointer to a MATLAB struct, mxArray, having column major data. The data can be n-channel
matrices. Supported data types:

real_T (double) uint8_T (uint8) uint32_T (uint32) int16_T (int16)
real32_T (single) uint16_T (uint16) int8_T (int8) int32_T (int32)

copyData
Boolean flag to copy data from mxArray to the Mat object.

• true (default) — The function transposes and interleaves (for RGB images) column major
mxArray data into a row major cv::Mat object.

3 Functions

3-976



• false — No data copies from the mxArray to the Mat object. The function creates a new Mat
wrapper and uses it to point to the mxArray data. Because OpenCV is row-based and MATLAB
is column-based, the columns of the mxArray become the rows of the Mat object. If the image
is 2-D, then copyData is false.

out
Reference to OpenCV cv::Mat with row major data.

Returns
The functions that set copyData return an OpenCV smart pointer (cv::Ptr) to a cv::Mat object.

Description
The ocvMxArrayToMat_{DataType} function applies to two C++ implementations. One set returns
void and the other set returns an OpenCV smart pointer. The functions that return void reallocate
memory for the cv::Mat if needed.

The ocvMxArrayToMat_{DataType} transposes and interleaves column major mxArray data into
row major cv::Mat. This matrix conversion is a generic routine for any number of channels.

See Also
mxArray, ocvMxArrayToImage_{DataType}, ocvMxArrayFromMat_{DataType}, “C Matrix API”,
“Write C Functions Callable from MATLAB (MEX Files)”

Introduced in R2015a

 ocvMxArrayToMat_{DataType}

3-977



ocvMxArrayToImage_{DataType}
Convert column major mxArray to row major cv::Mat for image

C++ Syntax
#include "opencvmex.hpp"
void ocvMxArrayToImage_double(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_single(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_bool(const mxArray *in, cv::Mat &out);
cv::Ptr<cv::Mat> ocvMxArrayToImage_double(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_single(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint8(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint16(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint32(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int8(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int16(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int32(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_bool(const mxArray *in, const bool
copyData = true);

Arguments
in

Pointer to a MATLAB struct, mxArray, having column major data that represents a 2-D or 3-D
image. Supported data types:

real_T (double) uint8_T (uint8) uint32_T (uint32) int16_T (int16)
real32_T (single) uint16_T (uint16) int8_T (int8) int32_T (int32)

copyData
Boolean flag to copy data from mxArray to the Mat object.

• true (default) — The function transposes and interleaves (for RGB images) column major
mxArray data into a row major cv::Mat object.

3 Functions

3-978



• false — No data copies from the mxArray to the Mat object. The function creates a new Mat
wrapper and uses it to point to the mxArray data. Because OpenCV is row-based and MATLAB
is column-based, the columns of the mxArray become the rows of the Mat object. If the image
is 2-D, then copyData is false.

out
Reference to OpenCV cv::Mat with row major data.

Returns
The functions that set copyData return an OpenCV smart pointer (cv::Ptr) to a cv::Mat object.

Description
The ocvMxArrayToImage_{DataType} function applies to two C++ implementations. One set
returns void and the other set returns an OpenCV smart pointer. The functions that return void
reallocate memory for the cv::Mat if needed.

The ocvMxArrayToImage_{DataType} transposes and interleaves column major mxArray data into
row major cv::Mat. The ocvMxArrayToImage_{DataType} function supports 2-D and 3-D images.

These functions are not a generic matrix conversion routine. For 3-D images, they take into account
that the OpenCV format uses BGR ordering and manipulate the data to comply with that formatting.

See Also
mxArray, ocvMxArrayToMat_{DataType}, ocvMxArrayFromImage_{DataType}, “C Matrix API”,
“Write C Functions Callable from MATLAB (MEX Files)”

Introduced in R2015a

 ocvMxArrayToImage_{DataType}

3-979



ocvMxArrayToCvRect
Convert a MATLAB struct representing a rectangle to an OpenCV CvRect

C++ Syntax
#include "opencvmex.hpp"
CvRect ocvMxArrayToCvRect(const mxArray *in);

Arguments
in

Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure must have
four scalar-valued fields: x, y, width, and height. The (x, y) fields represent the upper-left
corner of the rectangle.

Returns
OpenCV CvRect.

Description
The ocvMxArrayToCvRect function converts a rectangle data structure from a MATLAB struct to an
OpenCV KeyPoint vector.

See Also
mxArray, ocvCvRectToMxArray, “C Matrix API”, “Write C Functions Callable from MATLAB (MEX
Files)”

Introduced in R2015a

3 Functions

3-980



ocvMxArrayFromVector_{DataType}
Convert numeric vectorT to mxArray

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromVector_double(const std::vector<real_T> &v);
mxArray *ocvMxArrayFromVector_single(const std::vector<real32_T> &v);
mxArray *ocvMxArrayFromVector_uint8(const std::vector<uint8_T> &v);
mxArray *ocvMxArrayFromVector_uint16(const std::vector<uint16_T> &v);
mxArray *ocvMxArrayFromVector_uint32(const std::vector<uint32_T> &v);
mxArray *ocvMxArrayFromVector_int8(const std::vector<int8_T> &v);
mxArray *ocvMxArrayFromVector_int16(const std::vector<int16_T> &v);
mxArray *ocvMxArrayFromVector_int32(const std::vector<int32_T> &v);
mxArray *ocvMxArrayFromVector_bool(const std::vector<boolean_T> &v);

Arguments
v

Reference to vector<DataType>. Supported data types:

real_T real32_T uint8_T
uint16_T uint32_T int8_T
int16_T int32_T boolean_T

Returns
Pointer to a MATLAB struct mxArray.

Description
The ocvMxArrayFromVector_{DataType} function converts numeric std::vector<DataType>
to an mxArray.

See Also
mxArray, “C Matrix API”, “Write C Functions Callable from MATLAB (MEX Files)”

Introduced in R2015a

 ocvMxArrayFromVector_{DataType}

3-981



ocvMxArrayFromPoints2f
Converts vector<cv::Point2f> to mxArray

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromPoints2f(const std::vector<cv::Point2f> &points);

Arguments
points

Reference to OpenCV vector<cv::Point2f>.

Returns
Pointer to a MATLAB mxArray.

Description
The ocvMxArrayFromPoints2f function converts std::vector<cv::Point2f> to an mxArray.

See Also
“C Matrix API”, “Write C Functions Callable from MATLAB (MEX Files)”

Introduced in R2015a

3 Functions

3-982



ocvMxArrayFromMat_{DataType}
Convert row major cv::Mat to column major mxArray for generic matrix

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromMat_double(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_single(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint8(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint16(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint32(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_int8(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_int16(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_int32(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_bool(const cv::Mat &in);

Arguments
in

Reference to OpenCV cv::Mat with row major data.

Returns
Pointer to a MATLAB struct, mxArray, having column major data. Supported data types:

real_T (double) uint8_T (uint8) uint32_T (uint32) int16_T (int16)
real32_T (single) uint16_T (uint16) int8_T (int8) int32_T (int32)

Description
The ocvMxArrayFromMat_{DataType} function creates an mxArray from a cv::Mat object. The
mxArray contains column major data and cv::Mat contains row major data. This matrix conversion
is a generic routine for any number of channels.

See Also
mxArray, ocvMxArrayToImage_{DataType}, ocvMxArrayFromImage_{DataType},
ocvMxArrayToMat_{DataType}, “C Matrix API”, “Write C Functions Callable from MATLAB (MEX
Files)”

Introduced in R2015a

 ocvMxArrayFromMat_{DataType}

3-983



ocvMxArrayFromImage_{DataType}
Convert row major cv::Mat to column major mxArray for image

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromImage_double(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_single(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint8(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint16(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint32(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int8(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int16(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int32(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_bool(const cv::Mat &in);

Arguments
in

Reference to OpenCV cv::Mat with row major data.

Returns
Pointer to a MATLAB struct, mxArray, with column major data. Supported data types:

real_T (double) uint8_T (uint8) uint32_T (uint32) int16_T (int16)
real32_T (single) uint16_T (uint16) int8_T (int8) int32_T (int32)

Description
The ocvMxArrayFromImage_{DataType} function creates an mxArray from a cv::Mat object. The
mxArray contains column major data and the cv::Mat contains row major data.

This function is not a generic matrix conversion routine. For 3-D images, it takes into account that the
OpenCV format uses BGR ordering and manipulates the data to comply with that formatting.

See Also
mxArray, ocvMxArrayToImage_{DataType}, ocvMxArrayFromMat_{DataType}, “C Matrix API”,
“Write C Functions Callable from MATLAB (MEX Files)”

Introduced in R2015a

3 Functions

3-984



ocvKeyPointsToStruct
Convert OpenCV KeyPoint vector to MATLAB struct

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvKeyPointsToStruct(cv::vector<cv::KeyPoint> &in);

Arguments
in

Reference to an OpenCV's KeyPoint vector.

Returns
Pointer to a MATLAB structure mxArray that represents a point feature.

Format:

Field Name Field Requirement Field Data Type
Location Required Single
Scale Required Single
Metric Required Single
Orientation Optional Single
Octave Optional int32
Misc Optional int32

Description
The ocvKeyPointsToStruct function converts a point feature data structure from an OpenCV
KeyPoint vector to a MATLAB struct.

See Also
mxArray, ocvStructToKeyPoints, “C Matrix API”, “Write C Functions Callable from MATLAB
(MEX Files)”

Introduced in R2015a

 ocvKeyPointsToStruct

3-985



ocvCvRectToMxArray
Convert OpenCV CvRect to a MATLAB struct

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvCvRectToMxArray(const CvRect *in);

Arguments
in

Pointer to OpenCV CvRect.

Returns
Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure must have four
scalar-valued fields, x, y, width, and height. The (x, y) fields represent the upper-left corner of the
rectangle.

Description
The ocvCvRectToMxArray function converts a rectangle data structure from an OpenCV KeyPoint
vector to a MATLAB struct.

See Also
mxArray, ocvMxArrayToCvRect, “C Matrix API”, “Write C Functions Callable from MATLAB (MEX
Files)”

Introduced in R2015a

3 Functions

3-986



ocvCvRectToBoundingBox_{DataType}
Convert vector<cv::Rect> to M-by-4 mxArray of bounding boxes

C++ Syntax
#include "opencvmex.hpp"
mxArray * ocvCvRectToBoundingBox_double(const std::vector<cv::Rect> & rects);
mxArray * ocvCvRectToBoundingBox_single(const std::vector<cv::Rect> & rects);
mxArray * ocvCvRectToBoundingBox_uint8(const std::vector<cv::Rect> & rects);
mxArray * ocvCvRectToBoundingBox_uint16(const std::vector<cv::Rect> & rects);
mxArray * ocvCvRectToBoundingBox_uint32(const std::vector<cv::Rect> & rects);
mxArray * ocvCvRectToBoundingBox_int8(const std::vector<cv::Rect> & rects);
mxArray * ocvCvRectToBoundingBox_int16(const std::vector<cv::Rect> & rects);
mxArray * ocvCvRectToBoundingBox_int32(const std::vector<cv::Rect> & rects);

Arguments
rects

Reference to OpenCV vector<cv::Rect>.

Returns
Pointer to a MATLAB mxArray having M-by-4 elements. Supported data types:

real_T (double) uint8_T (uint8) uint32_T (uint32) int16_T (int16)
real32_T (single) uint16_T (uint16) int8_T (int8) int32_T (int32)

Description
The ocvCvRectToBoundingBox_{DataType} function converts vector<cv::Rect> to an M-by-4
mxArray of bounding boxes.

See Also
mxArray, ocvCvBox2DToMxArray, “C Matrix API”, “Write C Functions Callable from MATLAB (MEX
Files)”

Introduced in R2015a

 ocvCvRectToBoundingBox_{DataType}

3-987



ocvCvBox2DToMxArray
Convert OpenCV CvBox2D to a MATLAB struct

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvCvBox2DToMxArray(const CvBox2D *in);

Arguments
in

Pointer to OpenCV CvBox2D.

Returns
Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure must have five
scalar-valued fields: x_center, y_center, width, height, and angle. The (x_center, y_center)
fields represent the center of the rectangle.

Description
The ocvCvBox2DToMxArray function converts a rectangle data structure from an OpenCV CvBox2D
to a MATLAB struct.

See Also
mxArray, ocvCvRectToBoundingBox_{DataType}, “C Matrix API”, “Write C Functions Callable
from MATLAB (MEX Files)”

Introduced in R2015a

3 Functions

3-988



ocvCheckFeaturePointsStruct
Check that MATLAB struct represents feature points

C++ Syntax
#include "opencvmex.hpp"
void ocvCheckFeaturePointsStruct(const mxArray *in);

Arguments
in

Pointer to a MATLAB structure, mxArray, that represents point feature. Format:

Field Name Field Requirement Field Data Type
Location Required Single
Scale Required Single
Metric Required Single
Orientation Optional Single
Octave Optional int32
Misc Optional int32

Description
The ocvCheckFeaturePointsStruct function performs the key point struct checker.

See Also
mxArrayocvStructToKeyPoints, ocvKeyPointsToStruct, “C Matrix API”, “Write C Functions
Callable from MATLAB (MEX Files)”

Introduced in R2015a

 ocvCheckFeaturePointsStruct

3-989



createMat
Create MATLAB interface object for OpenCV Mat class

Syntax
[ocvMat,ocvInputArray] = createMat(img)
[ocvMat,ocvArray] = createMat(img,arrayType)
[ocvMat,ocvOutputArray] = createMat
[ocvMat,ocvArray] = createMat(arrayType)

Description
[ocvMat,ocvInputArray] = createMat(img) creates the MATLAB interface objects for the
OpenCV Mat class and the associated InputArray class. Use these interface objects to pass an
image as input to the OpenCV functions.

[ocvMat,ocvArray] = createMat(img,arrayType) creates the MATLAB interface objects for
the OpenCV Mat class and the associated InputArray, OutputArray, or InputOutputArray class
specified by arrayType.

[ocvMat,ocvOutputArray] = createMat creates an empty interface object for the OpenCV Mat
class and the associated OutputArray class. Use this interface to write the output returned by an
OpenCV function.

[ocvMat,ocvArray] = createMat(arrayType) creates an empty interface object for the
OpenCV Mat class and the associated InputArray, OutputArray, or InputOutputArray class
specified by arrayType.

Examples

Create MATLAB Interface Object for OpenCV Mat and Associated Array Classes

Add the prebuilt MATLAB interface to OpenCV package name to the import list.

import vision.opencv.util.*

Create MATLAB Interface Object for OpenCV Mat and InputArray Class

Read an image into the MATLAB workspace.

img = imread("cameraman.tif");

Create a MATLAB interface object for the OpenCV Mat class and store the image data. The function
also creates an interface object for the OpenCV InputArray class that is constructed from the Mat
class.

[ocvMat,ocvArray] = createMat(img);

Display and inspect the properties of the MATLAB interface object for the OpenCV Mat class.

3 Functions

3-990



ocvMat

ocvMat = 
  MatND with properties:

        flags: 1124024320
         dims: 2
         rows: 256
         cols: 256
    allocator: [1x1 clib.opencv.cv.MatAllocator]
            u: [1x1 clib.opencv.cv.UMatData]
         size: [1x1 clib.opencv.cv.MatSize]
         step: [1x1 clib.opencv.cv.MatStep]

Inspect the type of array class returned by the function.

ocvArray

ocvArray = 
  x_InputArray with no properties.

Use the getImage utility function to read the image stored in the InputArray class. Display the
image.

outImg = getImage(ocvArray);
figure
imshow(outImg)

Create MATLAB Interface Object for OpenCV Mat and OutputArray Classes

Add the prebuilt MATLAB interface to OpenCV package name to the import list.

 createMat

3-991



import vision.opencv.util.*

Create a MATLAB interface object for the OpenCV Mat class. The function also creates an interface
object for the OpenCV OutputArray class that is constructed from the Mat class.

[ocvMat,ocvArray] = createMat;

Display and inspect the properties of the MATLAB interface object for the OpenCV Mat class.

ocvMat

ocvMat = 
  MatND with properties:

        flags: 1124007936
         dims: 0
         rows: 0
         cols: 0
    allocator: [1x1 clib.opencv.cv.MatAllocator]
            u: [1x1 clib.opencv.cv.UMatData]
         size: [1x1 clib.opencv.cv.MatSize]
         step: [1x1 clib.opencv.cv.MatStep]

Inspect the type of array class returned by the function.

ocvArray

ocvArray = 
  x_OutputArray with no properties.

Specify Array Class to Construct from OpenCV Mat Class

Add the prebuilt MATLAB interface to OpenCV package name to the import list.

import vision.opencv.util.*

Read an image into the MATLAB workspace.

img = imread("cameraman.tif");

Create a MATLAB interface object for the OpenCV Mat class. Specify the array type as
"InputOutput" for the function to construct the OpenCV InputOutputArray class from the Mat
class.

arrayType = "InputOutput";
[ocvMat,ocvArray] = createMat(img,arrayType);

Display and inspect the properties of the MATLAB interface object for the OpenCV Mat class.

ocvMat

ocvMat = 
  MatND with properties:

        flags: 1124024320
         dims: 2
         rows: 256

3 Functions

3-992



         cols: 256
    allocator: [1x1 clib.opencv.cv.MatAllocator]
            u: [1x1 clib.opencv.cv.UMatData]
         size: [1x1 clib.opencv.cv.MatSize]
         step: [1x1 clib.opencv.cv.MatStep]

Inspect the type of array class returned by the function.

ocvArray

ocvArray = 
  x_InputOutputArray with no properties.

Input Arguments
img — Input image
M-by-N matrix | M-by-N-by-3 array

Input image, specified as an M-by-N matrix representing an intensity image or M-by-N-by-3 array
representing a color image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

arrayType — Type of array
"Input" | "Output" | "InputOutput"

Type of array to associate with the MATLAB interface object for the OpenCV Mat class, specified as:
"Input", "Output", or "InputOutput".
Data Types: char | string

Output Arguments
ocvMat — n-dimensional dense array class
MatND interface object

n-dimensional dense array class, returned as a MatND interface object. This interface object is a
representation of the OpenCV class cv::Mat.

ocvInputArray — Proxy class for passing inputs
InputArray interface object

Proxy class for passing inputs to OpenCV functions, returned as an InputArray interface object.
This interface object is a representation of the OpenCV class cv::_InputArray.

ocvArray — Proxy class for inputs or outputs
InputArray interface object | InputOutputArray interface object | OutputArray interface object

Proxy class for inputs or outputs, returned as one of these values:

• InputArray interface object — This MATLAB interface object is a representation of the OpenCV
class cv::_InputArray. This value is returned if arrayType is specified as "Input".

 createMat

3-993



• InputOutputArray interface object — This MATLAB interface object is a representation of the
OpenCV class cv::_InputOutputArray. This value is returned if arrayType is specified as
"InputOutput".

• OutputArray interface object — This MATLAB interface object is a representation of the OpenCV
class cv::_OutputArray. This value is returned if arrayType is specified as "Output".

ocvOutputArray — Proxy class for writing output
OutputArray interface object

Proxy class for writing outputs from OpenCV functions, returned as an OutputArray interface
object. This MATLAB interface object is a representation of the OpenCV class cv::_OutputArray.

See Also
createUMat | getImage | getBasePtr | keyPointsToStruct | rectToBbox

Topics
“Use Prebuilt MATLAB Interface to OpenCV”

Introduced in R2021b

3 Functions

3-994



createUMat
Create MATLAB interface object for OpenCV UMat class

Syntax
[ocvUMat,ocvInputArray] = createUMat(img)
[ocvUMat,ocvArray] = createUMat(img,arrayType)
[ocvUMat,ocvOutputArray] = createUMat
[ocvUMat,ocvArray] = createUMat(arrayType)

Description
[ocvUMat,ocvInputArray] = createUMat(img) creates the MATLAB interface objects for the
OpenCV UMat class and the associated InputArray class. Use these interface objects to pass an
image as input to the OpenCV functions.

[ocvUMat,ocvArray] = createUMat(img,arrayType) creates the MATLAB interface objects
for the OpenCV UMat class and the associated InputArray, OutputArray, or InputOutputArray
class specified by arrayType.

[ocvUMat,ocvOutputArray] = createUMat creates an empty interface object for the OpenCV
UMat class and the associated OutputArray class. Use this interface to write the output returned by
an OpenCV function.

[ocvUMat,ocvArray] = createUMat(arrayType) creates an empty interface object for the
OpenCV UMat class and the associated InputArray, OutputArray, or InputOutputArray class
specified by arrayType.

Examples

Create MATLAB Interface Object for OpenCV UMat and Associated Array Classes

Add the prebuilt MATLAB interface to OpenCV package name to the import list.

import vision.opencv.util.*

Create MATLAB Interface Object for OpenCV UMat and InputArray Class

Read an image into the MATLAB workspace.

img = imread("cameraman.tif");

Create a MATLAB interface object for the OpenCV UMat class and store the image data. The function
also creates an interface object for the OpenCV InputArray class that is constructed from the UMat
class.

[ocvMat,ocvArray] = createUMat(img);

Display and inspect the properties of the MATLAB interface object for the OpenCV UMat class.

 createUMat

3-995



ocvMat

ocvMat = 
  UMat with properties:

         flags: 1124024320
          dims: 2
          rows: 256
          cols: 256
     allocator: [1x1 clib.opencv.cv.MatAllocator]
    usageFlags: USAGE_DEFAULT
             u: [1x1 clib.opencv.cv.UMatData]
        offset: 0
          size: [1x1 clib.opencv.cv.MatSize]
          step: [1x1 clib.opencv.cv.MatStep]

Inspect the type of array class returned by the function.

ocvArray

ocvArray = 
  x_InputArray with no properties.

Use the getImage utility function to read the image stored in the InputArray class. Display the
image.

outImg = getImage(ocvArray);
figure
imshow(outImg)

3 Functions

3-996



Create MATLAB Interface Object for OpenCV UMat and OutputArray Classes

Add the prebuilt MATLAB interface to OpenCV package name to the import list.

import vision.opencv.util.*

Create a MATLAB interface object for the OpenCV UMat class. The function also creates an interface
object for the OpenCV OutputArray class that is constructed from the UMat class.

[ocvMat,ocvArray] = createUMat;

Display and inspect the properties of the MATLAB interface object for the OpenCV UMat class.

ocvMat

ocvMat = 
  UMat with properties:

         flags: 1124007936
          dims: 0
          rows: 0
          cols: 0
     allocator: [1x1 clib.opencv.cv.MatAllocator]
    usageFlags: USAGE_DEFAULT
             u: [1x1 clib.opencv.cv.UMatData]
        offset: 0
          size: [1x1 clib.opencv.cv.MatSize]
          step: [1x1 clib.opencv.cv.MatStep]

Inspect the type of array class returned by the function.

ocvArray

ocvArray = 
  x_OutputArray with no properties.

Specify Array Class to Construct from OpenCV UMat Class

Add the prebuilt MATLAB interface to OpenCV package name to the import list.

import vision.opencv.util.*

Read an image into the MATLAB workspace.

img = imread("cameraman.tif");

Create a MATLAB interface object for the OpenCV UMat class. Specify the array type as
"InputOutput" for the function to construct the OpenCV InputOutputArray class from the UMat
class.

arrayType = "InputOutput";
[ocvMat,ocvArray] = createUMat(img,arrayType);

Display and inspect the properties of the MATLAB interface object for the OpenCV UMat class.

ocvMat

 createUMat

3-997



ocvMat = 
  UMat with properties:

         flags: 1124024320
          dims: 2
          rows: 256
          cols: 256
     allocator: [1x1 clib.opencv.cv.MatAllocator]
    usageFlags: USAGE_DEFAULT
             u: [1x1 clib.opencv.cv.UMatData]
        offset: 0
          size: [1x1 clib.opencv.cv.MatSize]
          step: [1x1 clib.opencv.cv.MatStep]

Inspect the type of array class returned by the function.

ocvArray

ocvArray = 
  x_InputOutputArray with no properties.

Input Arguments
img — Input image
M-by-N matrix | M-by-N-by-3 array

Input image, specified as an M-by-N matrix representing an intensity image or M-by-N-by-3 array
representing a color image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

arrayType — Type of array
"Input" | "Output" | "InputOutput"

Type of array to associate with the MATLAB interface object for OpenCV UMat class, specified as :
"Input", "Output", or "InputOutput".
Data Types: char | string

Output Arguments
ocvUMat — Unified n-dimensional dense array class
UMat interface object

Unified n-dimensional dense array class, returned as a UMat interface object. This MATLAB interface
object is a representation of the OpenCV class cv::UMat.

ocvInputArray — Proxy class for passing inputs
InputArray interface object

Proxy class for passing inputs to OpenCV functions, returned as an InputArray interface object.
This MATLAB interface object is a representation of the OpenCV class cv::_InputArray.

3 Functions

3-998



ocvArray — Proxy class for inputs or outputs
InputArray interface object | InputOutputArray interface object | OutputArray interface object

Proxy class for inputs or outputs, returned as one of these values:

• InputArray interface object — This MATLAB interface object is a representation of the OpenCV
class cv::_InputArray. This value is returned if arrayType is specified as "Input".

• InputOutputArray interface object — This MATLAB interface object is a representation of the
OpenCV class, cv::_InputOutputArray. This value is returned if arrayType is specified as
"InputOutput".

• OutputArray interface object — This MATLAB interface object is a representation of the OpenCV
class cv::_OutputArray. This value is returned if arrayType is specified as "Output".

ocvOutputArray — Proxy class for writing output
OutputArray interface object

Proxy class for writing outputs from OpenCV functions, returned as an OutputArray interface
object. This MATLAB interface object is a representation of the OpenCV class cv::_OutputArray.

See Also
rectToBbox | getImage | getBasePtr | createMat | keyPointsToStruct

Topics
“Use Prebuilt MATLAB Interface to OpenCV”

Introduced in R2021b

 createUMat

3-999



getBasePtr
Package: vision.opencv.util

Create MATLAB interface object for OpenCV base class

Syntax
output = getBasePtr(ptr)

Description
output = getBasePtr(ptr) creates a MATLAB interface object for an OpenCV base class pointed
by a smart pointer ptr. You can use the interface object to access the public member functions and
public attributes of an OpenCV base class directly from MATLAB.

Examples

Perform Histogram Equalization by Using OpenCV in MATLAB

Perform histogram equalization of an image by using the prebuilt MATLAB interface to the OpenCV
function cv::CLAHE. The cv::CLAHE function is a base class, and you must create a MATLAB
interface object by using the getBasePtr utility function to access the public methods and attributes
of the base class.

Add the MATLAB interface to OpenCV package names to the import list.

import clib.opencv.*;
import vision.opencv.util.*;

Read an image into the MATLAB workspace.

img = imread("cameraman.tif");

Create the MATLAB interface objects for the OpenCV MatND and InputArray classes to store the
input image.

[inputMat,inputArray] = createMat(img);

Create the MATLAB interface objects for the OpenCV MatND and OutputArray classes to write the
output image returned by the OpenCV function.

[outputMat,outputArray] = createMat;

Create a MATLAB interface object to represent the smart pointer of the OpenCV CLAHE class
cv::CLAHE.

ocvPtr = cv.createCLAHE;

Create a MATLAB interface object for the base class cv::CLAHE.

basePtr = getBasePtr(ocvPtr);

3 Functions

3-1000



Set the value of clip limit to 4.

basePtr.setClipLimit(4);

Perform contrast-limited adaptive histogram equalization by using the apply method of the
cv::CLAHE base class.

basePtr.apply(inputArray,outputArray);

Read the enhanced output image.

enhanced = getImage(outputArray);

Display the original input and the enhanced output image.

figure
imshow(img)
title("Input Image")

figure
imshow(enhanced)
title("Enhanced Image")

 getBasePtr

3-1001



Input Arguments
ptr — OpenCV smart pointer
Ptr_cv_<_T> interface object

OpenCV smart pointer, specified as a Ptr_cv_<_T> interface object. This MATLAB interface object is
a representation of an OpenCV smart pointer cv::Ptr<_T>.

Output Arguments
output — Representation of OpenCV base class
MATLAB interface object

Representation of OpenCV base class, returned as a MATLAB interface object. You can use the object
to directly access the public member functions and public attributes of an OpenCV base class.

See Also
rectToBbox | getImage | createMat | keyPointsToStruct | createUMat

Topics
“Use Prebuilt MATLAB Interface to OpenCV”

Introduced in R2021b

3 Functions

3-1002



getImage
Package: vision.opencv.util

Read images stored in MATLAB interface object for OpenCV class

Syntax
outputImg = getImage(ocvInput)

Description
outputImg = getImage(ocvInput) reads the image stored in a MATLAB interface object for an
OpenCV class and writes it to the specified output variable outputImg in the MATLAB workspace.

Examples

Read Image Stored in OpenCV Mat Class

Add the MATLAB interface to OpenCV package names to the import list.

import clib.opencv.*
import vision.opencv.util.*

Read an image into the MATLAB workspace.

img = imread("cameraman.tif");

Create a MATLAB interface object for the OpenCV InputOutput array class.

[ocvMat,ocvArray] = createMat(img);

Read the image stored in the InputOutput interface object.

output = getImage(ocvArray);

Display the output image.

figure
imshow(output)

 getImage

3-1003



Input Arguments
ocvInput — MATLAB interface object for OpenCV class
MatND interface object | UMat interface object | InputArray interface object | InputOutputArray
interface object | OutputArray interface object

MATLAB interface object for an OpenCV class, specified as one of these values:

• MatND interface object — Created by using the createMat function and represents the OpenCV
cv::Mat class.

• UMat interface object — Created by using the createUMat function and represents the OpenCV
cv::UMat class.

• InputArray interface object — Created by using the createMat or createUMat function and
represents the OpenCV cv::_InputArray class. The InputArray interface object passes array
inputs to the OpenCV functions.

• InputOutputArray interface object — Created by using the createMat or createUMat
function and represents the OpenCV cv::_InputOutputArray class. The InputOutputArray
interface object passes array inputs to the OpenCV functions and writes the array outputs
returned by the OpenCV functions.

• OutputArray interface object — Created by using the createMat or createUMat function and
represents the OpenCV cv::_OutputArray class. The OutputArray interface object contains
the array outputs returned by the OpenCV functions.

Output Arguments
outputImg — Output image
M-by-N matrix | M-by-N-by-3 array

3 Functions

3-1004



Output image read from a MATLAB interface object, returned as an M-by-N matrix for intensity
images and M-by-N-by-3 array for color images.

See Also
createMat | createUMat

Topics
“Use Prebuilt MATLAB Interface to OpenCV”

Introduced in R2021b

 getImage

3-1005



keyPointsToStruct
Package: vision.opencv.util

Convert OpenCV KeyPoints object to MATLAB structure

Syntax
mlstruct = keyPointsToStruct(keypoints)

Description
mlstruct = keyPointsToStruct(keypoints) converts an OpenCV KeyPoints object to a
MATLAB structure.

Examples

Detect Keypoints in Image Using OpenCV in MATLAB

This example shows how to use the prebuilt MATLAB interface for the OpenCV function cv::Fast in
MATLAB to detect keypoints in an image. Additionally, use the keyPointsToStruct utility function
to write the keypoints returned by the OpenCV cv::Fast function to a MATLAB structure.

Add the MATLAB interface to OpenCV package names to the import list.

import clib.opencv.*;
import vision.opencv.util.*;

Read an image into the MATLAB workspace.

img = imread("elephant.jpg");

Create MATLAB interface objects for the OpenCV MatND and InputArray classes to store the input
image.

[inputMat,inputArray] = createMat(img);

Create a MATLAB interface object for the OpenCV KeyPoint vector by using the clibArray
function.

keyPointsVec = clibArray("clib.opencv.cv.KeyPoint",0);

Specify the parameters for computing keypoints using the FAST detector.

threshold = 100;
nonmaxSuppression = true;

Compute keypoints in the image by calling the OpenCV function cv::FAST in MATLAB.

cv.FAST(inputArray,keyPointsVec,threshold,nonmaxSuppression);

Convert the KeyPoints object returned by the OpenCV function into a MATLAB structure.

3 Functions

3-1006



mlstruct = keyPointsToStruct(keyPointsVec);

Inspect the fields in the output MATLAB structure.

mlstruct

mlstruct = struct with fields:
       Location: [48x2 double]
          Scale: [48x1 double]
         Metric: [48x1 double]
           Misc: [48x1 double]
    Orientation: [48x1 double]

Display the input image and plot the detected keypoints.

figure
imshow(img)
hold on
plot(mlstruct.Location(:,1),mlstruct.Location(:,2),"*r")
hold off

 keyPointsToStruct

3-1007



Input Arguments
keypoints — OpenCV KeyPoints class
MATLAB interface object

OpenCV KeyPoints class, specified as a MATLAB interface object. This interface object is a
representation of the KeyPoints class returned by any of the OpenCV functions for keypoint
detection.

Output Arguments
mlstruct — Keypoints detected using OpenCV function
structure

Keypoints detected using the OpenCV function, returned as a MATLAB structure with fields
Location, Scale, Metric, Misc, and Orientation.

Fields Description
Location x and y-coordinates of the keypoints.
Scale Diameter of the neighborhood region around the

keypoints.
Metric Strength of the keypoints.
Orientation Orientation of the keypoints.

See Also
rectToBbox | getImage | getBasePtr | createUMat | createMat | clibArray

Topics
“Use Prebuilt MATLAB Interface to OpenCV”

Introduced in R2021b

3 Functions

3-1008



rectToBbox
Package: vision.opencv.util

Compute bounding boxes from outputs returned by MATLAB interface object for OpenCV Rect class

Syntax
bbox = rectToBbox(input)

Description
bbox = rectToBbox(input) computes bounding box values from the outputs returned by a
MATLAB interface object for OpenCV Rect class. The OpenCV Rect class creates rectangles on an
input image. This function maps the zero-based indexing in OpenCV to one-based indexing in
MATLAB.

Examples

Draw Rectangle on Image Using OpenCV in MATLAB

Draw a rectangle on an image by using the prebuilt MATLAB interface for the OpenCV function
cv::rectangle. Compute the corresponding bounding box values in MATLAB to use to crop the
image region.

Add the MATLAB interface to OpenCV package names to the import list.

import clib.opencv.*;
import vision.opencv.util.*;

Read an image into the MATLAB workspace.

img = imread("highway.png");

Create interface objects for the OpenCV Mat and InputOutputArray classes to store the input
image.

[inputMat,ocvArray] = createMat(img,"InputOutput");

Define Rectangular Region

Call the OpenCV function cv::Rect2i using MATLAB, and specify the coordinates and dimensions
for the rectangle. Display the values.

rec = cv.Rect2i(140,60,100,100)

rec = 
  Rect2i with properties:

         x: 140
         y: 60
     width: 100

 rectToBbox

3-1009



    height: 100

Draw Rectangle and Display Results

Specify the properties of the line to use for drawing the rectangle. Set these values:

• Color of the line to red. To set this value, use the OpenCV function cv::Scalar.
• Thickness of the line to 2.
• Line type to 4.
• Shift to 0.

color = cv.Scalar(255,0,0);
thickness = 2;
lineType = 4;
shift = 0;

Draw the defined rectangle on the image by using the OpenCV function cv::rectangle.

cv.rectangle(ocvArray,rec,color,thickness,lineType,shift);

Read and display the output image.

outputImg = getImage(ocvArray);
figure
imshow(outputImg)

Compute Bounding Box

Use the utility function rectToBbox to compute the bounding box value from the values returned by
OpenCV function cv::Rect2i.

bbox = rectToBbox(rec);

3 Functions

3-1010



Display the bounding box values. Notice that the bounding box values in the MATLAB workspace
have one-based indexing.

bbox

bbox = 1x4 int32 row vector

   141    61   100   100

Crop the region within the bounding box by using the imcrop function and display the cropped
image.

croppedImg = imcrop(img,bbox);
figure
imshow(croppedImg)

Input Arguments
input — OpenCV class for rectangles
Rect__unsignedChar_ interface object | Rect2d interface object | Rect2f interface object |
Rect2i interface object

OpenCV class for rectangles, specified as one of these values:

• Rect__unsignedChar_ interface object — This MATLAB interface object is a representation of
the OpenCV class cv::Rect_<unsigned char>.

• Rect2d interface object — This MATLAB interface object is a representation of the OpenCV class
cv::Rect_<double>.

• Rect2f interface object — This MATLAB interface object is a representation of the OpenCV class
cv::Rect_<float>.

• Rect2i interface object — This MATLAB interface object is a representation of the OpenCV class
cv::Rect_<int>.

• Rect2i interface object — This MATLAB interface object is a representation of the OpenCV class
cv::Rect_<int>.

 rectToBbox

3-1011



Output Arguments
bbox — Bounding box values
four-element row vector

Bounding box values, returned as a four-element row vector of the form [x y width height].

See Also
createMat | getImage | createUMat | getBasePtr

Topics
“Use Prebuilt MATLAB Interface to OpenCV”

Introduced in R2021b

3 Functions

3-1012



trainSSDObjectDetector
Train an SSD deep learning object detector

Syntax
trainedDetector = trainSSDObjectDetector(trainingData,detector,options)
trainedDetector = trainSSDObjectDetector(trainingData,net,options)

trainedDetector = trainSSDObjectDetector(trainingData,checkpoint,options)

trainedDetector = trainSSDObjectDetector( ___ ,Name,Value)
[ ___ ,info] = trainSSDObjectDetector( ___ )

Description
Train a Detector

trainedDetector = trainSSDObjectDetector(trainingData,detector,options) trains a
single shot multibox detector (SSD) using deep learning. You can train an SSD detector to detect
multiple object classes. Use this syntax to train either an untrained or pretrained SSD object
detection network. You can also use this syntax to fine-tune a network with additional training data or
to perform more training iterations to improve detector accuracy.

This function requires that you have Deep Learning Toolbox. It is recommended that you also have
Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU. For information about the
supported compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

trainedDetector = trainSSDObjectDetector(trainingData,net,options) trains a SSD
object detector specified as a LayerGraph object. This syntax is not recommended and will be
removed in a future release.

Resume Training a Detector

trainedDetector = trainSSDObjectDetector(trainingData,checkpoint,options)
resumes training from a detector checkpoint.

Additional Properties

trainedDetector = trainSSDObjectDetector( ___ ,Name,Value) uses additional options
specified by one or more Name,Value pair arguments and any of the previous inputs.

[ ___ ,info] = trainSSDObjectDetector( ___ ) also returns information on the training
progress, such as training loss and accuracy, for each iteration.

Examples

Train SSD Object Detector

This example shows how to train a SSD object detector on a vehicle data set and use for detecting
vehicles in an image.

 trainSSDObjectDetector

3-1013



Load the training data into the workspace.

data = load("vehicleTrainingData.mat");
trainingData = data.vehicleTrainingData;

Specify the directory in which training samples are stored. Add full path to the file names in training
data.

dataDir = fullfile(toolboxdir("vision"),"visiondata");
trainingData.imageFilename = fullfile(dataDir,trainingData.imageFilename);

Create an image datastore using the files from the table.

imds = imageDatastore(trainingData.imageFilename);

Create a box label datastore using the label columns from the table.

blds = boxLabelDatastore(trainingData(:,2:end));

Combine the datastores.

ds = combine(imds,blds);

Specify a base network for creating a SSD object detector.

baseNetwork = layerGraph(resnet50);

Specify the names of the classes to detect.

classNames = {"vehicle"};

Specify the anchor boxes to use for training network.

anchorBoxes = {[30 60; 60 30; 50 50; 100 100], ...
               [40 70; 70 40; 60 60; 120 120]};

Specify the names of the feature extraction layers to connect to the detection subnetwork.

layersToConnect =  ["activation_22_relu" "activation_40_relu"];

Create a SSD object detector by using the ssdObjectDetector function.

detector = ssdObjectDetector(baseNetwork,classNames,anchorBoxes, ...
           DetectionNetworkSource=layersToConnect);

Specify the training options.

options = trainingOptions("sgdm", ...
          InitialLearnRate=0.001, ...
          MiniBatchSize=16, ...
          Verbose=true, ...
          MaxEpochs=30, ...
          Shuffle="never", ...
          VerboseFrequency=10);

Train the SSD object detector.

[detector,info] = trainSSDObjectDetector(ds,detector,options);

3 Functions

3-1014



*************************************************************************
Training an SSD Object Detector for the following object classes:

* vehicle

Training on single CPU.
Initializing input data normalization.
|=======================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     Loss     |   Accuracy   |     RMSE     |      Rate       |
|=======================================================================================================|
|       1 |           1 |       00:00:04 |      42.7980 |       39.23% |         2.10 |          0.0010 |
|       1 |          10 |       00:00:38 |       3.1443 |       99.48% |         1.48 |          0.0010 |
|       2 |          20 |       00:01:22 |       2.4110 |       99.45% |         1.16 |          0.0010 |
|       2 |          30 |       00:01:58 |       3.6181 |       99.33% |         1.18 |          0.0010 |
|       3 |          40 |       00:02:40 |       2.0148 |       99.48% |         0.88 |          0.0010 |
|       3 |          50 |       00:03:17 |       3.9796 |       99.42% |         0.75 |          0.0010 |
|       4 |          60 |       00:04:00 |       4.0148 |       99.60% |         0.69 |          0.0010 |
|       4 |          70 |       00:04:36 |       1.6519 |       99.50% |         0.86 |          0.0010 |
|       5 |          80 |       00:05:17 |       1.8625 |       99.63% |         0.84 |          0.0010 |
|       5 |          90 |       00:05:51 |       1.3560 |       99.65% |         0.73 |          0.0010 |
|       6 |         100 |       00:06:32 |       1.2340 |       99.82% |         0.64 |          0.0010 |
|       7 |         110 |       00:07:13 |       1.6821 |       99.59% |         0.71 |          0.0010 |
|       7 |         120 |       00:07:48 |       1.4340 |       99.86% |         0.63 |          0.0010 |
|       8 |         130 |       00:08:31 |       1.1701 |       99.90% |         0.53 |          0.0010 |
|       8 |         140 |       00:09:07 |       1.0795 |       99.86% |         0.58 |          0.0010 |
|       9 |         150 |       00:09:48 |       1.0765 |       99.84% |         0.66 |          0.0010 |
|       9 |         160 |       00:10:22 |       0.9774 |       99.88% |         0.55 |          0.0010 |
|      10 |         170 |       00:11:03 |       0.7405 |       99.87% |         0.51 |          0.0010 |
|      10 |         180 |       00:11:37 |       0.8487 |       99.83% |         0.57 |          0.0010 |
|=======================================================================================================|
Training finished: Max epochs completed.
Detector training complete.
*************************************************************************

Verify the training accuracy by inspecting the training loss for each iteration.

figure
plot(info.TrainingLoss)
grid on
xlabel("Number of Iterations")
ylabel("Training Loss for Each Iteration")

 trainSSDObjectDetector

3-1015



Read a test image.

img = imread("ssdTestDetect.png");

Detect vehicles in the test image by using the trained SSD object detector.

[bboxes,scores] = detect(detector,img);

Display the detection results.

if(~isempty(bboxes))
    img = insertObjectAnnotation(img,"rectangle",bboxes,scores);
end
figure
imshow(img)

3 Functions

3-1016



Input Arguments
trainingData — Labeled ground truth images
datastore

Labeled ground truth images, specified as a datastore or a table.

• If you use a datastore, your data must be set up so that calling the datastore with the read and
readall functions returns a cell array or table with two or three columns. When the output
contains two columns, the first column must contain bounding boxes, and the second column must
contain labels, {boxes,labels}. When the output contains three columns, the second column must
contain the bounding boxes, and the third column must contain the labels. In this case, the first
column can contain any type of data. For example, the first column can contain images or point
cloud data.

data boxes labels
The first column must be
images.

M-by-4 matrices of bounding
boxes of the form [x, y, width,
height], where [x,y] represent
the top-left coordinates of the
bounding box.

The third column must be a
cell array that contains M-
by-1 categorical vectors
containing object class names.
All categorical data returned
by the datastore must contain
the same categories.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).

detector — Untrained or pretrained SSD object detector
ssdObjectDetector object

Untrained or pretrained SSD object detector, specified as a ssdObjectDetector object.

net — Untrained or pretrained SSD network
LayerGraph object

Untrained or pretrained SSD network, specified as a LayerGraph object. The layer graph contains
the architecture of the SSD multibox network.

options — Training options
TrainingOptionsSGDM object | TrainingOptionsRMSProp object | TrainingOptionsADAM
object

 trainSSDObjectDetector

3-1017



Training options, specified as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object returned by the trainingOptions function. To specify the solver
name and other options for network training, use the trainingOptions function.

Note The trainSSDObjectDetector function does not support these training options:

• Datastore inputs are not supported when you set the DispatchInBackground training option to
true.

checkpoint — Saved detector checkpoint
ssdObjectDetector object

Saved detector checkpoint, specified as an ssdObjectDetector object. To periodically save a
detector checkpoint during training, specify CheckpointPath. To control how frequently check
points are saved see the CheckPointFrequency and CheckPointFrequencyUnit training options.

To load a checkpoint for a previously trained detector, load the MAT-file from the checkpoint path. For
example, if the CheckpointPath property of the object specified by options is '/checkpath', you
can load a checkpoint MAT-file by using this code.

data = load('/checkpath/ssd_checkpoint__216__2018_11_16__13_34_30.mat');
checkpoint = data.detector;

The name of the MAT-file includes the iteration number and timestamp of when the detector
checkpoint was saved. The detector is saved in the detector variable of the file. Pass this file back
into the trainSSDObjectDetector function:

ssdDetector = trainSSDObjectDetector(trainingData,checkpoint,options);

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PositiveOverlapRange',[0.5 1] sets the vertical axis direction to up.

PositiveOverlapRange — Range of bounding box overlap ratios
[0.5 1] (default) | two-element vector

Range of bounding box overlap ratios between 0 and 1, specified as a two-element vector. Anchor
boxes that overlap with ground truth bounding boxes within the specified range are used as positive
training samples. The function computes the overlap ratio using the intersection-over-union between
two bounding boxes.

NegativeOverlapRange — Range of bounding box overlap ratios
[0 0.5] (default) | two-element vector

Range of bounding box overlap ratios between 0 and 1, specified as a two-element vector. Anchor
boxes that overlap with ground truth bounding boxes within the specified range are used as negative
training samples. The function computes the overlap ratio using the intersection-over-union between
two bounding boxes.

3 Functions

3-1018



ExperimentManager — Detector training experiment monitoring
'none' (default) | experiments.Monitor object

Detector training experiment monitoring, specified as an experiments.Monitor object for use with
the Experiment Manager app. You can use this object to track the progress of training, update
information fields in the training results table, record values of the metrics used by the training, and
to produce training plots. For an example using this app, see “Train Object Detectors in Experiment
Manager”.

Information monitored during training:

• Training loss at each iteration.
• Training accuracy at each iteration.
• Training root mean square error (RMSE) for the box regression layer.
• Learning rate at each iteration.

Validation information when the training options input contains validation data:

• Validation loss at each iteration.
• Validation accuracy at each iteration.
• Validation RMSE at each iteration.

Output Arguments
trainedDetector — Trained SSD multibox object detector
ssdObjectDetector object

Trained SSD object detector, returned as ssdObjectDetector object. You can train a SSD object
detector to detect multiple object classes.

info — Training progress information
structure array

Training progress information, returned as a structure array with eight fields. Each field corresponds
to a stage of training.

• TrainingLoss — Training loss at each iteration is calculated as the sum of regression loss and
classification loss. To compute the regression loss, the trainSSDObjectDetector function uses
smooth L1 loss function. To compute the classification loss the trainSSDObjectDetector
function uses the softmax and binary cross-entropy loss function.

• TrainingAccuracy — Training set accuracy at each iteration.
• TrainingRMSE — Training root mean squared error (RMSE) is the RMSE calculated from the

training loss at each iteration.
• BaseLearnRate — Learning rate at each iteration.
• ValidationLoss — Validation loss at each iteration.
• ValidationAccuracy — Validation accuracy at each iteration.
• ValidationRMSE — Validation RMSE at each iteration.
• FinalValidationLoss — Final validation loss at end of the training.
• FinalValidationRMSE — Final validation RMSE at end of the training.

 trainSSDObjectDetector

3-1019



Each field is a numeric vector with one element per training iteration. Values that have not been
calculated at a specific iteration are assigned as NaN. The struct contains ValidationLoss,
ValidationAccuracy, ValidationRMSE, FinalValidationLoss, and FinalValidationRMSE
fields only when options specifies validation data.

Compatibility Considerations
LayerGraph input is not recommended
Not recommended starting in R2022a

Starting in R2022a, use of LayerGraph object to specify SSD object detection network as input to
the trainSSDObjectDetector is not recommended.

The syntax trainSSDObjectDetector(trainingData,net,options), specifying the input SSD
detection network net as a LayerGraph object will be removed in a future release.

If your SSD object detection network is a LayerGraph object, configure the network as a
ssdObjectDetector object by using the ssdObjectDetector function. Then, use the
ssdObjectDetector object as input to the trainSSDObjectDetector function for training.

References
[1] W. Liu, E. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Fu, and A.C. Berg. "SSD: Single Shot

MultiBox Detector." European Conference on Computer Vision (ECCV), Springer Verlag, 2016

See Also
Apps
Image Labeler | Video Labeler

Functions
ssdLayers | trainingOptions | objectDetectorTrainingData

Objects
ssdObjectDetector | boxLabelDatastore | anchorBoxLayer | focalLossLayer

Topics
“Object Detection Using SSD Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using Single Shot Multibox Detector”
“Train Object Detectors in Experiment Manager”
“Getting Started with SSD Multibox Detection”
“Anchor Boxes for Object Detection”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2020a

3 Functions

3-1020



trainFasterRCNNObjectDetector
Train a Faster R-CNN deep learning object detector

Syntax
trainedDetector = trainFasterRCNNObjectDetector(trainingData,network,options)
[trainedDetector,info] = trainFasterRCNNObjectDetector( ___ )

trainedDetector = trainFasterRCNNObjectDetector(trainingData,checkpoint,
options)

trainedDetector = trainFasterRCNNObjectDetector(trainingData,detector,
options)

trainedDetector = trainFasterRCNNObjectDetector( ___ ,Name,Value)

Description
Train a Detector

trainedDetector = trainFasterRCNNObjectDetector(trainingData,network,options)
trains a Faster R-CNN (regions with convolution neural networks) object detector using deep
learning. You can train a Faster R-CNN detector to detect multiple object classes.

This function requires that you have Deep Learning Toolbox. It is recommended that you also have
Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU. For information about the
supported compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

[trainedDetector,info] = trainFasterRCNNObjectDetector( ___ ) also returns
information on the training progress, such as training loss and accuracy, for each iteration.

Resume Training a Detector

trainedDetector = trainFasterRCNNObjectDetector(trainingData,checkpoint,
options) resumes training from a detector checkpoint.

Fine-Tune a Detector

trainedDetector = trainFasterRCNNObjectDetector(trainingData,detector,
options) continues training a Faster R-CNN object detector with additional fine-tuning options. Use
this syntax with additional training data or to perform more training iterations to improve detector
accuracy.

Additional Properties

trainedDetector = trainFasterRCNNObjectDetector( ___ ,Name,Value) uses additional
options specified by one or more Name,Value pair arguments and any of the previous inputs.

Examples

 trainFasterRCNNObjectDetector

3-1021



Train Faster R-CNN Vehicle Detector

Load training data.

data = load('fasterRCNNVehicleTrainingData.mat');

trainingData = data.vehicleTrainingData;

trainingData.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    trainingData.imageFilename);

Randomly shuffle data for training.

rng(0);
shuffledIdx = randperm(height(trainingData));
trainingData = trainingData(shuffledIdx,:);

Create an image datastore using the files from the table.

imds = imageDatastore(trainingData.imageFilename);

Create a box label datastore using the label columns from the table.

blds = boxLabelDatastore(trainingData(:,2:end));

Combine the datastores.

ds = combine(imds, blds);

Set up the network layers.

lgraph = layerGraph(data.detector.Network);

Configure training options.

 options = trainingOptions('sgdm', ...
      'MiniBatchSize', 1, ...
      'InitialLearnRate', 1e-3, ...
      'MaxEpochs', 7, ...
      'VerboseFrequency', 200, ...
      'CheckpointPath', tempdir);

Train detector. Training will take a few minutes. Adjust the NegativeOverlapRange and
PositiveOverlapRange to ensure training samples tightly overlap with ground truth.

detector = trainFasterRCNNObjectDetector(ds, lgraph, options, ...
        'NegativeOverlapRange',[0 0.3], ...
        'PositiveOverlapRange',[0.6 1]);

*************************************************************************
Training a Faster R-CNN Object Detector for the following object classes:

* vehicle

Training on single GPU.
Initializing input data normalization.
|=============================================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Mini-batch  |  RPN Mini-batch  |  RPN Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     Loss     |   Accuracy   |     RMSE     |     Accuracy     |       RMSE       |      Rate       |

3 Functions

3-1022



|=============================================================================================================================================|
|       1 |           1 |       00:00:00 |       0.8771 |       97.30% |         0.83 |           91.41% |             0.71 |          0.0010 |
|       1 |         200 |       00:01:15 |       0.5324 |      100.00% |         0.15 |           88.28% |             0.70 |          0.0010 |
|       2 |         400 |       00:02:40 |       0.4732 |      100.00% |         0.15 |           92.19% |             0.63 |          0.0010 |
|       3 |         600 |       00:04:03 |       0.4776 |       97.14% |         0.09 |           96.88% |             0.59 |          0.0010 |
|       3 |         800 |       00:05:23 |       0.5269 |       97.44% |         0.18 |           89.06% |             0.68 |          0.0010 |
|       4 |        1000 |       00:06:44 |       0.9749 |      100.00% |              |           85.16% |             1.00 |          0.0010 |
|       5 |        1200 |       00:08:07 |       1.1952 |       97.62% |         0.13 |           77.34% |             1.27 |          0.0010 |
|       5 |        1400 |       00:09:24 |       0.6577 |      100.00% |              |           76.38% |             0.72 |          0.0010 |
|       6 |        1600 |       00:10:46 |       0.6951 |      100.00% |              |           90.62% |             0.94 |          0.0010 |
|       7 |        1800 |       00:12:08 |       0.5341 |       96.08% |         0.09 |           86.72% |             0.53 |          0.0010 |
|       7 |        2000 |       00:13:26 |       0.3333 |      100.00% |         0.12 |           94.53% |             0.61 |          0.0010 |
|       7 |        2065 |       00:13:52 |       1.0564 |      100.00% |              |           71.09% |             1.23 |          0.0010 |
|=============================================================================================================================================|
Detector training complete.
*******************************************************************

Test the Faster R-CNN detector on a test image.

img = imread('highway.png');

Run the detector.

[bbox, score, label] = detect(detector,img);

Display detection results.

detectedImg = insertShape(img,'Rectangle',bbox);
figure
imshow(detectedImg)

 trainFasterRCNNObjectDetector

3-1023



Input Arguments
trainingData — Labeled ground truth
datastore | table

Labeled ground truth, specified as a datastore or a table.

Each bounding box must be in the format [x y width height].

• If you use a datastore, your data must be set up so that calling the datastore with the read and
readall functions returns a cell array or table with two or three columns. When the output
contains two columns, the first column must contain bounding boxes, and the second column must
contain labels, {boxes,labels}. When the output contains three columns, the second column must
contain the bounding boxes, and the third column must contain the labels. In this case, the first
column can contain any type of data. For example, the first column can contain images or point
cloud data.

data boxes labels
The first column must be
images.

M-by-4 matrices of bounding
boxes of the form [x, y, width,
height], where [x,y] represent
the top-left coordinates of the
bounding box.

The third column must be a
cell array that contains M-
by-1 categorical vectors
containing object class names.
All categorical data returned
by the datastore must contain
the same categories.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).
• If you use a table, the table must have two or more columns. The first column of the table must

contain image file names with paths. The images must be grayscale or truecolor (RGB) and they
can be in any format supported by imread. Each of the remaining columns must be a cell vector
that contains M-by-4 matrices that represent a single object class, such as vehicle, flower, or stop
sign. The columns contain 4-element double arrays of M bounding boxes in the format
[x,y,width,height]. The format specifies the upper-left corner location and size of the bounding box
in the corresponding image. To create a ground truth table, you can use the Image Labeler app
or Video Labeler app. To create a table of training data from the generated ground truth, use the
objectDetectorTrainingData function.

3 Functions

3-1024



network — Network
SeriesNetwork object | array of Layer objects | LayerGraph object | network name

Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph object, or by the
network name. The network is trained to classify the object classes defined in the trainingData
table. To use SeriesNetwork, Layer, and layerGraph objects, you must have Deep Learning
Toolbox.

• When you specify the network as a SeriesNetwork, an array of Layer objects, or by the network
name, the function transforms the network into a Faster R-CNN network by adding a region
proposal network (RPN), an ROI max pooling layer, and new classification and regression layers to
support object detection. Additionally, the GridSize property of the ROI max pooling layer is set
to the output size of the last max pooling layer in the network.

• The array of Layer objects must contain a classification layer that supports the number of object
classes, plus a background class. Use this input type to customize the learning rates of each layer.
An example of an array of Layer objects follows:

layers = [imageInputLayer([28 28 3])
        convolution2dLayer([5 5],10)
        reluLayer()
        fullyConnectedLayer(10)
        softmaxLayer()
        classificationLayer()];

• When you specify the network as SeriesNetwork object, Layer array, or by the network name,
the weights for additional convolution and fully connected layers are initialized to 'narrow-
normal'. The function adds these weights to create the network.

• The network name must be one of the following valid network names. You must also install the
corresponding add-on.

 trainFasterRCNNObjectDetector

3-1025



Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSize

Description

alexnet 'relu5' [6 6] Last max pooling layer is replaced by
ROI max pooling layervgg16 'relu5_3' [7 7]

vgg19 'relu5_4'
squeezenet 'fire5-concat' [14 14]
resnet18 'res4b_relu' ROI pooling layer is inserted after the

feature extraction layer.resnet50 'activation_40_relu
'

resnet101 'res4b22_relu'
googlenet 'inception_4d-

output'
mobilenetv2 'block_13_expand_re

lu'
inceptionv3 'mixed7' [17 17]
inceptionre
snetv2

'block17_20_ac'

• The LayerGraph object must be a valid Faster R-CNN object detection network. You can use the
fasterRCNNLayers function to create a LayerGraph object to train a custom Faster R-CNN
network.

Tip If your network is a DAGNetwork, use the layerGraph function to convert the network to a
LayerGraph object. Then, create a custom Faster R-CNN network as described by the “Create
Faster R-CNN Object Detection Network” example.

For more information on creating a Faster R-CNN network, see “Getting Started with R-CNN, Fast R-
CNN, and Faster R-CNN”.

options — Training options
trainingOptions output

Training options, returned by the trainingOptions function (requires Deep Learning Toolbox). To
specify solver and other options for network training, use trainingOptions.

Note trainFasterRCNNObjectDetector does not support these training options:

• Datastore inputs are not supported when you set the DispatchInBackground training option to
true.

Additionally, the function does not support the following training options if you use a combined
datastore input:

• 'once' and 'every-epoch' values for 'Shuffle' argument
• 'parallel' and 'multi-gpu' values for 'ExecutionEnvironment' argument

3 Functions

3-1026



checkpoint — Saved detector checkpoint
fasterRCNNObjectDetector object

Saved detector checkpoint, specified as a fasterRCNNObjectDetector object. To periodically save
a detector checkpoint during training, specify CheckpointPath. To control how frequently check
points are saved see the CheckPointFrequency and CheckPointFrequencyUnit training options.

To load a checkpoint for a previously trained detector, load the MAT-file from the checkpoint path. For
example, if the 'CheckpointPath' property of options is '/tmp', load a checkpoint MAT-file
using:

data = load('/tmp/faster_rcnn_checkpoint__105__2016_11_18__14_25_08.mat');

The name of the MAT-file includes the iteration number and a timestamp indicating when the detector
checkpoint was saved. The detector is saved in the detector variable of the file. Pass this file back
into the trainFasterRCNNObjectDetector function:

frcnn = trainFasterRCNNObjectDetector(stopSigns,...
                           data.detector,options);

detector — Previously trained Faster R-CNN object detector
fasterRCNNObjectDetector object

Previously trained Faster R-CNN object detector, specified as a fasterRCNNObjectDetector
object. Use this syntax to continue training a detector with additional training data or to perform
more training iterations to improve detector accuracy.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PositiveOverlapRange',[0.75 1]

TrainingMethod — Training method
'end-to-end' (default) | 'four-step'

Training method, specified as the comma-separated pair consisting of 'TrainingMethod' and either
'end-to-end' or 'four-step'.

• 'end-to-end' — Simultaneously train the region proposal and region classification subnetworks.
• 'four-step' — Separately train the region proposal and region classification subnetworks in

four steps.

PositiveOverlapRange — Bounding box overlap ratios for positive training samples
[0.5 1] (default) | 2-by-2 matrix | 4-by-2 matrix

Bounding box overlap ratios for positive training samples, specified as the comma-separated pair
consisting of 'PositiveOverlapRange' and one of the following:

• A 2-element vector that specifies an identical overlap ratio for all four training stages.

 trainFasterRCNNObjectDetector

3-1027



• A 2-by-2 matrix, used only for the end-to-end training method. The first row of the matrix defines
the overlap ratios for the region proposal subnetwork. The second row defines the overlap ratios
for the region classification subnetwork.

• A 4-by-2 matrix, used only for the four-step training method. Each row of the matrix specifies the
overlap ratio for each of the four training stages.

Values are in the range [0,1]. Region proposals that overlap with ground truth bounding boxes within
the specified range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is
defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

NegativeOverlapRange — Bounding box overlap ratios for negative training samples
[0.1 0.5] (default) | 2-element vector | 4-by-2 matrix

Bounding box overlap ratios for negative training samples, specified as the comma-separated pair
consisting of 'NegativeOverlapRange' and one of the following.

• A 2-element vector that specifies the overlap ratio.
• A 2-by-2 matrix, used only for the end-to-end training method. The first row of the matrix defines

the overlap ratios for the region proposal subnetwork. The second row defines the overlap ratios
for the region classification subnetwork.

• A 4-by-2 matrix, used only for the four-step training method. Each row of the matrix specifies the
overlap ratio for each of the four training stages.

Values are in the range [0,1]. Region proposals that overlap with the ground truth bounding boxes
within the specified range are used as negative training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is
defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | two-element vector

Maximum number of strongest region proposals to use for generating training samples, specified as
the comma-separated pair consisting of 'NumStrongestRegions' and a positive integer. Reduce
this value to speed up processing time at the cost of training accuracy. To use all region proposals, set
this value to Inf.

NumRegionsToSample — Number of region proposals
128 (default) | integer | 1-by-2 vector | 1-by-4 vector

Number of region proposals to randomly sample from each training image, specified as an integer, 1-
by-2 vector, or a 1-by-4 vector. Use the 1-by-2 vector for end-to-end training. Use the 1-by-4 vector for

3 Functions

3-1028



the four-step training. Reduce the number of regions to sample to reduce memory usage and speed
up training. Reducing the value can also decrease training accuracy.

When you set 'TrainingMethod' to 'end-to-end', the number of region proposals can be set to a
1-by-2 vector. The first element of the vector must be the number of regions sampled for the region
proposal subnetwork. The second element must be the number of regions sampled for the region
classfication subnetwork.

When you set 'TrainingMethod' to 'four-step', the number of region proposals can be set to a 1-
by-4 vector. The ith element specifies the number of regions to sample for the ith training step.

SmallestImageDimension — Length of smallest image dimension
[] (default) | positive integer

Length of the smallest image dimension, either width or height, specified as the comma-separated
pair consisting of 'SmallestImageDimension' and a positive integer. Training images are resized
such that the length of the shortest dimension is equal to the specified integer. By default, training
images are not resized. Resizing training images helps reduce computational costs and memory used
when training images are large. Typical values range from 400–600 pixels.

Dependencies

• The SmallestImageDimension property supports only table input training data. To resize the
input data of a datastore input, use the transform function.

MinBoxSizes — Minimum anchor box sizes
'auto' (default) | m-by-2 matrix

Minimum anchor box sizes for building the anchor box pyramid of the region proposal network
(RPN), specified as the comma-separated pair consisting of'MinBoxSizes' and an m-by-2 matrix.
Each row defines the [height width] of an anchor box.

The default 'auto' setting uses the minimum size and the median aspect ratio from the bounding
boxes for each class in the ground truth data. To remove redundant box sizes, the function keeps
boxes that have an intersection-over-union value that is less than or equal to 0.5. This behavior
ensures that the minimum number of anchor boxes is used to cover all the object sizes and aspect
ratios.

When anchor boxes are computed based on MinBoxSizes, the ith anchor box size is:

round(MinBoxSizes(i,:) .* BoxPyramidScale ,^ (0:NumBoxPyramidLevels-1)')

Dependencies

• You cannot use this property if you specify the network as a LayerGraph object or if you resume
training from a detector checkpoint.

• The MinBoxSizes property supports only input training in table format. To estimate anchor boxes
for a datastore input, use the estimateAnchorBoxes function.

BoxPyramidScale — Anchor box pyramid scale
2 (default) | scalar

Anchor box pyramid scale factor used to successively upscale anchor box sizes, specified as the
comma-separated pair consisting of 'BoxPyramidScale' and a scalar. Recommended values are
from 1 through 2. Increase this value for faster results. Decrease the number for greater accuracy.

 trainFasterRCNNObjectDetector

3-1029



Dependencies

• The BoxPyramidScale property supports only input training data in table format. To estimate
anchor boxes for a datastore input, use the estimateAnchorBoxes function.

NumBoxPyramidLevels — Number of anchor box pyramid levels
'auto' (default) | scalar

Number of levels in an anchor box pyramid, specified as the comma-separated pair consisting of
'NumBoxPyramidLevels' and a scalar. Select a value that ensures that the multiscale anchor boxes
are comparable in size to the size of objects in the ground truth data.

The default setting 'auto' selects the number of levels based on the size of objects within the
ground truth data. The number of levels is selected such that it covers the range of object sizes.
Dependencies

• The NumBoxPyramidLevels property supports only input training data in table format. To
estimate anchor boxes for a datastore input, use the estimateAnchorBoxes function.

FreezeBatchNormalization — Frozen batch normalization
true (default) | false

Frozen batch normalization during training, specified as the comma-separated pair consisting of
'FreezeBatchNormalization' and true or false. The value indicates whether to freeze the input
layers to the network during training. Set this value to true if you are training with a small mini-
batch size. Small batch sizes result in poor estimates of the batch mean and variance, which are
required for effective batch normalization.

If you do not specify a value for 'FreezeBatchNormalization', the function sets the property to:

• true if the 'MiniBatchSize' name-value argument for the trainingOptions function is less
than 8.

• false if the 'MiniBatchSize' name-value argument for the trainingOptions function is
greater than or equal to 8.

You must specify a value for 'FreezeBatchNormalization' to overide this default behavior.

ExperimentManager — Detector training experiment monitoring
'none' (default) | experiments.Monitor object

Detector training experiment monitoring, specified as an experiments.Monitor object for use with
the Experiment Manager app. You can use this object to track the progress of training, update
information fields in the training results table, record values of the metrics used by the training, and
to produce training plots. For an example using this app, see “Train Object Detectors in Experiment
Manager”.

Information monitored during training:

• Training loss at each iteration.
• Training accuracy at each iteration.
• Training root mean square error (RMSE) for the box regression layer.
• Learning rate at each iteration.

Validation information when the training options input contains validation data:

3 Functions

3-1030



• Validation loss at each iteration.
• Validation accuracy at each iteration.
• Validation RMSE at each iteration.

Output Arguments
trainedDetector — Trained Faster R-CNN object detector
fasterRCNNObjectDetector object

Trained Faster R-CNN object detector, returned as a fasterRCNNObjectDetector object.

info — Training progress information
structure array

Training progress information, returned as a structure array with eight fields. Each field corresponds
to a stage of training.

• TrainingLoss — Training loss at each iteration is the mean squared error (MSE) calculated as
the sum of localization error, confidence loss, and classification loss. For more information about
the training loss function, see “Training Loss” on page 3-1049.

• TrainingAccuracy — Training set accuracy at each iteration.
• TrainingRMSE — Training root mean squared error (RMSE) is the RMSE calculated from the

training loss at each iteration.
• BaseLearnRate — Learning rate at each iteration.
• ValidationLoss — Validation loss at each iteration.
• ValidationAccuracy — Validation accuracy at each iteration.
• ValidationRMSE — Validation RMSE at each iteration.
• FinalValidationLoss — Final validation loss at end of the training.
• FinalValidationRMSE — Final validation RMSE at end of the training.

Each field is a numeric vector with one element per training iteration. Values that have not been
calculated at a specific iteration are assigned as NaN. The struct contains ValidationLoss,
ValidationAccuracy, ValidationRMSE, FinalValidationLoss, and FinalValidationRMSE
fields only when options specifies validation data.

Tips
• To accelerate data preprocessing for training, trainFastRCNNObjectDetector automatically

creates and uses a parallel pool based on your parallel preference settings. For more details about
setting these preferences, see parallel preference settings. Using parallel computing preferences
requires Parallel Computing Toolbox.

• VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training with large
images can produce "out-of-memory" errors. To mitigate these errors, try one or more of these
options:

• Reduce the size of your images by using the 'SmallestImageDimension' argument.
• Decrease the value of the 'NumRegionsToSample' name-value argument.

• This function supports transfer learning. When you input a network by name, such as
'resnet50', then the function automatically transforms the network into a valid Faster R-CNN

 trainFasterRCNNObjectDetector

3-1031



network model based on the pretrained resnet50 model. Alternatively, manually specify a custom
Faster R-CNN network by using the LayerGraph extracted from a pretrained DAG network. For
more details, see “Create Faster R-CNN Object Detection Network”.

• This table describes how to transform each named network into a Faster R-CNN network. The
feature extraction layer name specifies the layer for processing by the ROI pooling layer. The ROI
output size specifies the size of the feature maps output by the ROI pooling layer.

Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSize

Description

alexnet 'relu5' [6 6] Last max pooling layer is replaced by
ROI max pooling layervgg16 'relu5_3' [7 7]

vgg19 'relu5_4'
squeezenet 'fire5-concat' [14 14]
resnet18 'res4b_relu' ROI pooling layer is inserted after the

feature extraction layer.resnet50 'activation_40_relu
'

resnet101 'res4b22_relu'
googlenet 'inception_4d-

output'
mobilenetv2 'block_13_expand_re

lu'
inceptionv3 'mixed7' [17 17]
inceptionre
snetv2

'block17_20_ac'

For information on modifying how a network is transformed into a Faster R-CNN network, see
“Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model”.

• During training, multiple image regions are processed from the training images The number of
image regions per image is controlled by the NumRegionsToSample property. The
PositiveOverlapRange and NegativeOverlapRange properties control which image regions
are used for training. Positive training samples are those that overlap with the ground truth boxes
by 0.6 to 1.0, as measured by the bounding box intersection-over-union metric (IoU). Negative
training samples are those that overlap by 0 to 0.3. Choose values for these properties by testing
the trained detector on a validation set.

Overlap Values Description
PositiveOverlapRange set to [0.6 1] Positive training samples are set equal to the

samples that overlap with the ground truth
boxes by 0.6 to 1.0, measured by the bounding
box IoU metric.

NegativeOverlapRange set to [0 0.3] Negative training samples are set equal to the
samples that overlap with the ground truth
boxes by 0 to 0.3.

3 Functions

3-1032



If you set PositiveOverlapRange to [0.6 1], then the function sets the positive training
samples equal to the samples that overlap with the ground truth boxes by 0.6 to 1.0, measured by
the bounding box IoU metric. If you set NegativeOverlapRange to [0 0.3], then the function
sets the negative training samples equal to the samples that overlap with the ground truth boxes
by 0 to 0.3.

• Use the trainingOptions function to enable or disable verbose printing.

Compatibility Considerations
Default Training Method
Behavior changed in R2019b

Starting in R2019b, by default, the trainFasterRCNNObjectDetector function uses the end-to-
end method for training a detector.

In previous releases, the default training method used the "four-step" method. To preserve
compatibility, set the TrainingMethod property to 'four-step'.

References
[1] Ren, S., K. He, R. Girschick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks." Advances in Neural Information Processing Systems. Vol. 28,
2015.

[2] Girshick, R. "Fast R-CNN." Proceedings of the IEEE International Conference on Computer Vision,
1440-1448. Santiago, Chile: IEEE, 2015.

[3] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition, 580-587. Columbus, OH: IEEE, 2014.

[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." Computer
Vision-ECCV 2014, 391-405. Zurich, Switzerland: ECCV, 2014.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainRCNNObjectDetector | trainFastRCNNObjectDetector | trainingOptions |
objectDetectorTrainingData | estimateAnchorBoxes | fasterRCNNLayers

 trainFasterRCNNObjectDetector

3-1033



Objects
maxPooling2dLayer | Layer | layerGraph | averagePooling2dLayer | SeriesNetwork |
fasterRCNNObjectDetector | boxLabelDatastore

Topics
“Object Detection Using Faster R-CNN Deep Learning”
“Train Object Detectors in Experiment Manager”
“Anchor Boxes for Object Detection”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2017a

3 Functions

3-1034



trainMaskRCNN
Train Mask R-CNN network to perform instance segmentation

Syntax
trainedDetector = trainMaskRCNN(trainingData,network,options)
trainedDetector = trainMaskRCNN(trainingData,network,options,Name=Value)
[trainedDetector,info] = trainMaskRCNN(trainingData,network,options)

Description
trainedDetector = trainMaskRCNN(trainingData,network,options) trains a Mask R-CNN
network. A trained Mask R-CNN network object can perform instance segmentation to detect and
segment multiple object classes. This syntax supports transfer learning on a pretrained Mask R-CNN
network and training an uninitialized Mask R-CNN network.

This function requires that you have Deep Learning Toolbox. It is recommended that you also have
Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU. For information about the
supported compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

trainedDetector = trainMaskRCNN(trainingData,network,options,Name=Value) uses
additional options specified by one or more name-value arguments.

[trainedDetector,info] = trainMaskRCNN(trainingData,network,options) also returns
information on the training progress, such as training loss and accuracy, for each iteration.

Input Arguments
trainingData — Labeled ground truth
datastore

Labeled ground truth training data, specified as a datastore. Your data must be set up so that calling
the datastore with the read and readall functions returns a cell array with four columns. This table
describes the format of each column.

data boxes labels masks
RGB image that serves
as a network input,
specified as an H-by-W-
by-3 numeric array.

Bounding boxes,
specified as M-by-4
matrices, where M is
the number of objects
within the image. Each
bounding box has the
format [x y width
height], where [x, y]
represent the top-left
coordinates of the
bounding box.

Object class names,
specified as an M-by-1
categorical vector. All
categorical data
returned by the
datastore must contain
the same categories.

Binary masks, specified
as a logical array of size
H-by-W-by-M. Each
mask is the
segmentation of one
instance in the image.

You can create a datastore that returns data in the required format using these steps:

 trainMaskRCNN

3-1035



1 Create an imageDatastore that returns RGB image data
2 Create a boxLabelDatastore that returns bounding box data and instance labels as a two-

element cell array
3 Create an imageDatastore and specify a custom read function that returns mask data as a

binary matrix
4 Combine the three datastores using the combine function

For more information, see “Getting Started with Mask R-CNN for Instance Segmentation”.

network — Mask R-CNN network to train
maskrcnn object

Mask R-CNN network to train, specified as a maskrcnn object.

options — Training options
trainingOptions object

Training options, specified as a trainingOptions object. You must set the
BatchNormalizationStatistics property of the object as "moving" and the
ResetInputNormalization property as false. The Plots property must be the default value,
"none".

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: trainedDetector =
trainMaskRCNN(trainingData,network,options,NumRegionsToSample=64) samples 64
region proposals from each training image

PositiveOverlapRange — Bounding box overlap ratios for positive training samples
[0.5 1] (default) | two-element numeric vector

Bounding box overlap ratios for positive training samples, specified as a two-element numeric vector
with values in the range [0, 1]. Region proposals that overlap with ground truth bounding boxes
within the specified range are used as positive training samples.

The overlap ratio for bounding boxes A and B is:

area(A∩ B)
area(A∪ B)

NegativeOverlapRange — Bounding box overlap ratios for negative training samples
[0.1 0.5] (default) | two-element numeric vector

Bounding box overlap ratios for negative training samples, specified as a two-element numeric vector
with values in the range [0, 1]. Region proposals that overlap with the ground truth bounding boxes
within the specified range are used as negative training samples.

The overlap ratio for bounding boxes A and B is:

area(A∩ B)
area(A∪ B)

3 Functions

3-1036



NumStrongestRegions — Maximum number of strongest region proposals
1000 (default) | positive integer | Inf

Maximum number of strongest region proposals to use for generating training samples, specified as a
positive integer. Reduce this value to speed up processing time at the cost of training accuracy. To use
all region proposals, set this value to Inf.

NumRegionsToSample — Number of region proposals
128 (default) | positive integer

Number of region proposals to randomly sample from each training image, specified as a positive
integer. Reduce the number of regions to sample to reduce memory usage and speed up training.
Reducing the value can also decrease training accuracy.

FreezeSubNetwork — Subnetworks to freeze
"none" (default) | "backbone" | "rpn" | ["backbone" "rpn"]

Subnetworks to freeze during training, specified as one of these values:

• "none" — Do not freeze subnetworks
• "backbone" — Freeze the feature extraction subnetwork, including the layers following the ROI

align layer
• "rpn" — Freeze the region proposal subnetwork
• ["backbone" "rpn"] — Freeze both the feature extraction and the region proposal

subnetworks

The weight of layers in frozen subnetworks does not change during training.

ExperimentManager — Training experiment monitor
"none" (default) | experiments.Monitor object

Training experiment monitor, specified as an experiments.Monitor object for use with the
Experiment Manager app. You can use this object to track the progress of training, update
information fields in the training results table, record values of the metrics used by the training, and
to produce training plots.

Information monitored during training:

• Training loss at each iteration
• Training accuracy at each iteration
• Training root mean square error (RMSE) for the box regression layer
• Training loss for the mask segmentation branch
• Learning rate at each iteration

Validation information when the training options input contains validation data:

• Validation loss at each iteration
• Validation accuracy at each iteration
• Validation RMSE at each iteration
• Validation loss for the mask segmentation branch

 trainMaskRCNN

3-1037



Output Arguments
trainedDetector — Trained Mask R-CNN network
maskrcnn object

Trained Mask R-CNN network, returned as a maskrcnn object.

info — Training progress information
structure

Training progress information, returned as a structure. Each field corresponds to a stage of training.

• TrainingLoss — Training loss at each iteration. The loss is the combination of the region
proposal network (RPN), classification, regression and mask loss used to train the Mask R-CNN
network.

• TrainingRPNLoss — Total RPN loss at the end of each iteration.
• TrainingRMSE — Training root mean squared error (RMSE) for the box regression layer at the

end of each iteration.
• TrainingMaskLoss — Training cross-entropy loss for the mask segmentation branch at the end

of each iteration.
• LearnRate — Learning rate at each iteration.
• ValidationLoss — Validation loss at each iteration.
• ValidationRPNLoss — Validation RPN loss at each iteration.
• ValidationRMSE — Validation RMSE at each iteration.
• ValidationMaskLoss — Validation cross-entropy loss for the mask segmentation branch at each

iteration.

Each field is a numeric vector with one element per training iteration. Values that are not calculated
at a specific iteration are assigned as NaN. The structure contains the ValidationLoss,
ValidationRPNLoss, ValidationRMSE, and ValidationMaskLoss fields only when options
specifies validation data.

Tips
• The trainMaskRCNN function has a high GPU memory requirement. It is recommended to train a

Mask R-CNN network with at least 12 GB of available GPU memory.
• To reduce the training memory consumption, try reducing the InputSize property of the

network argument or the NumRegionsToSample name-value argument.
• When you want to perform transfer learning on a data set with similar content to the COCO data

set, freezing the feature extraction and region proposal subnetworks can help the network
training converge faster.

See Also
maskrcnn | fasterRCNNObjectDetector | trainFasterRCNNObjectDetector |
estimateAnchorBoxes | Experiment Manager

Topics
“Getting Started with Mask R-CNN for Instance Segmentation”
“Perform Instance Segmentation Using Mask R-CNN”

3 Functions

3-1038



Introduced in R2022a

 trainMaskRCNN

3-1039



trainYOLOv2ObjectDetector
Train YOLO v2 object detector

Syntax
detector = trainYOLOv2ObjectDetector(trainingData,lgraph,options)
[detector,info] = trainYOLOv2ObjectDetector( ___ )

detector = trainYOLOv2ObjectDetector(trainingData,checkpoint,options)

detector = trainYOLOv2ObjectDetector(trainingData,detector,options)

detector = trainYOLOv2ObjectDetector( ___ ,'TrainingImageSize',trainingSizes)

detector = trainYOLOv2ObjectDetector( ___ ,Name,Value)

Description
Train a Detector

detector = trainYOLOv2ObjectDetector(trainingData,lgraph,options) returns an
object detector trained using you only look once version 2 (YOLO v2) network architecture specified
by the input lgraph. The options input specifies training parameters for the detection network.

[detector,info] = trainYOLOv2ObjectDetector( ___ ) also returns information on the
training progress, such as the training accuracy and learning rate for each iteration.

Resume Training a Detector

detector = trainYOLOv2ObjectDetector(trainingData,checkpoint,options) resumes
training from the saved detector checkpoint.

You can use this syntax to:

• Add more training data and continue the training.
• Improve training accuracy by increasing the maximum number of iterations.

Fine Tune a Detector

detector = trainYOLOv2ObjectDetector(trainingData,detector,options) continues
training a YOLO v2 object detector. Use this syntax for fine-tuning a detector.

Multiscale Training

detector = trainYOLOv2ObjectDetector( ___ ,'TrainingImageSize',trainingSizes)
specifies the image sizes for multiscale training by using a name-value pair in addition to the input
arguments in any of the preceding syntaxes.

Additional Properties

detector = trainYOLOv2ObjectDetector( ___ ,Name,Value) uses additional options
specified by one or more Name,Value pair arguments and any of the previous inputs.

3 Functions

3-1040



Examples

Train YOLO v2 Network for Vehicle Detection

Load the training data for vehicle detection into the workspace.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Specify the directory in which training samples are stored. Add full path to the file names in training
data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
trainingData.imageFilename = fullfile(dataDir,trainingData.imageFilename);

Randomly shuffle data for training.

rng(0);
shuffledIdx = randperm(height(trainingData));
trainingData = trainingData(shuffledIdx,:);

Create an imageDatastore using the files from the table.

imds = imageDatastore(trainingData.imageFilename);

Create a boxLabelDatastore using the label columns from the table.

blds = boxLabelDatastore(trainingData(:,2:end));

Combine the datastores.

ds = combine(imds, blds);

Load a preinitialized YOLO v2 object detection network.

net = load('yolov2VehicleDetector.mat');
lgraph = net.lgraph

lgraph = 
  LayerGraph with properties:

         Layers: [25×1 nnet.cnn.layer.Layer]
    Connections: [24×2 table]
     InputNames: {'input'}
    OutputNames: {'yolov2OutputLayer'}

Inspect the layers in the YOLO v2 network and their properties. You can also create the YOLO v2
network by following the steps given in “Create YOLO v2 Object Detection Network”.

lgraph.Layers

ans = 
  25x1 Layer array with layers:

     1   'input'               Image Input                128x128x3 images
     2   'conv_1'              Convolution                16 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'BN1'                 Batch Normalization        Batch normalization

 trainYOLOv2ObjectDetector

3-1041



     4   'relu_1'              ReLU                       ReLU
     5   'maxpool1'            Max Pooling                2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv_2'              Convolution                32 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     7   'BN2'                 Batch Normalization        Batch normalization
     8   'relu_2'              ReLU                       ReLU
     9   'maxpool2'            Max Pooling                2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv_3'              Convolution                64 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
    11   'BN3'                 Batch Normalization        Batch normalization
    12   'relu_3'              ReLU                       ReLU
    13   'maxpool3'            Max Pooling                2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    14   'conv_4'              Convolution                128 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'BN4'                 Batch Normalization        Batch normalization
    16   'relu_4'              ReLU                       ReLU
    17   'yolov2Conv1'         Convolution                128 3x3 convolutions with stride [1  1] and padding 'same'
    18   'yolov2Batch1'        Batch Normalization        Batch normalization
    19   'yolov2Relu1'         ReLU                       ReLU
    20   'yolov2Conv2'         Convolution                128 3x3 convolutions with stride [1  1] and padding 'same'
    21   'yolov2Batch2'        Batch Normalization        Batch normalization
    22   'yolov2Relu2'         ReLU                       ReLU
    23   'yolov2ClassConv'     Convolution                24 1x1 convolutions with stride [1  1] and padding [0  0  0  0]
    24   'yolov2Transform'     YOLO v2 Transform Layer.   YOLO v2 Transform Layer with 4 anchors.
    25   'yolov2OutputLayer'   YOLO v2 Output             YOLO v2 Output with 4 anchors.

Configure the network training options.

options = trainingOptions('sgdm',...
          'InitialLearnRate',0.001,...
          'Verbose',true,...
          'MiniBatchSize',16,...
          'MaxEpochs',30,...
          'Shuffle','never',...
          'VerboseFrequency',30,...
          'CheckpointPath',tempdir);

Train the YOLO v2 network.

[detector,info] = trainYOLOv2ObjectDetector(ds,lgraph,options);

*************************************************************************
Training a YOLO v2 Object Detector for the following object classes:

* vehicle

Training on single CPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:01 |         7.13 |         50.8 |          0.0010 |
|       2 |          30 |       00:00:14 |         1.35 |          1.8 |          0.0010 |
|       4 |          60 |       00:00:27 |         1.13 |          1.3 |          0.0010 |
|       5 |          90 |       00:00:39 |         0.64 |          0.4 |          0.0010 |
|       7 |         120 |       00:00:51 |         0.65 |          0.4 |          0.0010 |
|       9 |         150 |       00:01:04 |         0.72 |          0.5 |          0.0010 |
|      10 |         180 |       00:01:16 |         0.52 |          0.3 |          0.0010 |
|      12 |         210 |       00:01:28 |         0.45 |          0.2 |          0.0010 |
|      14 |         240 |       00:01:41 |         0.61 |          0.4 |          0.0010 |
|      15 |         270 |       00:01:52 |         0.43 |          0.2 |          0.0010 |

3 Functions

3-1042



|      17 |         300 |       00:02:05 |         0.42 |          0.2 |          0.0010 |
|      19 |         330 |       00:02:17 |         0.52 |          0.3 |          0.0010 |
|      20 |         360 |       00:02:29 |         0.43 |          0.2 |          0.0010 |
|      22 |         390 |       00:02:42 |         0.43 |          0.2 |          0.0010 |
|      24 |         420 |       00:02:54 |         0.59 |          0.4 |          0.0010 |
|      25 |         450 |       00:03:06 |         0.61 |          0.4 |          0.0010 |
|      27 |         480 |       00:03:18 |         0.65 |          0.4 |          0.0010 |
|      29 |         510 |       00:03:31 |         0.48 |          0.2 |          0.0010 |
|      30 |         540 |       00:03:42 |         0.34 |          0.1 |          0.0010 |
|========================================================================================|
Detector training complete.
*************************************************************************

Inspect the properties of the detector.

detector

detector = 
  yolov2ObjectDetector with properties:

            ModelName: 'vehicle'
              Network: [1×1 DAGNetwork]
    TrainingImageSize: [128 128]
          AnchorBoxes: [4×2 double]
           ClassNames: vehicle

You can verify the training accuracy by inspecting the training loss for each iteration.

figure
plot(info.TrainingLoss)
grid on
xlabel('Number of Iterations')
ylabel('Training Loss for Each Iteration')

 trainYOLOv2ObjectDetector

3-1043



Read a test image into the workspace.

img = imread('detectcars.png');

Run the trained YOLO v2 object detector on the test image for vehicle detection.

[bboxes,scores] = detect(detector,img);

Display the detection results.

if(~isempty(bboxes))
    img = insertObjectAnnotation(img,'rectangle',bboxes,scores);
end
figure
imshow(img)

3 Functions

3-1044



Input Arguments
trainingData — Labeled ground truth images
datastore | table

Labeled ground truth images, specified as a datastore or a table.

• If you use a datastore, your data must be set up so that calling the datastore with the read and
readall functions returns a cell array or table with two or three columns. When the output
contains two columns, the first column must contain bounding boxes, and the second column must
contain labels, {boxes,labels}. When the output contains three columns, the second column must
contain the bounding boxes, and the third column must contain the labels. In this case, the first
column can contain any type of data. For example, the first column can contain images or point
cloud data.

data boxes labels
The first column must be
images.

M-by-4 matrices of bounding
boxes of the form [x, y, width,
height], where [x,y] represent
the top-left coordinates of the
bounding box.

The third column must be a
cell array that contains M-
by-1 categorical vectors
containing object class names.
All categorical data returned
by the datastore must contain
the same categories.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).
• If you use a table, the table must have two or more columns. The first column of the table must

contain image file names with paths. The images must be grayscale or truecolor (RGB) and they
can be in any format supported by imread. Each of the remaining columns must be a cell vector
that contains M-by-4 matrices that represent a single object class, such as vehicle, flower, or stop
sign. The columns contain 4-element double arrays of M bounding boxes in the format
[x,y,width,height]. The format specifies the upper-left corner location and size of the bounding box
in the corresponding image. To create a ground truth table, you can use the Image Labeler app
or Video Labeler app. To create a table of training data from the generated ground truth, use the
objectDetectorTrainingData function.

 trainYOLOv2ObjectDetector

3-1045



Note When the training data is specified using a table, the trainYOLOv2ObjectDetector function
checks these conditions

• The bounding box values must be integers. Otherwise, the function automatically rounds each
noninteger values to its nearest integer.

• The bounding box must not be empty and must be within the image region. While training the
network, the function ignores empty bounding boxes and bounding boxes that lie partially or fully
outside the image region.

lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. The layer graph contains the architecture of the
YOLO v2 network. You can create this network by using the yolov2Layers function. Alternatively,
you can create the network layers by using yolov2TransformLayer, yolov2ReorgLayer, and
yolov2OutputLayer functions. For more details on creating a custom YOLO v2 network, see
“Design a YOLO v2 Detection Network”.

options — Training options
TrainingOptionsSGDM object | TrainingOptionsRMSProp object | TrainingOptionsADAM
object

Training options, specified as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object returned by the trainingOptions function. To specify the solver
name and other options for network training, use the trainingOptions function.

Note The trainYOLOv2ObjectDetector function does not support these training options:

• The trainingOptions Shuffle values, 'once' and 'every-epoch' are not supported when
you use a datastore input.

3 Functions

3-1046



• Datastore inputs are not supported when you set the DispatchInBackground training option to
true.

checkpoint — Saved detector checkpoint
yolov2ObjectDetector object

Saved detector checkpoint, specified as a yolov2ObjectDetector object. To periodically save a
detector checkpoint during training, specify CheckpointPath. To control how frequently check
points are saved see the CheckPointFrequency and CheckPointFrequencyUnit training options.

To load a checkpoint for a previously trained detector, load the MAT-file from the checkpoint path. For
example, if the CheckpointPath property of the object specified by options is '/checkpath', you
can load a checkpoint MAT-file by using this code.

data = load('/checkpath/yolov2_checkpoint__216__2018_11_16__13_34_30.mat');
checkpoint = data.detector;

The name of the MAT-file includes the iteration number and timestamp of when the detector
checkpoint was saved. The detector is saved in the detector variable of the file. Pass this file back
into the trainYOLOv2ObjectDetector function:

yoloDetector = trainYOLOv2ObjectDetector(trainingData,checkpoint,options);

detector — Previously trained YOLO v2 object detector
yolov2ObjectDetector object

Previously trained YOLO v2 object detector, specified as a yolov2ObjectDetector object. Use this
syntax to continue training a detector with additional training data or to perform more training
iterations to improve detector accuracy.

trainingSizes — Set of image sizes for multiscale training
[] (default) | M-by-2 matrix

Set of image sizes for multiscale training, specified as an M-by-2 matrix, where each row is of the
form [height width]. For each training epoch, the input training images are randomly resized to
one of the M image sizes specified in this set.

If you do not specify the trainingSizes, the function sets this value to the size in the image input
layer of the YOLO v2 network. The network resizes all training images to this value.

Note The input trainingSizes values specified for multiscale training must be greater than or
equal to the input size in the image input layer of the lgraph input argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExperimentManager','none' sets the 'ExperimentManager' to 'none'.

 trainYOLOv2ObjectDetector

3-1047



ExperimentManager — Detector training experiment monitoring
'none' (default) | experiments.Monitor object

Detector training experiment monitoring, specified as an experiments.Monitor object for use with
the Experiment Manager app. You can use this object to track the progress of training, update
information fields in the training results table, record values of the metrics used by the training, and
to produce training plots. For an example using this app, see “Train Object Detectors in Experiment
Manager”.

Information monitored during training:

• Training loss at each iteration.
• Training accuracy at each iteration.
• Training root mean square error (RMSE) for the box regression layer.
• Learning rate at each iteration.

Validation information when the training options input contains validation data:

• Validation loss at each iteration.
• Validation accuracy at each iteration.
• Validation RMSE at each iteration.

Output Arguments
detector — Trained YOLO v2 object detector
yolov2ObjectDetector object

Trained YOLO v2 object detector, returned as yolov2ObjectDetector object. You can train a YOLO
v2 object detector to detect multiple object classes.

info — Training progress information
structure array

Training progress information, returned as a structure array with seven fields. Each field corresponds
to a stage of training.

• TrainingLoss — Training loss at each iteration is the mean squared error (MSE) calculated as
the sum of localization error, confidence loss, and classification loss. For more information about
the training loss function, see “Training Loss” on page 3-1049.

• TrainingRMSE — Training root mean squared error (RMSE) is the RMSE calculated from the
training loss at each iteration.

• BaseLearnRate — Learning rate at each iteration.
• ValidationLoss — Validation loss at each iteration.
• ValidationRMSE — Validation RMSE at each iteration.
• FinalValidationLoss — Final validation loss at end of the training.
• FinalValidationRMSE — Final validation RMSE at end of the training.

Each field is a numeric vector with one element per training iteration. Values that have not been
calculated at a specific iteration are assigned as NaN. The struct contains ValidationLoss,
ValidationAccuracy, ValidationRMSE, FinalValidationLoss, and FinalValidationRMSE
fields only when options specifies validation data.

3 Functions

3-1048



More About
Data Preprocessing

By default, the trainYOLOv2ObjectDetector function preprocesses the training images by:

• Resizing the input images to match the input size of the network.
• Normalizing the pixel values of the input images to lie in the range [0, 1].

When you specify the training data by using a table, the trainYOLOv2ObjectDetector function
performs data augmentation for preprocessing. The function augments the input dataset by:

• Reflecting the training data horizontally. The probability for horizontally flipping each image in the
training data is 0.5.

• Uniformly scaling (zooming) the training data by a scale factor that is randomly picked from a
continuous uniform distribution in the range [1, 1.1].

• Random color jittering for brightness, hue, saturation, and contrast.

When you specify the training data by using a datastore, the trainYOLOv2ObjectDetector
function does not perform data augmentation. Instead you can augment the training data in datastore
by using the transform function and then, train the network with the augmented training data. For
more information on how to apply augmentation while using datastores, see “Preprocess Deep
Learning Data” (Deep Learning Toolbox).

Training Loss

During training, the YOLO v2 object detection network optimizes the MSE loss between the predicted
bounding boxes and the ground truth. The loss function is defined as

K1 ∑
i = 0

S2

∑
j = 0

B
1i j

ob j xi− x i
2 + yi− y i

2

+ K1 ∑
i = 0

S2

∑
j = 0

B
1i j

ob j wi− w i
2 + hi− h i

2

+K2 ∑
i = 0

S2

∑
j = 0

B
1i j

ob j Ci− C i
2

+K3 ∑
i = 0

S2

∑
j = 0

B
1i j

noob j Ci− C i
2

+ K4 ∑
i = 0

S2

1i
ob j ∑

c ∈ classes
pi c − p i c 2

where:

• S is the number of grid cells.
• B is the number of bounding boxes in each grid cell.
• 1i j

ob j is 1 if the jth bounding box in grid cell i is responsible for detecting the object. Otherwise it is
set to 0. A grid cell i is responsible for detecting the object, if the overlap between the ground
truth and a bounding box in that grid cell is greater than or equal to 0.6.

 trainYOLOv2ObjectDetector

3-1049



• 1i j
noob j is 1 if the jth bounding box in grid cell i does not contain any object. Otherwise it is set to 0.

• 1i
ob j is 1 if an object is detected in grid cell i. Otherwise it is set to 0.

• K1, K2, K3, and K4 are the weights. To adjust the weights, modify the LossFactors property of the
output layer by using the yolov2OutputLayer function.

The loss function can be split into three parts:

• Localization loss

The first and second terms in the loss function comprise the localization loss. It measures error
between the predicted bounding box and the ground truth. The parameters for computing the
localization loss include the position, size of the predicted bounding box, and the ground truth.
The parameters are defined as follows.

• xi, yi , is the center of the jth bounding box relative to grid cell i.
• x i, y i , is the center of the ground truth relative to grid cell i.
• wi and hi is the width and the height of the jth bounding box in grid cell i, respectively. The size

of the predicted bounding box is specified relative to the input image size.
• w i and h i is the width and the height of the ground truth in grid cell i, respectively.
• K1 is the weight for localization loss. Increase this value to increase the weightage for

bounding box prediction errors.
• Confidence loss

The third and fourth terms in the loss function comprise the confidence loss. The third term
measures the objectness (confidence score) error when an object is detected in the jth bounding
box of grid cell i. The fourth term measures the objectness error when no object is detected in the
jth bounding box of grid cell i. The parameters for computing the confidence loss are defined as
follows.

• Ci is the confidence score of the jth bounding box in grid cell i.
• Ĉi is the confidence score of the ground truth in grid cell i.
• K2 is the weight for objectness error, when an object is detected in the predicted bounding box.

You can adjust the value of K2 to weigh confidence scores from grid cells that contain objects.
• K3 is the weight for objectness error, when an object is not detected in the predicted bounding

box. You can adjust the value of K3 to weigh confidence scores from grid cells that do not
contain objects.

The confidence loss can cause the training to diverge when the number of grid cells that do not
contain objects is more than the number of grid cells that contain objects. To remedy this,
increase the value for K2 and decrease the value for K3.

• Classification loss

The fifth term in the loss function comprises the classification loss. For example, suppose that an
object is detected in the predicted bounding box contained in grid cell i. Then, the classification
loss measures the squared error between the class conditional probabilities for each class in grid
cell i. The parameters for computing the classification loss are defined as follows.

• pi (c) is the estimated conditional class probability for object class c in grid cell i.

3 Functions

3-1050



• p i c  is the actual conditional class probability for object class c in grid cell i.
• K4 is the weight for classification error when an object is detected in the grid cell. Increase this

value to increase the weightage for classification loss.

Tips
• To generate the ground truth, use the Image Labeler or Video Labeler app. To create a table of

training data from the generated ground truth, use the objectDetectorTrainingData
function.

• To improve prediction accuracy,

• Increase the number of images you can use to train the network. You can expand the training
dataset through data augmentation. For information on how to apply data augmentation for
preprocessing, see “Preprocess Images for Deep Learning” (Deep Learning Toolbox).

• Perform multiscale training by using the trainYOLOv2ObjectDetector function. To do so,
specify the 'TrainingImageSize' argument of trainYOLOv2ObjectDetector function for
training the network.

• Choose anchor boxes appropriate to the dataset for training the network. You can use the
estimateAnchorBoxes function to compute anchor boxes directly from the training data.

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-Time Object

Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. Honolulu, HI: CVPR,
2017.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainingOptions | trainRCNNObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector | objectDetectorTrainingData | yolov2Layers

Objects
yolov2ObjectDetector | boxLabelDatastore

Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using YOLO v2”
“Train Object Detectors in Experiment Manager”
“Getting Started with YOLO v2”
“Anchor Boxes for Object Detection”

 trainYOLOv2ObjectDetector

3-1051



“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2019a

3 Functions

3-1052



trainYOLOv4ObjectDetector
Train YOLO v4 object detector

Syntax
detector = trainYOLOv4ObjectDetector(trainingData,detector,options)
detector = trainYOLOv4ObjectDetector(trainingData,checkpoint,options)
[detector,info] = trainYOLOv4ObjectDetector( ___ )
___  = trainYOLOv4ObjectDetector( ___ ,Name,Value)

Description
detector = trainYOLOv4ObjectDetector(trainingData,detector,options) returns an
object detector trained using you only look once version 4 (YOLO v4) network specified by the input
detector. The input detector can be an untrained or pretrained YOLO v4 object detector. The
options input specifies training parameters for the detection network.

You can also use this syntax for fine-tuning a pretrained YOLO v4 object detector.

detector = trainYOLOv4ObjectDetector(trainingData,checkpoint,options) resumes
training from the saved detector checkpoint.

You can use this syntax to:

• Add more training data and continue the training.
• Improve training accuracy by increasing the maximum number of iterations.

[detector,info] = trainYOLOv4ObjectDetector( ___ ) also returns information on the
training progress, such as the training accuracy and learning rate for each iteration.

___  = trainYOLOv4ObjectDetector( ___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments and any of the previous inputs.

Note To run this function, you will require the Deep Learning Toolbox.

Examples

Train YOLO v4 Network for Vehicle Detection

This example shows how to fine-tune a pretrained YOLO v4 object detector for detecting vehicles in
an image. This example uses a tiny YOLO v4 network trained on COCO dataset.

Load a pretrained YOLO v4 object detector and inspect its properties.

detector = yolov4ObjectDetector("tiny-yolov4-coco")

detector = 
  yolov4ObjectDetector with properties:

 trainYOLOv4ObjectDetector

3-1053



        Network: [1×1 dlnetwork]
    AnchorBoxes: {2×1 cell}
     ClassNames: {80×1 cell}
      InputSize: [416 416 3]
      ModelName: 'tiny-yolov4-coco'

The number of anchor boxes must be same as that of the number of output layers in the YOLO v4
network. The tiny YOLO v4 network contains two output layers.

detector.Network

ans = 
  dlnetwork with properties:

         Layers: [74×1 nnet.cnn.layer.Layer]
    Connections: [80×2 table]
     Learnables: [80×3 table]
          State: [38×3 table]
     InputNames: {'input_1'}
    OutputNames: {'conv_31'  'conv_38'}
    Initialized: 1

Prepare Training Data

Load a .mat file containing information about the vehicle dataset to use for training. The information
stored in the .mat file is a table. The first column contains the training images and the remaining
columns contain the labeled bounding boxes.

data = load("vehicleTrainingData.mat");
trainingData = data.vehicleTrainingData;

Specify the directory in which training samples are stored. Add full path to the file names in training
data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
trainingData.imageFilename = fullfile(dataDir,trainingData.imageFilename);

Create an imageDatastore using the files from the table.

imds = imageDatastore(trainingData.imageFilename);

Create a boxLabelDatastore using the label columns from the table.

blds = boxLabelDatastore(trainingData(:,2:end));

Combine the datastores.

ds = combine(imds,blds);

Specify the input size to use for resizing the training images. The size of the training images must be
a multiple of 32 for when you use the tiny-yolov4-coco and csp-darknet53-coco pretrained
YOLO v4 deep learning networks. You must also resize the bounding boxes based on the specified
input size.

inputSize = [224 224 3];

3 Functions

3-1054



Resize and rescale the training images and the bounding boxes by using the preprocessData helper
function. Also, convert the preprocessed data to a datastore object by using the transform
function.

trainingDataForEstimation = transform(ds,@(data)preprocessData(data,inputSize));

Estimate Anchor Boxes

Estimate the anchor boxes from the training data. You must assign the same number of anchor boxes
to each output layer in the YOLO v4 network.

numAnchors = 6;
[anchors, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation,numAnchors);
area = anchors(:,1).*anchors(:,2);
[~,idx] = sort(area,"descend");
anchors = anchors(idx,:);
anchorBoxes = {anchors(1:3,:);anchors(4:6,:)};

Configure and Train YOLO v4 Network

Specify the class names and configure the pretrained YOLOv4 deep learning network to retrain for
the new dataset by using yolov4ObjectDetector function.

classes = {'vehicle'};
detector = yolov4ObjectDetector("tiny-yolov4-coco",classes,anchorBoxes,InputSize=inputSize);

Specify the training options and retrain the pretrained YOLO v4 network on the new dataset by using
the trainYOLOv4ObjectDetector function.

options = trainingOptions("sgdm", ...
    InitialLearnRate=0.001, ...
    MiniBatchSize=16,...
    MaxEpochs=40, ...
    BatchNormalizationStatistics="moving",...
    ResetInputNormalization=false,...
    VerboseFrequency=30);
trainedDetector = trainYOLOv4ObjectDetector(ds,detector,options);

*************************************************************************
Training a YOLO v4 Object Detector for the following object classes:

* vehicle

 
    Epoch    Iteration    TimeElapsed    LearnRate    TrainingLoss
    _____    _________    ___________    _________    ____________
      2         30         00:01:07        0.001         7.215    
      4         60         00:01:44        0.001         1.7371   
      5         90         00:02:21        0.001        0.97954   
      7         120        00:02:57        0.001        0.59412   
      8         150        00:03:34        0.001        0.65631   
     10         180        00:04:10        0.001         1.0774   
     12         210        00:04:46        0.001         0.4807   
     13         240        00:05:22        0.001        0.40389   
     15         270        00:05:59        0.001        0.57931   
     16         300        00:06:35        0.001        0.90734   
     18         330        00:07:11        0.001        0.24902   
     19         360        00:07:48        0.001        0.32441   

 trainYOLOv4ObjectDetector

3-1055



     21         390        00:08:24        0.001        0.23054   
     23         420        00:09:00        0.001        0.70897   
     24         450        00:09:36        0.001        0.31744   
     26         480        00:10:12        0.001        0.36323   
     27         510        00:10:49        0.001        0.13696   
     29         540        00:11:25        0.001        0.14913   
     30         570        00:12:01        0.001        0.37757   
     32         600        00:12:37        0.001        0.36985   
     34         630        00:13:14        0.001        0.14034   
     35         660        00:13:50        0.001        0.14731   
     37         690        00:14:26        0.001        0.15907   
     38         720        00:15:03        0.001        0.11737   
     40         750        00:15:40        0.001         0.1855   

*************************************************************************
Detector training complete.
*************************************************************************

Detect Vehicles in Test Image

Read a test image.

I = imread('highway.png');

Use the fine-tuned YOLO v4 object detector to detect vehicles in a test image and display the
detection results.

[bboxes, scores, labels] = detect(trainedDetector,I,Threshold=0.05);
detectedImg = insertObjectAnnotation(I,"Rectangle",bboxes,labels);
figure
imshow(detectedImg)

function data = preprocessData(data,targetSize)
for num = 1:size(data,1)

3 Functions

3-1056



    I = data{num,1};
    imgSize = size(I);
    bboxes = data{num,2};
    I = im2single(imresize(I,targetSize(1:2)));
    scale = targetSize(1:2)./imgSize(1:2);
    bboxes = bboxresize(bboxes,scale);
    data(num,1:2) = {I,bboxes};
end
end

Input Arguments
trainingData — Labeled ground truth images
datastore

Labeled ground truth images, specified as a datastore.

• If you use a datastore, your data must be set up so that calling the datastore with the read and
readall functions returns a cell array or table with two or three columns. When the output
contains two columns, the first column must contain bounding boxes, and the second column must
contain labels, {boxes,labels}. When the output contains three columns, the second column must
contain the bounding boxes, and the third column must contain the labels. In this case, the first
column can contain any type of data. For example, the first column can contain images or point
cloud data.

data boxes labels
The first column must be
images.

M-by-4 matrices of bounding
boxes of the form [x, y, width,
height], where [x,y] represent
the top-left coordinates of the
bounding box.

The third column must be a
cell array that contains M-
by-1 categorical vectors
containing object class names.
All categorical data returned
by the datastore must contain
the same categories.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).

detector — Pretrained or untrained YOLO v4 object detector
yolov4ObjectDetector object

Pretrained or untrained YOLO v4 object detector, specified as a yolov4ObjectDetector object.

options — Training options
TrainingOptionsSGDM object | TrainingOptionsRMSProp object | TrainingOptionsADAM
object

Training options, specified as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object returned by the trainingOptions function. To specify the solver
name and other options for network training, use the trainingOptions function.

checkpoint — Saved detector checkpoint
yolov4ObjectDetector object

 trainYOLOv4ObjectDetector

3-1057



Saved detector checkpoint, specified as a yolov4ObjectDetector object. To periodically save a
detector checkpoint during training, specify CheckpointPath. To control how frequently check
points are saved see the CheckPointFrequency and CheckPointFrequencyUnit training options.

To load a checkpoint for a previously trained detector, load the MAT-file from the checkpoint path. For
example, if the CheckpointPath property of the object specified by options is 'checkpath', you
can load a checkpoint MAT-file by using this code. 'checkpath' is the name of a folder in the
current working directory to which the detector checkpoint has to be saved during training.

data = load('checkpath/net_checkpoint__19__2021_12_29__01_04_15.mat');
checkpoint = data.net;

The name of the MAT-file includes the iteration number and timestamp of when the detector
checkpoint was saved. The detector is saved in the net variable of the file. Pass this file back into the
trainYOLOv4ObjectDetector function:

yoloDetector = trainYOLOv4ObjectDetector(trainingData,checkpoint,options);

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExperimentManager','none' sets the 'ExperimentManager' to 'none'.

ExperimentManager — Detector training experiment monitoring
'none' (default) | experiments.Monitor object

Detector training experiment monitoring, specified as an experiments.Monitor object for use with
the Experiment Manager app. You can use this object to track the progress of training, update
information fields in the training results table, record values of the metrics used by the training, and
to produce training plots. For an example using this app, see “Train Object Detectors in Experiment
Manager”.

Information monitored during training:

• Training loss at each iteration.
• Learning rate at each iteration.

Validation information when the training options input contains validation data:

• Validation loss at each iteration.

Output Arguments
detector — Trained YOLO v4 object detector
yolov4ObjectDetector object

Trained YOLO v4 object detector, returned as yolov4ObjectDetector object. You can train a YOLO
v4 object detector to detect multiple object classes.

info — Training progress information
structure array

3 Functions

3-1058



Training progress information, returned as a structure array with seven fields. Each field corresponds
to a stage of training.

• TrainingLoss — Training loss at each iteration. The trainYOLOv4ObjectDetector function
uses mean square error for computing bounding box regression loss and cross-entropy for
computing classification loss.

• BaseLearnRate — Learning rate at each iteration.
• OutputNetworkIteration — Iteration number of returned network.
• ValidationLoss — Validation loss at each iteration.
• FinalValidationLoss — Final validation loss at end of the training.

Each field is a numeric vector with one element per training iteration. Values that have not been
calculated at a specific iteration are assigned as NaN. The struct contains ValidationLoss and
FinalValidationLoss fields only when options specifies validation data.

Tips
• To generate the ground truth, use the Image Labeler or Video Labeler app. To create a table of

training data from the generated ground truth, use the objectDetectorTrainingData
function.

• To improve prediction accuracy,

• Increase the number of images you can use to train the network. You can expand the training
dataset through data augmentation. For information on how to apply data augmentation for
preprocessing, see “Preprocess Images for Deep Learning” (Deep Learning Toolbox).

• Choose anchor boxes appropriate to the dataset for training the network. You can use the
estimateAnchorBoxes function to compute anchor boxes directly from the training data.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainingOptions | yolov4ObjectDetector | objectDetectorTrainingData |
trainYOLOv2ObjectDetector

Objects

Topics
“Object Detection Using YOLO v4 Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Train Object Detectors in Experiment Manager”
“Anchor Boxes for Object Detection”
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2022a

 trainYOLOv4ObjectDetector

3-1059



detect
Detect objects using ACF object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
detectionResults = detect(detector,ds)
[ ___ ]= detect(detector,I,roi)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using the input aggregate channel
features (ACF) object detector. The locations of objects detected are returned as a set of bounding
boxes.

[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding
box.

detectionResults = detect(detector,ds) detects objects within all the images returned by
the read function of the input datastore.

[ ___ ]= detect(detector,I,roi) detects objects within the rectangular search region specified
by roi, using either of the preceding syntaxes.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'WindowStride',2) sets the stride of the sliding
window used to detects objects to 2.

Examples

Train Stop Sign Detector Using ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object detector that can
detect stop signs. Test the detector with a separate image.

Load the training data.

load('stopSignsAndCars.mat')

Prefix the full path to the stop sign images.

stopSigns = fullfile(toolboxdir('vision'),'visiondata',stopSignsAndCars{:,1});

Create datastores to load the ground truth data for stop signs.

imds = imageDatastore(stopSigns);
blds = boxLabelDatastore(stopSignsAndCars(:,2));

3 Functions

3-1060



Combine the image and box label datastores.

ds = combine(imds,blds);

Train the ACF detector. Set the number of negative samples to use at each stage to 2. You can turn off
the training progress output by specifying Verbose=false,as a Name-Value argument.

acfDetector = trainACFObjectDetector(ds,NegativeSamplesFactor=2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--------------------------------------------
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--------------------------------------------
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--------------------------------------------
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--------------------------------------------
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--------------------------------------------
ACF object detector training is completed. Elapsed time is 23.3915 seconds.

Test the ACF detector on a test image.

img = imread('stopSignTest.jpg');
[bboxes,scores] = detect(acfDetector,img);

Display the detection results and insert the bounding boxes for objects into the image.

for i = 1:length(scores)
   annotation = sprintf('Confidence = %.1f',scores(i));
   img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
end

figure
imshow(img)

 detect

3-1061



Input Arguments
detector — ACF object detector
acfObjectDetector object

ACF object detector, specified as an acfObjectDetector object. To create this object, call the
trainACFObjectDetector function with training data as input.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale or RGB. The function processes only the first column of the datastore, which must contain
images and must be cell arrays or tables with multiple columns. Therefore, datastore read function
must return image data in the first column.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

3 Functions

3-1062



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumScaleLevels',4

NumScaleLevels — Number of scale levels per octave
8 (default) | positive integer

Number of scale levels per octave, specified as the comma-separated pair consisting of
'NumScaleLevels' and a positive integer. Each octave is a power-of-two downscaling of the image.
To detect people at finer scale increments, increase this number. Recommended values are in the
range [4, 8].

WindowStride — Stride for sliding window
4 (default) | positive integer

Stride for the sliding window, specified as the comma-separated pair consisting of 'WindowStride'
and a positive integer. This value indicates the distance for the function to move the window in both
the x and y directions. The sliding window scans the images for object detection.

SelectStrongest — Select strongest bounding box for each object
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBbox function, which uses nonmaximal suppression to eliminate overlapping
bounding boxes based on their confidence scores.

• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

Threshold — Classification accuracy threshold
–1 (default) | numeric scalar

 detect

3-1063



Classification accuracy threshold, specified as the comma-separated pair consisting of 'Threshold'
and a numeric scalar. Recommended values are in the range [–1, 1]. During multiscale object
detection, the threshold value controls the accuracy and speed for classifying image subregions as
either objects or nonobjects. To speed up the performance at the risk of missing true detections,
increase this threshold.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the input image, returned as an M-by-4 matrix, where M is the
number of bounding boxes. Each row of bboxes contains a four-element vector of the form [x y width
height]. This vector specifies the upper left corner and size of that corresponding bounding box in
pixels.

scores — Detection confidence scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of bounding
boxes. Scores are returned in the range [-inf inf]. A higher score indicates higher confidence in the
detection.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To generate code, use toStruct function to pass the acfObjectDetector object to the detect
function. For more information, see “Generate Code for Detecting Objects in Images by Using ACF
Object Detector”.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainACFObjectDetector | detectPeopleACF | trainCascadeObjectDetector |
selectStrongestBbox

3 Functions

3-1064



Objects
acfObjectDetector

Introduced in R2017a

 detect

3-1065



detect
Detect objects using R-CNN deep learning detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)
[ ___ ] = detect( ___ ,roi)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using an R-CNN (regions with
convolutional neural networks) object detector. The locations of objects detected are returned as a set
of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU is highly recommended. The GPU
reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding
box.

[ ___ ,labels] = detect(detector,I) also returns a categorical array of labels assigned to the
bounding boxes, using either of the preceding syntaxes. The labels used for object classes are defined
during training using the trainRCNNObjectDetector function.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'NumStongestRegions',1000) limits the number
of strongest region proposals to 1000.

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
  'stopSignImages');
addpath(imDir);

3 Functions

3-1066



Set network training options to use mini-batch size of 32 to reduce GPU memory usage. Lower the
InitialLearningRate to reduce the rate at which network parameters are changed. This is beneficial
when fine-tuning a pre-trained network and prevents the network from changing too rapidly.

options = trainingOptions('sgdm', ...
  'MiniBatchSize', 32, ...
  'InitialLearnRate', 1e-6, ...
  'MaxEpochs', 10);

Train the R-CNN detector. Training can take a few minutes to complete.

rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0 0.3]);

*******************************************************************
Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.

Step 2 of 3: Training a neural network to classify objects in training data...

|=========================================================================================|
|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|
|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |
|=========================================================================================|
|            3 |           50 |         9.27 |       0.2895 |       96.88% |     0.000001 |
|            5 |          100 |        14.77 |       0.2443 |       93.75% |     0.000001 |
|            8 |          150 |        20.29 |       0.0013 |      100.00% |     0.000001 |
|           10 |          200 |        25.94 |       0.1524 |       96.88% |     0.000001 |
|=========================================================================================|

Network training complete.

Step 3 of 3: Training bounding box regression models for each object class...100.00%...done.

R-CNN training complete.
*******************************************************************

Test the R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);

Display strongest detection result.

[score, idx] = max(score);

bbox = bbox(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);

figure
imshow(detectedImg)

 detect

3-1067



Remove the image directory from the path.

rmpath(imDir);

Input Arguments
detector — R-CNN object detector
rcnnObjectDetector object

R-CNN object detector, specified as an rcnnObjectDetector object. To create this object, call the
trainRCNNObjectDetector function with training data as input.

I — Input image
H-by-W-by-C numeric array of images

Input image, specified as an H-by-W-by-C numeric array of images. Images must be real, nonsparse,
grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was
trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the

3 Functions

3-1068



scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumStongestRegions',1000

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | integer

Maximum number of strongest region proposals, specified as the comma-separated pair consisting of
'NumStrongestRegions' and an integer. Reduce this value to speed up processing time at the cost
of detection accuracy. To use all region proposals, specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

Select strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
            'RatioType','Min', ...
            'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then use a custom operation to eliminate
overlapping bounding boxes.

MiniBatchSize — Size of smaller batches for R-CNN data processing
128 (default) | integer

Size of smaller batches for R-CNN data processing, specified as the comma-separated pair consisting
of 'MiniBatchSize' and an integer. Larger batch sizes lead to faster processing but take up more
memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

 detect

3-1069



Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'. The table shows the valid hardware
resource values.

Resourc
e

Action

'auto' Use a GPU if it is available. Otherwise, use the CPU.
'gpu' Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU. If a suitable GPU is not available, the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release”
(Parallel Computing Toolbox).

'cpu' Use the CPU.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the image, returned as an M-by-4 matrix defining M bounding
boxes. Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of a bounding box in pixels.

scores — Detection scores
M-by-1 vector

Detection scores, returned as an M-by-1 vector. A higher score indicates higher confidence in the
detection.

labels — Labels for bounding boxes
M-by-1 categorical array

Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You define the class
names used to label the objects when you train the input detector.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainRCNNObjectDetector | selectStrongestBboxMulticlass

Objects
rcnnObjectDetector

Introduced in R2016b

3 Functions

3-1070



detect
Detect objects using Fast R-CNN object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)
[ ___ ] = detect( ___ ,roi)

detectionResults = detect(detector,ds)

[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within a single image or an array of images, I,
using a Fast R-CNN (regions with convolutional neural networks) object detector. The locations of
objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU is highly recommended. The GPU
reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding
box.

[ ___ ,labels] = detect(detector,I) also returns a categorical array of labels assigned to the
bounding boxes, using either of the preceding syntaxes. The labels used for object classes are defined
during training using the trainFastRCNNObjectDetector function.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi.

detectionResults = detect(detector,ds) detects objects within the series of images
returned by the read function of the input datastore.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'NumStongestRegions',1000) limits the number
of strongest region proposals to 1000.

Examples

Detect Vehicles Using Faster R-CNN

Detect vehicles within an image by using a Faster R-CNN object detector.

Load a Faster R-CNN object detector pretrained to detect vehicles.

 detect

3-1071



data = load('fasterRCNNVehicleTrainingData.mat', 'detector');
detector = data.detector;

Read in a test image.

I = imread('highway.png');
imshow(I)

Run the detector on the image and inspect the results. The labels come from the ClassNames
property of the detector.

[bboxes,scores,labels] = detect(detector,I)

bboxes = 2×4

   150    86    80    72
    91    89    67    48

scores = 2x1 single column vector

    1.0000
    0.9001

labels = 2x1 categorical
     vehicle 
     vehicle 

The detector has high confidence in the detections. Annotate the image with the bounding boxes for
the detections and the corresponding detection scores.

3 Functions

3-1072



  detectedI = insertObjectAnnotation(I,'Rectangle',bboxes,cellstr(labels));
  figure
  imshow(detectedI)

Input Arguments
detector — Fast R-CNN object detector
fastRCNNObjectDetector object

Fast R-CNN object detector, specified as a fastRCNNObjectDetector object. To create this object,
call the trainFastRCNNObjectDetector function with training data as input.

I — Input image
H-by-W-by-C-by-B numeric array of images

Input image, specified as an H-by-W-by-C-by-B numeric array of images Images must be real,
nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• B: The number of images in the array.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was
trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the

 detect

3-1073



scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale, RGB, or multichannel image. The function processes only the first column of the datastore,
which must contain images and must be cell arrays or tables with multiple columns.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumStrongestRegions',1000

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a scalar in the range [0, 1]. Detections that have scores less than
this threshold value are removed. To reduce false positives, increase this value.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair consisting of
'NumStrongestRegions' and a positive integer. Reduce this value to speed up processing time at
the cost of detection accuracy. To use all region proposals, specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
            'RatioType','Min', ...
            'OverlapThreshold',0.5);

3 Functions

3-1074



• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a
scalar value. Use the MiniBatchSize to process a large collection of images. Images are grouped
into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch
size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU. If a suitable GPU is not available, the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | B-by-1 cell array

Location of objects detected within the input image or images, returned as an M-by-4 matrix or a B-
by-1 cell array. M is the number of bounding boxes in an image, and B is the number of M-by-4
matrices when the input contains an array of images.

Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of that corresponding bounding box in pixels.

 detect

3-1075



scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 vector or a B-by-1 cell array. M is the number of
bounding boxes in an image, and B is the number of M-by-1 vectors when the input contains an array
of images. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array | B-by-1 cell array

Labels for bounding boxes, returned as an M-by-1 categorical array or a B-by-1 cell array. M is the
number of labels in an image, and B is the number of M-by-1 categorical arrays when the input
contains an array of images. You define the class names used to label the objects when you train the
input detector.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainFastRCNNObjectDetector | selectStrongestBboxMulticlass

Objects
fastRCNNObjectDetector

Topics
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2017a

3 Functions

3-1076



detect
Detect objects using Faster R-CNN object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)

detectionResults = detect(detector,ds)

[ ___ ] = detect( ___ ,roi)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within a single image or an array of images, I,
using a Faster R-CNN (regions with convolutional neural networks) object detector. The locations of
objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU is highly recommended. The GPU
reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding
box.

[ ___ ,labels] = detect(detector,I) also returns a categorical array of labels assigned to the
bounding boxes, using either of the preceding syntaxes. The labels used for object classes are defined
during training using the trainFasterRCNNObjectDetector function.

detectionResults = detect(detector,ds) detects objects within the series of images
returned by the read function of the input datastore.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, detect(detector,I,'NumStrongestRegions',1000) limits the
number of strongest region proposals to 1000.

Examples

Detect Vehicles Using Faster R-CNN

Detect vehicles within an image by using a Faster R-CNN object detector.

Load a Faster R-CNN object detector pretrained to detect vehicles.

 detect

3-1077



data = load('fasterRCNNVehicleTrainingData.mat', 'detector');
detector = data.detector;

Read in a test image.

I = imread('highway.png');
imshow(I)

Run the detector on the image and inspect the results. The labels come from the ClassNames
property of the detector.

[bboxes,scores,labels] = detect(detector,I)

bboxes = 2×4

   150    86    80    72
    91    89    67    48

scores = 2x1 single column vector

    1.0000
    0.9001

labels = 2x1 categorical
     vehicle 
     vehicle 

The detector has high confidence in the detections. Annotate the image with the bounding boxes for
the detections and the corresponding detection scores.

3 Functions

3-1078



  detectedI = insertObjectAnnotation(I,'Rectangle',bboxes,cellstr(labels));
  figure
  imshow(detectedI)

Input Arguments
detector — Faster R-CNN object detector
fasterRCNNObjectDetector object

Faster R-CNN object detector, specified as a fasterRCNNObjectDetector object. To create this
object, call the trainFasterRCNNObjectDetector function with training data as input.

I — Input image
H-by-W-by-C-by-B numeric array of images

Input image, specified as an H-by-W-by-C-by-B numeric array of images Images must be real,
nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• B: The number of images in the array.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was
trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the

 detect

3-1079



scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale, RGB, or multichannel image. The function processes only the first column of the datastore,
which must contain images and must be cell arrays or tables with multiple columns.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumStrongestRegions',1000

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a scalar in the range [0, 1]. Detections that have scores less than
this threshold value are removed. To reduce false positives, increase this value.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair consisting of
'NumStrongestRegions' and a positive integer. Reduce this value to speed up processing time at
the cost of detection accuracy. To use all region proposals, specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
            'RatioType','Min', ...
            'OverlapThreshold',0.5);

3 Functions

3-1080



• false — Return all detected bounding boxes. You can then create your own custom operation to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated pair
consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being
detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a
scalar value. Use the MiniBatchSize to process a large collection of images. Images are grouped
into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch
size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU. If a suitable GPU is not available, the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | B-by-1 cell array

Location of objects detected within the input image or images, returned as an M-by-4 matrix or a B-
by-1 cell array. M is the number of bounding boxes in an image, and B is the number of M-by-4
matrices when the input contains an array of images.

Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of that corresponding bounding box in pixels.

 detect

3-1081



scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 vector or a B-by-1 cell array. M is the number of
bounding boxes in an image, and B is the number of M-by-1 vectors when the input contains an array
of images. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array | B-by-1 cell array

Labels for bounding boxes, returned as an M-by-1 categorical array or a B-by-1 cell array. M is the
number of labels in an image, and B is the number of M-by-1 categorical arrays when the input
contains an array of images. You define the class names used to label the objects when you train the
input detector.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainYOLOv2ObjectDetector | trainFasterRCNNObjectDetector |
selectStrongestBboxMulticlass | evaluateDetectionMissRate |
evaluateDetectionPrecision

Objects
fasterRCNNObjectDetector | boxLabelDatastore

Topics
“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2017a

3 Functions

3-1082



detect
Detect objects using YOLO v2 object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ___ ,labels] = detect(detector,I)

detectionResults = detect(detector,ds)

[ ___ ] = detect( ___ ,roi)
[ ___ ] = detect( ___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within a single image or an array of images, I,
using you only look once version 2 (YOLO v2) object detector. The input size of the image must be
greater than or equal to the network input size of the pretrained detector. The locations of objects
detected are returned as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU is highly recommended. The GPU
reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

[bboxes,scores] = detect(detector,I) also returns the class-specific confidence scores for
each bounding box.

[ ___ ,labels] = detect(detector,I) returns a categorical array of labels assigned to the
bounding boxes in addition to the output arguments from the previous syntax. The labels used for
object classes are defined during training using the trainYOLOv2ObjectDetector function.

detectionResults = detect(detector,ds) detects objects within all the images returned by
the read function of the input datastore.

[ ___ ] = detect( ___ ,roi) detects objects within the rectangular search region specified by
roi. Use output arguments from any of the previous syntaxes. Specify input arguments from any of
the previous syntaxes.

[ ___ ] = detect( ___ ,Name,Value) specifies options using one or more Name,Value pair
arguments in addition to the input arguments in any of the preceding syntaxes.

Examples

Detect Vehicles Using YOLO v2 Object Detection Network

Load a YOLO v2 object detector pretrained to detect vehicles.

 detect

3-1083



vehicleDetector = load('yolov2VehicleDetector.mat','detector');
detector = vehicleDetector.detector;

Read a test image into the workspace.

I = imread('highway.png');

Display the input test image.

imshow(I);

Run the pretrained YOLO v2 object detector on the test image. Inspect the results for vehicle
detection. The labels are derived from the ClassNames property of the detector.

[bboxes,scores,labels] = detect(detector,I)

bboxes = 1×4

    78    81    64    63

scores = single
    0.6224

labels = categorical
     vehicle 

Annotate the image with the bounding boxes for the detections.

if ~isempty(bboxes)
    detectedI = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));
end
figure
imshow(detectedI)

3 Functions

3-1084



Input Arguments
detector — YOLO v2 object detector
yolov2ObjectDetector object

YOLO v2 object detector, specified as a yolov2ObjectDetector object. To create this object, call
the trainYOLOv2ObjectDetector function with the training data as input.

I — Input image
H-by-W-by-C-by-B numeric array of images

Input image, specified as an H-by-W-by-C-by-B numeric array of images Images must be real,
nonsparse, grayscale or RGB image.

• H: Height
• W: Width
• C: The channel size in each image must be equal to the network's input channel size. For example,

for grayscale images, C must be equal to 1. For RGB color images, it must be equal to 3.
• B: The number of images in the array.

The detector is sensitive to the range of the input image. Therefore, ensure that the input image
range is similar to the range of the images used to train the detector. For example, if the detector was
trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or
rescale function. The size of this input image should be comparable to the sizes of the images used
in training. If these sizes are very different, the detector has difficulty detecting objects because the
scale of the objects in the input image differs from the scale of the objects the detector was trained to
identify. Consider whether you used the SmallestImageDimension property during training to
modify the size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

 detect

3-1085



ds — Datastore
datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a
grayscale, RGB, or multichannel image. The function processes only the first column of the datastore,
which must contain images and must be cell arrays or tables with multiple columns.

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left
corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: detect(detector,I,'Threshold',0.25)

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a comma-separated pair consisting of 'Threshold' and a scalar in
the range [0, 1]. Detections that have scores less than this threshold value are removed. To reduce
false positives, increase this value.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-separated pair
consisting of 'SelectStrongest' and either true or false.

• true — Returns the strongest bounding box per object. The method calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

By default, the selectStrongestBboxMulticlass function is called as follows

 selectStrongestBboxMulticlass(bbox,scores,...
                               'RatioType','Union',...
                               'OverlapThreshold',0.5);

• false — Return all the detected bounding boxes. You can then write your own custom method to
eliminate overlapping bounding boxes.

MinSize — Minimum region size
[1 1] (default) | vector of the form [height width]

Minimum region size, specified as the comma-separated pair consisting of 'MinSize' and a vector of
the form [height width]. Units are in pixels. The minimum region size defines the size of the smallest
region containing the object.

By default, MinSize is 1-by-1.

3 Functions

3-1086



MaxSize — Maximum region size
size(I) (default) | vector of the form [height width]

Maximum region size, specified as the comma-separated pair consisting of 'MaxSize' and a vector
of the form [height width]. Units are in pixels. The maximum region size defines the size of the
largest region containing the object.

By default, 'MaxSize' is set to the height and width of the input image, I. To reduce computation
time, set this value to the known maximum region size for the objects that can be detected in the
input test image.

MiniBatchSize — Minimum batch size
128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a
scalar value. Use the MiniBatchSize to process a large collection of image. Images are grouped
into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch
size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA-

enabled NVIDIA GPU. If a suitable GPU is not available, the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'cpu' — Use the CPU.

Acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.

• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU. If Parallel
Computing Toolbox or a suitable GPU is not available, then the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB applies a number of compatible
optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

 detect

3-1087



The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available for input data specified as a numeric array, cell array of numeric
arrays, table, or image datastore. No other types of datastore support the 'mex' option.

The 'mex' option is only available when you are using a GPU. You must also have a C/C++ compiler
installed. For setup instructions, see “MEX Setup” (GPU Coder).

'mex' acceleration does not support all layers. For a list of supported layers, see “Supported Layers”
(GPU Coder).

Output Arguments
bboxes — Location of objects detected
M-by-4 matrix | B-by-1 cell array

Location of objects detected within the input image or images, returned as an M-by-4 matrix or a B-
by-1 cell array. M is the number of bounding boxes in an image, and B is the number of M-by-4
matrices when the input contains an array of images.

Each row of bboxes contains a four-element vector of the form [x y width height]. This vector
specifies the upper left corner and size of that corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector | B-by-1 cell array

Detection confidence scores, returned as an M-by-1 vector or a B-by-1 cell array. M is the number of
bounding boxes in an image, and B is the number of M-by-1 vectors when the input contains an array
of images. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array | B-by-1 cell array

Labels for bounding boxes, returned as an M-by-1 categorical array or a B-by-1 cell array. M is the
number of labels in an image, and B is the number of M-by-1 categorical arrays when the input
contains an array of images. You define the class names used to label the objects when you train the
input detector.

detectionResults — Detection results
3-column table

Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The
Boxes column contains M-by-4 matrices, of M bounding boxes for the objects found in the image.
Each row contains a bounding box as a 4-element vector in the format [x,y,width,height]. The format
specifies the upper-left corner location and size in pixels of the bounding box in the corresponding
image.

More About
Data Preprocessing

By default, the detect function preprocesses the test image for object detection by:

3 Functions

3-1088



• Resizing it to a nearest possible image size used for training the YOLO v2 network. The function
determines the nearest possible image size from the TrainingImageSize property of the
yolov2ObjectDetector object.

• Normalizing its pixel values to lie in same range as that of the images used to train the YOLO v2
object detector. For example, if the detector was trained on uint8 images, the test image must
also have pixel values in the range [0, 255]. Otherwise, use the im2uint8 or rescale function to
rescale the pixel values in the test image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The roi argument to the detect method must be a code generation constant (coder.const())
and a 1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, and MaxSize name-value pairs for detect
are supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The roi argument to the detect method must be a codegen constant (coder.const()) and a
1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, MaxSize, and MiniBatchSize Name-Value
pairs are supported.

• The height, width, channel, and batch size of the input image must be fixed size.
• The minimum batch size value passed to detect method must be fixed size.

See Also
Apps
Image Labeler | Video Labeler

Functions
selectStrongestBboxMulticlass | trainYOLOv2ObjectDetector |
evaluateDetectionMissRate | evaluateDetectionPrecision

Objects
yolov2ObjectDetector | boxLabelDatastore

Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes From Training Data”
“Code Generation for Object Detection by Using YOLO v2”
“Getting Started with YOLO v2”
“Anchor Boxes for Object Detection”

 detect

3-1089



“Datastores for Deep Learning” (Deep Learning Toolbox)

Introduced in R2019a

3 Functions

3-1090



classifyRegions
Classify objects in image regions using R-CNN object detector

Syntax
[labels,scores] = classifyRegions(detector,I,rois)
[labels,scores,allScores] = classifyRegions(detector,I,rois)
[ ___ ] = classifyRegions( ___ Name,Value)

Description
[labels,scores] = classifyRegions(detector,I,rois) classifies objects within the regions
of interest of image I, using an R-CNN (regions with convolutional neural networks) object detector.
For each region, classifyRegions returns the class label with the corresponding highest
classification score.

When using this function, use of a CUDA enabled NVIDIA GPU is highly recommended. The GPU
reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

[labels,scores,allScores] = classifyRegions(detector,I,rois) also returns all the
classification scores of each region. The scores are returned in an M-by-N matrix of M regions and N
class labels.

[ ___ ] = classifyRegions( ___ Name,Value) specifies options using one or more Name,Value
pair arguments. For example,
classifyRegions(detector,I,rois,'ExecutionEnvironment','cpu') classifies objects
within image regions using only the CPU hardware.

Examples

Classify Multiple Image Regions

Load a pretrained detector.

load('rcnnStopSigns.mat','rcnn')

Read the test image.

img = imread('stopSignTest.jpg');

Specify multiple regions to classify within the test image.

rois = [416   143    33    27
        347   168    36    54];   

Classify regions.

[labels,scores] = classifyRegions(rcnn,img,rois);
detectedImg = insertObjectAnnotation(img,'rectangle',rois,cellstr(labels));

 classifyRegions

3-1091



figure
imshow(detectedImg)

Input Arguments
detector — R-CNN object detector
rcnnObjectDetector object

R-CNN object detector, specified as an rcnnObjectDetector object. To create this object, call the
trainRCNNObjectDetector function with training data as input.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

rois — Regions of interest
M-by-4 matrix

Regions of interest within the image, specified as an M-by-4 matrix defining M rectangular regions.
Each row contains a four-element vector of the form [x y width height]. This vector specifies the
upper left corner and size of a region in pixels.

3 Functions

3-1092



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MiniBatchSize',64

MiniBatchSize — Size of smaller batches for R-CNN data processing
128 (default) | integer

Size of smaller batches for R-CNN data processing, specified as the comma-separated pair consisting
of 'MiniBatchSize' and an integer. Larger batch sizes lead to faster processing but take up more
memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource used to classify image regions, specified as the comma-separated pair consisting
of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU. If a suitable GPU is not available, the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments
labels — Classification labels of regions
M-by-1 categorical array

Classification labels of regions, returned as an M-by-1 categorical array. M is the number of regions
of interest in rois. Each class name in labels corresponds to a classification score in scores and a
region of interest in rois. classifyRegions obtains the class names from the input detector.

scores — Highest classification score per region
M-by-1 vector of values in the range [0, 1]

Highest classification score per region, returned as an M-by-1 vector of values in the range [0, 1]. M
is the number of regions of interest in rois. Each classification score in scores corresponds to a
class name in labels and a region of interest in rois. A higher score indicates higher confidence in
the classification.

allScores — All classification scores per region
M-by-N matrix of values in the range [0, 1]

All classification scores per region, returned as an M-by-N matrix of values in the range [0, 1]. M is
the number of regions in rois. N is the number of class names stored in the input detector. Each

 classifyRegions

3-1093



row of classification scores in allscores corresponds to a region of interest in rois. A higher score
indicates higher confidence in the classification.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainRCNNObjectDetector

Objects
rcnnObjectDetector

Introduced in R2016b

3 Functions

3-1094



classifyRegions
Classify objects in image regions using Fast R-CNN object detector

Syntax
[labels,scores] = classifyRegions(detector,I,rois)
[labels,scores,allScores] = classifyRegions(detector,I,rois)
[ ___ ] = classifyRegions( ___ ,'ExecutionEnvironment',resource)

Description
[labels,scores] = classifyRegions(detector,I,rois) classifies objects within the regions
of interest of image I, using a Fast R-CNN (regions with convolutional neural networks) object
detector. For each region, classifyRegions returns the class label with the corresponding highest
classification score.

When using this function, use of a CUDA enabled NVIDIA GPU is highly recommended. The GPU
reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

[labels,scores,allScores] = classifyRegions(detector,I,rois) also returns all the
classification scores of each region. The scores are returned in an M-by-N matrix of M regions and N
class labels.

[ ___ ] = classifyRegions( ___ ,'ExecutionEnvironment',resource) specifies the
hardware resource used to classify object within image regions: 'auto', 'cpu', or 'gpu'. You can
use this syntax with either of the preceding syntaxes.

Examples

Classify Image Regions Using Fast R-CNN

Configure a Fast R-CNN object detector and use it to classify objects within multiple regions of an
image.

Load a fastRCNNObjectDetector object that is pretrained to detect stop signs.

data = load('rcnnStopSigns.mat','fastRCNN');
fastRCNN = data.fastRCNN;

Read in a test image containing a stop sign.

I = imread('stopSignTest.jpg');
figure
imshow(I)

 classifyRegions

3-1095



Specify regions of interest to classify within the test image.

rois = [416   143    33    27
        347   168    36    54];

Classify the image regions and inspect the output labels and classification scores. The labels come
from the ClassNames property of the detector.

[labels,scores] = classifyRegions(fastRCNN,I,rois)

labels = 2x1 categorical
     stopSign 
     Background 

scores = 2x1 single column vector

    0.9969
    1.0000

The detector has high confidence in the classifications. Display the classified regions on the test
image.

detectedI = insertObjectAnnotation(I,'rectangle',rois,cellstr(labels));
 
figure
imshow(detectedI)

3 Functions

3-1096



Input Arguments
detector — Fast R-CNN object detector
fastRCNNObjectDetector object

Fast R-CNN object detector, specified as a fastRCNNObjectDetector object. To create this object,
call the trainFastRCNNObjectDetector function with training data as input.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

rois — Regions of interest
M-by-4 matrix

Regions of interest within the image, specified as an M-by-4 matrix defining M rectangular regions.
Each row contains a four-element vector of the form [x y width height]. This vector specifies the
upper left corner and size of a region in pixels.

resource — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource used to classify image regions, specified as 'auto', 'gpu', or 'cpu'.

 classifyRegions

3-1097



• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA

enabled NVIDIA GPU. If a suitable GPU is not available, the function returns an error. For
information about the supported compute capabilities, see “GPU Support by Release” (Parallel
Computing Toolbox).

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments
labels — Classification labels of regions
M-by-1 categorical array

Classification labels of regions, returned as an M-by-1 categorical array. M is the number of regions
of interest in rois. Each class name in labels corresponds to a classification score in scores and a
region of interest in rois. classifyRegions obtains the class names from the input detector.

scores — Highest classification score per region
M-by-1 vector of values in the range [0, 1]

Highest classification score per region, returned as an M-by-1 vector of values in the range [0, 1]. M
is the number of regions of interest in rois. Each classification score in scores corresponds to a
class name in labels and a region of interest in rois. A higher score indicates higher confidence in
the classification.

allScores — All classification scores per region
M-by-N matrix of values in the range [0, 1]

All classification scores per region, returned as an M-by-N matrix of values in the range [0, 1]. M is
the number of regions in rois. N is the number of class names stored in the input detector. Each
row of classification scores in allscores corresponds to a region of interest in rois. A higher score
indicates higher confidence in the classification.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetector

Introduced in R2017a

3 Functions

3-1098



trainFastRCNNObjectDetector
Train a Fast R-CNN deep learning object detector

Syntax
trainedDetector = trainFastRCNNObjectDetector(trainingData,network,options)
[trainedDetector,info] = trainFastRCNNObjectDetector( ___ )

trainedDetector = trainFastRCNNObjectDetector(trainingData,checkpoint,
options)

trainedDetector = trainFastRCNNObjectDetector(trainingData,detector,options)

trainedDetector = trainFastRCNNObjectDetector( ___ ,'RegionProposalFcn',
proposalFcn)

trainedDetector = trainFastRCNNObjectDetector( ___ ,Name,Value)

Description
Train a Detector

trainedDetector = trainFastRCNNObjectDetector(trainingData,network,options)
trains a Fast R-CNN (regions with convolution neural networks) object detector using deep learning.
You can train a Fast R-CNN detector to detect multiple object classes.

This function requires that you have Deep Learning Toolbox. It is recommended that you also have
Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU. For information about the
supported compute capabilities, see “GPU Support by Release” (Parallel Computing Toolbox).

[trainedDetector,info] = trainFastRCNNObjectDetector( ___ ) also returns information
on the training progress, such as training loss and accuracy, for each iteration.

Resume Training a Detector

trainedDetector = trainFastRCNNObjectDetector(trainingData,checkpoint,
options) resumes training from a detector checkpoint.

Fine Tune a Detector

trainedDetector = trainFastRCNNObjectDetector(trainingData,detector,options)
continues training a detector with additional training data or performs more training iterations to
improve detector accuracy.

Custom Region Proposal

trainedDetector = trainFastRCNNObjectDetector( ___ ,'RegionProposalFcn',
proposalFcn) optionally trains a custom region proposal function, proposalFcn, using any of the
previous inputs. If you do not specify a proposal function, then the function uses a variation of the
Edge Boxes[2] algorithm.

 trainFastRCNNObjectDetector

3-1099



Additional Properties

trainedDetector = trainFastRCNNObjectDetector( ___ ,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

Examples

Train Fast R-CNN Stop Sign Detector

Load training data.

data = load('rcnnStopSigns.mat', 'stopSigns', 'fastRCNNLayers');
stopSigns = data.stopSigns;
fastRCNNLayers = data.fastRCNNLayers;

Add fullpath to image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    stopSigns.imageFilename);

Randomly shuffle data for training.

rng(0);
shuffledIdx = randperm(height(stopSigns));
stopSigns = stopSigns(shuffledIdx,:);

Create an imageDatastore using the files from the table.

imds = imageDatastore(stopSigns.imageFilename);

Create a boxLabelDatastore using the label columns from the table.

blds = boxLabelDatastore(stopSigns(:,2:end));

Combine the datastores.

ds = combine(imds, blds);

The stop sign training images have different sizes. Preprocess the data to resize the image and boxes
to a predefined size.

ds = transform(ds,@(data)preprocessData(data,[920 968 3]));

Set the network training options.

options = trainingOptions('sgdm', ...
    'MiniBatchSize', 10, ...
    'InitialLearnRate', 1e-3, ...
    'MaxEpochs', 10, ...
    'CheckpointPath', tempdir);

Train the Fast R-CNN detector. Training can take a few minutes to complete.

frcnn = trainFastRCNNObjectDetector(ds, fastRCNNLayers , options, ...
    'NegativeOverlapRange', [0 0.1], ...
    'PositiveOverlapRange', [0.7 1]);

3 Functions

3-1100



*******************************************************************
Training a Fast R-CNN Object Detector for the following object classes:

* stopSign

--> Extracting region proposals from training datastore...done.

Training on single GPU.
|=======================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     Loss     |   Accuracy   |     RMSE     |      Rate       |
|=======================================================================================================|
|       1 |           1 |       00:00:29 |       0.3787 |       93.59% |         0.96 |          0.0010 |
|      10 |          10 |       00:05:14 |       0.3032 |       98.52% |         0.95 |          0.0010 |
|=======================================================================================================|

Detector training complete.
*******************************************************************

Test the Fast R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

Run the detector.

[bbox, score, label] = detect(frcnn, img);

Display detection results.

detectedImg = insertObjectAnnotation(img,'rectangle',bbox,score);
figure
imshow(detectedImg)

 trainFastRCNNObjectDetector

3-1101



Supporting Functions

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to the targetSize.
scale = targetSize(1:2)./size(data{1},[1 2]);
data{1} = imresize(data{1},targetSize(1:2));
bboxes = round(data{2});
data{2} = bboxresize(bboxes,scale);
end

Input Arguments
trainingData — Labeled ground truth
datastore | table

Labeled ground truth, specified as a datastore or a table.

Each bounding box must be in the format [x y width height].

• If you use a datastore, your data must be set up so that calling the datastore with the read and
readall functions returns a cell array or table with two or three columns. When the output
contains two columns, the first column must contain bounding boxes, and the second column must
contain labels, {boxes,labels}. When the output contains three columns, the second column must
contain the bounding boxes, and the third column must contain the labels. In this case, the first
column can contain any type of data. For example, the first column can contain images or point
cloud data.

data boxes labels
The first column must be
images.

M-by-4 matrices of bounding
boxes of the form [x, y, width,
height], where [x,y] represent
the top-left coordinates of the
bounding box.

The third column must be a
cell array that contains M-
by-1 categorical vectors
containing object class names.
All categorical data returned
by the datastore must contain
the same categories.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).
• If you use a table, the table must have two or more columns. The first column of the table must

contain image file names with paths. The images must be grayscale or truecolor (RGB) and they
can be in any format supported by imread. Each of the remaining columns must be a cell vector
that contains M-by-4 matrices that represent a single object class, such as vehicle, flower, or stop
sign. The columns contain 4-element double arrays of M bounding boxes in the format
[x,y,width,height]. The format specifies the upper-left corner location and size of the bounding box
in the corresponding image. To create a ground truth table, you can use the Image Labeler app
or Video Labeler app. To create a table of training data from the generated ground truth, use the
objectDetectorTrainingData function.

3 Functions

3-1102



network — Network
SeriesNetwork object | array of Layer objects | LayerGraph object | network name

Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph object, or by the
network name. The network is trained to classify the object classes defined in the trainingData
table. The SeriesNetwork, Layer, and layerGraph objects are available in the Deep Learning
Toolbox.

• When you specify the network as a SeriesNetwork, an array of Layer objects, or by the network
name, the network is automatically transformed into a Fast R-CNN network by adding an ROI max
pooling layer, and new classification and regression layers to support object detection.
Additionally, the GridSize property of the ROI max pooling layer is set to the output size of the
last max pooling layer in the network.

• The array of Layer objects must contain a classification layer that supports the number of object
classes, plus a background class. Use this input type to customize the learning rates of each layer.
An example of an array of Layer objects:

layers = [imageInputLayer([28 28 3])
        convolution2dLayer([5 5],10)
        reluLayer()
        fullyConnectedLayer(10)
        softmaxLayer()
        classificationLayer()];

• When you specify the network as SeriesNetwork, Layer array, or network by name, the weights
for additional convolution and fully-connected layers that you add to create the network, are
initialized to 'narrow-normal'.

• The network name must be one of the following valid network names. You must also install the
corresponding Add-on.

 trainFastRCNNObjectDetector

3-1103



Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSize

Description

alexnet 'relu5' [6 6] Last max pooling layer is replaced by
ROI max pooling layervgg16 'relu5_3' [7 7]

vgg19 'relu5_4'
squeezenet 'fire5-concat' [14 14]
resnet18 'res4b_relu' ROI pooling layer is inserted after the

feature extraction layer.resnet50 'activation_40_relu
'

resnet101 'res4b22_relu'
googlenet 'inception_4d-

output'
mobilenetv2 'block_13_expand_re

lu'
inceptionv3 'mixed7' [17 17]
inceptionre
snetv2

'block17_20_ac'

• The LayerGraph object must be a valid Fast R-CNN object detection network. You can also use a
LayerGraph object to train a custom Fast R-CNN network.

Tip If your network is a DAGNetwork, use the layerGraph function to convert the network to a
LayerGraph object. Then, create a custom Fast R-CNN network as described by the “Create Fast
R-CNN Object Detection Network” example.

See “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” to learn more about how to create
a Fast R-CNN network.

options — Training options
trainingOptions output

Training options, returned by the trainingOptions function from the Deep Learning Toolbox. To
specify solver and other options for network training, use trainingOptions.

Note trainFastRCNNObjectDetector does not support these training options:

• The trainingOptions 'once' and 'every-epoch' Shuffle options are not supported for
combined datastore inputs.

• The trainingOptions 'parallel' and 'multi-gpu' ExecutionEnvironment options are
not supported when you use a combined datastore input.

• Datastore inputs are not supported when you set the DispatchInBackground training option to
true.

3 Functions

3-1104



checkpoint — Saved detector checkpoint
fastRCNNObjectDetector object

Saved detector checkpoint, specified as a fastRCNNObjectDetector object. To periodically save a
detector checkpoint during training, specify CheckpointPath. To control how frequently check
points are saved see the CheckPointFrequency and CheckPointFrequencyUnit training options.

To load a checkpoint for a previously trained detector, load the MAT-file from the checkpoint path. For
example, if the 'CheckpointPath' property of options is '/tmp', load a checkpoint MAT-file
using:

data = load('/tmp/faster_rcnn_checkpoint__105__2016_11_18__14_25_08.mat');

The name of the MAT-file includes the iteration number and timestamp of when the detector
checkpoint was saved. The detector is saved in the detector variable of the file. Pass this file back
into the trainFastRCNNObjectDetector function:

frcnn = trainFastRCNNObjectDetector(stopSigns,...
                           data.detector,options);

detector — Previously trained Fast R-CNN object detector
fastRCNNObjectDetector object

Previously trained Fast R-CNN object detector, specified as a fastRCNNObjectDetector object.

proposalFcn — Region proposal method
function handle

Region proposal method, specified as a function handle. If you do not specify a region proposal
function, the function implements a variant of the EdgeBoxes[2] algorithm. The function must have
the form:

[bboxes,scores] = proposalFcn(I)

The input, I, is an image defined in the trainingData table. The function must return rectangular
bound boxes, bboxes, in an m-by-4 array. Each row of bboxes contains a four-element vector,
[x,y,width,height]. This vector specifies the upper-left corner and size of a bounding box in
pixels. The function must also return a score for each bounding box in an m-by-1 vector. Higher score
values indicate that the bounding box is more likely to contain an object. The scores are used to
select the strongest n regions, where n is defined by the value of NumStrongestRegions.

Dependencies

If you do not specify a custom proposal function and you use a table for the input training data, the
function uses a variation of the Edge Boxes algorithm. If you use a datastore for input training data
for multichannel images, you must specify a custom region proposal function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PositiveOverlapRange',[0.75 1]

 trainFastRCNNObjectDetector

3-1105



PositiveOverlapRange — Bounding box overlap ratios for positive training samples
[0.5 1] (default) | two-element vector

Bounding box overlap ratios for positive training samples, specified as the comma-separated pair
consisting of 'PositiveOverlapRange' and a two-element vector. The vector contains values in
the range [0,1]. Region proposals that overlap with ground truth bounding boxes within the specified
range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is
defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

NegativeOverlapRange — Bounding box overlap ratios for negative training samples
[0.1 0.5] (default) | two-element vector

Bounding box overlap ratios for negative training samples, specified as the comma-separated pair
consisting of NegativeOverlapRange and a two-element vector. The vector contains values in the
range [0,1]. Region proposals that overlap with the ground truth bounding boxes within the specified
range are used as negative training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is
defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer

Maximum number of strongest region proposals to use for generating training samples, specified as
the comma-separated pair consisting of 'NumStrongestRegions' and a positive integer. Reduce
this value to speed up processing time at the cost of training accuracy. To use all region proposals, set
this value to Inf.

NumRegionsToSample — Number of region proposals
128 (default) | integer

Number of region proposals to randomly sample from each training image, specified by an integer.
Reduce the number of regions to sample to reduce memory usage and speed-up training. Reducing
the value can also decrease training accuracy.

SmallestImageDimension — Length of smallest image dimension
[] (default) | positive integer

Length of smallest image dimension, either width or height, specified as the comma-separated pair
consisting of 'SmallestImageDimension' and a positive integer. Training images are resized such
that the length of the shortest dimension is equal to the specified integer. By default, training images
are not resized. Resizing training images helps reduce computational costs and memory used when
training images are large. Typical values range from 400–600 pixels.

3 Functions

3-1106



Dependencies

• The SmallestImageDimension property only supports table input training data. To resize the
input data of a datastore input, use the transform function.

FreezeBatchNormalization — Frozen batch normalization
true (default) | false

Frozen batch normalization during training, specified as the comma-separated pair consisting of
'FreezeBatchNormalization' and true or false. The value indicates whether the input layers to
the network are frozen during training. Set this value to true if you are training with a small mini-
batch size. Small batch sizes result in poor estimates of the batch mean and variance that is required
for effective batch normalization.

If you do not specify a value for 'FreezeBatchNormalization', the function sets the property to

• true if the 'MiniBatchSize' name-value argument for the trainingOptions function is less
than 8.

• false if the 'MiniBatchSize' name-value argument for the trainingOptions function is
greater than or equal to 8.

You must specify a value for 'FreezeBatchNormalization' to overide this default behavior.

ExperimentManager — Detector training experiment monitoring
'none' (default) | experiments.Monitor object

Detector training experiment monitoring, specified as an experiments.Monitor object for use with
the Experiment Manager app. You can use this object to track the progress of training, update
information fields in the training results table, record values of the metrics used by the training, and
to produce training plots. For an example using this app, see “Train Object Detectors in Experiment
Manager”.

Information monitored during training:

• Training loss at each iteration.
• Training accuracy at each iteration.
• Training root mean square error (RMSE) for the box regression layer.
• Learning rate at each iteration.

Output Arguments
trainedDetector — Trained Fast R-CNN object detector
fastRCNNObjectDetector object

Trained Fast R-CNN object detector, returned as a fastRCNNObjectDetector object.

info — Training progress information
structure array

Training progress information, returned as a structure array with eight fields. Each field corresponds
to a stage of training.

 trainFastRCNNObjectDetector

3-1107



• TrainingLoss — Training loss at each iteration is the mean squared error (MSE) calculated as
the sum of localization error, confidence loss, and classification loss. For more information about
the training loss function, see “Training Loss” on page 3-1049.

• TrainingAccuracy — Training set accuracy at each iteration.
• TrainingRMSE — Training root mean squared error (RMSE) is the RMSE calculated from the

training loss at each iteration.
• BaseLearnRate — Learning rate at each iteration.
• ValidationLoss — Validation loss at each iteration.
• ValidationAccuracy — Validation accuracy at each iteration.
• ValidationRMSE — Validation RMSE at each iteration.
• FinalValidationLoss — Final validation loss at end of the training.
• FinalValidationRMSE — Final validation RMSE at end of the training.

Each field is a numeric vector with one element per training iteration. Values that have not been
calculated at a specific iteration are assigned as NaN. The struct contains ValidationLoss,
ValidationAccuracy, ValidationRMSE, FinalValidationLoss, and FinalValidationRMSE
fields only when options specifies validation data.

Tips
• To accelerate data preprocessing for training, trainFastRCNNObjectDetector automatically

creates and uses a parallel pool based on your parallel preference settings. For more details about
setting these preferences, see parallel preference settings. Using parallel computing preferences
requires Parallel Computing Toolbox.

• VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training with large
images can produce "Out of Memory" errors. To mitigate these errors, try one or more of these
options:

• Reduce the size of your images by using the 'SmallestImageDimension' argument.
• Decrease the value of the 'NumRegionsToSample' name-value argument value.

• This function supports transfer learning. When you input a network by name, such as
'resnet50', then the function automatically transforms the network into a valid Fast R-CNN
network model based on the pretrained resnet50 model. Alternatively, manually specify a custom
Fast R-CNN network by using the LayerGraph extracted from a pretrained DAG network. For
more details, see “Create Fast R-CNN Object Detection Network”.

• This table describes how to transform each named network into a Fast R-CNN network. The
feature extraction layer name specifies which layer is processed by the ROI pooling layer. The ROI
output size specifies the size of the feature maps output by the ROI pooling layer.

Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSize

Description

alexnet 'relu5' [6 6] Last max pooling layer is replaced by
ROI max pooling layervgg16 'relu5_3' [7 7]

vgg19 'relu5_4'

3 Functions

3-1108



Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSize

Description

squeezenet 'fire5-concat' [14 14]
resnet18 'res4b_relu' ROI pooling layer is inserted after the

feature extraction layer.resnet50 'activation_40_relu
'

resnet101 'res4b22_relu'
googlenet 'inception_4d-

output'
mobilenetv2 'block_13_expand_re

lu'
inceptionv3 'mixed7' [17 17]
inceptionre
snetv2

'block17_20_ac'

To modify and transform a network into a Fast R-CNN network, see “Design an R-CNN, Fast R-
CNN, and a Faster R-CNN Model”.

• Use the trainingOptions function to enable or disable verbose printing.

References
[1] Girshick, Ross. "Fast R-CNN." Proceedings of the IEEE International Conference on Computer

Vision. 2015.

[2] Zitnick, C. Lawrence, and Piotr Dollar. "Edge Boxes: Locating Object Proposals From Edges."
Computer Vision-ECCV 2014. Springer International Publishing, 2014, pp. 391–405.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision
Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
Apps
Image Labeler | Video Labeler

Functions
objectDetectorTrainingData | trainRCNNObjectDetector |
trainFasterRCNNObjectDetector | trainingOptions | estimateAnchorBoxes

 trainFastRCNNObjectDetector

3-1109



Objects
Layer | SeriesNetwork | fastRCNNObjectDetector | boxLabelDatastore

Topics
“Anchor Boxes for Object Detection”
“Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Train Object Detectors in Experiment Manager”

Introduced in R2017a

3 Functions

3-1110



peopleDetectorACF
Detect people using aggregate channel features

Syntax
detector = peopleDetectorACF
detector = peopleDetectorACF(name)

Description
detector = peopleDetectorACF returns a pretrained upright people detector using aggregate
channel features (ACF). The detector is an acfObjectDetector object, and is trained using the
INRIA person data set.

detector = peopleDetectorACF(name) returns a pretrained upright people detector based on
the specified model name.

Examples

Detect People Using Aggregated Channel Features

Load the upright people detector.

detector = peopleDetectorACF;

Read an image. Detect people in the image.

I = imread('visionteam1.jpg');
[bboxes,scores] = detect(detector,I);

Annotate detected people with bounding boxes and their detection scores.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)
title('Detected People and Detection Scores')

 peopleDetectorACF

3-1111



Input Arguments
name — ACF classification model
'inria-100x41' (default) | 'caltech-50x21'

ACF classification model, specified as 'inria-100x41' or 'caltech-50x21'. The
'inria-100x41' model was trained using the INRIA Person data set. The 'caltech-50x21' model
was trained using the Caltech Pedestrian data set.

Output Arguments
detector — Trained ACF-based object detector
acfObjectDetector object

Trained ACF-based object detector, returned as an acfObjectDetector object. The detector is
trained to detect upright people in an image.

3 Functions

3-1112



References
[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast Feature Pyramids for Object Detection." IEEE

Transactions on Pattern Analysis and Machine Intelligence. Vol. 36, Issue 8, 2014, pp. 1532–
1545.

[2] Dollar P., C. Wojek, B. Shiele, and P. Perona. "Pedestrian Detection: An Evaluation of the State of
the Art." IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 34, Issue 4,
2012, pp. 743–761.

[3] Dollar, P., C., Wojek, B. Shiele, and P. Perona. "Pedestrian Detection: A Benchmark." IEEE
Conference on Computer Vision and Pattern Recognition. 2009.

See Also
acfObjectDetector | detect | trainACFObjectDetector | vision.PeopleDetector |
vision.CascadeObjectDetector | selectStrongestBbox

Topics
“Tracking Pedestrians from a Moving Car”
“Point Feature Types”

Introduced in R2017a

 peopleDetectorACF

3-1113



objectDetectorTrainingData
Create training data for an object detector

Syntax
[imds,blds] = objectDetectorTrainingData(gTruth)
trainingDataTable = objectDetectorTrainingData(gTruth)
___  = objectDetectorTrainingData(gTruth,Name,Value)

Description
[imds,blds] = objectDetectorTrainingData(gTruth) creates an image datastore and a box
label datastore training data from the specified ground truth.

You can combine the image and box label datastores using combine(imds,blds) to create a
datastore needed for training. Use the combined datastore with the training functions, such as
trainACFObjectDetector, trainYOLOv2ObjectDetector, trainFastRCNNObjectDetector,
trainFasterRCNNObjectDetector, and trainRCNNObjectDetector.

This function supports parallel computing using multiple MATLAB workers. Enable parallel
computing using the “Computer Vision Toolbox Preferences” dialog.

trainingDataTable = objectDetectorTrainingData(gTruth) returns a table of training
data from the specified ground truth. gTruth is an array of groundTruth objects. You can use the
table to train an object detector using the Computer Vision Toolbox training functions.

___  = objectDetectorTrainingData(gTruth,Name,Value) returns a table of training data
with additional options specified by one or more name-value pair arguments. If you create the
groundTruth objects in gTruth using a video file, a custom data source, or an imageDatastore
object with different custom read functions, then you can specify any combination of name-value pair
arguments. If you create the groundTruth objects from an image collection or image sequence data
source, then you can specify only the 'SamplingFactor' name-value pair argument.

Examples

Train a YOLO v2 Vehicle Detector

Train a vehicle detector based on a YOLO v2 network.

Add the folder containing images to the workspace.

imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','vehicles');
addpath(imageDir);

Load the vehicle ground truth data.

data = load('vehicleTrainingGroundTruth.mat');
gTruth = data.vehicleTrainingGroundTruth;

Load the detector containing the layerGraph object for training.

3 Functions

3-1114



vehicleDetector = load('yolov2VehicleDetector.mat');
lgraph = vehicleDetector.lgraph

lgraph = 
  LayerGraph with properties:

         Layers: [25×1 nnet.cnn.layer.Layer]
    Connections: [24×2 table]
     InputNames: {'input'}
    OutputNames: {'yolov2OutputLayer'}

Create an image datastore and box label datastore using the ground truth object.

[imds,bxds] = objectDetectorTrainingData(gTruth);

Combine the datastores.

cds = combine(imds,bxds);

Configure training options.

options = trainingOptions('sgdm', ...
       'InitialLearnRate', 0.001, ...
       'Verbose',true, ...
       'MiniBatchSize',16, ...
       'MaxEpochs',30, ...
       'Shuffle','every-epoch', ...
       'VerboseFrequency',10); 

Train the detector.

[detector,info] = trainYOLOv2ObjectDetector(cds,lgraph,options);

*************************************************************************
Training a YOLO v2 Object Detector for the following object classes:

* vehicle

Training on single CPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |         7.50 |         56.2 |          0.0010 |
|       1 |          10 |       00:00:02 |         1.73 |          3.0 |          0.0010 |
|       2 |          20 |       00:00:04 |         1.58 |          2.5 |          0.0010 |
|       2 |          30 |       00:00:06 |         1.36 |          1.9 |          0.0010 |
|       3 |          40 |       00:00:08 |         1.13 |          1.3 |          0.0010 |
|       3 |          50 |       00:00:09 |         1.01 |          1.0 |          0.0010 |
|       4 |          60 |       00:00:11 |         0.95 |          0.9 |          0.0010 |
|       4 |          70 |       00:00:13 |         0.84 |          0.7 |          0.0010 |
|       5 |          80 |       00:00:15 |         0.84 |          0.7 |          0.0010 |
|       5 |          90 |       00:00:17 |         0.70 |          0.5 |          0.0010 |
|       6 |         100 |       00:00:19 |         0.65 |          0.4 |          0.0010 |
|       7 |         110 |       00:00:21 |         0.73 |          0.5 |          0.0010 |
|       7 |         120 |       00:00:23 |         0.60 |          0.4 |          0.0010 |
|       8 |         130 |       00:00:24 |         0.63 |          0.4 |          0.0010 |
|       8 |         140 |       00:00:26 |         0.64 |          0.4 |          0.0010 |

 objectDetectorTrainingData

3-1115



|       9 |         150 |       00:00:28 |         0.57 |          0.3 |          0.0010 |
|       9 |         160 |       00:00:30 |         0.54 |          0.3 |          0.0010 |
|      10 |         170 |       00:00:32 |         0.52 |          0.3 |          0.0010 |
|      10 |         180 |       00:00:33 |         0.45 |          0.2 |          0.0010 |
|      11 |         190 |       00:00:35 |         0.55 |          0.3 |          0.0010 |
|      12 |         200 |       00:00:37 |         0.56 |          0.3 |          0.0010 |
|      12 |         210 |       00:00:39 |         0.55 |          0.3 |          0.0010 |
|      13 |         220 |       00:00:41 |         0.52 |          0.3 |          0.0010 |
|      13 |         230 |       00:00:42 |         0.53 |          0.3 |          0.0010 |
|      14 |         240 |       00:00:44 |         0.58 |          0.3 |          0.0010 |
|      14 |         250 |       00:00:46 |         0.47 |          0.2 |          0.0010 |
|      15 |         260 |       00:00:48 |         0.49 |          0.2 |          0.0010 |
|      15 |         270 |       00:00:50 |         0.44 |          0.2 |          0.0010 |
|      16 |         280 |       00:00:52 |         0.45 |          0.2 |          0.0010 |
|      17 |         290 |       00:00:54 |         0.47 |          0.2 |          0.0010 |
|      17 |         300 |       00:00:55 |         0.43 |          0.2 |          0.0010 |
|      18 |         310 |       00:00:57 |         0.44 |          0.2 |          0.0010 |
|      18 |         320 |       00:00:59 |         0.44 |          0.2 |          0.0010 |
|      19 |         330 |       00:01:01 |         0.38 |          0.1 |          0.0010 |
|      19 |         340 |       00:01:03 |         0.41 |          0.2 |          0.0010 |
|      20 |         350 |       00:01:04 |         0.39 |          0.2 |          0.0010 |
|      20 |         360 |       00:01:06 |         0.42 |          0.2 |          0.0010 |
|      21 |         370 |       00:01:08 |         0.42 |          0.2 |          0.0010 |
|      22 |         380 |       00:01:10 |         0.39 |          0.2 |          0.0010 |
|      22 |         390 |       00:01:12 |         0.37 |          0.1 |          0.0010 |
|      23 |         400 |       00:01:13 |         0.37 |          0.1 |          0.0010 |
|      23 |         410 |       00:01:15 |         0.35 |          0.1 |          0.0010 |
|      24 |         420 |       00:01:17 |         0.29 |      8.3e-02 |          0.0010 |
|      24 |         430 |       00:01:19 |         0.36 |          0.1 |          0.0010 |
|      25 |         440 |       00:01:21 |         0.28 |      7.9e-02 |          0.0010 |
|      25 |         450 |       00:01:22 |         0.29 |      8.1e-02 |          0.0010 |
|      26 |         460 |       00:01:24 |         0.28 |      8.0e-02 |          0.0010 |
|      27 |         470 |       00:01:26 |         0.27 |      7.1e-02 |          0.0010 |
|      27 |         480 |       00:01:28 |         0.25 |      6.3e-02 |          0.0010 |
|      28 |         490 |       00:01:30 |         0.24 |      5.9e-02 |          0.0010 |
|      28 |         500 |       00:01:31 |         0.29 |      8.4e-02 |          0.0010 |
|      29 |         510 |       00:01:33 |         0.35 |          0.1 |          0.0010 |
|      29 |         520 |       00:01:35 |         0.31 |      9.3e-02 |          0.0010 |
|      30 |         530 |       00:01:37 |         0.18 |      3.1e-02 |          0.0010 |
|      30 |         540 |       00:01:38 |         0.22 |      4.6e-02 |          0.0010 |
|========================================================================================|
Detector training complete.
*************************************************************************

Read a test image.

I = imread('detectcars.png');

Run the detector.

[bboxes,scores] = detect(detector,I);

Display the results.

if(~isempty(bboxes))
  I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
end
figure
imshow(I)

3 Functions

3-1116



Train ACF-Based Stop Sign Detector

Use training data to train an ACF-based object detector for stop signs

Add the folder containing images to the MATLAB path.

imageDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', 'stopSignImages');
addpath(imageDir);

Load ground truth data, which contains data for stops signs and cars.

load('stopSignsAndCarsGroundTruth.mat','stopSignsAndCarsGroundTruth')

View the label definitions to see the label types in the ground truth.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
        Name          Type        Group  
    ____________    _________    ________

    {'stopSign'}    Rectangle    {'None'}
    {'carRear' }    Rectangle    {'None'}
    {'carFront'}    Rectangle    {'None'}

Select the stop sign data for training.

stopSignGroundTruth = selectLabelsByName(stopSignsAndCarsGroundTruth,'stopSign');

Create the training data for a stop sign object detector.

trainingData = objectDetectorTrainingData(stopSignGroundTruth);
summary(trainingData)

Variables:

    imageFilename: 41x1 cell array of character vectors

    stopSign: 41x1 cell

 objectDetectorTrainingData

3-1117



Train an ACF-based object detector.

acfDetector = trainACFObjectDetector(trainingData,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--------------------------------------------
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--------------------------------------------
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--------------------------------------------
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--------------------------------------------
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--------------------------------------------
ACF object detector training is completed. Elapsed time is 21.6979 seconds.

Test the ACF-based detector on a sample image.

I = imread('stopSignTest.jpg');
bboxes = detect(acfDetector,I);

Display the detected object.

annotation = acfDetector.ModelName;
I = insertObjectAnnotation(I,'rectangle',bboxes,annotation);

figure 
imshow(I)

3 Functions

3-1118



Remove the image folder from the path.

rmpath(imageDir); 

Train ACF-Based Vehicle Detector

Use training data to train an ACF-based object detector for vehicles.

imageDir = fullfile(matlabroot,'toolbox','driving','drivingdata','vehiclesSequence');
addpath(imageDir);

Load the ground truth data.

load vehicleGroundTruth.mat

Create the training data for an object detector for vehicles.

trainingData = objectDetectorTrainingData(gTruth,'SamplingFactor',2);

Train the ACF-based object detector.

acfDetector = trainACFObjectDetector(trainingData,'ObjectTrainingSize',[20 20]);

ACF Object Detector Training
The training will take 4 stages. The model size is 20x20.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.

 objectDetectorTrainingData

3-1119



--------------------------------------------
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 68 weak learners.
--------------------------------------------
Stage 2:
Sample negative examples(~100% Completed)
Found 76 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 120 weak learners.
--------------------------------------------
Stage 3:
Sample negative examples(~100% Completed)
Found 54 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 170 weak learners.
--------------------------------------------
Stage 4:
Sample negative examples(~100% Completed)
Found 63 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 215 weak learners.
--------------------------------------------
ACF object detector training is completed. Elapsed time is 8.8591 seconds.

Test the ACF detector on a test image.

I = imread('highway.png');
[bboxes, scores] = detect(acfDetector,I,'Threshold',1);

Select the detection with the highest classification score.

[~,idx] = max(scores);

Display the detected object.

annotation = acfDetector.ModelName;
I = insertObjectAnnotation(I,'rectangle',bboxes(idx,:),annotation);

figure 
imshow(I)

3 Functions

3-1120



Remove the image folder from the path.

rmpath(imageDir);

Input Arguments
gTruth — Ground truth data
scalar | array of groundTruth objects

Ground truth data, specified as a scalar or an array of groundTruth objects. You can create ground
truth objects from existing ground truth data by using the groundTruth object.

If you use custom data sources in groundTruth with parallel computing enabled, then the reader
function is expected to work with a pool of MATLAB workers to read images from the data source in
parallel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SamplingFactor',5

SamplingFactor — Factor for subsampling images
'auto' (default) | integer | vector of integers

Factor for subsampling images in the ground truth data source, specified as 'auto', an integer, or a
vector of integers. For a sampling factor of N, the returned training data includes every Nth image in
the ground truth data source. The function ignores ground truth images with empty label data

 objectDetectorTrainingData

3-1121



Use sampled data to reduce repeated data, such as a sequence of images with the same scene and
labels. It can also help in reducing training time.

Value Sampling Factor
'auto' The function samples data sources with

timestamps, such as a video, with a factor of 5,
and 1 for a collection of images.

Integer Manually set the sampling factor to apply to all
data.

Vector of integers When you input an array of ground truth objects,
the function uses the sampling factor specified by
the corresponding vector element.

WriteLocation — Name of folder
pwd (current working folder) (default) | string scalar | character vector

Folder name to write extracted images to, specified as a string scalar or character vector. The
specified folder must exist and have write permissions.

This argument applies only for:

• groundTruth objects created using a video file or a custom data source.
• An array of groundTruth objects created using imageDatastore , with different custom read

functions.

The function ignores this argument when:

• The input groundTruth object was created from an image sequence data source.
• The array of input groundTruth objects all contain image datastores using the same custom

read function.
• Any of the input groundTruth objects containing datastores, use the default read functions.

ImageFormat — Image file format
PNG (default) | string scalar | character vector

Image file format, specified as a string scalar or character vector. File formats must be supported by
imwrite.

This argument applies only for:

• groundTruth objects created using a video file or a custom data source.
• An array of groundTruth objects created using imageDatastore with different custom read

functions.

The function ignores this argument when:

• The input groundTruth object was created from an image sequence data source.
• The array of input groundTruth objects all contain image datastores using the same custom

read function.
• Any of the input groundTruth objects containing datastores, use the default read functions.

3 Functions

3-1122



NamePrefix — Prefix for output image file names
string scalar | character vector

Prefix for output image file names, specified as a string scalar or character vector. The image files are
named as:

<name_prefix><source_number>_<image_number>.<image_format>

The default value uses the name of the data source that the images were extracted from,
strcat(sourceName,'_'), for video and a custom data source, or 'datastore', for an image
datastore.

This argument applies only for:

• groundTruth objects created using a video file or a custom data source.
• An array of groundTruth objects created using imageDatastore with different custom read

functions.

The function ignores this argument when:

• The input groundTruth object was created from an image sequence data source.
• The array of input groundTruth objects all contain image datastores using the same custom

read function.
• Any of the input groundTruth objects containing datastores, use the default read functions.

Verbose — Flag to display training progress
true (default) | false

Flag to display training progress at the MATLAB command line, specified as either true or false.
This property applies only for groundTruth objects created using a video file or a custom data
source.

Output Arguments
imds — Image datastore
imageDatastore object

Image datastore, returned as an imageDatastore object containing images extracted from the
gTruth objects. The images in imds contain at least one class of annotated labels. The function
ignores images that are not annotated.

blds — Box label datastore
boxLabelDatastore object

Box label datastore, returned as a boxLabelDatastore object. The datastore contains categorical
vectors for ROI label names and M-by-4 matrices of M bounding boxes. The locations and sizes of the
bounding boxes are represented as double M-by-4 element vectors in the format [x,y,width,height].

trainingDataTable — Training data table
table

Training data table, returned as a table with two or more columns. The first column of the table
contains image file names with paths. The images can be grayscale or truecolor (RGB) and in any

 objectDetectorTrainingData

3-1123



format supported by imread. Each of the remaining columns correspond to an ROI label and contains
the locations of bounding boxes in the image (specified in the first column), for that label. The
bounding boxes are specified as M-by-4 matrices of M bounding boxes in the format
[x,y,width,height]. [x,y] specifies the upper-left corner location. To create a ground truth table, you
can use the Image Labeler app or Video Labeler app.

The output table ignores any sublabel or attribute data present in the input gTruth object.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector |
trainRCNNObjectDetector | trainACFObjectDetector | trainYOLOv2ObjectDetector |
estimateAnchorBoxes

Objects
groundTruth | acfObjectDetector | imageDatastore | boxLabelDatastore

Topics
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Training Data for Object Detection and Semantic Segmentation”

Introduced in R2017a

3 Functions

3-1124



estimateFisheyeParameters
Calibrate fisheye camera

Syntax
[fisheyeParams,imagesUsed,estimationErrors] = estimateFisheyeParameters(
imagePoints,worldPoints,imageSize)
[ ___ ] = estimateFisheyeParameters( ___ ,Name,Value)

Description
[fisheyeParams,imagesUsed,estimationErrors] = estimateFisheyeParameters(
imagePoints,worldPoints,imageSize) returns a fisheyeParameters object containing
estimates for the intrinsic and extrinsic parameters of a fisheye camera. The function also returns the
images you used to estimate the fisheye parameters and the standard estimation errors for the single
camera calibration.

[ ___ ] = estimateFisheyeParameters( ___ ,Name,Value) configures the fisheyeParams
object properties specified by one or more Name,Value pair arguments, using the previous syntax.
Unspecified properties have their default values.

Examples

Fisheye Camera Calibration

Use calibration images to detect a checkerboard calibration pattern. Then calibrate the camera using
corneres extracted from the pattern and visualize the results.

Gather a set of calibration images.

images = imageDatastore('calibImages');
imageFileNames = images.Files;

Detect the calibration pattern from the images. The 'PartialDetections' Name-Value argument is set to
true by default allowing detection of partial checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames, 'HighDistortion', true);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 20; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera calibration parameters based on the image and world points.

I = readimage(images,10); 
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

Visualize the calibration accuracy.

 estimateFisheyeParameters

3-1125



figure
showReprojectionErrors(params);

Visualize the camera extrinsics.

figure
showExtrinsics(params);

3 Functions

3-1126



drawnow

Plot the detected and reprojected points.

figure 
imshow(I); 
hold on
plot(imagePoints(:,1,10),imagePoints(:,2,10),'go');
plot(params.ReprojectedPoints(:,1,10),params.ReprojectedPoints(:,2,10),'r+');
legend('Detected Points','Reprojected Points');
hold off

 estimateFisheyeParameters

3-1127



Input Arguments
imagePoints — Key points of calibration pattern
M-by-2-by-numImages array

Key points of calibration pattern, specified as an M-by-2-by-numImages array of [x,y] intrinsic image
coordinates. The number of images, numImages, must be greater than 2. The number of keypoint
coordinates in each pattern, M, must be greater than 3. To include partially detected patterns in the
estimate, use [NaN,NaN] as x-y coordinates for missing keypoints.
Data Types: single | double

3 Functions

3-1128



worldPoints — Key points of calibration pattern in world coordinates
M-by-2 matrix

Key points of calibration pattern in world coordinates, specified as an M-by-2 matrix of M [x,y] world
coordinates. Because the pattern must be planar, the z-coordinates are zero.
Data Types: single | double

imageSize — Image size
[mrows ncols] vector

Image size, specified as an [mrows ncols] vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'WorldUnits','mm' sets the world point units to millimeters.

EstimateAlignment — Estimate axes alignment
false (default) | true

Estimate the axes alignment, specified as the comma-separated pair consisting of
'EstimateAlignment' and false or true. Set to true if the optical axis of the fisheye lens is not
perpendicular to the image plane.

WorldUnits — World point units
'mm' (default) | character vector | string scalar

World point units, specified as the comma-separated pair consisting of 'WorldUnits' and a
character vector or string scalar. This argument is used simply to store the unit type and does not
affect any calculations.

Output Arguments
fisheyeParams — Fisheye camera parameters
fisheyeParameters object

Fisheye camera parameters, returned as a fisheyeParameters object.

imagesUsed — Images used to estimate camera parameters
P-by-1 logical array

Images used to the estimate camera parameters, returned as a P-by-1 logical array. P corresponds to
the number of images. A logical true value indicates the index of an image used to estimate the
camera parameters.

estimationErrors — Standard errors of estimated parameters
fisheyeCalibrationErrors object

Standard errors of estimated parameters, returned as a fisheyeCalibrationErrors object.

 estimateFisheyeParameters

3-1129



References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional

Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems
(IROS 2006). Beijing, China, October 7–15, 2006.

[2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional Camera
Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol. 108, 2015, pp.72–
79.

See Also
detectCheckerboardPoints | fisheyeParameters | fisheyeIntrinsics |
generateCheckerboardPoints | showExtrinsics | showReprojectionErrors |
undistortFisheyeImage | fisheyeCalibrationErrors

Topics
“Fisheye Calibration Basics”
“Configure Monocular Fisheye Camera” (Automated Driving Toolbox)

Introduced in R2017b

3 Functions

3-1130



undistortFisheyeImage
Correct fisheye image for lens distortion

Syntax
J = undistortFisheyeImage(I,intrinsics)
[J,camIntrinsics] = undistortFisheyeImage(I,intrinsics)
[ ___ ] = undistortFisheyeImage( ___ ,interp)
[ ___ ] = undistortFisheyeImage( ___ ,Name,Value)

Description
J = undistortFisheyeImage(I,intrinsics) removes lens distortion for image I and returns
the result as image J.

[J,camIntrinsics] = undistortFisheyeImage(I,intrinsics) also returns a
cameraIntrinsics object, which corresponds to a virtual pinhole camera.

[ ___ ] = undistortFisheyeImage( ___ ,interp) specifies the interpolation method, interp,
using the preceding syntaxes.

[ ___ ] = undistortFisheyeImage( ___ ,Name,Value) specifies one or more Name,Value pair
arguments. Unspecified properties have their default values.

Examples

Correct Fisheye Image for Lens Distortion

Remove lens distortion from a fisheye image by detecting a checkboard calibration pattern and
calibrating the camera. Then, display the results.

Gather a set of checkerboard calibration images.

images = imageDatastore('calibrationImages');

Detect the calibration pattern from the images. The 'PartialDetections' Name-Value argument is set to
true by default allowing detection of partial checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files, 'HighDistortion', true);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 20; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera calibration parameters based on the image and world points. Use the
first image to get the image size.

I = readimage(images,10); 
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

 undistortFisheyeImage

3-1131



Remove lens distortion from the first image I and display the results.

J1 = undistortFisheyeImage(I,params.Intrinsics);
figure
imshowpair(I,J1,'montage')
title('Original Image (left) vs. Corrected Image (right)')

J2 = undistortFisheyeImage(I,params.Intrinsics,'OutputView','same', 'ScaleFactor', 0.2);
figure
imshow(J2)
title('Output View with low Scale Factor')

3 Functions

3-1132



Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified as an M-by-N-by-3 truecolor or M-by-N 2-D grayscale image. The input image
must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

intrinsics — Fisheye intrinsic camera parameters
fisheyeIntrinsics object

 undistortFisheyeImage

3-1133



Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

interp — Interpolation method
'bilinear' (default) | 'nearest' | 'cubic'

Interpolation method to use on the input image, specified as 'bilinear', 'nearest' , or 'cubic'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ScaleFactor',2 sets the scale factor to increase the zoom in the camera view.

OutputView — Size of the output image
'same' (default) | 'full' | 'valid'

Size of the output image, specified as either 'same', 'full', or 'valid'.

ScaleFactor — Scale factor for focal length
1 (default) | scalar | [sx sy] vector

Scale factor for the focal length of a virtual camera perspective, in pixels, specified as a scalar or an
[sx sy] vector. Specify a vector to scale the x and y axes individually. Increase the scale to zoom in
the perspective of the camera view.

FillValues — Output pixel fill values
0 (default) | scalar | 3-element vector

Output pixel fill values, specified as the comma-separated pair consisting of 'FillValues' and scalar
or 3-element vector. When the corresponding inverse-transformed location in the input image lies
completely outside the input image boundaries, you use the fill values for output pixels. When you use
a 2-D grayscale input image, FillValues must be a scalar. When you use a truecolor image,
FillValues can be a scalar or a 3-element vector of RGB values.

Output Arguments
J — Undistorted image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Undistorted image, returned as an M-by-N-by-3 truecolor or M-by-N 2-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16 | logical

camIntrinsics — Undistorted intrinsics of virtual camera
cameraIntrinsics object

Undistorted intrinsics of a virtual camera, returned as a cameraIntrinsics object. The
camIntrinsics object represents a virtual pinhole camera. You can use this object with the pinhole
model calibration workflow functions. These intrinsics are for a camera that has a perspective that
produces the undistorted image.

3 Functions

3-1134



Tips
• The Computer Vision Toolbox calibration algorithm uses the fisheye camera model proposed by

Scaramuzza [1] on page 3-1135.

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omnidirectional

Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems,
(IROS). Beijing, China, October 7–15, 2006.

See Also
undistortFisheyePoints | fisheyeIntrinsics | estimateFisheyeParameters |
cameraIntrinsics

Topics
“Fisheye Calibration Basics”
“What Is Camera Calibration?”

Introduced in R2017b

 undistortFisheyeImage

3-1135



undistortFisheyePoints
Correct point coordinates for fisheye lens distortion

Syntax
undistortedPoints = undistortFisheyePoints(points,intrinsics)
undistortedPoints = undistortFisheyePoints( ___ ,scaleFactor)
[ ___ ,camIntrinsics] = undistortFisheyePoints( ___ )
[ ___ ,reprojectionErrors] = undistortFisheyePoints( ___ )

Description
undistortedPoints = undistortFisheyePoints(points,intrinsics) returns point
coordinates corrected for fisheye lens distortion.

undistortedPoints = undistortFisheyePoints( ___ ,scaleFactor) returns corrected
point coordinates using the scaleFactor and the previous inputs.

[ ___ ,camIntrinsics] = undistortFisheyePoints( ___ ) also returns a
cameraIntrinsics object, which corresponds to a virtual perspective camera that produces
undistorted points.

[ ___ ,reprojectionErrors] = undistortFisheyePoints( ___ ) also returns
reprojectionErrors used to evaluate the accuracy of undistorted points. The function computes
the reprojection errors by applying distortion to the points, and taking the distances between the
result and the corresponding input points.

Examples

Undistort Checkerboard Points from Fisheye Image

Undistort and translate checkerboard points detected in a calibration image, and then display the
results.

Create an imageDatastore object containing checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
   'calibration','gopro'));
imageFileNames = images.Files;

Detect the calibration pattern from the images.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

3 Functions

3-1136



Estimate the fisheye parameters from the image and world points. Get the image size from the first
image.

I = readimage(images,10); 
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

In the first image, detect the checkerboard points.

points = detectCheckerboardPoints(I);

Undistort the points and image.

[undistortedPoints,intrinsics1] = undistortFisheyePoints(points,params.Intrinsics);
[J, intrinsics2] = undistortFisheyeImage(I,params.Intrinsics,'OutputView','full');

Translate the undistorted points.

newOrigin = intrinsics2.PrincipalPoint - intrinsics1.PrincipalPoint;
undistortedPoints = [undistortedPoints(:,1) + newOrigin(1), ...
                    undistortedPoints(:,2) + newOrigin(2)];

Display the results.

figure 
imshow(I) 
hold on
plot(points(:,1),points(:,2),'r*-')
title('Detected Points') 
hold off

 undistortFisheyePoints

3-1137



figure 
imshow(J) 
hold on
plot(undistortedPoints(:, 1),undistortedPoints(:, 2),'g*-')
title('Undistorted Points') 
hold off

3 Functions

3-1138



Input Arguments
points — Input points
M-by-2 matrix

Input points, specified as an M-by-2 matrix of M [x y] coordinates.

intrinsics — Fisheye intrinsic camera parameters
fisheyeIntrinsics object

Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

scaleFactor — Scale factor for points
1 (default) | scalar | [sx sy] vector

Scale factor for points, specified as a scalar or an [sx sy] vector. Specify a vector to scale the x and
y axes individually. Increase the scale to zoom in the perspective of the camera view.

 undistortFisheyePoints

3-1139



Output Arguments
undistortedPoints — Undistorted points
M-by-2 matrix

Undistorted points, returned as an M-by-2 matrix of M number of [x y] coordinates. If points is
double, then undistortedPoints is double. Otherwise, undistortedPoints is single.
Data Types: single | double

camIntrinsics — Undistorted intrinsics of virtual camera
cameraIntrinsics object

Undistorted intrinsics of a virtual camera, returned as a cameraIntrinsics object. These intrinsics
are for a camera that has a perspective that produces the undistorted image.

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as an M-by-1 vector. The function computes the reprojection errors by
applying distortion to the undistorted points and taking the distances between the results and the
corresponding input points. Errors are expressed in pixels.

See Also
undistortFisheyeImage | fisheyeIntrinsics

Topics
“Fisheye Calibration Basics”

Introduced in R2017b

3 Functions

3-1140



pointsToWorld
Determine world coordinates of image points

Syntax
worldPoints = pointsToWorld(intrinsics,tform,imagePoints)
worldPoints = pointsToWorld(intrinsics,rotationMatrix,translationVector,
imagePoints)

Description
worldPoints = pointsToWorld(intrinsics,tform,imagePoints) maps undistorted image
points imagePoints, onto points on the X-Y plane in world coordinates, worldPoints using the
rigid3d transformation tform.

worldPoints = pointsToWorld(intrinsics,rotationMatrix,translationVector,
imagePoints) returns world points on the X-Y plane, which correspond to the input image points.
Points are converted using the input rotation matrix, translation vector, and camera intrinsics.

Examples

Map Image Points of Fisheye Image to World Coordinates

Map the points of a fisheye image to world coordinates and compare these points to the ground truth
points. A series of checkerboard pattern images are used to estimate the fisheye parameters and
calibrate the camera.

Create a set of checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata' ,...
      'calibration','gopro'));

Detect the checkerboard corners in the images. Leave the last image for testing.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files(1:end-1));

Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system,
with the upper-left corner at (0,0).

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera parameters from the image and world points. Use the first image to get
image size.

I = imread(images.Files{end}); 
imageSize = [size(I,1) size(I,2)];
fisheyeParams = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);
intrinsics = fisheyeParams.Intrinsics;

Find the reference object in the new image.

 pointsToWorld

3-1141



imagePoints = detectCheckerboardPoints(I, "PartialDetections", false);

Compute new extrinsics.

[R,t] = extrinsics(imagePoints,worldPoints,intrinsics);

Map image points to world coordinates in the X-Y plane.

newWorldPoints = pointsToWorld(intrinsics,R,t,imagePoints);

Compare estimated world points to the ground truth points.

plot(worldPoints(:,1),worldPoints(:,2),'gx');
hold on
plot(newWorldPoints(:,1),newWorldPoints(:,2),'ro');
legend('Ground Truth','Estimates');
hold off

Input Arguments
intrinsics — Camera intrinsics
cameraIntrinsics object | fisheyeIntrinsics object

Camera parameters, specified as a cameraIntrinsics or a fisheyeIntrinsics object. The
objects store information about a camera’s intrinsic calibration parameters, including the lens
distortion parameters.

3 Functions

3-1142



tform — Transformation
rigid3d object

Transformation of the camera in world coordinates, specified as a rigid3d object.

rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation of the world coordinates relative to the image coordinates, specified as a 3-by-3 matrix.
The rotation matrix, together with the translation vector, enable you to transform points from the
world coordinate system to the camera coordinate system. The rotationMatrix and
translationVector inputs must be the same data type.

Data Types: double | single

translationVector — 3-D translation
1-by-3 vector

3-D translation of the world coordinates relative to the image coordinates, specified as a 1-by-3
vector. The translation vector, together with the rotation matrix, enable you to transform points from
the world coordinate system to the camera coordinate system. The rotationMatrix and
translationVector inputs must be the same data type.

Data Types: double | single

imagePoints — Image points
M-by-2 matrix

Image points, specified as an M-by-2 matrix containing M [x, y] coordinates of image points.

When using the cameraParameters object as the cameraParams input, pointsToWorld does not
account for lens distortion. Therefore, the imagePoints input must contain image points detected in
the undistorted image, or they must be undistorted using the undistortPoints function. For a
fisheyeIntrinsics object, the image points are distorted.

Output Arguments
worldPoints — World coordinates
M-by-2 matrix

World coordinates, returned as an M-by-2 matrix. M represents the number of undistorted points in
[x, y] world coordinates.

 pointsToWorld

3-1143



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
undistortImage | estimateCameraParameters | extrinsics | undistortPoints |
fisheyeIntrinsics | extrinsicsToCameraPose | estimateWorldCameraPose |
cameraPoseToExtrinsics | worldToImage | relativeCameraPose

Objects
cameraParameters | fisheyeParameters | cameraIntrinsics | fisheyeIntrinsics

Introduced in R2016a

3 Functions

3-1144



worldToImage
Project world points into image

Syntax
imagePoints = worldToImage(intrinsics,tform,worldPoints)
imagePoints = worldToImage(intrinsics,rotationMatrix,translationVector,
worldPoints)
[imagePoints,validIndex] = worldToImage( ___ )
[ ___ ] = worldToImage( ___ 'ApplyDistortion',distort)

Description
imagePoints = worldToImage(intrinsics,tform,worldPoints) projects 3-D world points
worldPoints into points on an image, imagePoints. intrinsics can be a cameraIntrinsics or
a fisheyeIntrinsics object. tform is a rigid3d object.

imagePoints = worldToImage(intrinsics,rotationMatrix,translationVector,
worldPoints) returns the projection of 3-D world points into an image given the camera intrinsics,
the rotation matrix, and the translation vector.

[imagePoints,validIndex] = worldToImage( ___ ) also returns the indices of valid image
points that are within the boundary of the image using any of the previous syntax inputs.

[ ___ ] = worldToImage( ___ 'ApplyDistortion',distort) returns the projection with the
option of applying distortion. This syntax is supported for nonfisheye camera parameters.

Examples

Project World Points into Image

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
      'calibration','slr'));

Detect the checkerboard corners in the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system,
with the upper-left corner at (0,0).

squareSize = 29; % in millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

cameraParams = estimateCameraParameters(imagePoints,worldPoints);

Load the image at a new location.

 worldToImage

3-1145



imOrig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ...
        'calibration','slr','image9.jpg'));

imshow(imOrig,'InitialMagnification',30);

Undistort the image.

imUndistorted = undistortImage(imOrig,cameraParams);

Find a reference object in the new image.

[imagePoints,boardSize] = detectCheckerboardPoints(imUndistorted);

Compute new extrinsics.

[R,t] = extrinsics(imagePoints,worldPoints,cameraParams);

Add a z-coordinate to the world points.

zCoord = zeros(size(worldPoints,1),1);
worldPoints = [worldPoints zCoord];

Project the world points back into the original image.

projectedPoints = worldToImage(cameraParams,R,t,worldPoints);
hold on
plot(projectedPoints(:,1),projectedPoints(:,2),'g*-');

3 Functions

3-1146



legend('Projected points');
hold off

Input Arguments
tform — Transformation
rigid3d object

Transformation of the camera in world coordinates, specified as a rigid3d object.

intrinsics — Camera intrinsics
cameraIntrinsics object | fisheyeIntrinsics object

Camera parameters, specified as a cameraIntrinsics or a fisheyeIntrinsics object. The
objects store information about a camera’s intrinsic calibration parameters, including the lens
distortion parameters.

rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation of the world coordinates relative to the image coordinates, specified as a 3-by-3 matrix.
The rotation matrix, together with the translation vector, enable you to transform points from the
world coordinate system to the camera coordinate system. The rotationMatrix and
translationVector inputs must be the same data type.

 worldToImage

3-1147



Data Types: double | single

translationVector — 3-D translation
1-by-3 vector

3-D translation of the world coordinates relative to the image coordinates, specified as a 1-by-3
vector. The translation vector, together with the rotation matrix, enable you to transform points from
the world coordinate system to the camera coordinate system. The rotationMatrix and
translationVector inputs must be the same data type.

Data Types: double | single

worldPoints — 3-D world points
M-by-3 matrix

3-D world points, specified as an M-by-3 matrix containing M [x,y,z] coordinates of 3-D world points.

If you use the tform input argument then the worldPoints coordinates must be in the same units
as the Translation property of the tform object.

distort — Apply lens distortion
false (default) | true

Option to apply lens distortion, specified as false or true. When you set this argument to true, the
function applies lens distortion to the output imagePoints.

This argument is valid only when using a cameraParameters object as the cameraParams input.

Output Arguments
imagePoints — Image points
M-by-2 matrix

Image points, returned as an M-by-2 matrix of M [x,y] point coordinates.

validIndex — Valid index
M-by-1 logical array

Valid index returned as an M-by-1 logical array that specify the indices of valid image points in the
imagePoints output that are within the boundary of the image. The world points that correspond to
the indices are inside the field of view of the camera.

3 Functions

3-1148



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
undistortImage | estimateCameraParameters | extrinsics | undistortPoints |
fisheyeIntrinsics | extrinsicsToCameraPose | estimateWorldCameraPose |
cameraPoseToExtrinsics | pointsToWorld | relativeCameraPose

Objects
cameraParameters | fisheyeParameters | cameraIntrinsics | fisheyeIntrinsics |
rigid3d

Introduced in R2016b

 worldToImage

3-1149



toStruct
Convert a trained aggregate channel features (ACF) object detector into structure

Syntax
detectorStruct = toStruct(acfObjectDetector)

Description
detectorStruct = toStruct(acfObjectDetector) returns a structure that stores the
properties of the input acfObjectDetector object in fields. The output structure contains fields
Classifier and TrainingOptions. Use the structure to create an identical acfObjectDetector
object for C code generation. You can call the toStruct, and then pass the resulting structure to a
MATLAB function, which recreates the acfObjectDetector object.

Examples

Convert ACF Object Detector to Struct

Load the pretrained ACF stop sign detector from the stopSignDetector.mat file, which is present
in the current working folder as a supporting file.

stopSignDetector= load('stopSignDetectorACF.mat');
detector = stopSignDetector.detector

detector = 

  acfObjectDetector with properties:

             ModelName: 'stopSign'
    ObjectTrainingSize: [34 31]
       NumWeakLearners: 61

Convert the detector to a structure.

detectorStruct = toStruct(detector)

detectorStruct = 

  struct with fields:

             ModelName: 'stopSign'
    ObjectTrainingSize: [34 31]
       NumWeakLearners: 61
            Classifier: [1x1 struct]

3 Functions

3-1150



       TrainingOptions: [1x1 struct]

Input Arguments
acfObjectDetector — ACF object detector
acfObjectDetector object

ACF object detector, specified as an acfObjectDetector object. To create this object, call the
trainACFObjectDetector function with training data as input.

Output Arguments
detectorStruct — ACF object properties
structure

ACF object detector, returned as a structure containing the object properties into fields.

See Also
Topics
“Generate Code for Detecting Objects in Images by Using ACF Object Detector”

 toStruct

3-1151



displayErrors
Display standard errors of camera parameter estimates

Syntax
displayErrors(estimationErrors,cameraParams)

Description
displayErrors(estimationErrors,cameraParams) displays the camera parameters and
corresponding standard errors.

Examples

Display Fisheye Camera Calibration Errors

Gather a set of checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','gopro'));

Detect the calibration pattern from the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye parameters using image and world points. Use the first image to get the image
size. Also, store the errors from the calibration.

I = readimage(images,1); 
imageSize = [size(I,1) size(I,2)];
[params,~,errors] = estimateFisheyeParameters(imagePoints, ...
                                 worldPoints,imageSize);

Display the standard errors of the estimated camera parameters.

displayErrors(errors,params);

            Standard Errors of Estimated Camera Parameters
            ----------------------------------------------

Intrinsics
----------
Mapping coefficients:    [  875.0783 +/- 0.9451       -0.0003 +/- -0.0000      -0.0000 +/- 0.0000        0.0000 +/- -0.0000 ]
Distortion center (pixels):[ 1005.8164 +/- 0.6871      743.0346 +/- 0.5578  ]
Stretch matrix parameters:[    1.0000 +/- 0.0000        0.0000 +/- 0.0000        0.0000 +/- 0.0000  ]

Extrinsics

3 Functions

3-1152



----------
Rotation vectors:
                         [   -0.0699 +/- 0.0010       -0.0267 +/- 0.0009        0.0258 +/- 0.0002  ]
                         [    0.3628 +/- 0.0010        0.2950 +/- 0.0009       -0.1967 +/- 0.0003  ]
                         [   -0.2159 +/- 0.0009        0.3442 +/- 0.0009       -0.1941 +/- 0.0003  ]
                         [    0.0282 +/- 0.0009       -0.3784 +/- 0.0009        0.0829 +/- 0.0003  ]
                         [    0.0146 +/- 0.0008        0.4575 +/- 0.0009       -0.1215 +/- 0.0003  ]
                         [    0.6775 +/- 0.0008        0.1089 +/- 0.0008       -0.0386 +/- 0.0004  ]
                         [   -0.4936 +/- 0.0008        0.0063 +/- 0.0008        0.0486 +/- 0.0003  ]
                         [    0.3823 +/- 0.0008        0.2797 +/- 0.0008        0.1509 +/- 0.0003  ]
                         [    0.5171 +/- 0.0008       -0.3295 +/- 0.0008        0.0541 +/- 0.0003  ]
                         [   -0.1896 +/- 0.0008       -0.3543 +/- 0.0009        0.2637 +/- 0.0003  ]
                         [   -0.2911 +/- 0.0008        0.3680 +/- 0.0008       -0.1329 +/- 0.0003  ]

Translation vectors (mm):
                         [ -132.9182 +/- 0.1609      -82.6066 +/- 0.1356      195.1106 +/- 0.2311  ]
                         [ -178.9931 +/- 0.1905      -15.7750 +/- 0.1712      241.7127 +/- 0.2795  ]
                         [ -183.7957 +/- 0.2168      -56.7378 +/- 0.1884      269.9740 +/- 0.2790  ]
                         [  -17.6295 +/- 0.1315      -70.2875 +/- 0.1041      157.0827 +/- 0.1933  ]
                         [ -161.9824 +/- 0.1808      -46.9681 +/- 0.1569      228.4061 +/- 0.2302  ]
                         [ -122.4240 +/- 0.1309      -16.0260 +/- 0.1153      162.6247 +/- 0.2072  ]
                         [ -112.4268 +/- 0.1745     -125.5876 +/- 0.1428      212.8055 +/- 0.2156  ]
                         [ -148.7137 +/- 0.1387      -72.5409 +/- 0.1260      173.7615 +/- 0.2086  ]
                         [  -49.5392 +/- 0.0919      -24.8329 +/- 0.0745      104.3541 +/- 0.1506  ]
                         [   -3.4045 +/- 0.1274      -93.4074 +/- 0.1010      155.8247 +/- 0.1693  ]
                         [ -160.7344 +/- 0.1855      -51.9152 +/- 0.1600      234.4075 +/- 0.2318  ]

Input Arguments
estimationErrors — Standard errors of estimated parameters
cameraCalibrationErrors object | fisheyeCalibrationErrors object

Standard errors of estimated parameters, specified as a cameraCalibrationErrors or
fisheyeCalibrationErrors object.

cameraParams — Camera parameters
cameraParameters object | fisheyeParameters object

Camera parameters, specified as a cameraParameters or fisheyeParameters object. These
objects contain the intrinsic, extrinsic, and lens distortion parameters of a camera.

• To create a cameraParameters, use the estimateCameraParameters function or the Camera
Calibrator app.

• To create a fisheyeParameters, use the estimateFisheyeParameters function.

See Also
Functions
estimateCameraParameters | estimateFisheyeParameters

Objects
fisheyeParameters | cameraParameters

 displayErrors

3-1153



Apps
Camera Calibrator

Topics
“Evaluating the Accuracy of Single Camera Calibration”

Introduced in R2017b

3 Functions

3-1154



info
Information about specified video file

Syntax
S = info(videoFReader)

Description
S = info(videoFReader) returns a MATLAB structure, S, with information about the video file
specified in the Filename property.

Input Arguments
videoFReader — Video file reader object
object (default)

Video file reader, specified as a vision.VideoFileReader System object.

Output Arguments
S — Information about input file
structure

Information about input file, returned as a structure. The fields and possible values for the structure
S are described below:

Audio Logical value indicating if the file has audio content.
Video Logical value indicating if the file has video content.
VideoFrameRate Frame rate of the video stream in frames per second. The value may vary

from the actual frame rate of the recorded video, and takes into
consideration any synchronization issues between audio and video streams
when the file contains both audio and video content. This implies that video
frames may be dropped if the audio stream leads the video stream by more
than 1/(actual video frames per second).

VideoSize Video size as a two-element numeric vector of the form:

[VideoWidthInPixels, VideoHeightInPixels]
VideoFormat Video signal format.

Introduced in R2012a

 info

3-1155



isDone
End-of-file status (logical)

Syntax
status = isDone(videoFReader)

Description
status = isDone(videoFReader) returns a logical value indicating that the VideoFileReader
System object videoFReader , has reached the end of the multimedia file after playing it
PlayCount number of times. After the object plays the file the number of times set by the
PlayCount property, it sets the status to true.

Examples

Read and Play a Video File

Load the video using a video reader object.

videoFReader = vision.VideoFileReader('ecolicells.avi');

Create a video player object to play the video file.

videoPlayer = vision.VideoPlayer;

Use a while loop to read and play the video frames. Pause for 0.1 seconds after displaying each
frame.

while ~isDone(videoFReader)
  videoFrame = videoFReader();
  videoPlayer(videoFrame);
  pause(0.1)
end

3 Functions

3-1156



Release the objects.

release(videoPlayer);
release(videoFReader);

 isDone

3-1157



Input Arguments
videoFReader — Video file reader object
object (default)

Video file reader, specified as a vision.VideoFileReader System object.

Output Arguments
status — Status of reader file
true | false

Status of reader file, returned as true or false.

Introduced in R2012a

3 Functions

3-1158



isOpen
Visible or hidden status for player

Syntax
isOpen(player)

Description
isOpen(player) returns true or false to indicate whether the player is visible.

Examples

Terminate a Point Cloud Processing Loop

Close the display of continuous point cloud player

Add data to the point cloud player.

player = pcplayer([0 1],[0 1],[0 1]);

 isOpen

3-1159



Display continuous player figure. Use the isOpen method to check if player figure window is open.

  while isOpen(player)
     ptCloud = pointCloud(rand(1000,3,'single'));
     view(player, ptCloud);
  end

Terminate the while-loop by closing pcplayer figure window.

Input Arguments
player — Player
object

Video player, specified as a pcplayer, or vision.DeployableVideoPlayer object.

Introduced in R2012a

3 Functions

3-1160



segmentGroundFromLidarData
Segment ground points from organized lidar data

Syntax
groundPtsIdx = segmentGroundFromLidarData(ptCloud)
groundPtsIdx = segmentGroundFromLidarData(ptCloud,Name,Value)

Description
groundPtsIdx = segmentGroundFromLidarData(ptCloud) segments organized 3-D lidar data,
ptCloud, into ground and nonground parts. The lidar sensor must be mounted horizontally such that
all ground points are observed in the lidar scan closest to the sensor.

groundPtsIdx = segmentGroundFromLidarData(ptCloud,Name,Value) sets properties using
one or more name-value pairs. Enclose each property name in quotes. For example,
segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',5)

Examples

Segment and Plot Organized Lidar Data

Segment ground points and nonground points from an organized lidar point cloud. Create organized
point clouds from these segmentations, and display them.

Load an organized lidar, point cloud.

ld = load('drivingLidarPoints.mat');

Segment ground points from the organized lidar point cloud.

groundPtsIdx = segmentGroundFromLidarData(ld.ptCloud);

Create an organized point cloud containing only these ground points by using the select function.
Display this point cloud.

groundPtCloud = select(ld.ptCloud,groundPtsIdx);
figure
pcshow(groundPtCloud)

 segmentGroundFromLidarData

3-1161



Create an organized point cloud containing only the nonground points. Specify a threshold of 0.5
meters.

nonGroundPtCloud = select(ld.ptCloud,~groundPtsIdx,'OutputSize','full');
distThreshold = 0.5;   
[labels,numClusters] = segmentLidarData(nonGroundPtCloud,distThreshold);  

Display the nonground points cloud clusters.

figure
colormap(hsv(numClusters))
pcshow(nonGroundPtCloud.Location,labels)
title('Point Cloud Clusters')

3 Functions

3-1162



Segment and Plot Ground Plane using PCAP File

Load Velodyne PCAP® to the workspace.

velodyneFileReaderObj = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Create a point cloud player using pcplayer. Define its x-, y-, and z-axes limits, in meters, and label its
axes.

xlimits = [-40 40];
ylimits = [-15 15];
zlimits = [-3 3];
player = pcplayer(xlimits,ylimits,zlimits);

Label the pcplayer axes.

xlabel(player.Axes,'X (m)')
ylabel(player.Axes,'Y (m)')
zlabel(player.Axes,'Z (m)')

Set the colormap for labeling points. Use RGB triplets to specify green for ground-plane points, and
red for obstacle points.

 segmentGroundFromLidarData

3-1163



colors = [0 1 0; 1 0 0]; 
greenIdx = 1;
redIdx = 2;

Iterate through the first 200 point clouds in the Velodyne PCAP file, using readFrame to read in the
data. Segment the ground points from each point cloud. Color all ground points green and nonground
points red. Plot the resulting lidar point cloud.

colormap(player.Axes,colors)
title(player.Axes,'Segmented Ground Plane of Lidar Point Cloud');
     for i = 1 : 200
         % Read current frame.
         ptCloud = velodyneFileReaderObj.readFrame(i);
         
         % Create label array.
         colorLabels = zeros(size(ptCloud.Location,1),size(ptCloud.Location,2)); 
 
         % Find the ground points.
         groundPtsIdx = segmentGroundFromLidarData(ptCloud);
 
         % Map color ground points to green.
         colorLabels(groundPtsIdx (:)) = greenIdx;
         
         % Map color nonground points to red.
         colorLabels(~groundPtsIdx (:)) = redIdx;
 
         % Plot the results.
         view(player,ptCloud.Location,colorLabels)
    end

3 Functions

3-1164



Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. ptCloud is an organized point cloud that stores
[x,y,z] point coordinates in an M-by-N-by-3 matrix.

Name-Value Pair Arguments
Example: 'ElevationAngleDelta',5

ElevationAngleDelta — Elevation angle difference threshold
5 (default) | nonnegative scalar

Elevation angle difference threshold to identify ground points, specified as a nonnegative scalar. The
function computes the elevation angle difference between one labeled ground point and its 4-
connected neighbors. The neighborhood point is labeled as ground if the difference is below the

 segmentGroundFromLidarData

3-1165



threshold. Typical values for ElevationAngleDelta are in the range of [5,15] degrees. Increase
this value to encompass more points from uneven ground surfaces.

InitialElevationAngle — Initial elevation angle threshold
30 (default) | non-negative scalar

Initial elevation angle threshold to identify the ground point in the scanning line closest to the lidar
sensor, specified as a non-negative scalar. The function marks a point as ground when the elevantion
angle falls below this value. Typical values for InitialElevationAngle are in the range of 15 and
30 degrees.

Output Arguments
groundPtsIdx — Ground points index
logical matrix

Ground points index, returned as an M-by-N logical matrix. Elements with a true value, 1, indicate
ground points. Elements with a false value, 0, indicate nonground points.

References
[1] Bogoslavskyi, I. “Efficient Online Segmentation for Sparse 3D Laser Scans.” Journal of

Photogrammetry, Remote Sensing and Geoinformation Science. Vol. 85, Number 1, 2017, pp.
41–52.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Because of architectural differences between the CPU and GPU, numerical verification does not
always match. The GPU floating-point units use fused Floating-Point Multiply-Add (FMAD)
instructions while the CPU does not use these instructions. The CUDA compiler performs these
instruction-level optimizations by default impacting the accuracy of the computed results. For
example, the CUDA compiler fuses floating-point multiply and add instructions into a single
instruction. This Floating-point Multiply-Add (FMAD) operation executes twice as fast compared to
two single instructions but results in the loss of numerical accuracy. You can achieve tighter control
over these optimizations by using compiler flags. For example, passing --fmad=false to the
Compiler Flags property of the code configuration object instructs the nvcc compiler to disable
contraction of floating-point multiply and add to a single Floating-Point Multiply-Add (FMAD)
instruction. For more information, see “Generate Code by Using the GPU Coder App” (GPU Coder) .

See Also
pointCloud | pcsegdist | pcfitplane | velodyneFileReader | segmentLidarData

Introduced in R2018b

3 Functions

3-1166



focalCrossEntropy
Compute focal cross-entropy loss

Syntax
dlY = focalCrossEntropy(dlX,targets)
dlY = focalCrossEntropy(dlX,targets,'DataFormat',FMT)
dlY = focalCrossEntropy( ___ ,Name,Value)

Description
dlY = focalCrossEntropy(dlX,targets) computes the focal cross-entropy between network
predictions and target values for single-label and multi-label classification tasks. The classes are
mutually-exclusive classes. The focal cross-entropy loss weights towards poorly classified training
samples and ignores well-classified samples. The focal cross-entropy loss is computed as the average
logarithmic loss divided by number of non-zero targets.

dlY = focalCrossEntropy(dlX,targets,'DataFormat',FMT) also specifies the dimension
format FMT when dlX is not a formatted dlarray.

dlY = focalCrossEntropy( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in previous syntaxes. For example,
'TargetCategories','independent' computes the cross-entropy loss for a multi-label
classification task.

Examples

Compute Focal Cross-Entropy Loss Using Formatted dlarray

Create the input classification data as 32 observations of random variables belonging to 10 classes or
categories.

numCategories = 10;
observations = 32;
X = rand(numCategories,observations);

Create a formatted deep learning array that has a data format with the labels 'C' and 'B'.

dlX = dlarray(X,'CB');

Use the softmax function to set all values in the input data to values between 0 and 1 that sum to 1
over all channels. The values specify the probability of each observation to belong to a particular
category.

dlX = softmax(dlX);

Create the target data as unformatted deep learning array, which holds the correct category for each
observation in dlX. Set the targets belonging to the second category as one-hot encoded vectors.

 focalCrossEntropy

3-1167



targets = dlarray(zeros(numCategories,observations));
targets(2,:) = 1;

Compute the focal cross-entropy loss between each prediction and the target.

dlY = focalCrossEntropy(dlX,targets,'Reduction','none');

Compute Average Focal Cross-Entropy Loss Using Unformatted dlarray

Create the input classification data as 32 observations of random variables belonging to 10 classes or
categories.

numCategories = 10;
observations = 32;
X = rand(numCategories,observations);

Create an unformatted deep learning array.

dlX = dlarray(X);

Use the softmax function to set all values in the input data to values between 0 and 1 that sum to 1
over all channels. The values specify the probability for each observation to belong to a particular
category.

dlX = softmax(dlX,'DataFormat','CB');

Create the target data. Set the targets belonging to the second category as one-hot encoded vectors.

targets = zeros(numCategories,observations);
targets(2,:) = 1;

Compute the average of focal cross-entropy loss computed between the predictions and the targets.

dlY = focalCrossEntropy(dlX,targets,'DataFormat','CB')

dlY = 
  1x1 dlarray

    0.4769

Compute Average Focal Cross-Entropy Loss for Multi-Label Classification

Create the input classification data as 32 observations of random variables belonging to 10 classes or
categories.

numCategories = 10;
observations = 32;
X = rand(numCategories,observations);

Create a formatted deep learning array that has a data format with the labels 'C' and 'B'.

dlX = dlarray(X,'CB');

3 Functions

3-1168



Use the sigmoid function to set all values in the input data to values between 0 and 1 that sum to 1
over all channels. The values specify the probability of each observation to belong to a particular
category.

dlX = sigmoid(dlX);

Create the target data, which holds the correct category for each observation in dlX. Set the targets
belonging to the second and sixth category as one-hot encoded vectors.

targets = zeros(numCategories,observations);
targets(2,:) = 1;
targets(6,:) = 1;

Compute the average of focal cross-entropy loss computed between the predictions and the targets.
Set the 'TargetCategories' value to 'independent' for multi-label classification.

dlY = focalCrossEntropy(dlX,targets,'TargetCategories','independent')

dlY = 
  1x1 dlarray

    2.4362

Input Arguments
dlX — Predictions
dlarray | numeric array

Predictions, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension format using 'DataFormat',FMT. If dlX
is a numeric array, targets must be a dlarray.
Data Types: single | double

targets — Target classification labels
dlarray | numeric array

Target classification labels, specified as a formatted or unformatted dlarray or a numeric array.

If targets is a formatted dlarray, its dimension format must be the same as the format of dlX, or
the same as 'DataFormat' if dlX is unformatted

If targets is an unformatted dlarray or a numeric array, the size of targets must exactly match
the size of dlX. The format of dlX or the value of 'DataFormat' is implicitly applied to targets.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

 focalCrossEntropy

3-1169



Example: 'TargetCategories','independent','DataFormat','CB' evaluates the focal cross-
entropy loss for multi-label classification tasks and specifies the dimension order of the input data as
'CB'

Gamma — Focusing parameter
0.25 (default) | positive real number

Focusing parameter of the focal loss function, specified as the comma-separated pair consisting of
'Gamma' and a positive real number. Increasing the value of Gamma increases the sensitivity of the
network to misclassified observations.

Alpha — Balancing parameter
2 (default) | positive real number

Balancing parameter of the focal loss function, specified as the comma-separated pair consisting of
'Alpha' and a positive real number. The Alpha value scales the loss function linearly and is typically
set to 0.25. If you decrease Alpha, increase Gamma.

Reduction — Type of output loss
'mean' (default) | 'none'

Type of output loss, specified as the comma-separated pair consisting of 'Reduction' and one of the
following:

• 'mean' — Average of output loss for each prediction. The function computes the average of loss
values computed for each predictions in input dlX. The function returns the average loss as an
unformatted dlarray. Observations with all zero target values along the channel dimension are
excluded from computing the average loss.

• 'none' — Output loss for each prediction. The function returns the loss values for each
observation in dlX. The samples for computing focal cross-entropy loss also contains observations
whose target values are all zeros along the channel dimension. If dlX is a formatted dlarray,
output dlY is a formatted dlarray with same dimension labels as dlX. If dlX is an unformatted
dlarray, output dlY is an unformatted dlarray.

The default value is 'mean'.
Example: 'Reduction','mean'
Data Types: char | string

TargetCategories — Type of classification task
'exclusive' (default) | 'independent'

Type of classification task, specified as the comma-separated pair consisting of
'TargetCategories' and one of the following:

• 'exclusive' — Single-label classification. Each observation in the predictions dlX is exclusively
assigned to one category.

• 'independent'— Multi-label classification. Each observation in the predictions dlX can be
assigned to one or more independent categories.

The default value is 'exclusive'.

DataFormat — Dimension order of unformatted data
char array | string

3 Functions

3-1170



Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
dlY — Focal cross-entropy loss
dlarray scalar

Focal cross-entropy loss, returned as a dlarray scalar without dimension labels. The output dlY has
the same underlying data type as the input dlX.

See Also
focalLossLayer | softmax | sigmoid | crossentropy | mse

Topics
“Lidar 3-D Object Detection Using PointPillars Deep Learning” (Lidar Toolbox)

Introduced in R2020b

 focalCrossEntropy

3-1171



bboxerase
Remove bounding boxes

Syntax
bboxB = bboxerase(bboxA,window)
[bboxB,indices] = bboxerase(bboxA,window)
___  = bboxerase( ___ ,EraseThreshold=threshold)

Description
bboxB = bboxerase(bboxA,window) removes bounding boxes in the input bboxA that lie within a
region of interest (ROI) specified by window. The output is the set of bounding boxes retained from
the input bboxA. This function supports 2-D and 3-D bounding boxes.

Note To perform random erase or cutout data augmentation, use bboxerase along with the
imerase function.

[bboxB,indices] = bboxerase(bboxA,window) also returns the indices of the bounding boxes
retained from the input set of bounding boxes bboxIn.

___  = bboxerase( ___ ,EraseThreshold=threshold) additionally specifies the threshold for
the amount of overlap between a bounding box region and the specified ROI. A bounding box is
removed if the overlap between the bounding box region and the ROI is equal to or greater than the
specified threshold.

Examples

Perform Random Erase Augmentation

Read an image.

I = imread('peppers.png');

Define bounding boxes and labels.

bboxA = [410 230 100 90;
        186 78 80 60];
labelsA = ["garlic";"onion"];

Find the size of the input image

inputSize = size(I);

To randomly select a region of interest (ROI), specify a range for the scale and the aspect ratio of the
ROI. The scale value for the ROI is set to lie in the range 0.2 and 0.3. Similarly, the minimum value for
the aspect ratio is set to lie in the range 1:10 and the maximum value for the aspect ratio is set to lie
in the range 30:100.

3 Functions

3-1172



scale = [0.2,0.3];
dimensionRatio = [1,10;30,100];

Select the ROI by using the randomWindow2d function.

window = randomWindow2d(inputSize,'Scale',scale,'DimensionRatio',dimensionRatio);

Remove the pixels and the bounding boxes that lie within the randomly selected ROI.

J = imerase(I,window);
[bboxB,indices] = bboxerase(bboxA,window);
labelsB = labelsA(indices);

Display the original and augmented image.

annotatedI = insertObjectAnnotation(I,'Rectangle',bboxA,labelsA);
annotatedJ = insertObjectAnnotation(J,'Rectangle',bboxB,labelsB);
figure
montage({annotatedI,annotatedJ})
title(['Input | Random Erase Output'])

Perform Cutout Data Augmentation

Read an image.

I = imread('visionteam1.jpg');

Define bounding boxes and labels.

bboxA = [64 101 117 440;
193 101 67 309;
282 86 114 375;
618 118 79 345;
486 55 131 528;
475 109 66 361];

 bboxerase

3-1173



labelsA = ["Person 1";"Person 2";"Person 3";"Person 4";"Person 5";"Person 6"];

Specify a rectangular region of interest.

window = [470 100 90 360];

Erase the pixels that lie within the rectangular region by using imerase function.

J = imerase(I,window);

Erase the bounding boxes that lie within the rectangular region. Set the erase threshold value to 0.7.
The bboxerase function returns the retained bounding boxes and the corresponding indices.

[bboxB,indices] = bboxerase(bboxA,window,'EraseThreshold',0.7);

Read the class labels corresponding to the retained bounding boxes.

labelsB = labelsA(indices);

Display the results.

figure
I = insertObjectAnnotation(I,'Rectangle',bboxA,labelsA);
J = insertObjectAnnotation(J,'Rectangle',bboxB,labelsB);
imshowpair(I,J,'montage')
title(['Number of input bounding boxes: ', num2str(length(labelsA)), ' | ', 'Number of output bounding boxes: ', num2str(length(labelsB))])

Input Arguments
bboxA — Input set of bounding boxes
M-by-4 matrix

Input set of bounding boxes, specified as M-by-4 matrix. M is the number of bounding boxes. Each
row in the matrix of form [xmin ymin width height]. [xmin ymin] are the top left coordinates of the
bounding box. width and height are the width and the height of the bounding box respectively.

3 Functions

3-1174



Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

window — Region of interest
4-element vector | Rectangle object

Region of interest, specified as one of these values:

• 4 -element vector of form [x y width height]. [x y] are the top left coordinates of the ROI. width
and height are the width and the height of the ROI respectively.

• Rectangle object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

threshold — Erase threshold
0.8 (default) | positive scalar

Erase threshold, specified as a positive scalar less than or equal to 1. The erase threshold sets the
criteria for removing a bounding box from the input set bboxA. The value is the ratio of number of
pixels in a bounding box that lie inside the ROI (overlapping pixels) to the total number of pixels in
the bounding box.

threshold = Number of overlapping pixels
Total number of pixels in bounding box

The default value is 0.8. This implies that, a bounding box is removed if 80 % of the pixels in the
bounding box lie within the specified ROI.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
bboxB — Output bounding boxes retained from the input
N-by-4 matrix

Output bounding boxes retained from the input, returned as a N-by-4 matrix. N is the number of
bounding boxes retained from the input. Each row of the matrix defines one bounding box of the
same type as the input bboxA. The value of N is always less than or equal to M, the number of input
bounding boxes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

indices — Indices of retained bounding boxes
vector

 bboxerase

3-1175



Indices of retained bounding boxes, returned as a vector of integers. The indices indicate which
bounding boxes in the input, bboxA, are retained and returned at the output.

See Also
imerase | Rectangle | randomWindow2d | imref2d | affineOutputView |
insertObjectAnnotation

Introduced in R2021a

3 Functions

3-1176


	Blocks
	2-D Autocorrelation
	2-D Convolution
	2-D Correlation
	2-D DCT
	2-D FFT
	2-D FIR Filter
	2-D Histogram
	2-D IDCT
	2-D IFFT
	2-D Mean
	2-D Median
	2-D Maximum
	2-D Minimum
	2-D Standard Deviation
	2-D Variance
	Autothreshold
	Blob Analysis
	Block Matching
	Block Processing
	Bottom-hat
	Chroma Resampling
	Closing
	Color Space Conversion
	Compositing
	Contrast Adjustment
	Corner Detection
	Deinterlacing
	Demosaic
	Dilation
	Draw Markers
	Draw Shapes
	Edge Detection
	Erosion
	Estimate Geometric Transformation
	Find Local Maxima
	Frame Rate Display
	From Multimedia File
	From Simulink Image
	Gamma Correction
	Gaussian Pyramid
	Histogram Equalization
	Hough Lines
	Hough Transform
	Image Complement
	Image Data Type Conversion
	Image To Matrix
	Image From File
	Image From Workspace
	Image Pad
	Insert Text
	Label
	Median Filter
	Matrix To Image
	Deep Learning Object Detector
	Opening
	Optical Flow
	PSNR
	Resize
	Rotate
	Shear
	Read Binary File
	Write Binary File
	Template Matching
	To Multimedia File
	To Simulink Image
	To Video Display
	Top-hat
	Trace Boundary
	Translate
	Video Viewer
	Video From Workspace
	Video To Workspace
	Warp
	ToOpenCV
	FromOpenCV

	Objects
	inflated3dVideoClassifier
	slowFastVideoClassifier
	r2plus1dVideoClassifier
	classifySequence
	classifySequence
	classifyVideoFile
	forward
	forward
	predict
	predict
	resetSequence
	resetSequence
	updateSequence
	updateSequence
	vision.calibration.PatternDetector
	propertiesPanel
	drawImageAxesLabels
	generateWorldPoints
	detectPatternPoints
	scanContextLoopDetector
	addDescriptor
	deleteDescriptor
	detectLoop
	SIFTPoints
	pcmapndt
	selectSubmap
	isInsideSubmap
	findPose
	show
	worldpointset
	addCorrespondences
	addWorldPoints
	findViewsOfWorldPoint
	findWorldPointsInTracks
	findWorldPointsInView
	removeCorrespondences
	removeWorldPoints
	updateCorrespondences
	updateWorldPoints
	pcviewset
	addView
	updateView
	deleteView
	hasView
	addConnection
	updateConnection
	deleteConnection
	hasConnection
	connectedViews
	poses
	optimizePoses
	createPoseGraph
	findView
	findConnection
	imageviewset
	addView
	updateView
	deleteView
	hasView
	addConnection
	updateConnection
	deleteConnection
	hasConnection
	connectedViews
	poses
	optimizePoses
	createPoseGraph
	findView
	findConnection
	findTracks
	plot
	ssdObjectDetector
	detect
	boxLabelDatastore
	pixelLabelImageDatastore
	partitionByIndex
	readByIndex
	anchorBoxLayer
	dicePixelClassificationLayer
	focalLossLayer
	pixelClassificationLayer
	rcnnBoxRegressionLayer
	regionProposalLayer
	roiAlignLayer
	roiInputLayer
	roiMaxPooling2dLayer
	rpnClassificationLayer
	rpnSoftmaxLayer
	ssdMergeLayer
	yolov2OutputLayer
	yolov2ReorgLayer
	yolov2TransformLayer
	pixelLabelDatastore
	KAZEPoints
	binaryFeatures
	cameraIntrinsics
	pcplayer
	view
	pointTrack
	vision.PointTracker
	viewSet
	addView
	updateView
	deleteView
	hasView
	addConnection
	updateConnection
	deleteConnection
	hasConnection
	findTracks
	poses
	acfObjectDetector
	rcnnObjectDetector
	bagOfFeatures
	encode
	imageCategoryClassifier
	predict
	evaluate
	intrinsicsEstimationErrors
	extrinsicsEstimationErrors
	BRISKPoints
	imageSet
	partition
	read
	select
	invertedImageIndex
	addImages
	removeImages
	addImageFeatures
	cameraCalibrationErrors
	stereoCalibrationErrors
	displayErrors
	MSERRegions
	cornerPoints
	SURFPoints
	ORBPoints
	vision.AlphaBlender
	vision.BinaryFileReader
	vision.BinaryFileWriter
	vision.BlobAnalysis
	vision.BlockMatcher
	vision.CascadeObjectDetector
	vision.Deinterlacer
	vision.ForegroundDetector
	vision.GammaCorrector
	vision.HistogramBasedTracker
	integralKernel
	transpose
	rot45
	vision.KalmanFilter
	vision.LocalMaximaFinder
	vision.Maximum
	vision.Mean
	vision.Median
	vision.Minimum
	vision.VideoFileReader
	vision.VideoFileWriter
	ocrText
	locateText
	pointCloud
	findNearestNeighbors
	findNeighborsInRadius
	findPointsInROI
	removeInvalidPoints
	select
	copy
	cylinderModel
	planeModel
	sphereModel
	opticalFlow
	plot
	opticalFlowHS
	opticalFlowLK
	opticalFlowLKDoG
	opticalFlowFarneback
	estimateFlow
	reset
	vision.PeopleDetector
	semanticSegmentationMetrics
	vision.StandardDeviation
	stereoParameters
	toStruct
	toStruct
	vision.TemplateMatcher
	vision.Variance
	vision.VideoPlayer
	fastRCNNObjectDetector
	fasterRCNNObjectDetector
	maskrcnn
	forward
	segmentObjects
	yolov2ObjectDetector
	yolov3ObjectDetector
	detect
	preprocess
	predict
	forward
	yolov4ObjectDetector
	detect
	vision.ChromaResampler
	groundTruthDataSource
	groundTruth
	selectLabels
	vision.labeler.AutomationAlgorithm
	checkLabelDefinition
	checkSetup
	checkSignalType
	initialize
	run
	settingsDialog
	supportsMultisignalAutomation
	terminate
	vision.labeler.mixin.Temporal
	supportsReverseAutomation
	vision.labeler.mixin.BlockedImageAutomation
	blockedImageAutomationAlgorithm
	labelType
	isCustom
	isROI
	isScene
	attributeType
	hasValue
	cameraParameters
	fisheyeCalibrationErrors
	fisheyeIntrinsics
	fisheyeIntrinsicsEstimationErrors
	fisheyeParameters
	velodyneFileReader
	hasFrame
	readFrame
	reset
	changeFilePaths
	labelDefinitionCreator
	addLabel
	addSublabel
	addAttribute
	removeLabel
	removeSublabel
	removeAttribute
	editLabelDescription
	editLabelGroup
	editGroupName
	editAttributeDescription
	create
	info
	vision.DeployableVideoPlayer
	Simulink.ImageType

	Functions
	folders2labels
	splitlabels
	generateCircleGridPoints
	detectCircleGridPoints
	writeVideoScenes
	sceneTimeRanges
	stereoParametersFromOpenCV
	stereoParametersToOpenCV
	cameraIntrinsicsFromOpenCV
	cameraIntrinsicsToOpenCV
	detectSIFTFeatures
	normalRotation
	showShape
	pcregistercorr
	scanContextDistance
	scanContextDescriptor
	pcalign
	pccat
	readAprilTag
	evaluateDetectionAOS
	ssdLayers
	pcbin
	readBarcode
	balanceBoxLabels
	balancePixelLabels
	showvipblockdatatypetable
	read
	shuffle
	preview
	progress
	estimateAnchorBoxes
	deeplabv3plusLayers
	fasterRCNNLayers
	yolov2Layers
	gatherLabelData
	selectLabelsByGroup
	selectLabelsByType
	selectLabelsByName
	correct
	distance
	vision.KalmanFilter.predict
	pcregistercpd
	initializeObject
	hide
	show
	initializeSearchWindow
	initialize
	fcnLayers
	segnetLayers
	unetLayers
	unet3dLayers
	countEachLabel
	reset
	readimage
	readall
	partition
	numpartitions
	hasdata
	semanticseg
	detectKAZEFeatures
	selectUniform
	size
	selectStrongest
	plot
	plot
	length
	isempty
	gather
	plot
	assignDetectionsToTracks
	bbox2points
	bboxcrop
	bboxresize
	bboxwarp
	bboxOverlapRatio
	bboxPrecisionRecall
	bundleAdjustment
	bundleAdjustmentMotion
	bundleAdjustmentStructure
	OCR Trainer
	listTrueTypeFonts
	pcfromkinect
	Camera Calibrator
	Stereo Camera Calibrator
	cameraMatrix
	cameraPose
	relativeCameraPose
	estimateCameraMatrix
	extractLBPFeatures
	configureKalmanFilter
	detectBRISKFeatures
	detectCheckerboardPoints
	detectFASTFeatures
	detectHarrisFeatures
	detectMinEigenFeatures
	detectMSERFeatures
	detectPeopleACF
	detectSURFFeatures
	detectORBFeatures
	disparity
	disparityBM
	disparitySGM
	epipolarLine
	estimateCameraParameters
	estimateFundamentalMatrix
	estimateEssentialMatrix
	estimateStereoBaseline
	estimateWorldCameraPose
	cameraPoseToExtrinsics
	extrinsicsToCameraPose
	trainACFObjectDetector
	trainRCNNObjectDetector
	estimateGeometricTransform2D
	estimateGeometricTransform3D
	estimateGeometricTransform
	estimateUncalibratedRectification
	evaluateDetectionMissRate
	evaluateDetectionPrecision
	evaluateImageRetrieval
	evaluateSemanticSegmentation
	extractFeatures
	extractHOGFeatures
	fitPolynomialRANSAC
	extrinsics
	generalizedDice
	generateCheckerboardPoints
	indexImages
	integralFilter
	insertMarker
	insertObjectAnnotation
	insertObjectMask
	insertShape
	insertText
	isEpipoleInImage
	isfilterseparable
	lineToBorderPoints
	matchFeatures
	matchFeaturesInRadius
	mplay
	ocr
	detectTextCRAFT
	pcdenoise
	pcmerge
	pcdownsample
	pcread
	pcregistericp
	pcregisterndt
	pcregrigid
	pcsegdist
	pcwrite
	pctransform
	pcnormals
	pcfitcylinder
	pcfitplane
	pcfitsphere
	pixelLabelImageSource
	pixelLabelTrainingData
	plotCamera
	ransac
	reconstructScene
	rectifyStereoImages
	retrieveImages
	roialign
	rotationMatrixToVector
	rotationVectorToMatrix
	segmentationConfusionMatrix
	segmentLidarData
	selectStrongestBbox
	selectStrongestBboxMulticlass
	showExtrinsics
	showMatchedFeatures
	showPointCloud
	pcshow
	pcshowpair
	showReprojectionErrors
	stereoAnaglyph
	trainCascadeObjectDetector
	trainImageCategoryClassifier
	Image Labeler
	Video Labeler
	Training Image Labeler
	triangulate
	triangulateMultiview
	undistortImage
	undistortPoints
	visionlib
	visionSupportPackages
	ocvStructToKeyPoints
	ocvMxGpuArrayToGpuMat_{DataType}
	ocvMxGpuArrayFromGpuMat_{DataType}
	ocvMxArrayToSize_{DataType}
	ocvMxArrayToMat_{DataType}
	ocvMxArrayToImage_{DataType}
	ocvMxArrayToCvRect
	ocvMxArrayFromVector_{DataType}
	ocvMxArrayFromPoints2f
	ocvMxArrayFromMat_{DataType}
	ocvMxArrayFromImage_{DataType}
	ocvKeyPointsToStruct
	ocvCvRectToMxArray
	ocvCvRectToBoundingBox_{DataType}
	ocvCvBox2DToMxArray
	ocvCheckFeaturePointsStruct
	createMat
	createUMat
	getBasePtr
	getImage
	keyPointsToStruct
	rectToBbox
	trainSSDObjectDetector
	trainFasterRCNNObjectDetector
	trainMaskRCNN
	trainYOLOv2ObjectDetector
	trainYOLOv4ObjectDetector
	detect
	detect
	detect
	detect
	detect
	classifyRegions
	classifyRegions
	trainFastRCNNObjectDetector
	peopleDetectorACF
	objectDetectorTrainingData
	estimateFisheyeParameters
	undistortFisheyeImage
	undistortFisheyePoints
	pointsToWorld
	worldToImage
	toStruct
	displayErrors
	info
	isDone
	isOpen
	segmentGroundFromLidarData
	focalCrossEntropy
	bboxerase


